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Lp boundedness of Riesz transforms for orthogonal
polynomials in a general context

by

Liliana Forzani (Santa Fe), Emanuela Sasso (Genova)
and Roberto Scotto (Santa Fe)

Abstract. Nowak and Stempak (2006) proposed a unified approach to the theory of
Riesz transforms and conjugacy in the setting of multi-dimensional orthogonal expansions,
and proved their boundedness on L2. Following them, we give easy to check sufficient
conditions for their boundedness on Lp, 1 < p < ∞. We also discuss the symmetrized
version of these transforms.

1. Introduction. The investigation of the boundedness on Lp, 1 < p
< ∞, of the Riesz transforms associated with the ultra-spherical polyno-
mials, a particular case of a nontrigonometric orthogonal expansion, was
initiated and extensively studied in the seminal article of Muckenhoupt and
Stein [15]. It was followed by the no less fundamental articles of Mucken-
houpt [14, 13], where the boundedness of the Riesz transform was treated in
a one-dimensional setting for the case of Hermite and Laguerre polynomials.

Later on, for 1 < p < ∞, the Lp-boundedness of these transforms for
orthogonal polynomial-like expansions was studied in a high-dimensional
setting. Starting in a series of articles concerning Hermite polynomial ex-
pansions by P. A. Meyer [12], Gundy [6], Pisier [21], Urbina [25], Gutiérrez
[7] and Gutiérrez, Segovia and Torrea [9] (see also the survey article by
Sjögren [22]), the investigation was extended to other orthogonal expansions
such as Laguerre [8], [16], ultraspherical [2], [3] and Jacobi [18] polynomi-
als. Recently, Mauceri and Spinelli [11] investigated the Lp-boundedness of
the Riesz transforms and spectral multipliers for the Hodge–Laguerre op-
erator, a generalization to differential forms of the Laguerre operator on
functions.
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Associated with each system of orthogonal polynomials there are a mea-
sure and an elliptic differential equation whose solution is a semigroup satis-
fying certain Cauchy–Riemann equations. These equations define two deriva-
tives, a conjugate semigroup and a conjugate elliptic differential equation.
Together, all these define the Riesz transforms in each particular system.
To prove the Lp-boundedness, the papers listed in the previous paragraph
introduce appropriate Littlewood–Paley–Stein square functions [23], [4] that
relate a function to its Riesz transform, and prove two-sided Lp-inequalities
for these square functions.

These two-sided inequalities, established for each particular system, in-
volve two key steps. The first step relates the elliptic operator applied to a
positive power of the solution to the square of its gradient.

The second step consists in proving a pointwise estimate between both
semigroups. This is done in the papers mentioned above by computing the
kernels of the corresponding semigroups and then comparing them. These
computations involve finding the sum of a certain series that has to be
done ad-hoc for each particular case, and their comparison requires a highly
analytical technique.

In 2006 Nowak and Stempak [20] presented a fairly general and unified
approach to the theory of Riesz transforms and conjugacy in the setting
of high-dimensional orthogonal expansions. The resulting scheme, emerg-
ing from observations furnished in numerous articles, allowed them to show
the L2-boundedness of the Riesz transforms in a rather effortless and gen-
eral way. This scheme, however, was not used for the boundedness of these
transforms on Lp for p 6= 2.

The goal of this paper is to use this unified presentation in order to
clearly specify the conditions required of an orthogonal system to yield the
Lp-boundedness of its Riesz transforms. In particular, we will see that the
first step mentioned above is true for any elliptic differential operator. As for
the second step, we give clear and easy to check hypotheses which involve
only one-dimensional boundedness of functions. More importantly, we do
not need the existence and computation of the associated kernel, but use the
L2-expansion given by Nowak and Stempak [20] and results on the maximum
principle for differential equations that will hopefully be applied in the future
to prove boundedness in more general settings.

This paper is organized as follows: Section 2 describes the general setting,
terminology and the main results. Section 3 introduces the assumptions for
a system to get the boundedness of its Riesz transforms. Sections 4 and 5
contain the proofs of the main results. Sections 6 and 7 present all the
auxiliary proofs. Finally, in Section 8, some orthogonal systems are presented
so as to display how one can easily check the hypotheses in the most common
semigroups.
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2. Main results. For X = (b, c) with −∞ ≤ b < c ≤ ∞, and X =∏d
i=1X, we define the elliptic differential operator

Lu = −
d∑
i=1

(
p2i (xi)uxixi +

[
(p2i (xi))

′ + p2i (xi)
w′i(xi)

wi(xi)

]
uxi

)

=
d∑
i=1

δ∗i δiu =:

d∑
i=1

Liu,

with

δi = pi(xi)∂xi and δ∗i = −
(
pi(xi)∂xi + pi(xi)

w′i(xi)

wi(xi)
+ p′i(xi)

)
,

where pi ∈ C2(X) does not vanish on X, and wi ∈ C1(X), wi > 0 on X.
We also define the elliptic differential operator

Mi = L+ [δi, δ
∗
i ],

where [δi, δ
∗
i ] := δiδ

∗
i − δ∗i δi. Notice that L and Mi are self-adjoint with

respect to

dµ(x) =

d∏
i=1

dµi(xi) =

d∏
i=1

wi(xi)dxi =: w(x)dx.

Formally, we define the ith first-order Riesz transform associated to L
as

Ri = δiL
−1/2,

and the ith conjugate Riesz transform as in [20] by

R∗i = δ∗iM
−1/2
i ,

for i = 1, . . . , d. The first definition is correct if kerL is trivial, otherwise
we must compose it with the orthogonal projection of L2 onto (kerL)⊥.
A similar modification has to be made for the second definition. Then we
have

Theorem 2.1. Under the assumptions given in Section 3, the Riesz
transforms Rj for j = 1, . . . , d and the conjugate Riesz transforms R∗j are
bounded on Lp(X , dµ), 1 < p < ∞, with constants independent of dimen-
sion.

For b = 0, Nowak and Stempak [19] created the following symmetrization
process. Given X = (0, c) define X := −X ∪X, and extend pi and wi to X
as even functions.

With those new definitions L, Mi, δi and δ∗i are extended to X = Xd.
On the other hand, the eigenfunctions {ϕn} defined in H2 of Section 3 are
extended to X as even functions, i.e., ϕn(σjx) = ϕn(x) for j = 1, . . . , d and
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n ∈ Nd0, where σj denotes the reflection on X with respect to the hyperplane
orthogonal to the jth coordinate axis.

Following [19] the symmetrization LS of the operator L is defined as

LS = −
d∑
i=1

D2
i

with

Dif(x) = pi(xi)
∂f

∂xi
(x) +

[
pi(xi)

w′i(xi)

wi(xi)
+ p′i(xi)

]
f(x)− f(σix)

2
.

In [19] it is proved that the eigenfunctions of LS are Φn as given in H2 of
Section 3.

For 1 < p < ∞, let Ep be the Lp-closure of span{Φn : nj even for all j}
and for each i = 1, . . . , d, let Oi,p be the Lp-closure of span{Φn : ni odd and
nj even for j 6= i}. Then Ep ∩ Oi,p = 〈0〉.

Formally we define the ith symmetric Riesz transform to be

RS,i = DiL
−1/2
S ,

and then we have

Theorem 2.2. Under the same assumptions given in Theorem 2.1, the
operator RS,i is bounded on Ep⊕Oi,p with constant independent of dimension.

Let us remark that we do not get boundedness on the whole space Lp(X )
since the operator we are dealing with is not differential but differential-
difference, and therefore we cannot apply the results of this paper—we are
considering differential operators. But we can restrict this operator to the
regions just defined where it turns out to be differential and apply all what
is known about boundedness of Riesz transforms to these two regions.

Remark 2.3. Observe that when d = 1, every function can be written
as the sum of an even one plus an odd one; then Lp(X ) = Ep ⊕ Oi,p and
therefore RS is bounded on Lp for every 1 < p <∞.

Nowak and Stempak [19] proved that the derivatives Di commute
with LS . As a consequence, for d = 1, the higher order Riesz transforms
defined by them are also bounded on Lp for 1 < p <∞.

3. Definitions and assumptions for Theorems 2.1 and 2.2. The
assumptions will be in italics. Any direct consequence of the assumptions
that we need later will be given in roman type.

H1 (On the coefficients of differential operators). For t > 0 sufficiently

large, let Xt =
∏d
i=1Xt with Xt = [(b+ e−t) ∨ (−t), (c− e−t) ∧ t] =: [bt, ct].
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(a) For every i = 1, . . . , d, either p2i (bt)wi(bt) and p2i (ct)wi(ct) → 0 as
t→∞; or limt→∞ p

2
i (bt)wi(bt) = limt→∞ p

2
i (ct)wi(ct) 6= 0, ϕini

(b) =
ϕini

(c) and (ϕini
)′(b) = (ϕini

)′(c) for all ni ∈ N0 whenever b and c
are finite; or |ϕini

(xi)| ≤ Cniγ
1
i (xi) and |(ϕini

)′(xi)| ≤ Cniγ
2
i (xi) with

γji ∈ L1(X, dµi(xi)) ∩ C(X), j = 1, 2, and γji (bt) or γji (ct) → 0 as
t→∞, whenever b = −∞ or c =∞.
For each i = 1, . . . , d the functions ϕini

(xi) are defined in H2.
(b) There exists a C1 function φ : [1,∞) → (0,∞) such that an an-

tiderivative Θ of 1/φ satisfies Θ ≥ 1 on [1,∞), and for τ ≥ 1,

τΘ′′(τ) ≤ m1Θ(τ)Θ′(τ), τΘ′(τ) ≤ m2[Θ(τ)]2−µ

for some positive constants µ, m1 and m2 and for every i = 1, . . . , d
there are positive constants C1 and C2 such that

p2i (xi) ≤ C1φ(1 + x2i ),∣∣∣∣[(p2i (xi))′ + p2i (xi)
w′i(xi)

wi(xi)

]∣∣∣∣ ≤ C2φ(1 + x2i )
Θ(1 + x2i )√

1 + x2i

, ∀xi ∈ X.

(c) For every i = 1, . . . , d,

[δi, δ
∗
i ] = −pi(xi)

[
pi(xi)

w′i(xi)

wi(xi)
+ p′i(xi)

]′
≥ 0

on X.

H2 (On the eigenvalues and eigenfunctions of the differential operators)

(a) For each i there is an orthonormal basis {ϕini
}ni≥0 of L2(X, dµi),

consisting of eigenfunctions of Li corresponding to a discrete ordered
set {λini

}ni≥0 ⊂ R of nonnegative eigenvalues going to infinity, i.e.

Liϕ
i
ni

= λini
ϕini

.

The eigenfunctions and their first derivatives can be continuously
extended to ∂X whenever b or c is finite. For n ∈ Nd0, let ϕn(x) =∏d
i=1 ϕ

i
ni

(xi) and λn =
∑d

i=1 λ
i
ni

. Then

Lϕn = λnϕn.

Let us remark that the eigenfunctions of L belong to C∞(X ) (see [20]).

From the definition of L, the constant functions are eigenfunctions as-
sociated to the eigenvalue 0, and the assumption on the eigenvalues implies
λ0 = 0. Also, since these eigenfunctions have to be in the Lebesgue spaces,
the measure µ has to be finite; without loss of generality, we may assume it
is a probability measure.
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From [20] we know that {δiϕn} are eigenfunctions of Mi with eigenval-
ues λn, i.e.,

Mi(δiϕn) = λnδiϕn,

and they can be extended to (or already are) an orthogonal basis on L2 (see
[20, Lemma 6]). On the other hand, it is not hard to prove that for each
n ∈ Nd0 with ni > 0, ∂ϕn/∂xi is an eigenfunction of the elliptic differential
operator

Ni = L− (p2i (xi))
′∂xi −

[
(p2i (xi))

2w
′
i(xi)

wi(xi)

]′
associated to the eigenvalue λn, i.e.,

Ni

(
∂ϕn
∂xi

)
= λn

∂ϕn
∂xi

.

As was done in [20] with {δiϕn}, the sequence {∂ϕn/∂xi} can be extended
to (or already is) an orthogonal basis of L2(X , dνi) with dνi = p2i (xi)dµ.
Notice that E = span{ϕn} and Fi, the completion of span{δiϕn}, 1 ≤ i ≤ d,
are dense in L2(X , dµ), while Gi, the completion of span{∂ϕn/∂xi}, is dense
in L2(X , dνi).

Furthermore, we will assume that for 1 < p < ∞, E is also dense in
Lp(X , dµ). And for every 1 ≤ i ≤ d, Fi ⊂ Lp(X , dµ) and Gi ⊂ Lp(X , dµ).

For the symmetrized process the eigenfunctions of LS are defined as
Φn(x) =

∏d
i=1 Φ

i
ni

(xi) with

Φini
(xi) =

{
2−1/2ϕini/2

(xi), ni even,

−2−1/2(λ(ni+1)/2)
−1/2δiϕ

i
(ni+1)/2(xi), ni odd,

where for i = 1, . . . , d and m ∈ N0, ϕ
i
m is extended to X as an even function.

The eigenvalues of LS are λ〈n〉 where 〈n〉 = (b(nj + 1)/2c)dj=1 with bxc the
integer part of x.

(b) There exists N ∈ N such that
∑

k∈Nd
0\{0}

λ−Nk < ∞ and for every

compact set K ⊂ X there exists C = CK such that

max
1≤i≤d

sup
x∈K

∣∣∣∣∂nϕk∂xni
(x)

∣∣∣∣ ≤ CλNk
for every k ∈ Nd0 \ {0} and n = 0, 1, 2, 3.

H3 (On the semigroups). We will consider some semigroups such as
T t = e−Lt,

(3.1) P t = e−L
1/2t =

1√
π

∞�

0

e−u√
u
T t

2/4u du =

∞�

0

1

t2
φ

(
s

t2

)
T s ds
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where φ(s) = e−1/4s

2
√
π s3/2

(note that φ(s) and sφ′(s) are in L1((0,∞), ds)),

T̃ ti = e−Mit

and

(3.2) P̃ ti = e−M
1/2
i t.

The spectral decomposition of T t on L2(X , dµ) is

T tf(x) =
∞∑
n=0

∑
|k|=n

e−λkt〈f, ϕk〉µϕk(x),

for every f ∈ L2(X , dµ), and

P tf(x) =
∞∑
n=0

∑
|k|=n

e−
√
λkt〈f, ϕk〉µϕk(x)

with 〈f, h〉µ =
	
X f(x)h(x) dµ(x). On the other hand, the spectral decom-

position of T̃ ti is similar to that of T t. In this case, ϕn is replaced by the
normalization of δiϕn. Note that P tf satisfies the equation LP tf = 0 with
L = ∂2t −L and as a consequence of the spectral decomposition we find that
P t and P̃ t are symmetric on L2(X , dµ).

(a) For f ∈ C2
c (X ) with f ≥ 0, we have T tf, T̃ ti f ≥ 0 on X . Moreover,

for every 1 ≤ p ≤ ∞ and f ∈ Lp(X , dµ), we have ‖P tf‖p ≤ ‖f‖p
and ‖P̃ ti f‖p ≤ ‖f‖p.

(b) For every f ∈ E, we have (P tf)2 ≤ CP tf2 and (P̃ ti f)2 ≤ CP̃ ti f2.
(c) For f ∈ L2(X,wi(xi)dxi) with f ≥ 0 and xi ∈ X, and for

u1(t, xi) =

∞∑
n=0

e−λ
i
nt〈f, ϕin〉ϕin(xi),

u2(t, xi) =

∞∑
n=1

e−λ
i
nt
〈f, δiϕin〉
‖δiϕin‖22

δiϕ
i
n(xi),

the one-parameter semigroups T t and T̃ ti respectively have the prop-
erty that u1, u2 are bounded and

(3.3) u2(t, b) ≤ u1(t, b) and u2(t, c) ≤ u1(t, c)

for all t > 0 whenever b or c is finite.
(d) For every i = 1, . . . , d, let T ti := e−Nit. This semigroup is bounded

on L∞.
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4. Proof of Theorem 2.1. According to the definition of the ith Riesz
transform associated to L we have

Riϕn =
1

λ
1/2
n

δiϕn

if λn > 0, and 0 otherwise. By H2(a), {ϕn} is an orthonormal basis in
L2(X , dµ) and therefore these operators naturally extend to L2 and turn
out to be bounded there (see [20, p. 681, Proposition 1]).

The Lp-boundedness of Ri will be obtained from the following proposi-
tion which is interesting per se; its proof is in Section 6.

Proposition 4.1. For every 1 < p < ∞, there exist positive constants
cp and Cp, depending only on p (not on dimension), such that for every
f ∈ E,

(4.1) ‖g(f)‖Lp(dµ) ≤ Cp‖f‖Lp(dµ),

where

g(f)(x) =
(∞�

0

t|∇P tf(x)|2 dt
)1/2

,

with ∇ = (∂t, δ1, . . . , δd), and for every i = 1, . . . , d,

(4.2) cp‖f‖Lp(dµ) ≤ ‖g̃i(f)‖Lp(dµ) + ‖Ei(f)‖Lp(dµ),

where Ei(f) = limt→∞ P̃
t
i (f) and

g̃i(f)(x) =
(∞�

0

t|∂tP̃ ti f(x)|2 dt
)1/2

,

and the semigroups P t and P̃ ti are defined in H3.

Proof of Theorem 2.1. For every f ∈ E, according to the spectral de-
compositions of P t and P̃ ti and taking into account that

‖δiϕn‖2L2(X ,dµ) = λini
, ∀ni ≥ 1

(see [20, pp. 678–679]) we have the identity

(4.3) ∂tP̃
t
i (Rif) = −δiP t(f).

Thus for f ∈ E, taking into account (4.3), we obtain

|g̃i(Rif)(x)| ≤ g(f)(x).

On the other hand, Ei(Rif) = 0.

Thus, by Proposition 4.1 the first part of the theorem follows for the
operator Ri restricted to E. Since E is dense in Lp, Ri extends boundedly
to the whole Lp with constant independent of dimension.
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Now, from [20, p. 687] we have

〈R∗i f, h〉µ = 〈f,Rih〉µ
for every f, h ∈ E and i = 1, . . . , d. For every f ∈ E, taking into account
that for every 1 < p <∞, E is dense in Lq and Ri is bounded on Lq(X , dµ)
with q = p/(p− 1), we have

‖R∗i f‖Lp(dµ) = sup
h∈E, ‖h‖q≤1

〈R∗i f, h〉µ

≤ sup
h∈E, ‖h‖q≤1

‖Rih‖q‖f‖Lp(dµ)

≤ Cq‖f‖Lp(dµ).

Hence R∗i extends to the whole Lp(X , dµ) by density. This ends the proof
of Theorem 2.1.

5. Proof of Theorem 2.2. First, notice that for every i = 1, . . . , d,
LiΦ

i
ni

(xi) = λini/2
Φini

(xi) if ni is even and δiδ
∗
i Φ

i
ni

(xi) = λ(ni+1)/2Φ
i
ni

(xi) if

ni is odd.

In order to prove the theorem we need a couple of remarks.

Remark 5.1. The extensions Ri = δiL
−1/2 and R∗i = δ∗iM

−1/2
i are

bounded on Lp(X , dµ) for 1 < p <∞, with X = Xd and X = (−c, 0)∪ (0, c).

Indeed, observe that

Riϕn(x) =


1

λ
1/2
n

pi(xi)
∂ϕn
∂xi

(x) for xi ∈ (0, c),

− 1

λ
1/2
n

pi(−xi)(ϕini
)′(−xi)

∏
j 6=i

ϕjnj
(xj) for xi ∈ (−c, 0).

Now for f =
∑
|n|≤N cnϕn, we have

‖Rif‖pLp(X ,dµ) =
�

X
|Rif(x)|p dµ(x)

=
�

Xd−1

dµi(xi)

[ c�
0

∣∣∣∣ ∑
0<|n|≤N

cn

λ
1/2
n

pi(xi)(ϕ
i
ni

)′(xi)
∏
j 6=i

ϕjnj
(xj)

∣∣∣∣p

+

0�

−c

∣∣∣∣ ∑
0<|n|≤N

cn

λ
1/2
n

pi(−xi)(ϕini
)′(−xi)

∏
j 6=i

ϕjnj
(xj)

∣∣∣∣p dµi(xi)]
= 2d

�

Xd

|Ri(fχXd)(x)|p dµ(x)

≤ Cpp2d‖fχXd‖p
Lp(Xd,dµ)

= Cpp‖f‖
p
Lp(X ,dµ).
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Remark 5.2. We have

(5.1) RS,iΦn =

{
RiΦn, nj even for all j = 1, . . . , d,

−R∗iΦn, ni odd and nj even for all j 6= i.

Indeed, observe that

LSf =

d∑
j=1

D2
j f = Lf +

d∑
j=1

[δj , δ
∗
j ]
f(x)− f(σjx)

2

where

Djf(x) = pj(xj)
∂f

∂xj
(x) +

[
pj(xj)

w′j(xj)

wj(xj)
+ p′j(xj)

]
f(x)− f(σjx)

2

(see [19]).

So if nj is even for every j, then Φn(σjx) = Φn(x) for all x, LSΦn =
LΦn = λ〈n〉Φn, and DiΦn = δiΦn. On the other hand, if ni is odd and
for j 6= i, nj is even, then Φn(σix) = −Φn(x), Φn(σjx) = Φn(x) for all x,
LSΦn = MiΦn = λ〈n〉Φn, and DiΦn = −δ∗i Φn.

Thus if the components of n are all even then

RS,iΦn = DiL
−1/2
S Φn =

1√
λ〈n〉

DiΦn

=
1√
λ〈n〉

δiΦn = δiL
−1/2Φn = RiΦn.

On the other hand, if ni is odd and the other entries of n are even we have

RS,iΦn = DiL
−1/2
S Φn =

1√
λ〈n〉

DiΦn

= − 1√
λ〈n〉

δ∗i Φn = −δ∗iM
−1/2
i Φn = −R∗iΦn.

Thus, for f ∈ L2(X )∩ (Ep⊕Oi,p), f = fe + fo,i with fe ∈ Ep and fo,i ∈ Oi,p.
Then, by setting I1 := {n ∈ N0 : nj is even for all j = 1, . . . , d}, I2 :=
{n ∈ N0 : ni is odd and nj is even for all j 6= i} and taking into account
Remark 5.2, we have

RS,if = RS,ife +RS,ifo,i

=
∑
n∈I1

〈fe, Φn〉RiΦn −
∑
n∈I2

〈fo,i, Φn〉R∗iΦn

= Ri(fe)−R∗i (fo,i).

Finally, the conclusion follows using Remark 5.1 and the fact that fe =
(f + f ◦ σi)/2 and fo,i = (f − f ◦ σi)/2.
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6. Proof of Proposition 4.1. We need

Lemma 6.1. For every f ∈ E, g(f) ∈ Lp(X , dµ) for 1 < p <∞.

Proof. Since λ0 = 0, we have g(ϕ0) = 0, and for λn > 0,

g(ϕn)(x) =
(∞�

0

te−2
√
λn t dt

)1/2
|(
√
λn ϕn(x), δ1ϕn(x), . . . , δdϕn(x))|

∈ Lp(X , dµ), by H2(a).

The result follows from the sublinearity of g.

Proof of Proposition 4.1. We only need to prove inequality (4.1) since
(4.2) and the boundedness of g̃i on Lp(X , dµ) follow from a generalization of
[23, Theorem 10 p. 111, Corollary 2 p. 120] given in [4]. The generalization
only assumes conditions I and II of [23, Theorem 10, Corollary 2]. In our
context those conditions correspond to H3(a).

Case 1 < p ≤ 2. Let f ∈ E and ε > 0. Applying Lemma 7.2 to
F (t, x) = P tf(x), setting Fε = (F 2 + ε2)1/2 and taking into account that
(p− 1)F 2 + ε2 ≥ (p− 1)(F 2 + ε2) we have

[g(f)(x)]2 =

∞�

0

t|∇P tf(x)|2 dt

≤ 1

p(p− 1)

∞�

0

tF 2−p
ε LF pε dt

≤ 1

p(p− 1)
[P ∗f ]2−pε

∞�

0

tLF pε dt,

where L = ∂2t − L and P ∗f(x) = supt>0 |P tf(x)|. Observe that from the
formula given in Lemma 7.2, LF pε ≥ 0. Then, by using Hölder’s inequality
with q = 2/(2− p) and Lemma 7.1 applied to F (t, x) = F pε (the verification
of the hypotheses of Lemma 7.1 is given below), we get

‖g(f)‖pLp(dµ) ≤ Cp
�

X
[P ∗f(x)]p(1−p/2)ε

(∞�
0

tLF pε dt
)p/2

dµ(x)

≤ Cp‖[P ∗f ]ε‖p(1−p/2)Lp(dµ)

( �
X

∞�

0

tLF pε dt dµ(x)
)p/2

≤ Cp‖[P ∗f ]ε‖p(1−p/2)Lp(dµ)

( �
X

((f(x))2 + ε2)p/2 dµ(x)
)p/2

.

By applying Lebesgue’s theorem on a set of finite measure as ε → 0+ we
have

‖g(f)‖pLp(dµ) ≤ Cp‖P
∗f‖p(1−p/2)Lp(dµ) ‖f‖

p2/2
Lp(dµ) ≤ Cp‖f‖

p
Lp(dµ),
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where we have used the Lp-boundedness of P ∗ that follows from [23, Maxi-
mal Theorem, p. 73]. Hypothesis I of the Maximal Theorem is H3(a), and
hypothesis II follows from the spectral decomposition of the operator P t.

Let us now check the hypotheses of Lemma 7.1 for F (t, x) = F pε =
((P tf(x))2 + ε2)p/2 with f =

∑
|n|≤N cnϕn and

P tf(x) =
∑
|n|≤N

e−
√
λn tcnϕn(x).

Since supt>0 |F (t, x)| ≤ (
∑
|n|≤N |cn| |ϕn(x)|+ ε)p, hypothesis (1) of Lemma

7.1 is fulfilled from H2(a) and the finiteness of µ.

Taking into account that λ0 = 0, we have

t|∂tF (t, x)| ≤ pβte−αt
( ∑
|n|≤N

|cn| |ϕn(x)|+ ε
)p

=: S(t, x)

with α = inf{
√
λn : 0 < |n| ≤ N} > 0 and β = sup{

√
λn : |n| ≤ N}. This

function S(t, x) satisfies hypothesis (4) of Lemma 7.1.

Since ϕi0(xi) = c for all xi ∈ X, we have (ϕi0)
′ = 0 and so

t|∂xiF (t, x)| ≤ pt
( ∑
|n|≤N

|cn| |ϕn(x)|+ ε
)p−1

|∂xiP tf |

≤ pt
( ∑
|n|≤N

|cn| |ϕn(x)|+ ε
)p−1 ∑

{|m|≤N :mi≥1}

e−
√
λm t|cm| |∂xiϕm|

≤ pte−αt
( ∑
|n|≤N

|cn| |ϕn(x)|+ ε
)p−1 ∑

|m|≤N

|cm| |∂xiϕm|

=: ψ(t, x),

By applying Hölder’s inequality with s = p/(p − 1) and s′ = p and taking
into account H2(a) we obtain∥∥|ϕn|p−1∂xiϕm∥∥L1(X ,dµ) ≤ ‖ϕn‖

p−1
Lp(X ,dµ)‖∂xiϕm‖Lp(X ,dµ).

Thus ψ(t, x) satisfies hypothesis (3) of Lemma 7.1.

Finally, hypothesis (2) of Lemma 7.1 corresponds to H1(a).

Case p > 2. By the semigroup properties it is easy to prove that for
f ∈ E we have, for all i = 1, . . . , d,

∂tP
tf(x) = 2P t/2(∂tP

t/2f)(x),(6.1)

δiP
tf(x) = P̃

t/2
i (δiP

t/2f)(x),(6.2)
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for all x ∈ X and t > 0. Now, by Corollary 7.4, for every nonnegative
h ∈ C2

c (X ),

(6.3) P̃ ti h(x) ≤ P th(x).

Let f ∈ E and h ∈ C2
c (X ) be nonnegative. Then

f = c0ϕ0 + f1

with

ϕ0 = 1, f1 =
∑

0<|n|≤N

cnϕn, c0 =
�

X
f dµ.

Thus, ‖c0ϕ0‖p ≤ ‖f‖p and ‖f1‖p ≤ 2‖f‖p. Moreover for all t > 0 and x ∈ X ,
∇P tf(x) = ∇P tf1(x).

By (6.1), (6.2), H3(b), the symmetry of P t and P̃ ti , (6.3), a change of
variables and Lemma 7.2 for p = 2 we get
�

X
|g(f)(x)|2h(x) dµ(x) =

�

X
|g(f1)(x)|2h(x) dµ(x)

=
�

X

∞�

0

t|∇P tf1(x)|2 dt h(x) dµ(x)

=
�

X

∞�

0

t
[
4|P t/2(∂tP t/2f1)(x)|2 +

d∑
i=1

|P̃ t/2i (δiP
t/2f1)(x)|2

]
dt h(x) dµ

≤ 4
�

X

∞�

0

t
[
P t/2([∂tP

t/2f1]
2)(x) +

d∑
i=1

P̃
t/2
i ([δiP

t/2f1]
2)(x)

]
dt h(x) dµ

= 4
�

X

∞�

0

t
[
[∂tP

t/2f1(x)]2P t/2h(x) +

d∑
i=1

[δiP
t/2f1(x)]2P̃

t/2
i h(x)

]
dt dµ

≤ 4

∞�

0

t
�

X
|∇P t/2f1(x)|2P t/2h(x) dµ(x) dt

= 16

∞�

0

t
�

X
|∇P tf1(x)|2P th(x) dµ(x) dt

= 8

∞�

0

t
�

X
L[(P tf1(x))2]P th(x) dµ(x) dt.

Let us remark that for F,G : R+ ×X → R smooth enough,

(6.4) L(FG) = L(F )G+ FL(G) + 2∇F · ∇G.

Taking into account (6.4) and LP th(x) = 0 we can write the above double
integral as
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∞�

0

t
�

X
L[(P tf1(x))2P th(x)] dµ(x) dt

− 2

∞�

0

t
�

X
∇(P tf1(x))2 · ∇P th(x) dµ(x) dt

=

∞�

0

t
�

X
L[(P tf1(x))2P th(x)] dµ(x) dt

− 4

∞�

0

t
�

X
P tf1(x)∇P tf1(x) · ∇P th(x) dµ(x) dt =: I − II .

Applying Schwarz’s inequality to the second term we get

|II | ≤ 4
�

X
P ∗f1(x)

∞�

0

t|∇P tf(x)| |∇P th(x)| dt dµ(x)

≤ 4
�

X
P ∗f1(x) g(f)(x) g(h)(x) dµ(x).

Thus, the integrand of II belongs to L1(R+ × X , dtdµ) by using Hölder’s
inequality, the Lp-boundedness of P ∗, Lemma 6.1 and the boundedness of
g for p < 2. Lemma 7.2 for p = 2 gives

(6.5)

∞�

0

t
�

X
L[(P tf1(x))2]P th(x) dµ(x) dt ≤ 2‖h‖∞‖g(f)‖22 <∞

by Lemma 6.1 for p = 2. As a consequence, the integrand of I is also in
L1(R+ × X , dtdµ) and applying Lemma 7.1 to F (t, x) = (P tf1)

2P th (the
verification of the remaining hypotheses of Lemma 7.1 is given at the end
of this proof), we get

I ≤
�

X
(f1(x))2h(x) dµ(x).

Thus, �

X
|g(f)(x)|2h(x) dµ(x) ≤ 8

�

X
(f1(x))2h(x) dµ(x)

+ 32
�

X
P ∗f1(x)g(f)(x)g(h)(x) dµ(x).

Assume that p ≥ 4, 2/p + 1/q = 1 and ‖h‖q ≤ 1. By Hölder’s inequality,
Lp-boundedness of P ∗ and the current theorem for q ≤ 2, we obtain

‖g(f)‖2p ≤ Cq(‖f1‖2p + ‖g(f)‖p‖f1‖p)
≤ 4Cq(‖f‖2p + ‖g(f)‖p‖f‖p).
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Thus, taking into account that ‖g(f)‖p <∞ (see Lemma 6.1), we get the cor-
responding estimate for p ≥ 4. For the remaining p’s we use Marcinkiewicz’s
Interpolation Theorem.

Let us check the remaining hypotheses of Lemma 7.1 when F (t, x) =
(P tf1(x))2P th(x).

For f1 =
∑

0<|n|≤N cnϕn, we have P tf1(x) =
∑

0<|n|≤N e
−
√
λn tcnϕn(x).

Taking into account the spectral decomposition of P t and H3(a), we get

sup
t>0
|F (t, x)| ≤

( ∑
|n|≤N

|cn| |ϕn(x)|
)2
‖h‖∞;

thus hypothesis (1) of Lemma 7.1 is satisfied due to assumption H2.

From the inequalities

t|∂t(P tf1(x))2|P th(x) ≤ 2βe−αt
( ∑
|n|≤N

|cn| |ϕn(x)|
)2
‖h‖∞

with α = inf{
√
λn : 0 < |n| ≤ N} > 0 and β = sup{

√
λn : |n| ≤ N}, and

t(P tf1(x))2|∂tP th(x)| ≤ e−2αt
( ∑
|n|≤N

|cn| |ϕn(x)|
)2
t|∂tP th(x)|,

we obtain t|∂tF (t, x)| ≤ S(t, x) with

S(t, x) = e−αt(2βt‖h‖∞ + t|∂tP th(x)|)
( ∑
|n|≤N

|cn| |ϕn(x)|
)2
.

This S satisfies hypothesis (4) of Lemma 7.1 due to Lemma 7.5 (see (7.3)).

By similar computations for ∂xiF , but now using Lemma 7.5 (see (7.2)),
we find that t|∂xiF (t, x)| ≤ ψ(t, x) with

ψ(t, x) = 2te−αt
( ∑
|n|≤N

|cn| |ϕn|
)( ∑
|n|≤N

|cn| |∂xiϕn|
)

+ ‖∂yih‖∞,

which belongs to L1(R+ ×X ).

7. Appendix. In the following lemmas we assume that hypotheses H1
through H3 hold.

Lemma 7.1. Let L = ∂2t − (L + h(x)) with h a nonnegative continuous
function on X . Let F : R+ × X̄ → [0,∞) be a C2(R+ × X ) ∩ C1(R+ × X̄ )
function such that LF ≥ 0 on R+×X or

	∞
0

	
X t|LF (t, x)| dµ(x) dt <∞ and

the limit limt→0+ F (t, x) exists for every x ∈ X . For every t > 0 sufficiently
large, define

Xt = Xt × · · · ×Xt with Xt = [(b+ e−t) ∨ (−t), (c− e−t) ∧ t] =: [bt, ct].
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Assume that:

(1) supt>0 |F (t, x)| ∈ L1(X , dµ).
(2) For every i = 1, . . . , d, either p2i (bt)wi(bt) and p2i (ct)wi(ct) → 0

as t → ∞; or limt→∞ p
2
i (bt)wi(bt) = limt→∞ p

2
i (ct)wi(ct) 6= 0,

Fxi(t, b, x
i) = Fxi(t, c, x

i) for all xi ∈ Xd−1 whenever b and c are fi-
nite; or t|Fxi(t, xi, xi)| ≤ ψ1(xi)ψ2(t, x

i) with ψ1(xi)→ 0 as xi → b, c
and ψ2 ∈ L1(R+ ×X i, dtdµi(xi)).

(3) For every i = 1, . . . , d, t|Fxi(t, x)| . ψ(t, x) with ψ ∈ L1(R+ × X ,
dtdµ(x)).

(4) t|Ft(t, x)| . S(t, x) for all t > 0 and x ∈ X where the function S
is nonnegative, continuous, vanishes as t → 0+ and t → ∞, and
belongs to L1(R+ ×X , dtdµ).

Then

(7.1)

∞�

0

�

X
tLF (t, x) dµ(x) dt ≤

�

X
F (0, x) dµ(x),

where F (0, x) := limt→0+ F (t, x).

Proof. For T > 0 and sufficiently large, we will apply the divergence
theorem on the domain DT = ΛT ×XT with ΛT = [e−T , T ]. Observe that

tLFw = −Ftw + div(t,x) G− th(x)Fw

with

G(t, x) = (tFt, tp
2
1(x1)Fx1 , . . . , tp

2
d(xd)Fxd)w(x).

Taking into account that h(x) ≥ 0 on X we have
� �

DT

tLF (t, x) dµ(x) dt

≤ −
� �

DT

∂tF (t, x) dµ(x) dt+
� �

DT

div(t,x) G dx dt

=
�

XT

F (e−T , x) dµ(x)−
�

XT

F (T, x) dµ(x) +
�

∂DT

G · η dσ

≤
�

X
F (e−T , x) dµ(x) +

�

∂DT

G · η dσ.

Either by Beppo-Levi’s theorem or by Lebesgue’s theorem, as T → ∞, the
left hand side above tends to the left hand side of (7.1), and by Lebesgue’s
theorem together with (1) the first term of the right hand side tends to the
right hand side of (7.1). We should prove that

	
∂DT

G · η dσ → 0 as T →∞.

The two sides of the parallelepiped corresponding to time would be t = e−T

and t = T , whose corresponding normal vectors are η = (−1,0) and (1,0)
respectively. The two sides of the parallelepiped corresponding to the ith
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coordinate are xi = bT and xi = cT , whose corresponding normal vectors
are η = (0,−ei) and (0, ei) respectively. The integration on these sides leads
to integrals

−e−T
�

XT

Ft(e
−T , x) dµ(x) and T

�

XT

Ft(T, x) dµ(x),

which from (4) and Lebesgue’s theorem tend to 0 as T →∞. On the other
hand, the ith spatial integral is the difference

p2i (cT )wi(cT )

T�

e−T

�

X i
T

tFxi(t, cT , x
i) dµi(xi) dt

− p2i (bT )wi(bT )

T�

e−T

�

X i
T

tFxi(t, bT , x
i) dµi(xi) dt,

where the superscript i means that we consider all the variables but i. From
(2) and (3), the difference of these integrals also tends to 0 as T →∞.

Lemma 7.2. Let F : R+ × X → R be a C2 function such that LF = 0
with L = ∂2t − L. For every ε > 0, let Fε = (F 2 + ε2)1/2. Then for every
1 ≤ p <∞,

LF pε = pF p−2ε

(p− 1)F 2 + ε2

F 2 + ε2
|∇F |2,

where ∇ = (∂t, δ1, . . . , δd). For p = 2,

LF 2 = LF 2
ε = 2|∇F |2, ∀ε > 0.

Proof. This follows by simple calculations.

Lemma 7.3. Assume that [δi, δ
∗
i ] ≥ 0 on X. Let f ∈ Cc(X ) be a nonneg-

ative function. For v1(t, x) = T tf(x) and v2(t, x) = T̃ ti f(x) we have

v2(t, x) ≤ v1(t, x) for all (t, x) ∈ (0,∞)×X .

Proof. First, let f(x) =
∏d
j=1 fj(xj) with fj in Dj dense in the space

L2(X,wj(x)dx) and fj ≥ 0. In this case,

T̃ ti f(x) =
∏
j 6=i

∞∑
nj=0

e
−λjnj

t〈fj , ϕjnj
〉ϕjnj

(xj)

∞∑
ni=1

e−λ
i
ni
t 〈fi, δiϕini

〉
‖δiϕini

‖22
δiϕ

i
ni

(xi)

= u2(t, xi)
∏
j 6=i

∞∑
nj=0

e
−λjnj

t〈fj , ϕjnj
〉ϕjnj

(xj),
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and

T tf(x) =
∏
j 6=i

∞∑
nj=0

e
−λjnj

t〈fj , ϕjnj
〉ϕjnj

(xj)
∞∑
ni=0

e−λ
i
ni
t〈fi, ϕini

〉ϕini
(xi)

= u1(t, xi)
∏
j 6=i

∞∑
nj=0

e
−λjnj

t〈fj , ϕjnj
〉ϕjnj

(xj),

where u1 and u2 were defined in H3(c). Now, we will apply [5, Theorem
1, p. 411] to the operator L̃ = −∂t − Li = −∂t − δ∗i δi and the function
u(t, xi) = u2(t, xi)− u1(t, xi).

Let us check that the hypotheses of [5, Theorem 1, p. 411] are satisfied.
General conditions I and II from [5] correspond to H1(b). Since L̃u1 = 0 and
(∂t + δiδ

∗
i )u2 = 0 on X × (0,∞), we have L̃u = [δi, δ

∗
i ]u2 ≥ 0 on (0,∞)×X,

by H1(c) and H3(a). On the other hand, u(0, xi) = 0 for xi ∈ X because
{ϕinj

}nj and {δiϕinj
}nj are bases in L2(X,wi(xi)dxi); u ≤ 0 on (0, T )× ∂X

for all T > 0 by H3(c); and condition (2.5) of [5, Theorem 1, p. 411] follows
since these semigroups are bounded by H3(a). Therefore by [5, Theorem 1,
p. 411], u(t, xi) ≤ 0 on (0, T )×X for every T > 0. Thus u2(t, xi) ≤ u1(t, xi)
for all xi ∈ X and t > 0. Since∏

j 6=i

∞∑
nj=0

e
−λjnj

t〈fj , ϕjnj
〉ϕjnj

(xj) ≥ 0

as a consequence of H3(a) on Xd−1 it follows that

v2(t, x) ≤ v1(t, x) for all (t, x) ∈ (0,∞)×X

for f(x) =
∏d
j=1 fj(xj) with fj in Dj dense in L2(X,wj(x)dx) and fj ≥ 0.

Now, let f ∈ Cc(X ) be nonnegative. Then there exists (fn) ⊂ D =

span{f(x) =
∏d
j=1 fj(xj) with fj ∈ Dj}∩{f ≥ 0} such that ‖fn− f‖2 → 0,

‖T tfn − T tf‖2 → 0 and ‖T̃ ti fn − T̃ ti f‖2 → 0 as n → ∞, and T̃ ti fn(x) ≤
T tfn(x) for all n. Hence there is a subsequence of (T tfn) and (T̃ ti fn) that

converges pointwise to T tf and T̃ ti f respectively for almost every x ∈ X .

Thus T̃ ti f(x) ≤ T tf(x) for almost every x ∈ X . But since these semigroups
are continuous on X , the inequality follows for every x ∈ X .

Corollary 7.4. Assume that [δi, δ
∗
i ] ≥ 0 on X. Let f ∈ Cc(X ) be a

nonnegative function. Then

P̃ ti f(x) ≤ P tf(x) for every (x, t) ∈ X × (0,∞).

Proof. This follows from the definitions of P t, P̃ ti and Lemma 7.3.

Lemma 7.5. For any f ∈ C2
c (X ),

(7.2) |∂xiP tf(x)| ≤ C‖∂yif‖∞,
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and

(7.3)
t|∂tP tf(x)| ≤

∥∥φ+ s|φ′|
∥∥
L1((0,∞),ds)

‖f‖∞,

lim
t→0+

|t∂tP tf(x)| = 0.

Proof. From H2(a), regarding the elliptic differential operator Ni it is
easy to see that ∂xiT

tϕn = T ti ∂yiϕn. This is also true for every f ∈ C2
c (X )

under the assumption H2(b). In fact,

∂xiT
tf(x) = ∂xi

∑
n∈Nd

0

〈f, ϕn〉L2(X ,dµ)T
tϕn

=
∑
n∈Nd

0

〈f, ϕn〉L2(X ,dµ)∂xiT
tϕn

=
∑

n∈Nd
0, ni>0

〈f, ϕn〉L2(X ,dµ)T
t
i (∂xiϕn)

=
∑

n∈Nd
0, ni>0

〈∂xif, ∂xiϕn〉L2(X ,dνi)

‖∂xiϕn‖2L2(X ,dνi)
T ti (∂xiϕn) = T ti (∂xif)(x).

Here we have used 〈∂xif, ∂xiϕn〉L2(X ,dνi) = 〈δif, δiϕn〉µ = λini
〈f, ϕn〉µ, with

‖∂xiϕn‖2L2(X ,dνi) = ‖δiϕn‖2L2(X ,dµ) = λini
.

Now, by definition of P t,

|∂xiP tf(x)| =
∣∣∣∣ 1√
π

∞�

0

e−u√
u
∂xiT

t2/4uf(x) du

∣∣∣∣
=

∣∣∣∣ 1√
π

∞�

0

e−u√
u
T
t2/4u
i (∂yif)(x) du

∣∣∣∣
≤ C 1√

π

∞�

0

e−u√
u
du ‖∂yif‖∞ = C‖∂yif‖∞.

This proves inequality (7.2).

On the other hand, (7.3) is derived from the formula

t∂tP
tf(x) =

∞�

0

[
1

t2
φ(s/t2) +

1

t2
s

t2
φ′(s/t2)

]
T sf(x) ds

=

∞�

0

(φ(s) + sφ′(s))T st
2
f(x) ds,

which follows from the spectral decomposition of the Poisson semigroup P t

given in H3, and taking into account that φ + sφ′ ∈ L1(R+, ds) and	∞
0 (φ(s) + sφ′(s)) ds = 0 together with Lebesgue’s theorem.
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Lemma 7.6. Let µ be a positive Radon measure on X and suppose that
there exists δ > 0 such that �

X

eδ|x| dµ(x) <∞.

Then the set of polynomials restricted to X is dense in Lp(X, dµ) for 1 ≤
p <∞.

For the proof see [1, Theorem 6] where R has to be replaced by X and
the reasoning follows the same lines.

8. Examples. In this section we apply the previous results to some
classical polynomial settings.

Trigonometric polynomial expansions. For this setting,

X = (−π, π), X = (−π, π)d,

Li = −∂2xi , L = −∆,

pi(xi) = 1,

δi = ∂xi ,

δ∗i = −δi,

wi(xi) = 1
2π , w(x) = 1

(2π)d
.

We now verify the hypotheses.

H1:

(a) p2i (−π)wi(−π) = p2i (π)wi(π) = 1, but ϕini
(−π) = ϕini

(π) and
(ϕini

)′(−π) = (ϕini
)′(π).

(c) Choose φ(τ) = 1 and thus Θ(τ) = τ .
(d) [δi, δ

∗
i ] = 0.

H2:

(a) Eigenfunctions:

ϕin(xi) =


1, n = 0,√

2 sin kxi, n = 2k − 1,√
2 cos kxi, n = 2k,

ϕn(x) =
d∏
i=1

ϕini
(xi),

λin = b(n+ 1)/2c2, n = 0, 1, . . . , λn =

d∑
i=1

b(ni + 1)/2c2,

n = (n1, . . . , nd).
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Since

δiϕn =

{
b(ni + 1)/2cϕn+ei for ni odd,

b(ni + 1)/2cϕn−ei for ni even,

we have Fi = Gi = E ⊂ Lp(X , dµ).
(b) can be found in [20].

H3:

(a) is a consequence of T t1 = 1 and Hölder’s inequality.
(b) Use the Cauchy–Schwarz inequality.
(c) Since Ni = L, T ti = T t is bounded on L∞.

In this setting, the results about the Lp-boundedness of the Riesz trans-
forms for 1 < p <∞ are classical and can be found in [23].

Hermite polynomial expansions. For this setting,

X = R, X = Rd,

Li = −∂2xi + 2xi∂xi , L = −∆+ 2x · ∇,

pi(xi) = 1,

δi = ∂xi ,

δ∗i = −∂xi + 2xi,

wi(xi) =
e−x

2
i

√
π
, w(x) =

e−|x|
2

(
√
π)d

.

H1:

(a) p2i (bt)wi(bt) = e−(−t)
2

and p2i (ct)wi(ct) = e−t
2

both tend to 0 as
t→∞.

(b) Choose φ(τ) =
√
τ and thus Θ(τ) = 2

√
τ .

(c) [δi, δ
∗
i ] = 2 > 0.

H2:

(a) Eigenfunctions:

Hn(xi) = (−1)nex
2
i
dn

dxni
(e−x

2
i ),

‖Hn‖22 = n!2n,

ϕin(xi) =
Hn(xi)

‖Hn‖2
, ϕn(x) =

d∏
i=1

ϕini
(xi),

λin = 2n, n = 0, 1, . . . , λn = 2|n|, n = (n1, . . . , nd),

|n| = n1 + · · ·+ nd.
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Since
	∞
−∞ e

δ|x|e−x
2
dx <∞ for all δ, by Lemma 7.6 the set of one-dimensional

polynomials is dense in Lp(X) for 1 < p < ∞ and every polynomial is a
linear combination of Hermite polynomials. Thus E is dense in Lp(X , dµ).
Moreover, since δiϕn = −

√
2ni ϕn−ei , we have Fi = Gi = E ⊂ Lp(X , dµ).

(b) can be found in [20].

H3:

(a) is a consequence of T t1 = 1 and Hölder’s inequality.
(b) Use the Cauchy–Schwarz inequality.
(c) is not necessary to check because b = −∞ and c =∞.
(d) Since Ni = L+ 2, T ti = e−2tT t is bounded on L∞.

In this setting, the results about the Lp-boundedness, 1 < p < ∞, for
first and higher order Riesz transforms with respect to the Gaussian measure
can be found e.g. in [12, 6, 21, 25, 7, 9].

Laguerre polynomial expansions

X = (0,∞) = R+, X = Rd+,

Li= Lαi
i

= −xi∂2xi−(αi+1−xi)∂xi ,
L = Lα = −

d∑
i=1

(xi∂
2
xi +(αi+1−xi)∂xi),

α = (α1, . . . , αd),
αi > −1,

pi(xi) =
√
xi,

δi =
√
xi ∂xi ,

δ∗i = −√xi ∂xi−
αi+1/2
√
xi

+
√
xi,

wi(xi) =
xαi
i e
−xi

Γ (αi+1)
, w(x) =

d∏
i=1

xαi
i e
−xi

Γ (αi+1)
.

H1:

(a) p2i (bt)wi(bt) = (e−t)αi+1e−e
−t

and p2i (ct)wi(ct) = tαi+1e−t both tend
to 0 as t→∞.

(b) Choose φ(τ) =
√
τ and thus Θ(τ) = 2

√
τ .

(c) [δi, δ
∗
i ] = αi+1/2+xi

2xi
≥ 0 if and only if αi ≥ −1/2.

H2:

(a) Eigenfunctions:

Lαi
n (xi) =

(−1)n

n!
x−αi
i exi

dn

dxni
(xαi+n
i e−xi),
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‖Lαi
n ‖22 =

Γ (αi + n+ 1)

Γ (αi + 1)Γ (n+ 1)
,

ϕin(xi) = ϕαi
n (xi) =

Lαi
n (xi)

‖Lαi
n ‖2

, ϕαn(x) =
d∏
i=1

ϕαi
ni

(xi),

λin = n, n = 0, 1, . . . , λn = |n|, n = (n1, . . . , nd),

|n| = n1 + · · ·+ nd.

Since
	∞
0 eδxxαe−x dx < ∞ as long as δ < 1, by applying Lemma 7.6, the

set of one-dimensional polynomials is dense in Lp(X) for 1 < p < ∞ and
every polynomial is a linear combination of Laguerre polynomials. Hence
E is dense in Lp(X , dµ). Since the derivative of a polynomial is another
polynomial, we have Gi = E. On the other hand, observe that

δiϕ
α
n(x) = −

√
ni
√
xi ϕ

α+ei
n−ei (x) ∈ Lp(X , dµ),

thus Fi ⊂ Lp(X , dµ).
(b) can be found in [20].

H3:

(a) is a consequence of T t1 = 1 and Hölder’s inequality.
(b) Use the Cauchy–Schwarz inequality.
(c) We have to analyze b = 0 since c = ∞. In this case u2(t, 0) = 0 ≤

u1(t, 0) for all t > 0.
(d) Since Ni = Lα+ei + 1, T ti = e−tT tα+ei is bounded on L∞.

In the Laguerre setting, the Lp-boundedness of the Riesz transforms,
1 < p < ∞, with respect to the Laguerre measure dµα, with αi ≥ −1/2,
is obtained in [16]. In our case, the restriction on the parameter αi is a
consequence of the nonnegativity of the associated commutator [δi, δ

∗
i ].

Jacobi polynomial expansions. In this case, we have

X = (−1, 1), X = (−1, 1)d,

Li = Lαi,βi
i

= −(1−x2i )∂2xi
−(βi−αi−(αi+βi+2)xi)∂xi ,

αi, βi > −1,

L = Lα,β

= −
d∑
i=1

((1−x2i )∂2xi

+(βi−αi−(αi+βi+2)xi)∂xi),

α = (α1, . . . , αd), β = (βi, . . . , βd),pi(xi) =
√

1−x2i ,

δi =
√

1−x2i ∂xi ,
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δ∗i = −
√

1− x2i ∂xi + (αi + 1/2)

√
1 + xi
1− xi

−(βi + 1/2)

√
1− xi
1 + xi

,

wi(xi) =
(1− xi)αi(1 + xi)

βi

Cαi,βi

, w(x) =

d∏
i=1

wi(xi)

with

Cαi,βi :=
2αi+βi+1Γ (αi + 1)Γ (βi + 1)

Γ (αi + βi + 2)
.

H1:

(a) We can see that p2i (bt)wi(bt) = (2−e−t)αi+1(e−t)βi+1 and p2i (ct)wi(ct)
= (e−t)αi+1(2− e−t)βi+1 both tend to 0 as t→∞.

(b) Choose φ(τ) =
√
τ and thus Θ(τ) = 2

√
τ .

(c) [δi, δ
∗
i ] = αi+1/2

1−xi + βi+1/2
1+xi

≥ 0 if and only if αi, βi ≥ −1/2.

H2:

(a) Eigenfunctions:

Jαi,βi
n (xi) =

(−1)n

2nn!
(1−xi)−αi(1+xi)

βi

× dn

dxni
((1−xi)αi+n(1+xi)

βi+n),

‖Jαi,βi
n ‖22 =

Γ (αi+βi+2)

Γ (αi+1)Γ (βi+1)

× Γ (αi+n+1)Γ (βi+n+1)

(α1+βi+2n+1)Γ (α1+βi+n+1)Γ (n+1)
,

ϕin(xi) = ϕαi,βi
n (xi) =

Jαi,βi
n (xi)

‖Jαi,βi
n ‖2

, ϕα,βn (x) =

d∏
i=1

ϕαi
ni

(xi),

λin = n(n+αi+βi+1),

n = 0, 1, . . . ,

λn= λα,βn

=

d∑
i=1

(ni(ni+αi+βi+1)),

n = (n1, . . . , nd).

Since
	1
−1 e

δ|x|(1 − x)α(1 + x)β dx < ∞ for all δ, by Lemma 7.6 the set of
one-dimensional polynomials is dense in Lp(X) for 1 < p < ∞ and every
polynomial is a linear combination of Jacobi polynomials. Hence E is dense
in Lp(X , dµ). Since the derivative of a polynomial is another polynomial, we
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have Gi = E. On the other hand, observe that

δiϕ
α
n(x) = −

√
λini

√
1− x2i ϕ

α+ei,β+ei
n−ei (x) ∈ Lp(X , dµ),

thus Fi ⊂ Lp(X , dµ).
(b) can be found in [20].

H3:

(a) is a consequence of T t1 = 1 and Hölder’s inequality.
(b) Use the Cauchy–Schwarz inequality.
(c) We have to analyze b = −1 and c = 1. For b = −1, u2(t,−1) =

0 ≤ u1(t,−1) for all t > 0. As for c = 1, we have a similar inequality since
u2(t, 1) = 0.

(d) Since Ni = Lα+ei,β+ei + αi + βi + 2, T ti = e−(αi+βi+2)tT tα+ei,β+ei is
bounded on L∞.

For the Jacobi polynomial expansions, P. Sjögren and A. Nowak [17, 18]
considered expansions based on multi-dimensional Jacobi polynomials and
studied the Lp-boundedness of the Riesz transforms, 1 < p < ∞, with re-
spect to the measure dwα,β(x) on (−1, 1)d and αi, βi > −1 for each i. In
particular, under a slight restriction on the type parameters (αi, βi ≥ −1/2
for each i), they prove that these operators are bounded in Lp, 1 < p <∞,
with constants independent of dimension. We find the same restrictions on
the parameters and again they are a consequence of the nonnegativity of
the commutator [δi, δ

∗
i ]. Recently, Langowski [10] followed the symmetriza-

tion procedure by considering the setting of symmetrized Jacobi expansions.
In particular, he also obtained some new results in the original setting of
classical Jacobi expansions.

Remark 8.1. On the other hand, Stempak and Wróbel [24] have also
used the same technique in a context of function expansions. In particular,
they have proved dimension free Lp-estimates for Riesz transforms associ-
ated with multi-dimensional Laguerre function expansions of Hermite type,
but the range of the admissible Laguerre type multi-index in these estimates
depends on p. For 1 < p ≤ 2 this range is almost optimal. This is a starting
point to try to use a similar technique in order to analyze a general context
of orthogonal function expansions.

Remark 8.2. Recently, Wróbel [26] derived a scheme to deduce the
Lp-boundedness of certain d-dimensional Riesz transforms from the
Lp-boundedness of appropriate one-dimensional Riesz transforms, by using
an H∞ joint functional calculus for strongly commuting operators. Since
the Lp-bounds are all independent of the dimension, we see that when our
hypotheses are satisfied we have the Lp-boundedness of d-dimensional Riesz
transforms, with dimension free constants.
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[26] B. Wróbel, Dimension free Lp estimates for single Riesz transforms via an H∞ joint
functional calculus, J. Funct. Anal. 267 (2014), 3332–3350.

Liliana Forzani, Roberto Scotto
Departamento de Matemática
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