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Some remarks on generalised lush spaces

by

Jan-David Hardtke (Berlin)

Abstract. D. Tan, X. Huang and R. Liu [Studia Math. 219 (2013)] recently intro-
duced the notion of generalised lush (GL) spaces, which, at least for separable spaces, is
a generalisation of the concept of lushness introduced by Boyko et al. [Math. Proc. Cam-
bridge Philos. Soc. 142 (2007)]. The main result of D. Tan et al. is that every GL-space
has the so called Mazur–Ulam property (MUP).

In this note, we prove some further properties of GL-spaces, for example, every
M -ideal in a GL-space is again a GL-space, ultraproducts of GL-spaces are again GL-
spaces, and if the bidual X∗∗ of a Banach space X is GL, then X itself has the MUP.

1. Introduction. Our notation is as follows: if not otherwise stated,
X denotes a real Banach space, X∗ its dual, BX its closed unit ball and SX
its unit sphere. For a subset A of X, we denote by A its norm-closure and
by coA resp. acoA its convex resp. absolutely convex hull. By d(x,A) we
denote the distance from a point x ∈ X to the set A. For any functional
x∗ ∈ SX∗ and ε > 0 let S(x∗, ε) := {x ∈ BX : x∗(x) > 1− ε} be the slice of
BX induced by x∗ and ε.

We begin by recalling the classical Mazur–Ulam theorem (see [21]), which
states that every bijective isometry T between two real normed spaces X
and Y must be affine, i.e. T (λx + (1 − λ)y) = λT (x) + (1 − λ)T (y) for all
x, y ∈ X and λ ∈ [0, 1] (equivalently, T − T (0) is linear). A simplified proof
of this theorem was given in [33]. See also the recent paper [25] for an even
more simplified argument.

In 1972, Mankiewicz [19] proved the following generalisation of the Ma-
zur–Ulam theorem: if A ⊆ X and B ⊆ Y are convex with non-empty interior
or open and connected, then every bijective isometry T : A → B can be
extended to a bijective affine isometry T̃ : X → Y . This implies in particular
that every bijective isometry from BX onto BY is the restriction of a linear
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isometry from X onto Y . Tingley [32] asked whether the same is true if one
replaces the unit balls of X and Y by their respective unit spheres. As a
first step towards solving this problem, he proved that for X and Y finite-
dimensional, every bijective isometry T : SX → SY satisfies T (−x) = −T (x)
for all x ∈ SX .

Though Tingley’s problem remains open even in two dimensions, affir-
mative answers have been obtained for many special classes of spaces. In
particular, the answer is “yes” if Y is an (a priori) arbitrary Banach space
and X is any of the classical Banach spaces `p(I), c0(I), for 1 ≤ p ≤ ∞
and I any index set, or Lp(µ), for 1 ≤ p ≤ ∞ and µ a σ-finite measure (see
[7], [10], [34], [28], [29] and references therein). The answer is also known to
be positive for Y arbitrary and X = C(K) if K is a compact metric space
(see [9]).

The Mazur–Ulam property was introduced in [5]: a (real) Banach space
X is said to have the Mazur–Ulam property (MUP) if for every Banach
space Y every bijective isometry between SX and SY can be extended to a
linear isometry between X and Y .

Recall that a Banach space X is called a CL-space resp. an almost CL-
space if for every maximally convex subset F of SX one has BX = acoF
resp. BX = acoF . CL-spaces were introduced by Fullerton [11], and almost
CL-spaces by Lima [17], [18]. Lima also proved that real C(K) and L1(µ)
spaces (where K is any compact Hausdorff space, and µ any finite measure)
are CL-spaces. The complex spaces C(K) are also CL while L1(µ) in the
complex case is in general only almost CL (see [20]).

Cheng and Dong [5] stated that every CL-space whose unit sphere has a
smooth point and every polyhedral space (1) have the MUP. Unfortunately
their proof is not completely correct, as is mentioned in the introduction
of [14], where Kadets and Mart́ın proved that every finite-dimensional poly-
hedral space has the MUP. Tan and Liu [31] showed that every almost
CL-space whose unit sphere admits a smooth point has the MUP.

Next we recall the definition of lushness, introduced in [4] (in connection
with a problem concerning the numerical index of a Banach space). The
space X is said to be lush provided that for any x, y ∈ SX and every ε > 0
there exists x∗ ∈ SX∗ such that x ∈ S(x∗, ε) and

d(y, acoS(x∗, ε)) < ε.

For example, every almost CL-space is lush but the converse is not true (see
[4, Example 3.4]).

Tan, Huang and Liu [30] proposed the following definition of generalised
lush spaces: X is called a generalised lush (GL) space if for every x ∈ SX

(1) A Banach space is called polyhedral if the unit ball of each of its finite-dimensional
subspaces is a polyhedron, i.e. the convex hull of finitely many points.
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and every ε > 0 there is some x∗ ∈ SX∗ such that x ∈ S(x∗, ε) and

d(y, S(x∗, ε)) + d(y,−S(x∗, ε)) < 2 + ε ∀y ∈ SX .
It is proved in [30] that every almost CL-space and every separable lush
space is a GL-space (see [30, Examples 2.4 and 2.5]). Also, by [30, Ex-
ample 2.7] the space R2 equipped with the hexagonal norm ‖(x, y)‖ =
max{|y|, |x|+ (1/2)|y|} is a GL-space which is not lush.

Very recently, M. Cúth [6] used a separable reduction technique to prove
that every lush Asplund space is a GL-space, but it is still not known whether
every lush space is actually GL.

Concerning the connection of GL-spaces with the MUP, the following
two propositions are proved in [30].

Proposition 1.1 ([30, Proposition 3.2]). If X is a GL-space, Y any
Banach space and T : SX → SY is a (not necessarily onto) isometry, then

(1.1) ‖T (x)− λT (y)‖ ≥ ‖x− λy‖ ∀x, y ∈ SX , ∀λ ≥ 0.

Proposition 1.2 ([30, Proposition 3.4]). If X and Y are Banach spaces
and T : SX → SY is an onto isometry which satisfies (1.1) then T can be
extended to a linear isometry from X onto Y .

It follows that every GL-space (in particular, every almost CL-space and
every separable lush space) has the MUP [30, Theorem 3.3].

The authors of [30] further call a Banach space X a local GL-space if for
every separable subspace Y of X there is a subspace Z of X which is GL
and contains Y . Since lushness is separably determined (see [3, Theorem
4.2]) every lush space is a local GL-space [30, Example 3.7]. From their
Propositions 3.2 and 3.4 the authors of [30] conclude that even every local
GL-space has the MUP [30, Theorem 3.8], thus every lush space (separable
or not) has the MUP [30, Corollary 3.9].

Many stability properties for GL-spaces have already been established in
[30]: for example, if X is GL then so is the space C(K,X) of all continuous
functions from K into X, where K is any compact Hausdorff space (see
[30, Theorem 2.10]). Also, the property GL is preserved under c0-, `

1- and
`∞-sums (see [30, Theorem 2.11]). In the next section, we will prove some
further stability results.

2. Stability results

2.1. Ultraproducts. We begin with an easy observation on ultraprod-
ucts of GL-spaces. First we recall the definition of ultraproducts of Banach
spaces (see for example [13]). Given a free ultrafilter U on N, for every
bounded sequence (an)n∈N of real numbers there exists (by a compactness ar-
gument) a ∈ R such that for every ε > 0 one has {n ∈ N : |an − a| < ε} ∈ U .
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Of course a is uniquely determined. It is called the limit of (an)n∈N along U
and denoted by limn,U an.

Now for a given sequence (Xn)n∈N of Banach spaces denote by
`∞((Xn)n∈N) the space of all sequences (xn)n∈N in the product

∏
n∈NXn

such that supn∈N‖xn‖ <∞. We set

NU :=
{

(xn)n∈N ∈ `∞((Xn)n∈N) : lim
n,U
‖xn‖ = 0

}
,∏

n,U
Xn := `∞((Xn)n∈N)/NU .

Equipped with the (well-defined) norm ‖[(xn)n∈N]‖U := limn,U‖xn‖, this
quotient becomes a Banach space. It is called the ultraproduct of (Xn)n∈N
(with respect to U). By the way, it is easy to see that the subspace NU is
closed in `∞((Xn)n∈N) with respect to the usual sup-norm and that ‖·‖U co-
incides with the usual quotient norm. For more information on ultraproducts
the reader is referred to [13].

In [3, Corollary 4.4] it is shown that the ultraproduct of a sequence of
lush spaces is again lush, in fact it even has a stronger property, called
ultra-lushness in [3]. We can easily prove an analogous result for GL-spaces.
First we need a small remark.

Remark 2.1. If X is a GL-space, x ∈ SX and ε > 0 then there is some
x∗ ∈ SX∗ such that x ∈ S(x∗, ε) and

d(y, S(x∗, ε)) + d(y,−S(x∗, ε)) ≤ (2 + ε)‖y‖+ 2
∣∣1− ‖y‖∣∣ ∀y ∈ X.

Proof. Analogous to the proof of [30, Lemma 2.9].

Proposition 2.2. Let U be a free ultrafilter on N and (Xn)n∈N a se-
quence of GL-spaces. Let Z =

∏
n,U Xn. Then the following holds: for ev-

ery z ∈ SZ there is a functional z∗ ∈ SZ∗ with z∗(z) = 1 such that
for every y ∈ SZ there are z1, z2 ∈ SZ with z∗(z1) = 1 = −z∗(z2) and
‖y − z1‖+ ‖y − z2‖ = 2. In particular, Z is also a GL-space.

Proof. Let z = [(xn)n∈N] ∈ SZ . Without loss of generality we may as-
sume xn 6= 0 for all n ∈ N. By the previous remark we can find, for every
n ∈ N, a functional x∗n ∈ SX∗n such that xn/‖xn‖ ∈ S(x∗n, 2

−n) and for every
v ∈ Xn,

(2.1) d(v, S(x∗n, 2
−n)) + d(v,−S(x∗n, 2

−n)) ≤ (2 + 2−n)‖v‖+ 2
∣∣1− ‖v‖∣∣.

Define z∗ : Z → R by z∗([(vn)]) := limn,U x
∗
n(vn). Then z∗ is a well-defined

element of SZ∗ with z∗(z) = 1 (because x∗n(xn) > (1− 2−n)‖xn‖ for all n).
Now given any y = [(yn)] ∈ SZ we can find, by (2.1), sequences (un)n∈N

and (vn)n∈N in `∞((Xn)n∈N) such that −vn, un ∈ S(x∗n, 2
−n) and

‖un − yn‖+ ‖vn − yn‖ < (2 + 2−n)‖yn‖+ 2
∣∣1− ‖yn‖∣∣+ 2−n.
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Also, because −vn, un ∈ S(x∗n, 2
−n), the sum on the left-hand side of the

above equation is at least 2(1− 2−n). Altogether it follows that z1 := [(un)]
and z2 := [(vn)] satisfy our requirements.

Recall that for two isomorphic Banach spaces X and Y , their Banach–
Mazur distance is defined by

d(X,Y ) := inf
{
‖T‖ ‖T−1‖ : T is an isomorphism between X and Y

}
.

The next result shows that the class of GL-spaces is closed with respect to
the Banach–Mazur distance.

Proposition 2.3. Let (Xn)n∈N be a sequence of GL-spaces and X a
Banach space which is isomorphic to each Xn such that d(Xn, X) → 1.
Then X is also a GL-space.

Proof. By passing to a subsequence we may assume that d(Xn, X) <
1 + 1/n for each n ∈ N. Hence there are isomorphisms Tn : Xn → X with
‖Tn‖ = 1 and ‖T−1n ‖ ≤ 1 + 1/n.

Now let ε > 0 and x ∈ SX . Set xn := T−1n x for each n. Then 1 ≤ ‖xn‖ ≤
1 + 1/n. Let yn := xn/‖xn‖. Since Xn is a GL-space, we can find, for each
n ∈ N, a functional x∗n ∈ SX∗n such that yn ∈ S(x∗n, ε/2) and

(2.2) d(z, S(x∗n, ε/2)) + d(z,−S(x∗n, ε/2)) < 2 + ε/2 ∀z ∈ SXn .

We define y∗n := (T ∗n)−1x∗n ∈ X∗ for each n. Then ‖y∗n‖ ≤ 1 + 1/n and

y∗n(x) = x∗n(xn) = ‖xn‖x∗n(yn) > 1− ε/2,

since ‖xn‖ ≥ 1 and yn ∈ S(x∗n, ε/2).

Take N ∈ N such that (1− ε/2)(1 + 1/N)−1 ≥ 1− ε and 1/N ≤ ε/4. Let
y∗ := y∗N/‖y∗N‖. It follows that y∗(x) > (1 − ε/2)(1 + 1/N)−1 ≥ 1 − ε, i.e.
x ∈ S(y∗, ε).

Now if y ∈ SX , we define z := T−1N y. Then 1 ≤ ‖z‖ ≤ 1 + 1/N . Let z0 :=
z/‖z‖ ∈ SXN

. By (2.2) we can find u1 ∈ S(x∗N , ε/2) and u2 ∈ −S(x∗N , ε/2)
such that ‖z0 − u1‖+‖z0 − u2‖ < 2+ε/2. Let vi := TNui ∈ BX for i = 1, 2.
It is easily checked that v1 ∈ S(y∗, ε) and v2 ∈ −S(y∗, ε). We further have

‖v1 − y‖+ ‖v2 − y‖ =
∥∥TNu1 − ‖z‖TNz0∥∥+

∥∥TNu2 − ‖z‖TNz0∥∥
≤ ‖TN (u1 − z0)‖+ ‖TN (u2 − z0)‖+ 2(‖z‖ − 1)‖TNz0‖
≤ ‖u1 − z0‖+ ‖u2 − z0‖+ 2(‖z‖ − 1) < 2 + ε/2 + 2/N ≤ 2 + ε.

This shows that X is indeed a GL-space.

2.2. F-ideals. First we recall the following notions (see [12, Chapter I,
Definition 1.1]): a linear projection P : X → X is called an M -projection if

‖x‖ = max{‖Px‖, ‖x− Px‖} ∀x ∈ X.
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P is called an L-projection if

‖x‖ = ‖Px‖+ ‖x− Px‖ ∀x ∈ X.

A closed subspace Y of X is said to be an M -summand [L-summand ] in X
if it is the range of some M -projection [L-projection] on X. Equivalently, Y
is an M -summand [L-summand] in X if and only if there is some closed sub-
space Z in X such that X = Y ⊕∞Z [X = Y ⊕1Z]. Also, Y is called an M -
ideal in X if Y ⊥ is an L-summand in X∗ (where Y ⊥ := {x∗ ∈ X∗ : x∗|Y = 0}
is the annihilator of Y ).

Every M -summand is also an M -ideal, but not conversely (see for in-
stance [12, Chapter I, Example 1.4(a)]).

As is pointed out in [12], the notion of an “L-ideal” (i.e. a subspace
whose annihilator is an M -summand in the dual) is not introduced because
every “L-ideal” is already an L-summand (see [12, Chapter I, Theorem 1.9]).
For more information on M -ideals and L-summands the reader is referred
to [12].

Of course it is also possible to consider more general types of summands
and ideals (see the overview in [12, p. 45f] and the papers [22], [23], [24] and
[26]; we will recall just the basic definitions here). Firstly, a norm F on R2

is called absolute if F (a, b) = F (|a|, |b|) for all (a, b) ∈ R2, and normalised
if F (1, 0) = 1 = F (0, 1). In the following, F will always denote an absolute,
normalised norm on R2. If X and Y are two Banach spaces, their F -sum
X ⊕F Y is defined as the direct product X × Y equipped with the norm
‖(x, y)‖ = F (‖x‖, ‖y‖), which is again a Banach space. For every 1 ≤ p ≤ ∞,
the p-norm Fp on R2 is of course an absolute, normalised norm and the
corresponding sum is just the usual p-sum of Banach spaces.

An important property of absolute, normalised norms is their monotoni-
city, i.e. for all a, b, c, d ∈ R,

|a| ≤ |c| and |b| ≤ |d| ⇒ F (a, b) ≤ F (c, d).

A proof of this fact can be found for instance in [2, Lemma 2]. It follows
in particular that |a|, |b| ≤ F (a, b) for all a, b ∈ R. We will use this later
without further mention.

A linear projection P : X → X is called an F -projection if

‖x‖ = F (‖Px‖, ‖x− Px‖) ∀x ∈ X,

and of course a closed subspace Y of X is said to be an F -summand in X
if it is the range of an F -projection (equivalently, X = Y ⊕F Z for some
closed subspace Z). Finally, Y is called an F -ideal if Y ⊥ is an F ∗-summand
in X∗, where F ∗ is the reversed dual norm of F , i.e.

F ∗(a, b) = sup{|av + bu| : (u, v) ∈ R2 with F (u, v) ≤ 1} ∀(a, b) ∈ R2.
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Then the L- resp. M -summands [M -ideals] are just the F1- resp. F∞-sum-
mands [F∞-ideals]. Every F -summand is also an F -ideal (see [26, Lemma 8]).
It is known that F -summands and F -ideals coincide (in every Banach space)
if and only if the point (0, 1) is an extreme point of the unit ball of (R2, F )
(see [26, Corollary 10 and Remark 12] and [22, Section 2]).

It was proved in [27] that every L-summand and every M -ideal in a lush
space are again lush. In [30, Theorem 2.11] it is shown that the c0-sum of
a family of Banach spaces is GL if and only if each summand is GL. So
M -summands in GL-spaces are again GL. We will extend this result to a
class of F -ideals which includes in particular all M -ideals. The main tool
in the proof is, as in [27], the principle of local reflexivity (see [1, Theorem
11.2.4]).

Theorem 2.4. If F is an absolute, normalised norm on R2 such that
(0, 1) is an extreme point of the unit ball of (R2, F ∗), X is a GL-space and
Y is an F -ideal in X, then Y is also a GL-space.

Proof. Let X∗ = Y ⊥ ⊕F ∗ U for a suitable closed subspace U ⊆ X∗. It
easily follows that U can be canonically identified with X∗/Y ⊥, which in
turn can be canonically identified with Y ∗, thus X∗ = Y ⊥ ⊕F ∗ Y ∗.

Now let y ∈ SY and 0 < ε < 1. Since (0, 1) is an extreme point of
B(R2,F ∗), by an easy compactness argument there is a 0 < δ < ε such that

(2.3) F ∗(a, b) = 1 and b ≥ 1− δ ⇒ |a| ≤ ε.
Because X is GL we can find x∗ ∈ SX∗ such that y ∈ S(x∗, δ) and

(2.4) d(v, S(x∗, δ)) + d(v,−S(x∗, δ)) < 2 + δ ∀v ∈ SX .
Write x∗ = (y⊥, y∗) with y⊥ ∈ Y ⊥, y∗ ∈ Y ∗ and 1 = ‖x∗‖ = F ∗(‖y⊥‖, ‖y∗‖).
Then y∗(y) = x∗(y) > 1 − δ > 1 − ε. Since ‖y∗‖ ≤ 1 we see that y ∈
S(y∗/‖y∗‖, ε). It also follows that ‖y∗‖ > 1− δ and hence by (2.3) we must
have ‖y⊥‖ ≤ ε.

Next we fix z ∈ SY . By (2.4) we can find x1 ∈ S(x∗, δ) and x2 ∈ −S(x∗, δ)
such that

(2.5) ‖x1 − z‖+ ‖x2 − z‖ < 2 + δ.

We have X∗∗ = Y ∗∗⊕F (Y ⊥)∗, so if we consider X canonically embedded in
its bidual we can write xi = (y∗∗i , fi) ∈ Y ∗∗ ⊕F (Y ⊥)∗ for i = 1, 2. It follows
that

1− δ < x∗(x1) = f1(y
⊥) + y∗∗1 (y∗).

Taking into account that ‖y⊥‖ ≤ ε and ‖f1‖ ≤ 1 we obtain

(2.6) y∗∗1 (y∗) > 1− δ − ε > 1− 2ε.

Analogously one can see that

(2.7) − y∗∗2 (y∗) > 1− 2ε.
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It also follows from (2.5) that

F (‖y∗∗1 − z‖, ‖f1‖) + F (‖y∗∗2 − z‖, ‖f2‖) < 2 + δ

and hence

(2.8) ‖y∗∗1 − z‖+ ‖y∗∗2 − z‖ < 2 + δ < 2 + ε.

We set E = span{y∗∗1 , y∗∗2 , z} and choose 0 < η < 2ε such that

1− 2ε

1 + η
> 1− 3ε and (1 + η)(2 + ε) < 2 + 2ε.

Now the principle of local reflexivity comes into play. It yields a finite-
dimensional subspace V ⊆ Y and an isomorphism T : E → V such that
‖T‖, ‖T−1‖ ≤ 1 + η, T |E∩Y = id and y∗(Ty∗∗) = y∗∗(y∗) for all y∗∗ ∈ E.
Let yi = Ty∗∗i for i = 1, 2. Then y∗(yi) = y∗∗i (yi) and ‖yi‖ ≤ 1 + η. By (2.6),
(2.7) and the choice of η we obtain ‖yi‖ > 1− 2ε as well as

(2.9)
y1
‖y1‖

∈ S
(

y∗

‖y∗‖
, 3ε

)
and

y2
‖y2‖

∈ −S
(

y∗

‖y∗‖
, 3ε

)
.

From (2.8) and the choice of η we get

‖y1 − z‖+ ‖y2 − z‖ = ‖Ty∗∗1 − Tz‖+ ‖Ty∗∗2 − Tz‖
< (1 + η)(2 + ε) < 2 + 2ε.

Since 1− 2ε < ‖yi‖ ≤ 1 + η < 1 + 2ε we have ‖yi − yi/‖yi‖‖ < 2ε and thus∥∥∥∥ y1
‖y1‖

− z
∥∥∥∥+

∥∥∥∥ y2
‖y2‖

− z
∥∥∥∥ < 2 + 6ε,

which in view of (2.9) finishes the proof.

As mentioned before, Theorem 2.4 shows in particular that M -ideals in
GL-spaces are again GL, which was proved for lushness in [27]. The proof
of [27] readily extends to the case of more general ideals that we consider
above (we skip the details).

Theorem 2.5. If F is an absolute, normalised norm on R2 such that
(0, 1) is an extreme point of the unit ball of (R2, F ∗), X is a lush space and
Y is an F -ideal in X, then Y is also lush.

Theorem 2.11 in [30] also states that the `1-sum of any family of Ba-
nach spaces is GL if and only if every summand is GL. The “only if”
part of this statement just means that L-summands in GL-spaces are again
GL-spaces. However, the proof of this part given in [30] contains a slight
mistake: the statement “‖uλ‖ > 1/2 − ε/2 and ‖vλ‖ > 1/2 − ε/2” can-
not be deduced from the two preceding lines (2.3) and (2.4) as claimed
in [30]. For a counterexample just consider the sum X := R⊕1 R and take
x := (1, 0) ∈ SX . Then the norm-one functional x∗ : X → R defined by
x∗(a, b) := a + b satisfies x∗(x) = 1 and d(y, S) + d(y,−S) = 2 for all
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y ∈ SX , where S := {z ∈ SX : x∗(z) = 1} (we even have acoS = BX). Now
for y := (−1, 0), u := (u1, u2) := (0, 1) and v := y we have −v, u ∈ S and
‖y − u‖1 + ‖y − v‖1 = 2. So if the claim in the proof of [30] were true, we
would obtain the contradiction |u1| ≥ 1/2.

We will therefore include a slightly different proof that generalised lush-
ness is inherited by L-summands.

Proposition 2.6. If X is a GL-space and Y is an L-summand in X,
then Y is also a GL-space.

Proof. Write X = Y ⊕1 Z for a suitable closed subspace Z ⊆ X. Let
y ∈ SY and 0 < ε < 1. Take 0 < δ < ε2. Since X is GL, there is a functional
x∗ = (y∗, z∗) in the unit sphere of X∗ = Y ∗ ⊕∞ Z∗ such that y ∈ S(x∗, δ)
and

(2.10) d(v, S(x∗, δ)) + d(v,−S(x∗, δ)) < 2 + δ ∀v ∈ SX .

Since x∗(y) = y∗(y) it follows that y ∈ S(y∗/‖y∗‖, δ) ⊆ S(y∗/‖y∗‖, ε).
Now fix u ∈ SY . Because of (2.10) we can find x1 ∈ S(x∗, δ) and x2 ∈

−S(x∗, δ) such that ‖u− x1‖ + ‖u− x2‖ < 2 + δ. Write xi = yi + zi with
yi ∈ Y , zi ∈ Z for i = 1, 2. It then follows that

(2.11) ‖u− y1‖+ ‖z1‖+ ‖u− y2‖+ ‖z2‖ < 2 + δ.

We distinguish two cases. First we assume that ‖y1‖, ‖y2‖ ≥ ε. Since x1 ∈
S(x∗, δ) we have

y∗(y1) = x∗(x1)− z∗(z1) > 1− δ − ‖z1‖ ≥ ‖y1‖ − δ

and hence

y∗
(

y1
‖y1‖

)
> 1− δ

‖y1‖
≥ 1− δ

ε
> 1− ε,

thus y1/‖y1‖ ∈ S(y∗/‖y∗‖, ε). Analogously one can see that y2/‖y2‖ ∈
−S(y∗/‖y∗‖, ε). Furthermore, because of (2.11) and since ‖yi‖ + ‖zi‖ =
‖xi‖ > 1− δ, we have∥∥∥∥u− y1

‖y1‖

∥∥∥∥+

∥∥∥∥u− y2
‖y2‖

∥∥∥∥ ≤ ‖u− y1‖+ ‖u− y2‖+
∣∣1− ‖y1‖∣∣+

∣∣1− ‖y2‖∣∣
≤ ‖u− y1‖+ ‖u− y2‖+ ‖z1‖+ ‖z2‖+ 2δ

< 2 + 3δ < 2 + 3ε.

In the second case we have ‖y1‖ < ε or ‖y2‖ < ε. If ‖y1‖ < ε it follows
that ‖z1‖ = ‖x1‖ − ‖y1‖ > 1− δ − ε > 1− 2ε and hence, because of (2.11),

‖u− y2‖+ ‖z2‖ < 2 + δ − (1− 2ε)− ‖u− y1‖
< 1 + 3ε− (1− ‖y1‖) < 4ε.
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Then in particular |y∗(u)− y∗(y2)| < 4ε and thus (since −x2 ∈ S(x∗δ)) we
have

y∗(u) < 4ε+ y∗(y2) = 4ε+ x∗(x2)− z∗(z2) < 4ε− (1− δ)− z∗(z2)
< 5ε− 1 + ‖z2‖ ≤ 5ε− ‖y2‖ ≤ 5ε+ ‖u− y2‖ − 1 < 9ε− 1.

Hence −u ∈ S(y∗/‖y∗‖, 9ε). But then

d(u, S(y∗/‖y∗‖, 9ε)) + d(u,−S(y∗/‖y∗‖, 9ε)) = d(u, S(y∗/‖y∗‖, 9ε)) ≤ 2.

If ‖y2‖ < ε an analogous argument shows that u ∈ S(y∗/‖y∗‖, 9ε) and thus
the proof is complete.

2.3. Inheriting from the bidual. Next we would like to prove that
every Banach space X whose bidual is GL has itself the MUP. First consider
the following (at least formal) weakening of the definition of GL-spaces.

Definition 2.7. A real Banach space X is said to have property (∗)
provided that for every ε > 0 and all x, y1, y2 ∈ SX there exists a functional
x∗ ∈ SX∗ such that x ∈ S(x∗, ε) and

d(yi, S(x∗, ε)) + d(yi,−S(x∗, ε)) < 2 + ε for i = 1, 2.

The exact same proof as in [30] shows that [30, Proposition 3.2] (Proposi-
tion 1.1 in our introduction) holds true not only for GL-spaces but for all
spaces with property (∗) and consequently every space with property (∗)
has the MUP.

In a preprint version of this paper (2), the author proved that property
(∗) passes from X∗∗ to X and thus in particular X has the MUP if X∗∗ is
a GL-space.

The referee proposed to consider instead the following definition.

Definition 2.8. A real Banach space X is said to have property (∗∗)
provided that for every ε > 0 and all x, y ∈ SX there exists a functional
x∗ ∈ SX∗ such that x ∈ S(x∗, ε) and

d(y, S(x∗, ε)) + d(y,−S(x∗, ε)) < 2 + ε.

Obviously, we have GL ⇒ (∗) ⇒ (∗∗). Now one can make the following
observations (again these are due to the referee).

(i) A similar argument to one in [30, Example 2.5] shows that all lush
spaces (not only the separable ones) have property (∗∗).

(ii) If we denote by (K,w∗) the weak∗-closure of the set ex(BX∗) of
extreme points of BX∗ endowed with the weak∗-topology, then one
can show as in the proof of [30, Proposition 2.2] that for every

(2) See arXiv:1309.4358 and the author’s PhD thesis, available at http://www.diss.fu-
berlin.de/diss/receive/FUDISS thesis 000000099968.
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y ∈ SX and all ε, δ > 0 the set

{x∗ ∈ K : d(y, S(x∗, δ)) + d(y,−S(x∗, δ)) < 2 + ε}
is open and dense in (K,w∗).

(iii) Using (ii), the fact that ex(BX∗) is norming for X, and the fact that
the intersection of two open, dense subsets is again dense, one can
show that properties (∗) and (∗∗) are actually equivalent.

(iv) Using (ii), the fact that ex(BX∗) is norming for X, and the Baire
category theorem, one can proceed as in the proof of [30, Proposition
2.2] to show that for separable spaces, properties (∗∗) and GL are
equivalent.

Now we will prove that property (∗∗) passes from X∗∗ to X (this is
virtually the same proof that was already presented in the above mentioned
preprint version, except that now we work just with one point y instead of
two points y1, y2).

Theorem 2.9. If X∗∗ has property (∗∗), then so does X. In particular,
if X∗∗ is GL, then X has the MUP.

Proof. The principle of local reflexivity is the key to the proof. If we fix
x, y ∈ SX and ε > 0 and consider X canonically embedded into its bidual,
then since the latter has property (∗∗) we can find x∗∗∗ ∈ SX∗∗∗ such that
x ∈ S(x∗∗∗, ε) and u∗∗ ∈ S(x∗∗∗, ε), v∗∗ ∈ −S(x∗∗∗, ε) with

(2.12) ‖y − u∗∗‖+ ‖y − v∗∗‖ < 2 + ε.

If we also consider X∗ canonically embedded into X∗∗∗, then by Goldstine’s
theorem BX∗ is weak∗-dense in BX∗∗∗ , so we can find x̃∗ ∈ BX∗ such that

|u∗∗(x̃∗)− x∗∗∗(u∗∗)| ≤ ε,
|v∗∗(x̃∗)− x∗∗∗(v∗∗)| ≤ ε,
|x̃∗(x)− x∗∗∗(x)| ≤ ε.

We set x∗ = x̃∗/‖x̃∗‖. It follows that x ∈ S(x∗, 2ε) as well as x∗ ∈ S(u∗∗, 2ε)
and −x∗ ∈ S(v∗∗, 2ε).

Now let E := span{x, y, u∗∗, v∗∗} ⊆ X∗∗ and choose 0 < δ < ε such that

1− 2ε

1 + δ
> 1− 3ε and (2 + ε)(1 + δ) < 2 + 2ε.

By the principle of local reflexivity there is a finite-dimensional subspace
F of X and an isomorphism T : E → F such that ‖T‖, ‖T−1‖ ≤ 1 + δ,
T |X∩E = id and x∗(Tx∗∗) = x∗∗(x∗) for all x∗∗ ∈ E.

Set ũ := Tu∗∗ and ṽ := Tv∗∗ as well as u := ũ/‖ũ‖ and v := ṽ/‖ṽ‖. We
then have

(2.13)
1− ε
1 + δ

≤ ‖ũ‖, ‖ṽ‖ ≤ 1 + δ.



40 J.-D. Hardtke

It follows that

x∗(u) =
x∗(Tu∗∗)

‖ũ‖
≥ u∗∗(x∗)

1 + δ
>

1− 2ε

1 + δ
> 1− 3ε,

so u ∈ S(x∗, 3ε) and similarly also −v ∈ S(x∗, 3ε). Furthermore, because of
(2.12), we have

‖y − ũ‖+ ‖y − ṽ‖ = ‖Ty − Tu∗∗‖+ ‖Ty − Tv∗∗‖
< (1 + δ)(2 + ε) < 2 + 2ε.

From (2.13) we get ‖u− ũ‖, ‖v − ṽ‖ ≤ ε+ δ < 2ε. Hence

‖y − u‖+ ‖y − v‖ < 2 + 6ε,

and we are done.

By a similar argument one could also prove that lushness passes from
X∗∗ to X. This fact has already been established in [16, Proposition 4.3],
albeit with a different proof (the proof in [16] is based on an equivalent
formulation of lushness [16, Proposition 2.1] and does not use the principle
of local reflexivity).

3. GL-spaces and rotundity. We start with the following observation
on Hilbert spaces (the proof is easy and will therefore be omitted).

Remark 3.1. Let H be a Hilbert space and set

A := {(x, x∗) ∈ SH × SH∗ : x ∈ kerx∗}.
Then

(3.1) d(x, S(x∗, ε)) =

√
2
(
1−

√
2ε− ε2

)
for all 0 < ε < 1 and all (x, x∗) ∈ A. Consequently,

lim
ε→0

d(x, S(x∗, ε)) =
√

2 uniformly in (x, x∗) ∈ A.

It immediately follows from Remark 3.1 that a Hilbert space (of dimen-
sion at least two) is not a GL-space. It is possible to generalise this statement
in a certain sense. To do so, first recall some basic rotundity notions (see for
example [8, Chapters 8–9]).

A Banach spaceX is said to be strictly convex if x, y ∈ SX and ‖x+ y‖ = 2
already implies x = y. X is called uniformly rotund (or uniformly convex )
if for any two sequences (xn)n∈N and (yn)n∈N in the unit sphere of X the
condition ‖xn + yn‖ → 2 implies ‖xn − yn‖ → 0. Finally, X is locally uni-
formly rotund (or locally uniformly convex ) if for every x ∈ SX and every
sequence (xn)n∈N in SX the condition ‖xn + x‖ → 2 implies ‖xn − x‖ → 0.
Such points x are called LUR points of SX (an easy normalisation argument
shows that in the definition of LUR points we can replace the condition
‖xn‖ = 1 for all n by ‖xn‖ → 1).
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Of course uniform rotundity implies local uniform rotundity, which in
turn implies strict convexity, but the converses are false in general (though
by an easy compactness argument it can be seen that the three notions co-
incide for finite-dimensional Banach spaces). The most prominent examples
of uniformly rotund spaces are the Hilbert spaces and, more generally, the
spaces Lp(µ) for any measure µ and any 1 < p <∞.

In a preprint version of this paper (3), the author proved that the unit
sphere of any infinite-dimensional GL-space with (not necessarily countable)
1-unconditional basis does not have any LUR points. The referee provided
a more general argument showing that the unit sphere of any GL-space of
dimension at least two has no LUR points. In the following, we present the
referee’s proof.

Lemma 3.2. Let dim(X) ≥ 2 and x ∈ SX . Then there exists y ∈ SX
with ‖x+ y‖+ ‖x− y‖ > 2.

Proof. First assume that SX is not covered by the sets A := x+BX and
B := −x+BX . Then there exists y ∈ SX with ‖x− y‖ > 1 and ‖x+ y‖ > 1,
hence ‖x+ y‖+ ‖x− y‖ > 2.

Now suppose that SX is contained in A ∪ B. Since dim(X) ≥ 2, the
unit sphere is connected and hence the closed sets A∩SX and B ∩SX have
nonempty intersection. Let z ∈ A ∩B ∩ SX .

Then ‖x− z‖ ≤ 1, ‖x+ z‖ ≤ 1 and

2 = 2‖x‖ ≤ ‖x− z‖+ ‖x+ z‖ ≤ 2.

It follows that ‖x− z‖ = ‖x+ z‖ = 1 = ‖x‖. Hence the whole line segment
{x+ tz : t ∈ [−1, 1]} is contained in SX .

Set y := x+ z ∈ SX . Then

‖x+ y‖+ ‖x− y‖ = ‖2x+ z‖+ ‖z‖ = 2‖x+ z/2‖+ 1 = 3 > 2.

Lemma 3.3. Let x ∈ SX be an LUR point and ε > 0. Then there is some
δ > 0 such for every x∗ ∈ SX∗ with x ∈ S(x∗, δ) one has diam(S(x∗, δ)) ≤ ε,
where diam denotes diameter.

Proof. Assume to the contrary that for every δ > 0 there exists some
x∗ ∈ SX∗ with x ∈ S(x∗, δ) but diam(S(x∗, δ)) > ε. Then one can find a
sequence (x∗n)n∈N in SX∗ and a sequence (xn)n∈N in BX such that x, xn ∈
S(x∗n, 1/n) and ‖x− xn‖ ≥ ε/2 for every n ∈ N. It follows that

2 ≥ ‖x+ xn‖ ≥ x∗(x+ xn) ≥ 2

(
1− 1

n

)
∀n ∈ N.

Hence ‖x+ xn‖ → 2 and since x is an LUR point, we would obtain ‖xn − x‖
→ 0, contradicting the fact that ‖x− xn‖ ≥ ε/2 for every n ∈ N.

(3) See footnote 2 above.



42 J.-D. Hardtke

Theorem 3.4. Let X be a GL-space with dim(X) ≥ 2. Then SX does
not have any LUR points.

Proof. Assume that there is an LUR point x ∈ SX . By Lemma 3.2
there exists y ∈ SX such that ‖x+ y‖ + ‖x− y‖ > 2. Choose ε > 0 with
‖x+ y‖+ ‖x− y‖ > 2 + 3ε.

By Lemma 3.3 there is a δ > 0 such that every slice S(x∗, δ) containing
x has diameter at most ε. Without loss of generality one can assume δ < ε.

SinceX is GL, there exists x∗ ∈ SX∗ with x ∈ S(x∗, δ) and u, v ∈ S(x∗, δ)
such that

‖y − u‖+ ‖y + v‖ < 2 + δ.

But on the other hand, since diam(S(x∗, δ)) ≤ ε,
‖y − u‖+ ‖y + v‖ ≥ ‖x− y‖+ ‖x+ y‖ − ‖x− u‖ − ‖x− v‖

> 2 + 3ε− 2ε = 2 + ε > 2 + δ,

and this contradiction finishes the proof.

4. Open problems. Following again the referee’s suggestion, we list
some open problems below.

Problem 4.1. Is every lush space a GL-space?

As mentioned in the introduction, the answer is “yes” for separable
spaces [30] and for Asplund spaces [6], but the question remains open in
general.

Problem 4.2. Is every space with property (∗∗) actually a GL-space?

We know that the answer is “yes” for separable spaces (Subsection 2.3),
but it is open for nonseparable ones.

Problem 4.3. If F is an absolute, normalised norm on R2 which is GL,
and X,Y are GL-spaces, does this imply that X ⊕F Y is GL?

Problem 4.4. If X is GL, does this imply that X∗ is GL?

Example 3.1 in [4] shows that the answer to the analogous question for
lush spaces is “no”.

Problem 4.5. If X∗ is GL, does this imply that X is GL?

According to [16], the answer to the analogous question for lush spaces
is “no”.

Problem 4.6. Does there exist a strictly convex GL-space with dimen-
sion at least two?

By [15, Corollary 4.6], a real lush space cannot be strictly convex, unless
it is one-dimensional.
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[17] Å. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans.
Amer. Math. Soc. 227 (1977), 1–62.
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[20] M. Mart́ın and R. Payá, On CL-spaces and almost CL-spaces, Ark. Mat. 42 (2004),
107–118.

[21] S. Mazur et S. Ulam, Sur les transformations isométriques d’espaces vectoriels
normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.

http://dx.doi.org/10.4064/sm190-2-2
http://dx.doi.org/10.1017/S0305004106009650
http://dx.doi.org/10.1016/j.jmaa.2010.11.025
http://arxiv.org/abs/1507.05709
http://dx.doi.org/10.1007/s11425-008-0018-y
http://dx.doi.org/10.1007/s10114-005-0725-z
http://dx.doi.org/10.1016/j.jmaa.2012.06.031
http://dx.doi.org/10.1016/j.jmaa.2009.03.055
http://dx.doi.org/10.1090/S0002-9947-1977-0430747-4
http://dx.doi.org/10.5802/aif.700
http://dx.doi.org/10.1007/BF02432912


44 J.-D. Hardtke
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