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Abstract. We obtain sharp bounds for the monotonic rearrangement operator from
“dyadic-type” classes to “continuous” ones; in particular, for the BMO space and Muck-
enhoupt classes. The idea is to connect the problem with a simple geometric construction
named α-extension.

1. Introduction. The BMO space has many nice properties. One of
them is that the monotonic rearrangement operator is bounded on this space
(see [5, 1]). In other words, the inequality

‖f∗‖BMO ≤ c‖f‖BMO

holds true with some constant c. It is not hard to see that c ≥ 1. Soon it
was noticed that c = 1 when the dimension of the underlying space is one
(see [7]).

The same boundedness is also present when the BMO space is replaced
by its relatives: the Muckenhoupt classes (see [16, 17]) or the Gehring classes
(see [4]). And again, if the underlying space is an interval, then the constant
in the corresponding inequality equals one, i.e.

(1) [f∗]Ap ≤ [f ]Ap

(see [2] for A1 and [8] for the general case). On the other hand, see [2] for
an example showing that inequality (1) does not hold in higher dimensions.

In [14] two of the present authors developed a setting that unifies the
three cases (and, moreover, covers a more general situation described in
[6] for a related extremal problem) and gave a proof of an inequality that
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generalizes (1) to the setting of that paper. The proof relied on passing to
a certain class of martingales.

It seems a difficult problem to calculate the norm of the monotonic rear-
rangement operator in higher dimensions. Not being able to solve it, we deal
with a problem that is a step to it: we calculate the aforementioned norm for
the case when the BMO space (or any other class of similar nature) is dyadic.
Dyadic classes seem to be a step towards the higher-dimensional case not
only in our problem, but, for example, in the problem of finding the sharp
constant in the John–Nirenberg inequality (see [13]). For numerous applica-
tions of monotonic rearrangements in various estimations see [3, 9, 10, 11, 12]
and references therein.

We briefly formulate the corollaries of our abstract considerations that
concern the classical cases of the BMO space and the Muckenhoupt class.
Let n ∈ N and let D be the set of all dyadic subcubes of [0, 1]n. Consider
the dyadic BMO space on [0, 1]n with the quadratic seminorm:

(2) BMOd([0, 1]n) =
{
ϕ ∈ L1([0, 1]n) :

‖ϕ‖2
BMOd([0,1]n)

= sup
I∈D

(〈ϕ2〉I − 〈ϕ〉2I) <∞
}
.

If the above supremum is taken over all subcubes of [0, 1]n, then we ob-
tain the usual (“continuous”) BMO quadratic seminorm (in this paper, we
consider only quadratic seminorms on BMO).

The monotonic rearrangement of a function ϕ from this space is a mono-
tone (say, non-increasing) function ϕ∗ on [0, 1] with the same distribution as
the function itself. The (non-linear) operator ϕ 7→ ϕ∗ is called the monotonic
rearrangement operator.

Corollary 1. The monotonic rearrangement operator acts from the
space BMOd([0, 1]n) to BMO([0, 1]) with norm (1 + 2n)/(21+n/2).

Let us consider the dyadic Muckenhoupt class Ad2 on [0, 1]n. A positive
function ϕ on [0, 1]n is in Ad2 with constant Q if 〈ϕ〉I〈ϕ−1〉I ≤ Q for any
I ∈ D. Define

Ad2,Q([0, 1]n) =
{
ϕ ∈ L1([0, 1]n) : sup

I∈D
(〈ϕ〉I〈ϕ−1〉I) ≤ Q

}
.

Again, A2,Q([0, 1]) stands for the set of functions on [0, 1] for which a similar
supremum taken over all subintervals of [0, 1] does not exceed Q.

Corollary 2. The monotonic rearrangement operator acts from
Ad2,Q([0, 1]n) to A2,Q′([0, 1]) if and only if

Q′ ≥ Q(2n + 1)2 − (2n − 1)2

2n+2
.
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A similar statement can be obtained for the Ap class, p 6= 2, but the
statement is not nice (it involves many solutions of implicit algebraic equa-
tions), so we do not dwell on this. An interested reader may calculate the
sharp constant using Propositions 11 and 12 below.

Another motivation to write (and, we hope, to read) this paper is to
demonstrate the strength of the martingale technique developed in [14].
More or less, the proof consists of an accurate manipulation with the defini-
tions, a very simple geometric lemma from [13], and a martingale embedding
theorem from [14].

In the next section, we state the main theorem in an abstract form
(using the terminology from [6, 13]) and prove it. The last section consists
of the examples of specific classes (in particular, it contains the proof of
Corollaries 1 and 2).

2. Preliminaries and main theorem. Fix unbounded open strictly
convex domains Ω0, Ω1 ⊂ R2 satisfying the following conditions:

• clΩ1 ⊂ Ω0;
• (cone property) any ray lying inside Ω0 can be shifted to lie inside Ω1.

Set Ω = cl(Ω0 \ Ω1). In what follows we will consider only domains of this
type and call them lenses. The set ∂Ω0 is called the fixed boundary of the lens
Ω and is denoted by ∂fixedΩ. The rest of the boundary, ∂Ω1 = ∂Ω \ ∂fixedΩ,
is called the free boundary of Ω and is denoted by ∂freeΩ.

Recall a definition from [6].

Definition 3. Let J ⊂ R be an interval and ϕ : J → ∂Ω0 be a sum-
mable function. We say that ϕ belongs to the class AΩ if 〈ϕ〉I ∈ Ω for every
subinterval I ⊂ J .

Since the domain Ω0 is unbounded and strictly convex, there exists at
least one straight line ` ⊂ R2 such that the orthogonal projection P` onto
this line is injective on ∂Ω0. A function ϕ ∈ AΩ is called monotone if the
composition P`◦ϕ is monotone. The function ϕ∗ : J → ∂Ω0 is the monotonic
rearrangement of ϕ if it is monotone (say, non-increasing) and has the same
distribution as ϕ.

Let (X,A, µ) be a standard probability space. For any integrable vector-
valued function ϕ on (X,A, µ) and for any subset ω ∈ A of positive measure
we denote by 〈ϕ〉ω the average of ϕ over ω, that is, 〈ϕ〉ω = (1/µ(ω))

	
ω ϕdµ.

We consider increasing discrete time filtrations F = {Fn}n≥0 with finite
algebras Fn, starting with the trivial algebra F0 = {∅, X}, such that A is
generated by {Fn}n≥0 mod 0. By Lévy’s zero-one law, if f ∈ L1(X,A, µ)
and {Fn}n≥0 is the martingale generated by f and F (i.e. Fn|ω = 〈f〉ω for
any atom ω of the algebra Fn), then Fn converges to f almost everywhere
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and in L1(X,A, µ). We write A(F) for the set of all atoms of Fn, n ≥ 0.
For a fixed filtration F we introduce the class AFΩ of functions ϕ : X → ∂Ω0

such that 〈ϕ〉ω ∈ Ω for every ω ∈ A(F).

Definition 4. The lens Ω̃ is called an extension of Ω if Ω ⊂ Ω̃ and
∂fixedΩ = ∂fixedΩ̃ (1).

Let α ∈ (0, 1). The lens Ω̃ is called an α-extension of Ω if for any x, y
in Ω such that the straight line segment [z, y] with z = αx + (1 − α)y is
contained in Ω, we have [x, y] ⊂ Ω̃.

Fig. 1. Illustration to Definition 4: Ω̃ is an α-extension of Ω

Note that if z = βx + (1 − β)y, β > α, and [z, y] is contained in Ω,
then [x, y] is contained in any α-extension of Ω, i.e. every α-extension is
simultaneously a β-extension for any β > α.

Definition 5. We say that F is an α-filtration if for any atoms ωn ∈ Fn
and ωn+1 ∈ Fn+1 such that ωn+1 ⊂ ωn we have µ(ωn+1) ≥ αµ(ωn). We refer
to the pair (ωn, ωn+1) as above as a parent and a child. We say that F is a
binary filtration if every parent in F has at most two children.

Definition 6. Let F be a binary filtration and let {Fn}n≥0 be the
martingale generated by a function ϕ ∈ AFΩ and F . We say that {Fn}n≥0

is an α-martingale if for all ω ∈ A(F) the following condition is fulfilled:
if ω′, ω′′ are children of ω and the straight line segment [〈ϕ〉ω′′ , 〈ϕ〉ω] is not
contained in Ω, then |〈ϕ〉ω′ − 〈ϕ〉ω| ≥ α|〈ϕ〉ω′ − 〈ϕ〉ω′′ |. For any filtration
F we say that {Fn}n≥0 is an α-martingale if there exists a binary filtration
F̃ = {F̃m}m≥0 such that the martingale {F̃m}m≥0 generated by ϕ and F̃ is
an α-martingale and Fn = F̃mn for some increasing sequence {mn}n.

(1) Note that this definition slightly differs from the one given in [14].
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In other words, for an α-filtration, the condition µ(ωn+1) ≥ αµ(ωn)
should be fulfilled for all children of all subsets, whereas for α-martingales
this condition is needed only in some cases. This relation is clarified in the
simple lemma below.

Lemma 7. Let α ∈ (0, 1) and let F be an α-filtration. Then the martin-
gale generated by any ϕ ∈ AFΩ and F is an α-martingale.

Proof. If F is binary, then the statement is evident. Indeed, for any
w ∈ A(F) we get

|〈ϕ〉ω − 〈ϕ〉ω′ | =
µ(ω′′)

µ(ω)
|〈ϕ〉ω′ − 〈ϕ〉ω′′ |

and

|〈ϕ〉ω − 〈ϕ〉ω′′ | =
µ(ω′)

µ(ω)
|〈ϕ〉ω′ − 〈ϕ〉ω′′ |

from the identity µ(ω)〈ϕ〉ω = µ(ω′)〈ϕ〉ω′+µ(ω′′)〈ϕ〉ω′′ for the children ω′, ω′′

of ω. By Definition 5, both coefficients are not less than α.

So, for an arbitrary α-filtration F = {Fn}n≥0 we need to construct a
binary one, F̃ , such that F is a subfiltration of F̃ . We use induction. We start
with the trivial algebra F̃0 = F0. Suppose that the sequence {F̃j}j≤m has

already been defined and has two properties: for some n we have F̃m ⊂ Fn+1

and {Fi}i≤n is a subfiltration of {F̃j}j≤m; and 〈ϕ〉ω ∈ Ω for any atom ω of

any algebra F̃i, i ≤ m. We need to define the next algebra F̃m+1. We fix
some atom ω of F̃m which is not an atom of Fn+1 and take an arbitrary
atom ω′ of Fn+1 such that ω′ ⊂ ω and 〈ϕ〉ω′′ ∈ Ω where ω′′ = ω \ ω′.

The following simple argument (see [13, Lemma 2.3]) yields the exis-
tence of ω′. Let us enumerate all atoms of Fn+1 which are subsets of ω as
ω′1, . . . , ω

′
k; and let ω′′j = ω \ ω′j for j = 1, . . . , k. Since ω =

⋃k
i=1 ω

′
i and

ω′i ∩ ω′j = ∅, we have

µ(ω)〈ϕ〉ω =

k∑
i=1

µ(ω′i)〈ϕ〉ω′i =
1

k − 1

k∑
i=1

µ(ω′′i )〈ϕ〉ω′′i .

All the points 〈ϕ〉ω′′i belong to cl(Ω0) by convexity of this set. If we assume
that none of the points 〈ϕ〉ω′′i belongs to Ω, then they are all in Ω1. Since Ω1

is convex, their convex combination 〈ϕ〉ω should be in Ω1; however, this is
not the case. Thus, 〈ϕ〉ω′′i ∈ Ω for some i and we can take ω′ = ω′i, ω

′′ = ω′′i .

We now define F̃m+1 by replacing the atom ω of F̃m by two new atoms
ω′, ω′′. We have thus made an induction step. Since the algebra Fn+1 is finite,
after a finite number of steps we obtain F̃mn+1 = Fn+1 for some mn+1, and
then we continue the induction with n increased by one.

Clearly, the resulting binary filtration F̃ is an α-filtration.



262 D. M. Stolyarov et al.

Definition 8. We say that a positive number α is admissible for the
filtration F if there exist n ≥ 0, an atom ω ∈ Fn, and ω′ ∈ Fn+1 such that
ω′ ⊂ ω and µ(ω′) = αµ(ω).

Theorem 9. Suppose that Ω̃ is an extension of Ω. For a fixed filtration
F and a number α admissible for this filtration, the two assertions below are
equivalent.

(1) For every ϕ ∈ AFΩ such that the martingale {Fn}n≥0 generated by ϕ
and F is an α-martingale, the monotonic rearrangement ϕ∗ belongs
to AΩ̃.

(2) The domain Ω̃ is an α-extension of Ω.

Proof. First we prove (2)⇒(1). Let ϕ ∈ AFΩ and let {Fn}n≥0 be the
α-martingale generated by ϕ and F . Let {F̃m} be a binary α-martingale
such that F̃mn = Fn. By Definition 4, for any ω ∈ A(F̃) and its children
ω′, ω′′, the whole segment [〈ϕ〉ω′ , 〈ϕ〉ω′′ ] is in Ω̃ (2). By [14, Theorem 3.4] the
monotonic rearrangement of F̃∞ = lim F̃m (that is, the function ϕ∗) belongs
to AΩ̃. The implication is proved.

Assume (2) is not fulfilled. Then we can find x, y, z ∈ Ω such that z =
αx + (1 − α)y with [y, z] ⊂ Ω, but [x, y] 6⊂ Ω̃, i.e. [x, z] 6⊂ Ω̃. Without loss
of generality we can suppose that y ∈ ∂fixedΩ. Indeed, if y /∈ ∂fixedΩ, we
can shift the points y and z to the new positions y′ and z′ along the line
containing the segment [x, y] so that y′ ∈ ∂fixedΩ, z′ = αx+ (1− α)y′, and
[y′, z′] ⊂ Ω, but [x, y′] 6⊂ Ω̃. Take a, b ∈ ∂fixedΩ such that x ∈ [a, b] ⊂ Ω.
Since the part of Ω between the chord [a, b] and the corresponding arc of
∂fixedΩ is a convex set, the point y cannot belong to this arc. Therefore, we
can take for a the endpoint of the arc that is between y and b (see Figure 2).

Now we take a subset ω ∈ A(F) such that µ(ω′)/µ(ω) = 1 − α, where
ω′ is a union of several children of ω. Such ω and ω′ do exist because α
is admissible for F . Define a function ϕ on X as follows. Set ϕ = y on
ω′ ∪ (X \ ω), and on ω′′ = ω \ ω′ let ϕ take only values a and b in such a
proportion that 〈ϕ〉ω′′ = x.

Let us check that ϕ ∈ AFΩ. Let ω1 ∈ A(F). If ω1 ∩ ω = ∅, then 〈ϕ〉ω1 =
y ∈ Ω. The average over ω is

〈ϕ〉ω =
µ(ω′)

µ(ω)
〈ϕ〉ω′ +

µ(ω′′)

µ(ω)
〈ϕ〉ω′′ = (1− α)y + αx = z.

If ω1 ⊃ ω, then

〈ϕ〉ω1 =
µ(ω)

µ(ω1)
z +

µ(ω1)− µ(ω)

µ(ω1)
y ∈ [y, z] ⊂ Ω.

(2) In the terminology of [14], the martingale {F̃m} is an Ω̃-martingale.
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Fig. 2. Construction of ϕ

If ω1 ⊂ ω, then either ω1 ⊂ ω′ and 〈ϕ〉ω1 = y ∈ Ω, or ω1 ⊂ ω′′ and
〈ϕ〉ω1 ∈ [a, b] ⊂ Ω.

Let us check that ϕ∗ /∈ AΩ̃. Without loss of generality we may assume
that ϕ∗ is defined on [0, 1] and it is a step function taking three values b, a,
and y. For definiteness we assume that ϕ∗(0) = b. Then 〈ϕ∗〉[0,µ(ω′′)] = x and
〈ϕ∗〉[0,t] runs through the whole segment [x, z] when t varies in [µ(ω′′), 1].

Since by our assumption [x, z] 6⊂ Ω̃, we conclude that ϕ∗ /∈ AΩ̃. Therefore,
(1)⇒(2).

3. Examples. In this section we consider several examples of α-exten-
sions of lenses which correspond to famous classes of functions.

In order to be an α-extension of Ω, Ω̃ should contain all segments [x, y]
such that x, y ∈ Ω and [z, y] ⊂ Ω, where z = αx + (1 − α)y. It is almost
obvious that this property is satisfied if and only if it is fulfilled for such
segments with y ∈ ∂fixedΩ and x, z ∈ ∂freeΩ (in what follows we will call such
segments higher). Therefore, the construction of the minimal α-extension is
quite simple with α and Ω at hand.

3.1. BMO space. It is well known that the lenses

Ωε = {(x1, x2) ∈ R2 : x2
1 ≤ x2 ≤ x2

1 + ε2}, ε > 0,

correspond to the BMO space. One can easily check that a function ϕ lies
in the BMO space on some interval and has quadratic seminorm at most ε
if and only if (ϕ,ϕ2) ∈ AΩε .

Proposition 10. Let ε, α > 0. The lens Ω̃ is an α-extension of Ωε if
and only if Ω̃ ⊃ Ωε′ with ε′ = 1+α

2
√
α
ε.
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Proof. Assume first that y ∈ ∂fixedΩε, x, z ∈ ∂freeΩε, where z = αx +
(1−α)y, [z, y] ⊂ Ωε and the higher segment [x, y] is horizontal. In that case
y = (y1, y

2
1), z = (z1, y

2
1), x = (x1, y

2
1). Then z1 = −x1 and z2

1 +ε2 = y2
1. But

y1 =
z1 − αx1

1− α
=

1 + α

1− α
z1,

therefore

z2
1

(1 + α)2

(1− α)2
= z2

1 + ε2, z2
1 =

(1− α)2

4α
ε2,

and

y2
1 =

(1 + α)2

4α
ε2 = ε′2.

Hence, the point (0, ε′2) lies on [x, y] and in Ω̃. Moreover, [x, y] ⊂ Ωε′ .
The lens Ωε is invariant under the affine transformations Afft : (u1, u2) 7→

(u1 + t, u2 +2u1t+ t2), t ∈ R, so Ω̃ should contain all the images of the point
(0, ε′2) under these maps, that is, {(t, t2 + ε′2)}t∈R. Thus Ωε′ ⊂ Ω̃. More-
over, Ωε′ is invariant under these maps as well and contains the horizontal
higher segment, thus it contains all the higher segments, because they are
nothing but the images of the appropriate horizontal higher segment under
these affine maps. This proves that Ωε′ is an α-extension of Ωε.

Proof of Corollary 1. Consider the filtration F = {Fk}k≥0 on the proba-
bility space [0, 1]n, where Fk is the algebra generated by the family of cubes
{I ∈ D : |I| = 2−nk}. First, note that it is a 2−n-filtration. Second, note
that ‖ϕ‖BMOd([0,1]n) ≤ ε if and only if (ϕ,ϕ2) ∈ AFΩε

. Theorem 9 states that

the monotonic rearrangement operator acts from AFΩε
to AΩ̃ if and only if

Ω̃ is a 2−n-extension of Ωε, which, by Proposition 10, holds exactly when
Ω̃ ⊃ Ωε′ with ε′ = 1+2n

21+n/2 ε.

3.2. Ap1,p2 classes. Consider the lenses

Ωq
C = {(x1, x2) : x1, x2 > 0, xq1 ≤ x2 ≤ Cxq1}, q ∈ R \ {0}, C > 1.

They are closely related to the so-called Ap1,p2 classes (see [15]), as we will
see later.

We are going to find the minimal α-extension of the lens Ωq
C . In what

follows we assume ∂fixedΩ̃ = ∂fixedΩ
q
C . We consider several cases.

Proposition 11. Let q > 1. Suppose that α > 1 − C−1/(q−1). Then Ω̃
is an α-extension of Ωq

C if and only if Ω̃ ⊃ Ωq
C′ with

(3) C ′ =
(1− Caq)q(q − 1)q−1

(1− a)(a− Caq)q−1qq
,

where a is the smallest of the two roots of the equation

(4) C(αa+ (1− α))q = αCaq + (1− α).



Monotonic rearrangements 265

If α ≤ 1−C−1/(q−1), then the set {(x1, x2) : x1 > 0, x2 ≥ xq1} is the minimal
α-extension of Ωq

C .

Proof. First, we note that a segment [x, y] is the higher one if and only
if

(5) C(αx1 + (1− α)y1)q = αCxq1 + (1− α)yq1,

where x = (x1, Cx
q
1) ∈ ∂freeΩ

q
C , y = (y1, y

q
1) ∈ ∂fixedΩ

q
C and z = αx +

(1− α)y ∈ ∂freeΩ
q
C . Since (5) is homogeneous, a = x1/y1 satisfies (4).

If α > 1−C−1/(q−1), then (4) has exactly two positive roots; one is greater
than 1, and the other smaller. These two roots correspond to the higher seg-
ments with x1 > y1 and x1 < y1. If α ≤ 1−C−1/(q−1), then (4) has only one
root, which is greater than one. This means that there are no higher seg-
ments with x1 < y1. In that case any α-extension of Ωq

C should contain the
union of all segments [x, y] such that x1 < y1 and x ∈ Ωq

C and [y, z] ⊂ Ωq
C for

z = αx+ (1−α)y, which coincides with the set {(x1, x2) : x1 > 0, x2 ≥ xq1}.
Let now α > 1 − C−1/(q−1). The lens Ωq

C is invariant under the affine
transformations Afft : (u1, u2) 7→ (tu1, t

qu2), t > 0, each of which preserves
the property of a segment to be higher. Thus, the minimal α-extension of
Ωq
C should be invariant under these transformations as well, and therefore

should coincide with Ωq
C′ for some C ′ > C. For each higher segment [x, y]

we find a point (t1, t2) on it such that t2t
−q
1 is maximal. This maximal value

is exactly the C ′ defined by (3).

Arguing in the same way one can obtain the following proposition.

Proposition 12. Let q ≤ −1. The lens Ω̃ is an α-extension of Ωq
C if

and only if Ω̃ ⊃ Ωq
C′ with

(6) C ′ =
(a− Caq)1−q(−q)−q

(a− 1)(1− Caq)−q(1− q)1−q ,

where a is the larger of the two roots of equation (4).

Consider now q ∈ (0, 1). In order to survey α-extensions of Ωq
C , consider

the affine transformation T : (u, v) 7→ (v/C, u). Then T (Ωq
C) = Ωq′

Cq′ , where

q′ = 1/q. The lens Ω̃ is an α-extension of Ωq
C if and only if T (Ω̃) is an

α-extension of Ωq′

Cq′ ; but q′ > 1, so one can use Proposition 11 to verify this
property.

For q ∈ (−1, 0) one can use the symmetry T : (u, v) 7→ (v, u) to reduce

the question about an α-extension of Ωq
C to the question about Ωq′

C−q′ with

q′ = 1/q and use Proposition 12.
We have finished the description of α-extensions of the lenses Ωq

C and
we are ready to connect them with the Ap1,p2 classes, where p1 > p2. Recall
that a positive function ϕ is in Ap1,p2 on an interval J with constant Q if
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〈ϕp1〉1/p1I 〈ϕp2〉−1/p2
I ≤ Q for any subinterval I ⊂ J . Note that for p2 > 0 this

property is equivalent to the function ((Q−1ϕ)p1 , ϕp2) being in AΩq
C

, where

C = Qp2 , q = p2/p1, and for p2 < 0 it is equivalent to the function (ϕp1 , ϕp2)
being in AΩq

C
, where C = Q−p2 , q = p2/p1. Thus, the question about

the monotonic rearrangement operator for dyadic-type Ap1,p2 classes can be
investigated via α-extensions of the corresponding lenses Ωq

C . Unfortunately,
for general p1 and p2 it does not seem possible to give a short answer for this
question, but for the special case p1 = 1 and p2 = −1 (which corresponds to
the A2 class) we can follow the above procedure and obtain a short answer
similar to Corollary 1 (note that it proves Corollary 2).

Corollary 13. For any α ∈ (0, 1) and any C ≥ 1 the lens Ω̃ is an
α-extension of Ω−1

C if and only if Ω̃ ⊃ Ω−1
C′ , where

C ′ =
C(α+ 1)2 − (α− 1)2

4α
.
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