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L? boundedness of Riesz transforms for orthogonal
polynomials in a general context

by

LiLiANA FORZANI (Santa Fe), EMANUELA SASSO (Genova)
and ROBERTO SCOTTO (Santa Fe)

Abstract. Nowak and Stempak (2006) proposed a unified approach to the theory of
Riesz transforms and conjugacy in the setting of multi-dimensional orthogonal expansions,
and proved their boundedness on L?. Following them, we give easy to check sufficient
conditions for their boundedness on LP, 1 < p < oo. We also discuss the symmetrized
version of these transforms.

1. Introduction. The investigation of the boundedness on LP, 1 < p
< 00, of the Riesz transforms associated with the ultra-spherical polyno-
mials, a particular case of a nontrigonometric orthogonal expansion, was
initiated and extensively studied in the seminal article of Muckenhoupt and
Stein [15]. It was followed by the no less fundamental articles of Mucken-
houpt [14} [13], where the boundedness of the Riesz transform was treated in
a one-dimensional setting for the case of Hermite and Laguerre polynomials.

Later on, for 1 < p < oo, the LP-boundedness of these transforms for
orthogonal polynomial-like expansions was studied in a high-dimensional
setting. Starting in a series of articles concerning Hermite polynomial ex-
pansions by P. A. Meyer [12], Gundy [6], Pisier [21], Urbina [25], Gutiérrez
[7] and Gutiérrez, Segovia and Torrea [J] (see also the survey article by
Sjogren [22]), the investigation was extended to other orthogonal expansions
such as Laguerre [8], [16], ultraspherical [2], [3] and Jacobi [I8] polynomi-
als. Recently, Mauceri and Spinelli [I1] investigated the LP-boundedness of
the Riesz transforms and spectral multipliers for the Hodge-Laguerre op-
erator, a generalization to differential forms of the Laguerre operator on
functions.
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Associated with each system of orthogonal polynomials there are a mea-
sure and an elliptic differential equation whose solution is a semigroup satis-
fying certain Cauchy—Riemann equations. These equations define two deriva-
tives, a conjugate semigroup and a conjugate elliptic differential equation.
Together, all these define the Riesz transforms in each particular system.
To prove the LP-boundedness, the papers listed in the previous paragraph
introduce appropriate Littlewood—Paley—Stein square functions [23], [4] that
relate a function to its Riesz transform, and prove two-sided LP-inequalities
for these square functions.

These two-sided inequalities, established for each particular system, in-
volve two key steps. The first step relates the elliptic operator applied to a
positive power of the solution to the square of its gradient.

The second step consists in proving a pointwise estimate between both
semigroups. This is done in the papers mentioned above by computing the
kernels of the corresponding semigroups and then comparing them. These
computations involve finding the sum of a certain series that has to be
done ad-hoc for each particular case, and their comparison requires a highly
analytical technique.

In 2006 Nowak and Stempak [20] presented a fairly general and unified
approach to the theory of Riesz transforms and conjugacy in the setting
of high-dimensional orthogonal expansions. The resulting scheme, emerg-
ing from observations furnished in numerous articles, allowed them to show
the L?-boundedness of the Riesz transforms in a rather effortless and gen-
eral way. This scheme, however, was not used for the boundedness of these
transforms on LP for p # 2.

The goal of this paper is to use this unified presentation in order to
clearly specify the conditions required of an orthogonal system to yield the
LP-boundedness of its Riesz transforms. In particular, we will see that the
first step mentioned above is true for any elliptic differential operator. As for
the second step, we give clear and easy to check hypotheses which involve
only one-dimensional boundedness of functions. More importantly, we do
not need the existence and computation of the associated kernel, but use the
L?-expansion given by Nowak and Stempak [20] and results on the maximum
principle for differential equations that will hopefully be applied in the future
to prove boundedness in more general settings.

This paper is organized as follows: Section [2describes the general setting,
terminology and the main results. Section [3| introduces the assumptions for
a system to get the boundedness of its Riesz transforms. Sections [ and
contain the proofs of the main results. Sections [6] and [7] present all the
auxiliary proofs. Finally, in Section [8] some orthogonal systems are presented
so as to display how one can easily check the hypotheses in the most common
semigroups.
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2. Main results. For X = (b,¢) with —co < b < ¢ < 00, and X =
H‘Z-izl X, we define the elliptic differential operator
d
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where p; € C%(X) does not vanish on X, and w; € C*(X), w; > 0 on X.
We also define the elliptic differential operator
M; = L+ [6;, 0],

where [0;,67] := 0;67 — 676;. Notice that L and M; are self-adjoint with
respect to

d d
du(z) = Hd,ui(m) = Hw,(xz)dxl =: w(x)dz.
1=1 =1

Formally, we define the ith first-order Riesz transform associated to L
as
R, = (51'[/71/ 2,

and the ith conjugate Riesz transform as in [20] by
Ry = &M, ',

for ¢ = 1,...,d. The first definition is correct if ker L is trivial, otherwise
we must compose it with the orthogonal projection of L? onto (ker L)*.
A similar modification has to be made for the second definition. Then we
have

THEOREM 2.1. Under the assumptions given in Section the Riesz
transforms R; for j = 1,....d and the conjugate Riesz transforms R} are
bounded on LP(X,du), 1 < p < oo, with constants independent of dimen-
stom.

For b = 0, Nowak and Stempak [19] created the following symmetrization
process. Given X = (0,¢) define X := —X U X, and extend p; and w; to X
as even functions.

With those new definitions L, M;, ¢; and 0 are extended to X = X,
On the other hand, the eigenfunctions {,} defined in H2 of Section [3| are
extended to X as even functions, i.e., pp(0jz) = pp(x) for j =1,...,d and
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n € N¢, where o; denotes the reflection on X with respect to the hyperplane

orthogonal to the jth coordinate axis.
Following [19] the symmetrization Lg of the operator L is defined as

d
Ls=-Y D}
i=1

with
Dif(a) = plon) o) + o) 20 4 iy | L0,

In [19] it is proved that the eigenfunctions of Lg are @,, as given in H2 of
Section [3

For 1 < p < oo, let £, be the LP-closure of span{®, : n; even for all j}
and for each i = 1,...,d, let O;, be the LP-closure of span{®,, : n; odd and
n; even for j # i}. Then £, N O; ), = (0).

Formally we define the ith symmetric Riesz transform to be

Rg; = DiLg"”,

and then we have

THEOREM 2.2. Under the same assumptions given in Theorem 2.1, the
operator Rg; is bounded on E,BO; , with constant independent of dimension.

Let us remark that we do not get boundedness on the whole space LP(X)
since the operator we are dealing with is not differential but differential-
difference, and therefore we cannot apply the results of this paper—we are
considering differential operators. But we can restrict this operator to the
regions just defined where it turns out to be differential and apply all what
is known about boundedness of Riesz transforms to these two regions.

REMARK 2.3. Observe that when d = 1, every function can be written
as the sum of an even one plus an odd one; then LP(X) = &, ® O; ), and
therefore Rg is bounded on LP for every 1 < p < oo.

Nowak and Stempak [19] proved that the derivatives D; commute
with Lg. As a consequence, for d = 1, the higher order Riesz transforms
defined by them are also bounded on L? for 1 < p < co.

3. Definitions and assumptions for Theorems and The
assumptions will be in italics. Any direct consequence of the assumptions
that we need later will be given in roman type.

H1 (On the coefficients of differential operators). Fort > 0 sufficiently
large, let Xy = Hglzl X; with Xy = [(b+ €7 b)) V (—t), (c — e™b) At] =: [by, c].
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(a) For everyi =1,... ,d, either p?(be)w;(by) and p?(ct)wi(c;) — 0 as
t — oo; or lim?g_mo D; (bt)wz(bt) = limy o0 pF(cr)wi(cr) # 0, &L (b) =
©h.(c) and (¢},.) (b) = (@},) (c) for all n; € No whenever b and c
are finite; or |t (33)] < Cay (1) and |(gh, ) (22)] < Cuy?(zs) with
v € LMX, dui(z:) N C(X), § = 1,2, and 7] (b)) or 7l (c;) — 0 as
t — oo, whenever b= —00 or ¢ = o0.

For each i =1,...,d the functions @}, (x;) are defined in H2.

(b) There exists a C’l function ¢ : [1, oo) (0,00) such that an an-

tiderivative © of 1/¢ satisfies © > 1 on [1,00), and for T > 1,

70" (1) <m10(1)0' (1), 7TO'(1)< mg[@(T)]Q_“

for some positive constants i, m1 and meo and for everyi=1,...,d
there are positive constants Cp and Co such that

pZ(xi) < C19(1 + 23),
wg(fi)] ’ < Cho(1+ xf)e(l +a7)

‘ [(p?(l’i))l + p; () Vz; € X.

(¢) Foreveryi=1,...,d,

. wh(x; !
[6:,67] = _Pi(xi)[ z‘(l’z’)wf( ?) +p§($i)] >0
on X.
H2 (On the eigenvalues and eigenfunctions of the differential operators)

(a) For each i there is an orthonormal basis {pl Yn,>0 of L*(X,du;),
consisting of eigenfunctions of L; corresponding to a discrete ordered
set {\},, tn;>0 C R of nonnegative eigenvalues going to infinity, i.e.

LZSD:“LZ = )\z Sonl

The eigenfunctions and their first derivatives can be continuously
extended to OX whenever b or c is finite. For n € N&, let ¢, (v) =

H?:l o () and A, = Z?:l Al Then
Lpn = Antpn.-

Let us remark that the eigenfunctions of L belong to C*°(X) (see [20]).

From the definition of L, the constant functions are eigenfunctions as-
sociated to the eigenvalue 0, and the assumption on the eigenvalues implies
Ao = 0. Also, since these eigenfunctions have to be in the Lebesgue spaces,
the measure p has to be finite; without loss of generality, we may assume it
is a probability measure.
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From [20] we know that {d;p,} are eigenfunctions of M; with eigenval-
ues A, i.e.,
Mz((sz@n) = /\ndiSDnv

and they can be extended to (or already are) an orthogonal basis on L? (see
[20, Lemma 6]). On the other hand, it is not hard to prove that for each
n e Ng with n; > 0, dp,/0x; is an eigenfunction of the elliptic differential
operator

wh(x;)]’
M= L= ()0, ~ |2 P
associated to the eigenvalue A, i.e.,

([ Opon\ | Opn
NZ(@&’Z) _/\n 8@-'

As was done in [20] with {d;¢}, the sequence {9y, /0z;} can be extended
to (or already is) an orthogonal basis of L?(X,dv;) with dv; = p?(x;)dpu.
Notice that E = span{y, } and Fj, the completion of span{d;¢,}, 1 <i <d,
are dense in L?(X, dp), while G;, the completion of span{0y,, /0x;}, is dense
in L2(X,dv;).

Furthermore, we will assume that for 1 < p < oo, E is also dense in
LP(X,dp). And for every 1 <i<d, F; C LP(X,du) and G; C LP(X,dpu).

For the symmetrized process the eigenfunctions of Lg are defined as
@, (z) = [0, i, (x;) with

& (o) — 2_1/24p;i/2(aji), n; even,
(zi) = 9—1/2()\ —1/28. 5 ‘ - odd
- ( (ni+1)/2) Z‘:O(ni+1)/2(x1)v n; oad,
where for i = 1,...,d and m € Ny, ¢! is extended to X as an even function.
The eigenvalues of Lg are A(,y where (n) = (|(n; )/ZJ) _, with [z] the

integer part of x.

(b) There exists N € N such that ZkeNg\{o} )\I;N < oo and for every
compact set K C X there exists C = Ck such that

< CA\Y

max sup O ()
1<i<d ge | Ox}

for every k € N¢\ {0} and n =0,1,2,3.

3 (On the semigroups). We will consider some semigroups such as
Tt — e—Lt’

t__ —L1/2t 700; t2 /4u l s
(3.1) Pt = I(S) \FT du §t2¢<t >T ds
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where ¢(s) = % (note that ¢(s) and s¢/(s) are in L'((0, ), ds)),
Tt — ~Mit

and

(3.2) Pt =M

The spectral decomposition of T on L?(X,dpu) is

ZZG HE ek upr (),

n=0 |k|=n

for every f € L?(X,du), and

2) =3 > eV f o) upn(x)

with (f,h), = {, f(z)h(x)du(z). On the other hand, the spectral decom-
position of i-t is similar to that of T". In this case, ¢, is replaced by the
normalization of &;¢,. Note that P!f satisfies the equation LP'f = 0 with
L = 0? — L and as a consequence of the spectral decomposition we find that
P! and P! are symmetric on L>(X, du).

(a) For f € C2(X) with f >0, we have T'f, T!f > 0 on X. Moreover,
for every 1 < p < 0o and f € IX(X,du), we have [Pl < [1f],
and |12 £l < 1 £1lp ) )

(b) For every f € E, we have (Ptf)? < CP!f? and (P! f)?> < CP!f%

(c) For f € L*(X,w;(x;)dz;) with f >0 and x; € X, and for

t xz Ze Ant f7§0n>90n($z)
n=0

[e.e]

i Sty
t ) = E At <f7 744 n 52 % ;

n=1

the one-parameter semigroups T* and Tf respectively have the prop-
erty that uy, us are bounded and

(3.3) u2(t,b) <wui(t,b) and wa(t,c) <wui(t,c)

for all t > 0 whenever b or c is finite.
(d) For everyi = 1,...,d, let T} := e~Nit. This semigroup is bounded
on L*°.
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4. Proof of Theorem According to the definition of the ith Riesz
transform associated to L we have

1
A2

if A, > 0, and 0 otherwise. By H2(a), {¢,} is an orthonormal basis in
L?(X,du) and therefore these operators naturally extend to L? and turn
out to be bounded there (see [20} p. 681, Proposition 1]).

The LP-boundedness of R; will be obtained from the following proposi-
tion which is interesting per se; its proof is in Section [6]

PROPOSITION 4.1. For every 1 < p < oo, there exist positive constants

¢p and Cy, depending only on p (not on dimension), such that for every
f€E,

(4.1) 19 Lr(an) < Cpll fllrdp)

where

o)) = (Y v et rar) ™,

0
with V = (0,61, ...,04), and for every i =1,...,d,
(4.2) eoll fllzeamy < NG leeapy + 1B Lo (dp)»

where E;(f) = limy_o0 ]Bf(f) and

51 = (daPt P ar) "

0

and the semigroups Pt and P! are defined in H3.

(2

Proof of Theorem [2.1. For every f € E, according to the spectral de-
compositions of P* and P! and taking into account that

(L S T
(see |20} pp. 678-679]) we have the identity
(4.3) 0P} (Rif) = —0:P'(f).
Thus for f € F, taking into account , we obtain
|9:(Ri f) ()| < g(f)().
On the other hand, E;(R;f) = 0.
Thus, by Proposition the first part of the theorem follows for the

operator R; restricted to E. Since FE is dense in LP, R; extends boundedly
to the whole LP with constant independent of dimension.
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Now, from [20] p. 687] we have

<R'>ka) h)u = <f7 th>u
for every f,h € E and i = 1,...,d. For every f € E, taking into account
that for every 1 < p < oo, E is dense in L? and R; is bounded on L(X, du)
with ¢ = p/(p — 1), we have

IR} flloany =  sup (R f,h)u
heE, ||h|q<1

< sup [ Riblgll fllze(dp)
heE, ||hllq<1

< Cyll fllze(ap)-

Hence R} extends to the whole LP(X,du) by density. This ends the proof
of Theorem 2.1] =

5. Proof of Theorem 2.2l First, notice that for every i = 1,...,d,
Li®: () = N 2 L (@) if ng is even and 0367 D% (i) = A(nig1)/2Ph, (x4) if
n; is odd.

In order to prove the theorem we need a couple of remarks.

REMARK 5.1. The extensions R; = 6;L~ 1/2 and Ry = 6/ M ~1/2 are
bounded on LP(X,du) for 1 < p < oo, Wlth X = X% and X (—c, 0) (0,¢).

Indeed, observe that

1 Oon
Wpi( Ti) o o (x) for z; € (0,c¢),
Ri@n(x) = 1
—)\1/2]9@'( Spn, —Zi HS% xj) for z; € (—¢,0).

J#i
Now for f = Z\nISN Cn'Pn, wWe have

HRifHLp(X dp) S |R; f(x)|P du(x)

A ) A p
- § ||| ¥ Sn) @ L
xd-1 0'0<[n|<N A i
0
+ S Z %pi(_ T H(‘O" J}] d,uz xz):|
—clo<in<N A i#i
=27 | |Ri(fxxa) (@)[” dp(x)
Xd

d
< Cp2 ||fXXd||Lp X4,dp) Cp”f”Lp(X dp)" ™
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REMARK 5.2. We have

(5.1) Rg®, = {Rz@n, nj even for all j =1,...,d,

—R;®,, n;odd and n; even for all j # i.

Indeed, observe that

Lsf = ZD2f Lf+ Z 16,,0%] ¢
where
D, 1(x) =pj<xj>§;;<x> n [P@)ZE; +p;.<xj>} fe) - Jios
(see [19]).

So if nj is even for every j, then @,(c;x) = Py,(z) for all z, LgP,, =
Lo, = )\<n>§25n, and D;®, = 6;@,. On the other hand, if n; is odd and
for j # i, nj is even, then @, (0;x) = —Pp(x), Pp(ojx) = Pp(x) for all z,
Ls®p = M;®p, = \ipy®Pp, and D; @, = —0; Py,

Thus if the components of n are all even then

Rg:®, = DiLg"*®, = #Di@n
An)
= #5@” =L, = R®,,.
Aln)

On the other hand, if n; is odd and the other entries of n are even we have
_ 1
Rg®, = DiLg'"*®, = ———D;®,
An)

= 5P, = 0" M, P, = —R!,.
A<n>
Thus, for f € L2(X)N(E, @ Oip), f = fe+ foi With fe € Ey and fo; € O; .
Then, by setting I; := {n € Ny : nj isevenforall j = 1,...,d}, I =
{n € Ny : n; is odd and n; is even for all j # i} and taking into account
Remark [5.2] we have

Rsif = Rs,ife + Rs,ifo

=Y (fe:Pu)Ri®p — > {foisPn) Ri Dy,

nel; nels
= Ri(fe) — Bi (fo.)-
Finally, the conclusion follows using Remark and the fact that f, =
(f+fooi)/2and fo,=(f—fo0;)/2. m
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6. Proof of Proposition We need
LEMMA 6.1. For every f € E, g(f) € LP(X,du) for 1 <p < oc.
Proof. Since \g = 0, we have g(pg) = 0, and for A\, > 0,

oen)@) = (§ 120 at) (/A o) drone), - bapna)

0
€ LP(X,dn), by H2(a).
The result follows from the sublinearity of g. =

Proof of Proposition . We only need to prove inequality since
and the boundedness of g; on LP(X, du) follow from a generalization of
[23, Theorem 10 p. 111, Corollary 2 p. 120] given in [4]. The generalization
only assumes conditions I and II of [23] Theorem 10, Corollary 2]. In our
context those conditions correspond to H3(a).

CAsE 1 < p < 2. Let f € E and € > 0. Applying Lemma to
F(t,z) = P'f(z), setting F, = (F? + ¢2)1/2 and taking into account that
(p—1F?+e > (p—1)(F? + €%) we have

o0

l9(f)(@)]> = | VP! f ()] dt

o

1 o0
< | tF2PLEP dt
pp—1) 3
1 o
< (e S ecEr

p(p—1) o

where £ = 97 — L and P*f(z) = sup,-q |P!f(x)|. Observe that from the
formula given in Lemma LF?P > 0. Then, by using Holder’s inequality
with ¢ = 2/(2 — p) and Lemma |7.1| applied to F(t,x) = F? (the verification
of the hypotheses of Lemma is given below), we get

90y < Co S 1P £ 02 (§ ecE? at)" dp(a)
X 0

<GP RSP (

p/2
Bl Swwwmu))
0

&0 — ;Cf_’ﬁ

<GP 15 (

(P2 + 2 dp())"”.

By applying Lebesgue’s theorem on a set of finite measure as ¢ — 07 we
have

* (1 2) 2
Mgy < Coll P FI et N1 2y < Coll £y
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where we have used the LP-boundedness of P* that follows from [23, Maxi-
mal Theorem, p. 73]. Hypothesis I of the Maximal Theorem is H3(a), and
hypothesis II follows from the spectral decomposition of the operator P?.

Let us now check the hypotheses of Lemma - for F(t,z) = F! =
((PUF(x))? +)P/2 with f = Z,M Cpn and

Pl = 3 Vi)
[n|<N

Since supyq [F(t, 2)| < (X2}, <n [enl [on(2)] 4 €)P, hypothesis (1) of Lemma
is fulfilled from H2(a) and the finiteness of p.

Taking into account that A\g = 0, we have
P
HoF (e, )] < pptet (3 lenlln(@)] + )" = S(t,)
In|<N

with a = inf{\/\,, : 0 < |n| < N} > 0 and 8 = sup{/A, : [n| < N}. This
function S(¢, z) satisfies hypothesis (4) of Lemma
Since @ (z;) = ¢ for all ; € X, we have (¢}) =0 and so

p—1
U0 F(t ) <pt( D leallon(@)] + )" 100, P

In|<N
—1
<o feallon@l+e) 30 eV el Prgn
p—1
<pte™ (S leal lon(@l +€) Y leml 10npm]
[n|<N |m|<N

By applying Holder’s inequality with s = p/(p — 1) and s’ = p and taking
into account H2(a) we obtain

H‘SO P~ lawlSOmHLl (X.dp) = H‘PnHLp Xd#)Haxi‘PmHLP(X,du)-

Thus 9 (t, z) satisfies hypothesis (3) of Lemma
Finally, hypothesis (2) of Lemma [7.1| corresponds to H1(a).

CASE p > 2. By the semigroup properties it is easy to prove that for
f € E we have, foralli=1,...,d,

(6.1) AP f(x) = 2P%(0, P2 f)(x),
(6.2) 5P f(w) = P*(0,P'2 f)(a),
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for all x € X and ¢t > 0. Now, by Corollary [7.4] for every nonnegative
he (),

(6.3) P!h(z) < P'h(z).
Let f € E and h € C?(X) be nonnegative. Then

f=copo+ f1
with

Yo = 17 fl = Z Cn®n, Cco = S fd,u

0<|n|<N X

Thus, ||cowollp < || fllp and || fill, < 2] f|lp- Moreover for all ¢ > 0 and z € X,
VPl f(x) = VP fi(z).

By , , H3(b), the symmetry of P! and 15,;, , a change of

variables and Lemma [7.2] for p = 2 we get

V19N @) Phiz) du(z) = | [9(f1)(@)Ph(z) du(z)

X X

tIVP f1(x)]* dt h(z) du(z)

AP0, P2 ) () + f (P[22 f1)(w) ) dt () du
i=1
Ogt [Pt/Q([atPt/QfﬂQ)(x) + iﬁ;f/?([aipt/? f1]2)(x)} dt h(z) du
Oxot[[atpmfl ()]*P**h(x) + i[aiptﬂfl(wﬂ?l%“ *h()| dtdp
0 =1
<4\ | |VP2f(2) PN (z) dp(z) dt
X

=16 | ¢ | |VP'fi(2)] P'h() dp(z) dt
0 X

=8 | t | L[(P' fi(2))’)P'h(x) du(z) dt.
0 X
Let us remark that for F,G : Ry x & — R smooth enough,
(6.4) L(FG)=L(F)G+ FL(G)+2VF -VG.

Taking into account (6.4) and LP'h(x) = 0 we can write the above double
integral as
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V¢ | LI(P'f1(2))* P'h(x)) dp(x) dt
0 X

—2 |t | V(P fi(2))? - VP'h() dp(z) dt
0 X

— 4\ t\ P fi(x)VP fi(x) - VP'h(z) dp(x) dt =: T — II.
0 X
Applying Schwarz’s inequality to the second term we get
1] 4| P fu(e) | VP F(@)] |V P ()] dt du()
X 0
<4 | P fi(2) g(f)(x) g(h)(x) du(x).
X
Thus, the integrand of II belongs to L'(R, x X, dtdu) by using Holder’s
inequality, the LP-boundedness of P*, Lemma [6.1] and the boundedness of
g for p < 2. Lemma[7.2] for p = 2 gives
(6.5) V¢V LIP f1(2))2)P*h(x) du(x) dt < 2||h]loollg(f)]3 < o0
0 X
by Lemma [6.1] for p = 2. As a consequence, the integrand of [ is also in
LY (R, x X,dtdy) and applying Lemma to F(t,z) = (Ptf1)?P'h (the
verification of the remaining hypotheses of Lemma [7.1] is given at the end
of this proof), we get

1< {(£1(2)2h() du().
x
Thus,
V19() @) k() du(z) <8 | (f1(x))*h(x) du(x)
X X
+32 | P*fi(2)g(f)()g(h) (@) dp(z).
X

Assume that p > 4, 2/p+1/q = 1 and ||hl|; < 1. By Hoélder’s inequality,
LP-boundedness of P* and the current theorem for ¢ < 2, we obtain

lg(H)I5 < Calllf1ll5 + lg(F)lpll £2l)
<AC (A1 + g (HlIpl £ ).
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Thus, taking into account that [|g(f)||, < oo (see Lemmal6.1)), we get the cor-
responding estimate for p > 4. For the remaining p’s we use Marcinkiewicz’s
Interpolation Theorem.

Let us check the remaining hypotheses of Lemma when F(t,z) =
(P! f1(z))?Pth(x).

For fi =3 g jnj<n Cn$n, we have Plfi(z) = 20<|n|<N eVl o ().

Taking into account the spectral decomposition of P! and H3(a), we get

sup | F(t, )| < (3 leal len@)]) Itlc

>0 =N

thus hypothesis (1) of Lemma is satisfied due to assumption H2.
From the inequalities

1P @)1 Ph() < 283 Jenl lon(@)]) Il

In|<N

with o = inf{y/\, : 0 < |n| < N} > 0 and 8 = sup{v/A, : [n| < N}, and

HP @) R()] < e (3 lenl lon(a)]) HOP h())

In|<N

we obtain |0 F(t,z)| < S(t,x) with

S(t,) = 2Bt loe + 40P B@) (X lenl lon(@)])

In|<N

This S satisfies hypothesis (4) of Lemma [7.1{ due to Lemma (see (7.3)).
By similar computations for 0., F, but now using Lemma (see ([7.2)),
we find that t|0,, F(t,z)| < (¢, z) with

wit,w) =2t (3 Jeal leal) (D2 lenl 020n]) + 19y hlloc,
In|<N In|<N

which belongs to L'(R; x X). =

7. Appendix. In the following lemmas we assume that hypotheses H1
through H3 hold.

LEMMA 7.1. Let £ = 0? — (L + h(z)) with h a nonnegative continuous
function on X. Let F : R, x X — [0,00) be a C*(Ry x X)NCHR,; x X)
function such that LF > 0 on Ry x X or {° §, | LF(t, )| du(z) dt < co and
the limit lim,_,o+ F'(t,x) exists for every x € X. For every t > 0 sufficiently
large, define

Xt = Xt X X Xt with Xt = [(b+ e_t) V (—t), (C— e_t) /\t] =: [bt,Ct].
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Assume that:

(1) suppoo | F(t,2)] € LN(X, dp).

(2) For every i = 1,...,d, either p?(b)wi(bs) and p?(ct)wi(ct) — 0
as t — 00; or limy_oo p7(be)wi(by) = lim oo p7(ct)wi(er) # 0,
Fy.(t,b,x") = Fy(t,c,2?) for all z' € X9~! whenever b and c are fi-
nite; or t|Fy, (t, z;, %) < b1 ()2 (t, 2t) with 1y (x;) — 0 asx; — b, c
and s € LY (R, x X%, dtdu’(z?)).

(3) For everyi = 1,...,d, t|Fy,(t,x)] < ¥(t,z) with ¥ € L}( Ry x X,
dtdu(x)).

(4) t|F(t,z)| < S(t,x) for allt > 0 and x € X where the function S
is nonnegative, continuous, vanishes as t — 0% and t — oo, and
belongs to L*(Ry x X, dtdpu).

Then
(7.1) \ VtLF(t ) du(a) dt < | F(0,2) du(w),
00X X

where F(0,z) = lim;_,q+ F(t,x).

Proof. For T > 0 and sufficiently large, we will apply the divergence
theorem on the domain Dy = Ap x Xp with Ar = [e~T, T]. Observe that

tLFw = —Fw+ diV(tyx) G — th(l’)FU)

with
G(t,x) = (tFy, tp}(x1)Fyys .. o, tp5(xa) Fr,)w ().

Taking into account that h(x) > 0 on X we have

W ter(t =) du(z) dt
o < -\ or(t, ) du(x)dt + |\ div( ) G da dt
Dr Dr

= S F(e T, z)du(z) — S F(T,x)du(z) + S G -ndo
Xr Xr ODr

< S F(e T, z)du(z) + S G -ndo.
X Dy
Either by Beppo-Levi’s theorem or by Lebesgue’s theorem, as T" — oo, the
left hand side above tends to the left hand side of (7.1), and by Lebesgue’s
theorem together with the first term of the right hand side tends to the

right hand side of || We should prove that | op, Gndo —0asT — oo.

The two sides of the parallelepiped corresponding to time would be t = e~ 7

and t = T, whose corresponding normal vectors are n = (—1,0) and (1,0)
respectively. The two sides of the parallelepiped corresponding to the ith
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coordinate are x; = by and x; = ¢y, whose corresponding normal vectors
are 11 = (0, —e;) and (0, e;) respectively. The integration on these sides leads
to integrals

—e T S Fi(e T, z)du(z) and T S F (T, x)du(z),
Xr Xr

which from and Lebesgue’s theorem tend to 0 as 7' — oo. On the other
hand, the ith spatial integral is the difference

T
P2 (er)w;(cr) S StF (t,cr, ") du'(x") dt
e~ T XL T
=P (br)wi(br) | tFu(t by, 2") dp' (a") i,
e—TX%

where the superscript ¢ means that we consider all the variables but ¢. From
and , the difference of these integrals also tends to 0 as T" — co. =

LEMMA 7.2. Let F: Ry x X — R be a C? function such that LF =0
with £ = 0} — L. For every € > 0, let F. = (F? + €2)Y/2. Then for every
1 <p<oo,

1)F? +
LFP = Fp—2( 1)
€ p € F2+€

where V = (0,01, ...,0q). Forp=2,

IVFI2

LF?=LF?=2|VF|?, Ve>0.
Proof. This follows by simple calculations. =

LEMMA 7.3. Assume that [0;,0]] > 0 on X. Let f € C.(X) be a nonneg-
ative function. For vi(t,x) = T'f(x) and va(t,x) = T} f(x) we have

va(t,z) <wi(t,x)  for all (t,x) € (0,00) x X.
Proof. First, let f(z) = H;l:l fj(xz;) with f; in D; dense in the space
L*(X,wj(z)dz) and f; > 0. In this case,

CTISC ol ) S e o0

j#in;=0 n;=1 ||5’l(10n1‘|2

t JIZ Hze f]790nj>¢nj(xﬂ)

Jj#in;=0
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and

H Z e n fjagon] gOn] x] Z e fz,@nl>80nz($z)

JFinG=

1(t, @ H Z fja¢n3>50nj( i)

j#in;=0
where u; and ug were defined in H3(c). Now, we will apply [5, Theorem
1, p. 411] to the operator L=-0,-L, =8 — 070; and the function
u(t,x;) = wa(t, z;) — ui(t, ;).

Let us check that the hypotheses of [5, Theorem 1, p. 411] are satisfied.
Ceneral conditions I and II from [5] correspond to H1(b). Since Lu; = 0 and
(8¢ + 6:0)ug = 0 on X x (0,00), we have Lu = [5;, 63]ug > 0 on (0,00) x X,
by H1(c) and H3(a). On the other hand, u(0,z;) = 0 for x; € X because
{<sz]- }n; and {51'90%]. }n, are bases in L?(X, w;(x;)dz;); u < 0 on (0,T) x 6X
for all T > 0 by H3(c); and condition (2.5) of [5, Theorem 1, p. 411] follows
since these semigroups are bounded by H3(a). Therefore by [5, Theorem 1,
p. 411], u(t,x;) < 0on (0,7) x X for every T' > 0. Thus wua(t,x;) < ui(t, z;)
for all z; € X and t > 0. Since

o .
-\, .t 1 i

1D e ™' eh ), () > 0

j#in;=0
as a consequence of H3(a) on X9~ it follows that

va(t,z) <wvi(t,x) forall (t,z) € (0,00) x X
for f(x) = H;l:l fi(z;) with f; in D; dense in L*(X,w;(z)dx) and f; > 0.
Now, let f € C.(X) be nonnegative. Then there exists (f,) C D =

span{ f(x) = H;-lzl fi(x;) with f; € D;}n{f > 0} such that || f, — f|l2 = 0,
T fr, — T fll2 — 0 and [T} fn, — T} fll2 = 0 as n — oo, and T} fp(x) <
T! fn(z) for all n. Hence there is a subsequence of (1" f,) and (1} f,) that
converges pointwise to T*f and T! f respectively for almost every z € X.

Thus i-t f(z) < T!f(x) for almost every = € X. But since these semigroups
are continuous on X, the inequality follows for every x € X'.

COROLLARY 7.4. Assume that [0;,07] > 0 on X. Let f € Cc(X) be a
nonnegative function. Then

Plf(z) < P'f(x) for every (z,t) € X x (0,00).
Proof. This follows from the definitions of P?, ﬁf and Lemma .
LEMMA 7.5. For any f € C3(X),
(7.2) 10, P f ()] < C|10y, f o0,
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and
t‘atPtf(:c)] < H¢ + S‘gb/‘HLl((O,oo)7ds)HfHOO7

(73) lim [0, P! f(z)] = 0.
t—0t

Proof. From H2(a), regarding the elliptic differential operator N; it is
easy to see that 0,,T'¢, = T}0,,y,. This is also true for every f € C2(X)
under the assumption H2(b). In fact,

0, T f(2) = By D (fs0m) 22000 TP

nENg

= Z <f7 ‘Pn>L2(X,du)aﬂciTt(pn

neNg

= Z <f7 @n)LQ(X,du)Tit(aﬂ%(pn)

nGNg,ni>0

(O, f, Oz, on) 12 v;
= > L) T8 (D0n) = T} (D, f) ().
HaﬂczSDnHLZ (X,dv;)

nGNg,ni>0

Here we have used (0, f, Oy, 90n>L2(X dvy) = (0if, 0ion)py = )\;"%,<f, ©On )y, With
Haﬂcz@num(x dv;) H(SZSONHLZ (X, dp) = /\?12

Now, by definition of P!,

0P @) = | G2 § 0T M ) o
0
_ ]f S T 1D, f)(a) du
0

This proves inequality (7.2]).
On the other hand, ([7.3)) is derived from the formula

[e.9]

0P f(x) = | [;qs(s/t% b 56/ | T ) ds

= [ (605) + s )T () s,
0
which follows from the spectral decomposition of the Poisson semigroup P!

given in H3, and taking into account that ¢ + s¢’ € L'(Ry,ds) and
§o (6(s) + 59/ (s)) ds = 0 together with Lebesgue’s theorem. m
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LEMMA 7.6. Let o be a positive Radon measure on X and suppose that
there exists § > 0 such that

S 7l dp(z) < oo.
b's

Then the set of polynomials restricted to X is dense in LP(X,du) for 1 <
p < 0.

For the proof see [1, Theorem 6] where R has to be replaced by X and
the reasoning follows the same lines.

8. Examples. In this section we apply the previous results to some
classical polynomial settings.

Trigonometric polynomial expansions. For this setting,
X =(-m,7), X=(-mmn)
L; = —6%1,, L=-A
pi(wi) =1,
5 = O,
-
wi(z;) = i, w(zx) = @y
We now verify the hypotheses.

H1:

(&) pf (=m)wi(—7) = pf(m)wi(m) = 1, but ¢}, (—7) = ¢}, (7) and
(i) (=) = () ().

(¢) Choose ¢(7) =1 and thus O(7) = 7.

(d) [6:,6¢) = 0.

H2:
(a) Eigenfunctions:
1, n =0, d
O (1)) = { V2sinkz;, n=2k—1, ¢n(z)= Hgoih (x4),
V2coskx;, n =2k, =1

d
> L +1)/2)%,

i=1

n=ny,...,ng.

Moo= 1(n+1)/2)%,, n=0,1,..., A
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Since

for n; odd,

for n; even,

5 _ L(nz + 1)/2J Pr+te;
iPn =
L(nl + 1)/2J Pn—e;
we have F; = G, = E C LP(X,du).
(b) can be found in [20].

H3:

(a) is a consequence of 7?1 = 1 and Hélder’s inequality.
(b) Use the Cauchy—Schwarz inequality.
(c) Since N; = L, T! = T" is bounded on L°°.

In this setting, the results about the LP-boundedness of the Riesz trans-
forms for 1 < p < oo are classical and can be found in [23].

Hermite polynomial expansions. For this setting,
X =R,
Li=—02 + 2x;0,,,

X = R4,
L=-A+22-V,

6i — axp
§F = — 0y, + 2,
2 2
e~ T ef|z|
wi(zi) = w(z) =

ﬁ )
H1:
(a) p2(b))w;(b;) = e D* and p2(c)wi(c)) = e both tend to 0 as
t — oo.
(b) Choose ¢(1) =
(c) [6;,07] =2 > 0.

H2:

/T and thus O(1) = 24/7.

(a) Eigenfunctions:

s dv

Hn(.’L‘l) = (—1)n€xi

[ Hy 3 = nl2",
Hn(l’l)

on (i) =

[ ]2

d
pula) = [J o3, (@),

ey An =2|n|, n = (ng,...

nf =1+

>nd)a
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Since Siooo edlele=2" 4y < oo for all § , by Lemmathe set of one-dimensional

polynomials is dense in LP(X) for 1 < p < oo and every polynomial is a

linear combination of Hermite polynomials. Thus E is dense in LP(X,du).

Moreover, since d;¢, = —v/2n; pp—c;, we have F; = G; = E C LP(X,dp).
(b) can be found in [20].

H3:

(a) is a consequence of T?1 = 1 and Hélder’s inequality.
(b) Use the Cauchy—Schwarz inequality.

(c) is not necessary to check because b = —oco and ¢ = co.
(d) Since N; = L+ 2, T! = e 2T" is bounded on L.

In this setting, the results about the LP-boundedness, 1 < p < oo, for
first and higher order Riesz transforms with respect to the Gaussian measure
can be found e.g. in [12] 6 2], 25| [7, [9].

Laguerre polynomial expansions

X =(0,0) =Ry, X =R4,
d
Li=L% L=1L%=-> (202 +(a;+1—2:)0z,),
= —:cz(? — (i +1—2;)04,, =1
a=(a,...,0q),
a; > —1,
pilzi) = /i,
Oéi—|—1/2
ST O — -
Vi O, N +/Ti,
Qi —x; d al —
oy e xteT
U)Z(I’L) F(al—l—l)’ Zl_[l Oéz‘|‘]-
Hi:

(a) p?(be)w;(by) = (e )tle=e™" and p2(ct)wi(cr) = t¥Fle~t both tend
to 0 as t — oo.

(b) Choose ¢(7) = /7 and thus O(1) = 2/7.
(c) [6:,6F] = %ﬁﬂ“ > 0 if and only if a; > —1/2.

H2:

(a) Eigenfunctions:

It = ¢
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F(O&i +n 4+ 1)
T+ DI n+1)

i o L%Z (.7}1) o d ;
n ;—

IL5+ 113 =

ANo=n,n=0,1,..., An = n|, n=(n1,...,nq),

|n|:n1+'~+nd.

Since Sgo e dr < oo as long as § < 1, by applying Lemma the

set of one-dimensional polynomials is dense in LP(X) for 1 < p < oo and
every polynomial is a linear combination of Laguerre polynomials. Hence
E is dense in LP(X,du). Since the derivative of a polynomial is another
polynomial, we have G; = E. On the other hand, observe that

Sipn (@) = —v/niv/zi on el (x) € LP(X, dp),

thus F; C LP(X,dp).
(b) can be found in [20].

d) Since N; = LO‘JFei +1, T =e tTotHre is bounded on L.

In the Laguerre setting, the LP-boundedness of the Riesz transforms,
1 < p < oo, with respect to the Laguerre measure du,, with a; > —1/2,
is obtained in [I6]. In our case, the restriction on the parameter «; is a

consequence of the nonnegativity of the associated commutator [d;, 6;].

Jacobi polynomial expansions. In this case, we have

X =(-1,1), X =(-1,1)4,
L = L¢P L = Laﬁ
—(Bi—a;— (i +Bi+2)x;) Oy s
ag, B > —1, (/82 (al+/81+2)$i)a$i)a
2 a:(ala"'vad)vB:(6i7~--7/8d)7

pi(x;) = /1—x7,

(52' = 1—33285,;“
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1 .

55 = —\J1— 220, + (ci + 1/2) |~

1—x;

1-— a;i
1/2
d
1—2;)%(1 + x;)"
wiley) = L2 o , w(w) = [ wita)
a;,Bi .
with
oo 208t ( + 1)T(B; + 1)
T I'lov + Bi +2) '
H1:

(a) We can see that p?(by)w;(by) = (2—e™ )% (e 1A+ and p?(cy)wi(ct)
e )t (2 — e7H)Pit] hoth tend to 0 as t — oo.

(b) Choose ¢(7) = /7 and thus O(7) = 24/7.

(c) [0i,0]] = O”H/Q + ’81“/2 > 0 if and only if oy, 5; > —1/2.

= (

H2:

(a) Eigenfunctions:

Jﬁ‘“ﬂi (-%) — ﬂ(l_'m)*ai(l-ﬁ%i)ﬁi

2nn!
dn
s
HJOéiﬂiHQ _ F(ai+ﬁi+2)
2T Plag+ 1) (Bi+1)
" I(a;j+n+1)0(Bi+n+1)
(1 +Bi+2n+1) (1 +Bi+n+1)(n+1)’
ai,Bi Jﬁf“ﬁ’b (xl) a,B d i
(P ( ) Pn ( l) = B P’ (1’) = ngnZ(sz
H‘]n H2 i=1
N = n(n+a;+Bi+1), A= AP
d
=0,1,...
ne e = Z(”i(ni+ai+ﬁi+l)),
n:( 1,...,nd).

Since 81,1 l#l(1 — 2)*(1 + x)? dz < oo for all §, by Lemma, the set of
one-dimensional polynomials is dense in LP(X) for 1 < p < oo and every
polynomial is a linear combination of Jacobi polynomials. Hence E is dense
in LP(X,dp). Since the derivative of a polynomial is another polynomial, we
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have GG; = E. On the other hand, observe that

bipn(@) = —\ A \/1 = a? i e @) € IP(X, dp),

thus F; C Lp()(,du).
(b) can be found in [20].

H3:

(a) is a consequence of 7?1 = 1 and Hélder’s inequality.
(b) Use the Cauchy—Schwarz inequality.
(c) We have to analyze b = —1 and ¢ = 1. For b = —1, us(t,—1) =
0 <wuy(t,—1) for all ¢ > 0. As for ¢ = 1, we have a similar inequality since
ug(t, 1) = 0.
(d) Since N; = LoTefte 4 q; 4 8 4 2, T = e~ (tbtdiqt o
bounded on L.

For the Jacobi polynomial expansions, P. Sjogren and A. Nowak [17, [I§]
considered expansions based on multi-dimensional Jacobi polynomials and
studied the LP-boundedness of the Riesz transforms, 1 < p < oo, with re-
spect to the measure dw, g(z) on (—1,1)? and «;, ; > —1 for each i. In
particular, under a slight restriction on the type parameters («;, 8; > —1/2
for each i), they prove that these operators are bounded in LP, 1 < p < o0,
with constants independent of dimension. We find the same restrictions on
the parameters and again they are a consequence of the nonnegativity of
the commutator [0;,0;]. Recently, Langowski [10] followed the symmetriza-
tion procedure by considering the setting of symmetrized Jacobi expansions.
In particular, he also obtained some new results in the original setting of
classical Jacobi expansions.

REMARK 8.1. On the other hand, Stempak and Wrébel [24] have also
used the same technique in a context of function expansions. In particular,
they have proved dimension free LP-estimates for Riesz transforms associ-
ated with multi-dimensional Laguerre function expansions of Hermite type,
but the range of the admissible Laguerre type multi-index in these estimates
depends on p. For 1 < p < 2 this range is almost optimal. This is a starting
point to try to use a similar technique in order to analyze a general context
of orthogonal function expansions.

REMARK 8.2. Recently, Wrébel [26] derived a scheme to deduce the
LP-boundedness of certain d-dimensional Riesz transforms from the
LP-boundedness of appropriate one-dimensional Riesz transforms, by using
an H* joint functional calculus for strongly commuting operators. Since
the LP-bounds are all independent of the dimension, we see that when our
hypotheses are satisfied we have the LP-boundedness of d-dimensional Riesz
transforms, with dimension free constants.

is
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