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Spatiality of derivations of Fréchet GB*-algebras
by

MARTIN WEIGT (Port Elizabeth) and IOANNIS ZARAKAS (Athens)

Abstract. We show that every continuous derivation of a countably dominated Fré-
chet GB™-algebra A is spatial whenever A is additionally an AO*-algebra.

1. Introduction. Bounded and unbounded derivations of C*-algebras
are well understood. For example, all derivations § : A — A of a C*-algebra
A[|l - ||]] are continuous [22]. By a derivation of an algebra A, we mean a
linear map 6 : D(§) — A satisfying 6(xy) = zd(y)+d(z)y for all z,y € D(9),
where D(§) denotes the domain of A. We recall that unbounded derivations
of C*-algebras, in general, play an important role in mathematical physics
in that they are, in some cases, generators of one-parameter automorphism
groups of C*-algebras, which model the dynamics of the underlying quantum
system of observables [22]. Since the observables are unbounded operators in
a Hilbert space, one is therefore motivated to study derivations of unbounded
operator algebras.

The first paper on derivations of unbounded operator algebras is [§].
A few more results appeared later in 1992, when R. Becker [7] proved,
amongst other things, that every derivation of a pro-C*-algebra (an inverse
limit of C*-algebras) is continuous. There are also some results on deriva-
tions of measurable operators affiliated with a von Neumann algebra, as can
be found in [I] and [2].

An important class of locally convex x-algebras is that of generalized
B*-algebras, or GB*-algebras for short, introduced by G. R. Allan [4].
As explained in Section 2, these algebras constitute a class of topological
x-algebras A[7] which contain a C*-algebra A[By] as a dense *-subalgebra.
Every GB*-algebra has a faithful representation as a x-algebra of unbounded
operators on a Hilbert space [10], and therefore GB*-algebras can be re-
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garded as *-algebras consisting of unbounded operators. All of the above
provides sufficient motivation for a general study of derivations of GB*-
algebras.

Recall that every derivation § : A — A of a C*-algebra of bounded oper-
ators A on some Hilbert space H is spatial in the enveloping von Neumann
algebra of A, which is identified with the bidual A** of A. In this paper, we
extend this result to countably dominated Fréchet GB*-algebras which are
also AO*-algebras (see Proposition . As is the case for C*-algebras, we
first show that the strong bidual A**[ts] of a Fréchet GB*-algebra A[r] is
also a Fréchet GB*-algebra over the W*-algebra A[By]**. Most of Section 3
is devoted to proving this result. In Lemma |3.2] we show that every contin-
uous derivation 0 : A — A of a Fréchet GB*-algebra A[r] can be extended
to a derivation §** : A™[ts] — A**[ts] of A**[ts]. In [27], we proved that
every derivation § : A — A of a GB*-algebra A[r], for which A[By] is a
Wr*-algebra, is inner. Therefore §** is inner, implying that every continuous
derivation of a certain Fréchet GB*-algebra is spatial in its strong bidual.

Section 2 contains background on GB*-algebras, necessary to understand
the main results of this paper. In Section 4, we give a nontrivial example of
a countably dominated Fréchet GB*-algebra which is also an AO*-algebra.

2. Preliminaries. All vector spaces in this paper are over the field C
of complex numbers and all topological spaces are assumed to be Hausdorff.
Moreover, all algebras are assumed to have an identity element denoted by 1.

A topological algebra is an algebra which is also a topological vector space
such that multiplication is separately continuous [12]. A topological *-algebra
is a topological algebra endowed with a continuous involution. A topological
x-algebra which is also a locally convex space is called a locally convex -
algebra. The symbol A[r] will stand for a topological (x-)algebra A endowed
with a given topology .

DEFINITION 2.1 ([4]). Let A[r] be a topological x-algebra and B* a col-
lection of subsets B of A with the following properties:

(i) B is absolutely convex, closed and bounded;
(ii) 1 € B, B> C B and B* = B.

For every B € B*, denote by A[B] the linear span of B, which is a normed
algebra under the gauge function | - ||p of B. If A[B] is complete for every
B € B*, then A|r] is called pseudo-complete.

An element x € A is called (Allan) bounded if for some nonzero complex
number A, the set {(Az)" :n =1,2,...} is bounded in A. We denote by Ay
the set of all bounded elements in A.

A topological *-algebra A[r] is called symmetric if, for every x € A, the
element (1 + 2*z)~! exists and belongs to Aj.
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In [10], the collection B* in the definition above is defined to be the
same as above, except that B € B* is no longer assumed to be absolutely
convex. The notion of a bounded element is a generalization of the concept of
bounded operator on a Banach space, and was introduced by G. R. Allan [3]
in order to develop a spectral theory for general locally convex *-algebras.

DEFINITION 2.2 ([4]). A symmetric pseudo-complete locally convex -
algebra A[7] such that the collection B* has a greatest member denoted
by By, is called a GB*-algebra over By.

Every sequentially complete locally convex algebra is pseudo-complete
[3, Proposition 2.6]. In [10], P. G. Dixon extended the notion of GB*-algebras
to include topological x-algebras which are not locally convex. In this defi-
nition, GB*-algebras are not assumed to be pseudo-complete, By is the only
element in B* which is necessarily absolutely convex (see the paragraph be-
fore Definition , and only A[Bp] is assumed to be complete with respect
to the gauge function || - || g,. For a survey on GB*-algebras, see [13].

Every C*-algebra is a GB*-algebra, but the Arens algebra L“[0,1] is a
GB*-algebra over L*°[0, 1] which is not a C*-algebra. For further examples,
see [4], [10].

PROPOSITION 2.3 ([4, Theorem 2.6]). If A[r] is a GB*-algebra, then the
Banach x-algebra A[By] is a C*-algebra which is sequentially dense in A,
and (14 x*x)~! € A[Bo)] for every x € A. Furthermore, By is the unit ball
of A[By].

If A is commutative, then Ay = A[By] [4, p. 94]. In general, A is not a
x-subalgebra of A, and A[By] contains all normal elements of Ay [4, p. 94].

It is well known that every commutative C*-algebra is topologically and
algebraically #-isomorphic to C'(X) for some compact Hausdorff space (in
fact, X is the maximal ideal space of A). More generally, any commutative
GB*-algebra is algebraically #-isomorphic to an algebra of functions on a
compact Hausdorff space X, which are allowed to take the value infinity
at most on a nowhere dense subset of X [4, Theorem 3.9]. This algebraic
x-isomorphism extends the Gelfand isomorphism of A[By] onto the corre-
sponding C'(X).

Recall that every C*-algebra is topologically-algebraically #-isomorphic
to a norm closed *-subalgebra of B(H) for some Hilbert space H. In general,
for every GB*-algebra A[7], there exists a faithful x-representation 7 : A —
m(A), which we shall call the universal representation of A, such that w(A)
is an algebra of closable and densely defined operators in a Hilbert space H
with By being identified with {z € 7(A4) N B(H) : ||z|| < 1} [10, Theorem
7.6]. Therefore, for every a € A, it follows that ||(1 + a*a)™!||g, < 1 (see
also [4, Theorem 2.6]) and a(1 + a*a)~! € A[By).
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The algebra m(A), where 7 is the universal representation of A, acts
on the invariant domain D which is the algebraic direct sum € fer A/Ny,
where F denotes the set of all positive linear functionalson A, Ny = {a € A :
f(a*a) = 0} and A/Ny is an inner product space under the inner product
(a + Nf,b+ Ny) = f(b*a), a,b € A. The domain D is an inner product
space under the inner product {((§f)ser, (nf)rer) = e p(f:nf), and the
Hilbert space H related to the universal representation 7 is taken to be the
norm completion of D. The representation 7 is defined by

m(a)(§f)rer) = (mp(a)s)fer,  a €A, (§f)per € D,
where
nr(a)(b+ Ng) =ab+ Ny, a,be A, feF.

The domain D is also equipped with the graph topology t(4), which is
defined by the seminorms £ € D — ||w(a)]|, a € A. The algebra m(A) can
be viewed as being a x-subalgebra of

LY(D)={T: D — D is a closable linear map : D C D(T*), T*(D) C D},

where D(T™) is the domain of the adjoint 7™ of the densely defined opera-
tor T. For a dense domain D in some Hilbert space H, the algebra £f(D) is
a x-algebra of closable operators with involution given by TT = T*|p, and
was introduced by G. Lassner [2I]. A x-subalgebra U of L£T(D) is said to
be closed if D = (. D(@), where @ denotes the smallest closed extension
of a.

A x-subalgebra of £T(D) containing the identity operator on D is called
an O*-algebra on D [21]. An O*-algebra B on D is endowed with the uniform
topology 7p [21], which is defined by the family of seminorms pa(a) =
sup{|[(a&,n)| : &,n € M}, for all subsets M of D which are bounded with
respect to the graph topology tp.

A locally convex *-algebra A[r] is said to be an AO*-algebra if it is
algebraically and topologically *-isomorphic to an O*-algebra B[rp| which
is complete.

For an O*-algebra A on D, an operator a € A is called positive, denoted
by a > 0, if (a&,£) > 0 for all £ € D. For such an operator a > 0, the
following vector subspace of A is defined:

_ : N ((2339)
Na ={b € A:pa(b) <oo}, where p,(b)= Sgg (0. 6)

(% = oo for A > 0). For every a € AT := {b € A : b > 0}, the space
N is a normed space under the norm p,, and the subspaces n,, b € AT,
form an inductive system of normed spaces. The locally convex induc-
tive limit topology of the system (74, pa)qeca+ of normed spaces is denoted

by p [18).
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An O*-algebra A on a dense domain D in some Hilbert space H for
which the topology p can be constructed by a sequence of subspaces 7,,,,
a, € AT, n € N, is called countably dominated [19] p. 756]. Countably domi-
nated algebras occur frequently in analysis, as pointed out in [19]. Particular
examples of countably dominated algebras are studied in [0, Section 2]. As
noted in [19, p. 756], an O*-algebra A on D is countably dominated if and
only if its positive cone admits a cofinal sequence for its natural order (i.e.
there exists a sequence (ay)nen in AT such that for every a € AT there is
some n € N with a < a,,), which is equivalent to the fact that the domain D
is a metrizable space with respect to the graph topology ¢4 (for a proof of
this fact, see Lemma. We recall that for a given vector topology 7 on A,
its positive cone AT is called normal if there exists a base of neighborhoods
of 0 for the topology 7 consisting of order convex sets. A subset V of A is
order convex if {z € A:x <z <y} CV whenever z,y € V and = < 3.

Recall that a derivation 6 : D(§) — A is a linear map satisfying d(zy) =
xd(y) + (z)y for all z,y € D(d). From here on we will only consider deriva-
tions whose domain is the entire algebra A, i.e. derivations § : D(§) — A
with D(§) = A. If 6 : A — A is a derivation of an algebra A which is a
subalgebra of an algebra B, then we say that ¢ is spatial if there exists an
element b € B such that

d(z) =bx —axb forall x € A.

If this element b can be found in A, then we say that ¢ is an inner derivation.

3. Main results. Let A[7] be a locally convex algebra and 6 : A — A a
7-T continuous derivation of A. We denote by A* the dual of A endowed with
the dual topology, i.e. the topology of uniform convergence on 7-bounded
subsets of A. Moreover A** stands for the bidual of A endowed with the
bidual topology, denoted by tg, i.e. the topology of uniform convergence on
bounded subsets of A* with respect to the dual topology.

Since § : A — A is 7-7 continuous, the map 6* : A* — A* §*(f) = fod,
is a well-defined linear map.

LEMMA 3.1. For a locally convex algebra A[r] and 6 : A — A a 7-1
continuous derivation, the map 6* : A* — A*, f — fod, is continuous with
respect to the dual topology on A*.

Proof. Let (fi)icr C A* be such that f; — 0 with respect to the dual
topology on A*. Then sup{|fi(a)| : a € B} — 0 for every 7-bounded subset
B of A. Hence sup{|0*(fi)(a)| : a € B} = sup{|fi(d(a))| : @ € B} — 0, since
d(B) is 7-bounded because B is T7-bounded and § is 7-7 continuous. =

We now consider the map 6** : A** — A** 7 (2**)(f) = «**(0*(f)),
where x** € A* and f € A*. By similar arguments to those in the proof of
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the previous lemma, we easily find that 6** is a well-defined ¢,-t5 continuous
linear map.

Suppose that A[7] is a Fréchet locally convex algebra. Then A[r] is bar-
relled and hence multiplication on A is hypocontinuous [25, p. 160]. More-
over, since A[r] is metrizable, A**[t] is a Fréchet space [23, Corollary 2,
p. 153].

As in [I6, Lemma 3.4], the following multiplication is defined on A**,
which we will denote by 0O: for x**, y** € A**,

y** - f e A*, where (y**-f)(a)=y"(f a), ac€A
fra€ A*, where (f-a)(b)= f(ab), be A.

The map O : (A™,t5) x (A™,ts) — (A*, ;) is separately continuous [16]
Theorem 3.8], hence A** endowed with the multiplication O is a Fréchet
topological algebra [16, Theorem 3.9].

LEMMA 3.2. Let A[r] be a Fréchet locally convex algebra and 6 : A — A
a 7-T continuous derivation. The map 6** : A** — A™ is a derivation when
A** is endowed with the multiplication O.

Proof. For x** y** € A™ f e A*, we have
(@™ oy™)(f) = (™ oy™) (67 (f)) = 2™ (y™ - 67 (f)).
Also,
So it suffices to show that
Sy )+ (YT) - f =y 8 (S)

On the one hand, for a € A, we have

0" (y™ - f) + 07 (y™) - f)la) = ( f((a))+5**(y**)(f-a)

).
Moreove, (7 -5(a) + 55 - a))() = $(5(a0) + (F - A)60)) — F(5(a8) for
all b e A.
On the other hand, (y** - 6*(f))(a) = y**(6*(f) - a), where, for b € A,

(67(f) - a)(b) = 6*(f)(ab) = f(6(ab)),
hence we have the result. m

Note that 6** is an extension of d, since for a € A and f € A*, we have
6 (a)(f) = a(6*(f)) = 6"(f)(a)
= f(6(a)) = d(a)(f), so o4 =34,

where 7 : A — A™ denotes the canonical embedding of A into A**.
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Let now A[r]| be a GB*-algebra. We consider A as being faithfully repre-
sented, via the universal representation 7 (see Section 2), as a *-subalgebra
of LI(D) for a domain D dense in some Hilbert space H. Throughout what
follows, we refer to w as the universal representation of a GB*-algebra. The
weak topology, w, on mw(A) is the topology induced by the family of the
seminorms

Pen(r(a)) = [(m(a)é,n)|, a€A &neD

[I7, p. 101]. The o-weak topology, cw, on w(A) is the topology induced by
the seminorms

p(fn)n»(nn n ‘Z gnann

where (&, )nen and (1, )nen are sequences in D such that >°°° | [|[7(a)é,||? < oo
for every a € A, and similarly for (n,), [17, p. 101].

Since A is a GB*-algebra, 7(A) is a closed symmetric x-algebra [0,
Theorem 7.11]. Therefore, from [I7, Theorem 3], we see that m(A)* =
[(m(A))p]* = [(7(A))p]", where [ |“ (resp. [ ]7*) stands for the weak (resp.
the o-weak) closure of 7(A), in £T(D), and 7(A), is the bounded part of
m(A), i.e. m(A)p = {x € 7(A) : T € B(H)}. Furthermore,

m(A)¢ = {S e LI(D) : Sn(a) = n(a)S for all a € A},
m(A)¢={S e LI(D): ST =TS for all T € n(A)°}
are the commutant and bicommutant of m(A) respectively [17, p. 98].

LEMMA 3.3. Let A[r] be a GB*-algebra and m the universal representa-
tion of A. Then:

(1) m(A)p = w(A[Bo])-
(2) [*(A[Bo])]* = [m(A)]* = [w(A)]7.

Proof. (1) By is the unit ball of A[By] (see Proposition[2.3) and m(By) =
{zr € m(A) N B(H) : ||z|| < 1} [10, Theorem 7.6]. Therefore m(By) =
(m(A)p)1, where ()1 stands for the unit ball of the space in brackets. Since
7 is faithful, we get the result.

(2) On the one hand, 7(A[By]) = w(A), C w(A), which implies that
[T(A[Bo))]* C [7(A)]". On the other hand, w(A) C w(A)* = [r(A[Bo])]",
which implies that [7(A)]* C [7(A[Bo])]*. Similarly, we show that [7(A)]7"
— [m(A)]® = 7(A)< = [r(A)]".

REMARK 3.4. From [I7, Proposition 1], m(A) is a symmetric closed
*-algebra on D whose bounded part is the von Neumann algebra

7(A[By])" = {S € B(H): SX = XS for all X € m(A[Bo))'}.
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Since m(A[By]) is a C*-algebra, (w(A[By]))” is its enveloping von Neumann
algebra of 7(A[By)), i.e.

(m(A[Bol))" = [m(A[Bo])]"" = [x(A[Bo])]*",

where [ ]“°" (resp. []*%) denotes the closure of the set in brackets with
respect to the weak (resp. strong) operator topology on B(H). Therefore,
as we have seen above,

[m(A[Bo])]"" = (m(A[Bo]))" C m(A)* = [w(A[Bo])]" = [m(A)]".

Let us now assume that A is a GB*-algebra whose image 7(A) through its
universal representation 7 is a countably dominated algebra. Then there ex-
ists a cofinal sequence, say (m(an))nen, in m(A)T such that w(A) =
Unen r(an)- Note that m(a,) € m(A)" implies that a, € A for all n € N.
Indeed, first, a, is self-adjoint for all n € N, as can be easily seen from the
faithfulness of . Furthermore, since (m(ay)§, &) > 0 for all £ € D and from
the way 7 is constructed, we see that f(a,) > 0 for every positive linear
functional f on A. Therefore a, € AT from [10, Theorem 6.7]. Now since
m(an) < m(an + 1), n € N, we can assume without loss of generality that
7(a,) > 1 for all n € N. Then, from [5, Lemma 4.1], we have 7(a,)? > 7(ay),
n €N, 50 m(A) = U, en M(r(1+42))- Since for all n € N, (1 + a?)~! exists and
belongs to A[By], we find that 7((1 + a2)™!) = (7(1 + a2))~! exists and
belongs to m(A[By]). Therefore m(1 + a2)D = D. Thus the positive cone
7(A)T is normal with respect to the p-topology [5, Theorem 1]. This yields
the following result.

COROLLARY 3.5. Let A[r] be a GB*-algebra such that w(A) is countably
dominated, where 7 is the universal representation of A. Then every p-
continuous linear functional on w(A) is cw-continuous.

Proof. Let f be a p-continuous linear functional on m(A). Since 7(A)™ is
normal with respect to the p-topology, there exist positive and p-continuous
linear functionals f; and fo on w(A) such that f = f1 — f2 [23, Chapter 5,
§3.3, Corollary 1]. From the way the representation 7 is constructed (see
Section 2), there exist £1,& € D such that f;(7(a)) = (w(a)&;, &), a € A, i =
1,2. Therefore f; and f, are weakly continuous, and hence cw-continuous,
and so f is cw-continuous. =

The following simple lemma can be found in [I9] p. 756] (without proof).

LEMMA 3.6. Let A C L1(D) be a GB*-algebra, for a domain D dense in
a Hilbert space H. The positive cone AT admits a countable cofinal subset,
hence A is countably dominated, if and only if D is a metrizable space under
the graph topology ta, defined by the seminorms & € D — |[a&||, a € A.

Proof. For the reverse implication, assume that (D,t4) is a metrizable
space. Then it has a countable basis of 0-neighborhoods, say {V,,}nen. We
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can suppose that there exists a,, € A such that V,, = {¢ € D : ||a,&|| < 1},
n € N. Observe that

langl® = (a5an&, &) < [I(1+ apan) /).
Therefore if
Qn={€ € D:||(1+anan)'¢) <1},

then (2, C V,,, hence {{2,},en is a basis of 0-neighborhoods of D for the
topology ta, and from functional calculus for GB*-algebras we know that
(1+a%a,)'/? € At [10, Theorem 4.12 and Proposition 5.1]. For brevity let
us denote (1 + afa,)'/? by b, for all n € N. Note that for every & € D,
€ # 0, we have [|b,§|| # 0 for all n € N.

Now let a € AT. Then for V = {£ € D : ||a|| < 1}, there exists n € N
such that 2, C V. So for & € D, we get [|a(&/]|bn(£)]])]] < 1 and thus
la&|| < ||bn&||- Hence for every £ € D, from the geometric mean inequality
we have

at, ag)'2(&,€)'/?
(% + 1)6,6) < 3 (3 + 1)

Hence we deduce that a < %(b,% +1), which implies that A" has a countable
cofinal subset, namely the set {$(b2 +1) :n € N} = {3a%a, +1:n € N},

For the forward implication, suppose that AT has a cofinal sequence, say
{an : n € N}. Let V be a 0-neighborhood in D, say

V=Vea={{€D:|ag]l < e},

where € > 0 and a € A. Then there exists n € N such that a*a < a,, hence
|a&||? = (a*a&, &) < (an€, &) < ||ané]]|€]. Now we can assume that 1/n < €,
where € is as above, for otherwise there exists m > n such that 1/m < € and
an < am, if we suppose without loss of generality that (ay), is increasing
since it is cofinal. So, if

Vi ={&e D&l < 1/n, [lan€ll < 1/n},

then [[a&]|? < (1/n)]|€]| < €||é|| < € for all £ € V,,. Thus ||| < e, so
Vi C Veq. Hence {V,,}nen is a countable basis of 0-neighborhoods for D
with respect to ty4, i.e. (D,t4) is a metrizable space. m

(ag, &) <

<

—~

N =

Now and in what follows, we shall make the assumption that A is a GB*-
algebra such that w(A) is countably dominated. For brevity we will refer to
such a GB*-algebra as a countably dominated GB*-algebra.

We now consider the map j : D x D — w(A)*, (§,n) — wey, where
wep(m(a)) = (m(a)€,n) for all a € A, and 7(A)* denotes the set of all
p-continuous linear functionals on 7(A). Since we , is weakly continuous on
m(A), it is p-continuous (see [19] p. 761]) and thus j is well-defined. Since A is
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assumed to be countably dominated and say (7 (ay,))nen is the cofinal sequence
in 7(A)", we can easily deduce that the graph topology on D is equivalently
described by the seminorms || - [|z(a,), 7 € N, where ||| (4,) = [[7(an )¢ for
every £ € D. Since for all n € N, 7(ay,) : D — D is t;(4)-| - || continuous, all
7(an) extend to the completion D of D with respect to the graph topology
tr(a)- Therefore the extensions of the seminorms || [/ (4,), 7 € N, to D define
the ¢4y topology on D. Hence, without loss of generality, we can suppose
that the metrizable space D is t,(4)-complete, i.e. a Fréchet space.

LEMMA 3.7. Let A[r] be a countably dominated GB*-algebra acting on a
domain D wvia its universal representation w. The map j : D x D — w(A)*,
(£,m) = we .y, is continuous when D is endowed with the graph topology r(A)
and w(A)* is endowed with the dual topology.

Proof. Let ng € D and (&,)neny C D be such that &, — 0 with respect
to tr(4). Let W be a p-bounded subset of w(A). From [6, Proposition 1.2],
there is an a,, € A*, m € N, such that [(T¢,&)| < (n(am)&, &) for all £ € D
and T' € W. Hence T' € 0y and so, as is implied in [I8, p. 471], there
exists M < oo such that

(T m)| < M{m(am)€, &) (m(am)n,n),  &neD, T eW.

Therefore

sup{|j(&n, m0)(T)| : T € W} = sup{[(T¢n, m0)| : T" € W'}
< M<7T(am)€n7 §n> (W(am)ﬁm 770>
< M|m(am)&nll €nll{m(am)no, no) — 0

as n — oo. Similarly it can be shown that j(no,&,) — 0, with respect to the
dual topology in m(A)*. Hence j is separately continuous, therefore jointly
continuous since D is assumed to be a Fréchet space. m

am)?

REMARK 3.8. (1) From the previous lemma, j extends to a continuous
linear map from D ® D into 7(A)*, for which we retain the same symbol j.
The space D & D is the completion of the projective tensor product D @ D

when D is equipped with the graph topology t,(). Every aw—continuﬂous
linear functional f on w(A) is of the form f(T) = > 72 | A\(Tén,nmn) for a
unique element u = > o0, A\,&, @ mp, € D @ D, where (€,)nen and (1n)nen
are sequences in D converging to zero with respect to t(4), and (A )neny C C
is such that 0% [An| < 0o [, p. 1017]. Then, from Corollary 3.5 the map
j is onto, hence 7(A)* is vectorially isomorphic to D ® D /ker j, via the map
induced from j, for which we keep the same symbol.

(2) Since m(A) is countably dominated, its dual w(A)* is a Fréchet space
(see [19] p. 756]). Therefore j is an injective continuous map from the Fréchet
space D @ D /ker j onto the Fréchet space w(A)*. Then from the open map-
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ping theorem for Fréchet spaces we see that j is a topological isomorphism.
Therefore 7(A)** is topologically and vectorially isomorphic, via the trans-
pose map j* of j, to the set {f € (D & D)* : flxer; = 0}, which, up to
topological vector space isomorphism, is equal to m(A)°°, the bipolar of
7(A) with respect to the duality (D ® D, B(D, D)) (for this duality see
[19, Corollary 1]). The symbol B(D, D) stands for the set of all continuous
sesquilinear forms on D x D, and 7(A) is viewed as a subset of B(D, D) via
the relation 7(a)(§,n) = (7(a)é,n), a € A, £,n € D. The bipolar of 7(A)
equals [r(A)]7" = [7(A)]" by the bipolar theorem.

In the proposition that follows, j* denotes the transpose of j, and
7, m** denote the transpose and the bi-transpose maps of 7 respectively.
With regard to the above mentioned topological vector space isomorphism of
(D& D/ ker j)* with [r(A)]?, we are going to view an element (j*om**)(z**),
** € A™, interchangeably as an element of these two spaces, via the fol-
lowing equality, which holds up to topological vector space isomorphism:

PROPOSITION 3.9. Let A[r] be a countably dominated Fréchet GB*-al-
gebra. The map j* o w** : A* — [w(A)]" is a o(A*, A*)-weak continuous
algebraic morphism.

Proof. Consider a net (z}*);cr in A** such that z}* — 0 with respect to
o(A**, A*). Then, for every £ € D, we have

(G o m™ ) (i7)E, &) = J" (7™ (277))(§ ® & + ker j)
=7 (277) (€ ® € + ker j)) = 7 (277) (we ¢)
=i (7" (wee)) = 0,
since m*(wg ¢) € A*. Therefore (j* o 7*)(x;*) — 0 weakly. Hence j* o 7** is
o(A**, A*)-weak continuous.

Also, j* is an algebraic morphism when restricted to w(A): indeed, if
c € A, then 7(c) induces a continuous linear map on D ® D /ker j given by

7(0) (D & @ m +kerj) = S (@& mds (€, )iy € D,

k=1 k=1
Then

J*((e)) (Zn: & @ i+ Fer j) = (c) (J(Zn: & e+ her) )
k=1 k=1
= 7(e) (D wem ) = 3o (m(e)ek )
k=1

k=1

= n(c) (znj & @ i+ Fer ).

k=1
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Therefore j*|(4) can be identified with the representation m, hence j*or**| 4
is an algebraic morphism. For a € A, the map A* — A*, x** — a0 x™,
is o (A, A*)-0(A**, A*) continuous [16, Lemma 3.6]. Therefore, if a € A,
b** € A™ and (b;)ier C A is a net such that b; — 0™ with respect to
o(A*, A*), then

(" o m*)(@ob™) = (" o) (/ggam)abi)

i (" o 1) (ab) = (" (@) " 0 7 fim,

= (" o) (a)(j" o) (0™).
Also, for b** € A*, the map A™ — A™ o™ — o™ 0b™, is o(A™, A¥)-
(A, A*) continuous [16, Lemma 3.4]. So, if a**,b** € A** and (a;)ic;r C A
with a; — a** with respect to o(A**, A*), we get

= (tm(j" o 7 (@) ) (" 0 7 (6")

= (7 o m ™)@ )" o) ().
So, 7% o w** is an algebraic morphism. =

LEMMA 3.10. Let A[r] be a countably dominated Fréchet GB*-algebra.
There ewists a t4-ts continuous vector space involution, say b, on A**, such
that

o) (@ ) = (G or (@), @ e A,
where 1 stands for the involution of LT(D).
Proof. For x** € A** let
(@) (f) = 2™ (1), f € A", where f¥(a) := f(a*), a € A.

Observe that f! € A*, due to the continuity of the involution * on A. The
map b is well-defined, i.e. (2**) € A™. Indeed, if (fi)ier C A* is such
that f; — 0 with respect to the dual topology on A* then ff — 0 with
respect to the dual topology: for every T-bounded subset V' of A, we have
sup{|ff(a)| ra € V}y=sup{|fi(a*)|:a* € C} = 0,since C ={a*:a€V}is
a bounded subset of A due to the continuity of the involution on A. Therefore
x**(ff) — 0, hence (z**)” € A**. Similarly, it can easily be shown that b is
a ts-ts continuous map which defines a vector space involution on A**.

Clearly, for every a € A, @ is identified with a*, the adjoint element of
a in A, since

@(f) =a(ff) = fi(a) = f(a*) = a*(f), feA".
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Let o** € A* and (x;);er C A be such that z; — x™ with respect to
o(A**, A*). Then, for every f € A*, we have (7;)°(f) = Zi(f}) — z*(ff) =
(z**)°(f), which implies that Z;” — (2**)” with respect to o(A**, A*). There-
fore

= (1" () = (7 o7 ().

For a countably dominated Fréchet GB*-algebra, let us now consider a
second product on A** denoted by <) and defined as follows. For 2**, y** € A**,

@™ Oy ™)) =y (f-2™), [feA,
where f-2** € A* such that (f-2*)(a) =2**(a- f),a € A, and a- f € A*
with (a- f)(b) = f(ba), b € A. Since multiplication on A is hypocontinuous,
the well-definedness of all of these actions can be seen by using exactly the
same arguments as those applied in [16] p. 75].

As noted in the proof of Proposition for every a € A, b** € A* the
maps x** — aoz™ and ** — ™ 0b** are o (A**, A*)-0(A**, A*) continuous.
Therefore, if 2**,y** € A** and (x;)ier, (yj)jes C A are such that z; — 2™**
and y; — y** with respect to the o(A**, A*)-topology, then we get

z 0y* = lim lim z,y;
i

in the o(A**, A*)-topology (for a statement of this fact in the normed case,
see [0 p. 824]). Similarly, since the maps z** — ** {a and ™ — b**  o**
are o(A**, A*)-0(A**, A*) continuous,
™ $y™ = lim lim z;y;
j 7
with respect to the o(A**, A*)-topology.
PROPOSITION 3.11. Let A[r] be a countably dominated Fréchet GB*-

algebra which is also an AO*-algebra. Then the two products, O,<, on A**
coincide.

Proof. Let **,y** € A** and (2;)ier, (y;)jes C A be such that x; — z**
and y; — y** with respect to the o(A**, A*)-topology. Also let f be a positive

linear functional on A. From the construction of the universal representation

7 of A, there exists £ € D such that f(a) = (7(a){s,&f), a € A. Then, by
Proposition [(3.9, Lemma [3.10] and the comments which follow it, we have

(@™ 0y™)(f) = lim lim (7 (239;)S7, &5)
= lim lim (" om™)(wi)Es, (57 o m™) (@)Es)

= (7" o™ (y™)ey, (5% o ™) (@™))Tey)
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= lim lim(m(2;y;)&s, &) = lim lim 7,55 (f)
J 1 7 7

= (@ 0 y™)(f).
Based on the previous equality and on the fact that on A, as an AO*-algebra,
every continuous linear functional is a linear combination of continuous pos-
itive linear functionals [24] Corollary 4.4], we get the result. m

Based on the previous proposition, we derive the following result.

PROPOSITION 3.12. Let A[r] be a countably dominated Fréchet GB*-
algebra which is also an AO*-algebra. Then A™*[ts], endowed with the invo-
lution b, is a Fréchet locally convex x-algebra.

Proof. As noted in the remarks before Lemma 3.2 A**[t,], endowed with
the multiplication 0O, is a Fréchet topological algebra. Also the map b is a
ts-continuous vector involution on A** (see Lemma [3.10)). So it suffices to
show that b is an algebraic involution. Let a € A, y** € A**, f € A*. We have

@oy™)(f) = @oy=)(f%) = (y** - f)(a) = y™*(f* - a)
=y ((a* - ))F) = (¥™)(a" - f) = (™) D a*)(f)
= ((y™) 0@)(f).
Let z**, y** € A** and (x;);e; C A be such that z; — 2** with respect to the
o(A**, A*)-topology. Then, from the ts-continuity of b and from Proposition

B.1T] we get

0 **b: li =0 **b: li **bD/ﬁb
(@™ oy™) U(Agr}m)(xz y™) U(Aigr}A*)(y ) 0z
_ li sx\ b ~b — (qFF\b *3%\ b
U(Aiﬁrfm)(y )0z =y") &™)

_ (y**)b O (:C**)b -
PROPOSITION 3.13. Let Alr] be a countably dominated Fréchet GB*-al-
gebra. The universal map 7 : A — w(A) C LI(D) is 7-p continuous.

Proof. Following the argument in [19, p. 771, last paragraph of §2], we
are going to prove that every equicontinuous subset of w(A)* corresponds to
a tr(4)-bounded subset of the domain D. Let {2 be an equicontinuous subset
of w(A)*. Since m(A)" is normal, we can focus on §2 consisting of positive
linear functionals (see [23, Corollary 1, pp. 219-220]). Then for every f € (2,
there exists &/ € D such that f(7w(a)) = (w(a)¢7,&7) for all @ € A. Hence
for every a € A, we get

Sup [|€7]|r(a) = sup [|w(a)&|| = sup(m(a*a)éf, &)1/
fen fen fen

— sup f(m(a"a))/? < o0,
fen
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since {2 is equicontinuous. Therefore the set {¢/ : f € 2}, to which {2 corre-
sponds, is a bounded subset of D with respect to the graph topology t,(4).

Let now (ap)neny C A be such that a, —; 0. Then, from [2I, The-
orem 4.2], we see that m(a,) — 0 with respect to the uniform topology
mp on LI(D), i.e. supg peaq |(m(an)€,m)| =5 0, where M runs through the
bounded subsets of D with respect to the graph topology tr(4). So if {2 is an
equicontinuous subset of 7(A)* consisting of positive linear functionals, and
Bo ={&: f € 2}, the t;(4)-bounded subset of D to which {2 cor