Almost maximal topologies on groups

by

Yevhen Zelenyuk (Johannesburg)

Abstract. Let G be a countably infinite group. We show that for every finite absolute coretract S, there is a regular left invariant topology on G whose ultrafilter semigroup is isomorphic to S. As consequences we prove that (1) there is a right maximal idempotent in $\beta G \setminus G$ which is not strongly right maximal, and (2) for each combination of the properties of being extremally disconnected, irresolvable, and nodec, except for the combination (-, -, +), there is a corresponding regular almost maximal left invariant topology on G.

1. Introduction. A topological space is called maximal if its topology is maximal among all dense in itself topologies. A dense in itself Hausdorff space X is maximal if and only if for every $x \in X$ there is only one nonprincipal ultrafilter on X converging to x. We say that a space X is almost maximal if it is dense in itself and for every $x \in X$ there are only finitely many ultrafilters on X converging to x. In [8], assuming Martin's Axiom (MA), an exhaustive construction of countable almost maximal topological groups and countable regular almost maximal left topological groups was given. Recall that a group endowed with a topology is called *left topological* and the topology itself *left invariant* if left translations are continuous. All topologies in the present paper are assumed to satisfy the T_1 separation axiom. The existence of a countable almost maximal topological group cannot be established in ZFC, the system of usual axioms of set theory [6]. In this paper we give an exhaustive construction in ZFC of countable regular almost maximal left topological groups.

Throughout the paper, G will be an arbitrary countably infinite discrete group.

Received 20 July 2015; revised 9 December 2015.

Published online 2 March 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 22A15, 54G05; Secondary 54D80, 54H11.

Key words and phrases: Stone–Čech compactification, ultrafilter, almost maximal left invariant topology, finite absolute coretract, right maximal idempotent.

The operation of G extends to the Stone–Čech compactification βG of G so that, for each $a \in G$, the left translation $\beta G \ni x \mapsto ax \in \beta G$ is continuous, and for each $q \in \beta G$, the right translation $\beta G \ni x \mapsto xq \in \beta G$ is continuous.

We take the points of βG to be the ultrafilters on G, the principal ultrafilters being identified with the points of G, and $G^* = \beta G \setminus G$. The topology of βG is generated by taking as a base the subsets $\overline{A} = \{p \in \beta G : A \in p\}$, where $A \subseteq G$. For $p, q \in \beta G$, the ultrafilter pq has a base consisting of subsets $\bigcup_{x \in A} x B_x$, where $A \in p$ and $B_x \in q$. See [1] for more information about βG .

For every left invariant topology \mathcal{T} on G,

 $\operatorname{Ult}(\mathcal{T}) = \{ p \in G^* : p \text{ converges to } 1 \text{ in } \mathcal{T} \}$

is a closed subsemigroup of G^* called the *ultrafilter semigroup* of \mathcal{T} [2, 3]. Not each closed subsemigroup of G^* is the ultrafilter semigroup of a left invariant topology. However, every finite subsemigroup is [8, Proposition 2.4]. Notice that a left invariant topology is *maximal* [almost maximal] if and only if its ultrafilter semigroup is a singleton [finite].

Of special interest are regular almost maximal left invariant topologies. If T is a finite subsemigroup of G^* and \mathcal{T} is the left invariant topology on G with $\text{Ult}(\mathcal{T}) = T$, then \mathcal{T} is regular if and only if

- (i) for every $p \in G^* \setminus T$, $(pT) \cap T = \emptyset$, and
- (ii) for every $a \in G \setminus \{1\}, (aT) \cap T = \emptyset (= \mathcal{T} \text{ is Hausdorff})$

[8, Proposition 2.12]. A subsemigroup T of G^* satisfying conditions (i) and (ii) is called *left saturated*. Notice that (ii) is always satisfied if T is a singleton [1, Theorem 3.34] or T is a finite *band* (= semigroup of idempotents) and G can be embedded algebraically in a compact group [9, Lemma 7.10]. Recall that an element p of a semigroup is an *idempotent* if pp = p.

The simplest examples of bands are left zero semigroups (xy = x), right zero semigroups (xy = y), chains of idempotents $(x \le y \text{ if and only if} xy = yx = x)$, and rectangular bands (= direct products of a left zero semigroup and a right zero semigroup). Each band is a disjoint union of its maximal rectangular subsemigroups and these are partially ordered by $X \le Y$ if and only if $XY \subseteq X$, equivalently $YX \subseteq X$.

An object P in some category is a *projective* if for every morphism $f: P \to Q$ and for every surjective morphism $g: R \to Q$, there exists a morphism $h: P \to R$ such that $g \circ h = f$. We say that an object P is an *absolute coretract* if for every surjective morphism $g: R \to P$ there exists a morphism $h: P \to R$ such that $g \circ h = id_P$. Obviously, each projective is an absolute coretract. In many categories these notions coincide but not in all. Let \mathfrak{F} and \mathfrak{C} denote the categories of finite semigroups and compact Hausdorff right topological semigroups, respectively. Then the finite abso-

lute coretracts and the finite projectives in \mathfrak{C} and in \mathfrak{F} are the same objects, and these are certain chains of rectangular bands; in particular, the finite left (right) zero semigroups and chains of idempotents are such [7].

For every regular almost maximal left invariant topology \mathcal{T} on G, $T = \text{Ult}(\mathcal{T})$ is a projective in \mathfrak{F} [8, Theorem 4.1]. Assuming MA, for every finite absolute coretract S in \mathfrak{C} , there is a regular left invariant topology \mathcal{T} on G with $\text{Ult}(\mathcal{T})$ isomorphic to S, and in the case $G = \bigoplus_{\omega} \mathbb{Z}_2$, \mathcal{T} can be chosen to be a group topology [8, Theorem 5.2 and Lemma 6.10]. Every countable almost maximal topological group contains an open Boolean subgroup, and its existence cannot be established in ZFC [6] (see also [9, Theorem 10.15 and Corollary 10.17]). However, there is in ZFC a regular maximal left invariant topology on G [4]. More generally, for every $n \in \mathbb{N}$, there is in ZFC a regular left invariant topology \mathcal{T} on G with $\text{Ult}(\mathcal{T})$ being a chain of n idempotents [8, Theorem 6.1].

In this paper we prove (in ZFC) the following result.

THEOREM 1.1. For every finite absolute coretract S in \mathfrak{C} , there is a regular left invariant topology \mathcal{T} on G with $\operatorname{Ult}(\mathcal{T})$ isomorphic to S.

Theorem 1.1 can be rephrased as follows:

For every finite absolute coretract S in \mathfrak{C} , there is a left saturated subsemigroup T of G^* isomorphic to S.

Theorem 1.1 is the complete solution to [8, Question 6] (see also [9, Problem 17]). In fact, this question goes back to the late 1990's, when most of the relevant results had already been proved [5, 6, 4].

From Theorem 1.1 two corollaries follow. To state these, we present some terminology. An idempotent $p \in G^*$ is called

- right maximal if for every idempotent $q \in G^*$, qp = p implies pq = q,
- strongly right maximal if the equation xp = p has the unique solution x = p in G^* .

Taking the 2-element right zero semigroup as S, from Theorem 1.1 we deduce

COROLLARY 1.2. There is a right maximal idempotent in G^* which is not strongly right maximal.

Corollary 1.2 is the answer to a question in [1, p. 192]. A space is called

- extremally disconnected if the closure of an open set is open,
- *irresolvable* if it cannot be partitioned into two disjoint dense subsets,
- *nodec* if every nowhere dense subset is closed.

An almost maximal left invariant topology \mathcal{T} on G is

- extremally disconnected if and only if $T = \text{Ult}(\mathcal{T})$ has only one minimal right ideal,
- irresolvable if and only if the smallest ideal K(T) of T is a left zero semigroup,
- nodec if and only if K(T) = T

(see [9, Proposition 7.7]).

COROLLARY 1.3. For each combination of the properties of being extremally disconnected, irresolvable, and nodec, except for the combination (-, -, +), there is a corresponding regular almost maximal left invariant topology on G. There is no countable regular almost maximal left topological group corresponding to the combination (-, -, +).

Corollary 1.3 is a ZFC version of [9, Corollary 10.39]. The proof is the same. In particular, for the combination (-, +, +), apply Theorem 1.1 to the 2-element left zero semigroup.

In fact, we prove a theorem which is a little bit stronger than Theorem 1.1.

THEOREM 1.4. Let S be a finite absolute coretract in \mathfrak{C} and let X be a G_{δ} subset of G^* containing an idempotent. Then there is a regular left invariant topology \mathcal{T} on G such that $T = \text{Ult}(\mathcal{T})$ is isomorphic to S and $T \subseteq X$.

The proof of Theorem 1.4 is based on a special construction of regular left invariant topologies and on deep subsets of ω^* .

For every closed subset $Y \subseteq \omega^*$, the *character* of Y in ω^* , denoted $\chi(Y)$, is the minimum cardinality of a family \mathcal{F} of subsets of ω such that $\bigcap_{A\in\mathcal{F}}\overline{A}=Y$. A nonempty closed subset $Z\subseteq\omega^*$ is *deep* if for every closed subset $Y\subseteq\omega^*$ with $\chi(Y)<\mathfrak{c}, Y\cap Z$ is either empty or infinite.

THEOREM 1.5 ([11, Theorem 3.1]). There is a deep subset $Z \subseteq \omega^*$.

As in [11], we use Theorem 1.5 as a replacement of MA.

In Section 2 we discuss first countable regular left invariant topologies. In Section 3 we give that special construction; and in Section 4 we prove Theorem 1.4 itself.

2. First countable regular left invariant topologies

LEMMA 2.1. Let \mathcal{T}_0 be a Hausdorff [regular] left invariant topology on Gand let $(U_n)_{n < \omega}$ be any sequence of neighborhoods of 1 in \mathcal{T} . Then \mathcal{T}_0 can be weakened to a first countable Hausdorff [regular] left invariant topology \mathcal{T} on G in which each U_n remains a neighborhood of 1.

Proof. We consider the Hausdorff case; the regular one is [9, Lemma 9.28].

Without loss of generality one may suppose that $U_0 = G$. Enumerate $G \setminus \{1\}$ as $\{x_n : 1 \le n < \omega\}$. Construct inductively a sequence $(V_n)_{n < \omega}$ of open neighborhoods of 1 in \mathcal{T}_0 with $V_0 = G$ such that for every $n \ge 1$:

(i) $V_n \subseteq V_{n-1}$, (ii) $x_n V_n \subseteq V_k$, where $k = \max\{i \le n-1 : x_n \in V_i\}$, (iii) $(x_n V_n) \cap V_n = \emptyset$, and (iv) $V_n \subseteq U_n$.

It then follows from (i)–(iii) that there is a Hausdorff left invariant topology \mathcal{T} on G in which $\{V_n : n < \omega\}$ is a neighborhood base at 1 (see [9, Corollary 4.4]), and by (iv), each U_n remains a neighborhood of 1 in \mathcal{T} .

For every filter \mathcal{F} on G with $\bigcap \mathcal{F} = \emptyset$, there is a largest left invariant topology $\mathcal{T}[\mathcal{F}]$ on G in which \mathcal{F} converges to 1. The topology $\mathcal{T}[\mathcal{F}]$ has a neighborhood base at 1 consisting of subsets

$$[M] = \{x_0 x_1 \cdots x_n : n < \omega, x_0 = 1 \text{ and}$$
$$x_{i+1} \in M(x_0 \cdots x_i) \text{ for each } i < n\},$$

where $M: G \to \mathcal{F}$ [9, Theorem 4.8].

A filter \mathcal{F} on G is strongly discrete if $\bigcap \mathcal{F} = \emptyset$ and there is $M : G \to \mathcal{F}$ such that the subsets $xM(x) \subseteq G, x \in G$, are pairwise disjoint.

THEOREM 2.2 ([9, Theorem 4.18]). For every strongly discrete filter \mathcal{F} on G, the topology $\mathcal{T}[\mathcal{F}]$ is regular.

LEMMA 2.3. Let X be a G_{δ} subset of G^* containing an idempotent. Then there is a nondiscrete first countable regular left invariant topology \mathcal{T} on G with $\text{Ult}(\mathcal{T}) \subseteq X$.

Proof. Let $e \in X$ be an idempotent. There is a left invariant topology \mathcal{T}_0 on G with $\text{Ult}(\mathcal{T}_0) = \{e\}$. By Lemma 2.1, \mathcal{T}_0 can be weakened to a first countable Hausdorff left invariant topology \mathcal{T}_1 on G with $\text{Ult}(\mathcal{T}_1) \subseteq X$. Let $\{U_n : n < \omega\}$ be a decreasing neighborhood base at 1 in \mathcal{T}_1 and enumerate G without repetitions as $\{x_n : n < \omega\}$. Construct inductively a sequence $(a_n)_{n < \omega}$ in G such that

- (i) $a_n \in U_n \setminus (\{a_j : j < n\} \cup \{1\})$, and
- (ii) the subsets $x_i \{a_j : i \le j \le n\}, i \le n$, are pairwise disjoint.

Then $(a_n)_{n < \omega}$ is a one-to-one sequence in $G \setminus \{1\}$ converging to 1 in \mathcal{T}_1 and the subsets $x_n A_n$, $n < \omega$, are pairwise disjoint, where $A_n = \{a_j : n \leq j < \omega\}$. Consequently, the filter \mathcal{F} on G with a base of subsets A_n , $n < \omega$, is strongly discrete and converges to 1 in \mathcal{T}_1 . Let $\mathcal{T}_2 = \mathcal{T}[\mathcal{F}]$. By Theorem 2.2, \mathcal{T}_2 is regular, and by Lemma 2.1, \mathcal{T}_2 can be weakened to a first countable regular left invariant topology \mathcal{T} on G finer than \mathcal{T}_1 .

Given a left topological group L and a semigroup S, a mapping $h: L \to S$ is a local homomorphism if for every $x \in L$, there is a neighborhood U of 1 such that h(xy) = h(x)h(y) for all $y \in U \setminus \{1\}$. If $h : L \to S$ is a local homomorphism, S is finite, and $\overline{h} : \beta L_d \to S$ is the continuous extension of h, then $h|_{\mathrm{Ult}(L)}$: $\mathrm{Ult}(L) \to S$ is a homomorphism [9, Lemma 8.6]. Given left topological groups L and H, a mapping $h: L \to H$ is a local isomorphism if h is a homeomorphism with h(1) = 1 and a local homomorphism. If $h: L \to H$ is a local isomorphism and $\overline{h}: \beta L_d \to \beta H_d$ is the continuous extension of h, then $\overline{h}|_{\mathrm{Ult}(L)}$: $\mathrm{Ult}(L) \to \mathrm{Ult}(H)$ is an isomorphism [9, Lemma 8.4]. Homomorphisms and isomorphisms of ultrafilter semigroups induced by local homomorphisms and local isomorphisms are called *proper*. Endow the countably infinite Boolean group $\bigoplus_{\omega} \mathbb{Z}_2$ with the topology induced by the product topology on $\prod_{\omega} \mathbb{Z}_2$ and let \mathbb{H} denote its ultrafilter semigroup. For every countable nondiscrete regular left topological group L, there is a local isomorphism of L onto $\bigoplus_{\omega} \mathbb{Z}_2$, and consequently there is a proper isomorphism of Ult(L) onto \mathbb{H} [9, Corollary 8.11].

LEMMA 2.4. Let \mathcal{T} be a nondiscrete first countable regular left invariant topology on G and let $T = \text{Ult}(\mathcal{T})$. Then T admits a proper homomorphism onto any finite semigroup.

Proof. Let S be a finite semigroup. Pick a local isomorphism $h: (G, \mathcal{T}) \to \bigoplus_{\omega} \mathbb{Z}_2$. It is easy to construct a local homomorphism $g: \bigoplus_{\omega} \mathbb{Z}_2 \to S$ such that for every neighborhood U of 0, $g(U \setminus \{0\}) = S$ (see the proof of [9, Theorem 7.24]). Then $\underline{g \circ h}: (G, \mathcal{T}) \to S$ is a local homomorphism with the same property, and so $\overline{g \circ h}|_T$ is a proper homomorphism of T onto S.

REMARK 2.5. Lemma 2.4 remains true with "any finite semigroup" replaced by "any compact Hausdorff right topological semigroup R whose topological center contains a countable dense subset of R" (see the proof of [9, Theorem 7.24]).

REMARK 2.6. The existence of a nondiscrete first countable regular left invariant topology \mathcal{T} on G such that $\text{Ult}(\mathcal{T}) \subseteq X$ and (G, \mathcal{T}) is locally isomorphic to $\bigoplus_{\omega} \mathbb{Z}_2$ can be established directly (similarly to the proof of [9, Theorem 7.26]), not involving strongly discrete filters and the local isomorphism theorem, but this direct proof is a little bit longer.

3. Strongly discrete filters. By [10, Lemma 6], there is a surjective finite-to-one function $f: G \to \omega$ such that

- (1) f(1) = 0,
- (2) for every $x \in G$, $f(x) = f(x^{-1})$, and
- (3) for all $x, y \in G$, $f(xy) \le \max\{f(x), f(y)\}+1$, and if $|f(x)-f(y)| \ge 2$, then $f(xy) \ge \max\{f(x), f(y)\}-1$.

The function $f: G \to \omega$ extends continuously to $\beta G \to \beta \omega$. We use the same letter f to denote this extension. Notice that for any $p \in \beta G$ and $q \in G^*$, f(pq) = f(q) + i for some $i \in \{-1, 0, 1\}$.

THEOREM 3.1. Let \mathcal{T} be a Hausdorff left invariant topology on G and let $(\mathcal{F}_n)_{n<\omega}$ be a sequence of filters on G converging to 1 in \mathcal{T} . Suppose that

- (i) there is a neighborhood U of 1 in \mathcal{T} such that the subsets $f(U \setminus \{1\}) + i \subseteq \omega, i \in \{-1, 0, 1\}$, are pairwise disjoint,
- (ii) for every $n < \omega$, there is $A_n \in \mathcal{F}_n$ such that the subsets $f(A_n) \subseteq \omega$, $n < \omega$, are pairwise disjoint.

Let \mathcal{F} be the filter on G with a base of subsets $\bigcup_{n \leq i < \omega} B_i$, where $n < \omega$ and $B_i \in \mathcal{F}_i$. Then \mathcal{F} is strongly discrete.

Proof. For every $n < \omega$, choose a neighborhood U_n of 1 in \mathcal{T} such that (a) the subsets xU_n , where $x \in G$ with $f(x) \leq n$, are pairwise disjoint, and choose $C_n \in \mathcal{F}_n$ such that

- (b) $C_n \subseteq U_n$,
- (c) for every $x \in C_n$, $f(x) \ge n+2$, and
- (d) $C_n \subseteq U \cap A_n$.

We claim that the subsets

$$x \bigcup_{n \ge f(x)} C_n,$$

where $x \in G$, are pairwise disjoint.

Let $x, y \in G, x \neq y$. Since

$$x \bigcup_{n \geq f(x)} C_n = \bigcup_{n \geq f(x)} x C_n, \quad y \bigcup_{m \geq f(y)} C_m = \bigcup_{m \geq f(y)} y C_m,$$

it suffices to check that the subsets xC_n and yC_m are disjoint for any $n \ge f(x)$, $m \ge f(y)$. If n = m, they are disjoint by (a) and (b). Now let $n \ne m$. Then by (c),

$$f(xC_n) \subseteq \bigcup_{i=-1}^{1} (f(C_n) + i), \quad f(yC_m) \subseteq \bigcup_{j=-1}^{1} (f(C_m) + j).$$

so by (d),

$$f(xC_n) \subseteq \bigcup_{i=-1}^{1} (f(U \cap A_n) + i), \quad f(yC_m) \subseteq \bigcup_{j=-1}^{1} (f(U \cap A_m) + j).$$

But by (i) and (ii),

$$\bigcup_{i=-1}^{1} (f(U \cap A_n) + i) \text{ and } \bigcup_{j=-1}^{1} (f(U \cap A_m) + j)$$

Y. Zelenyuk

are disjoint. Consequently, $f(xC_n)$ and $f(yC_m)$ are disjoint, and so are xC_n and yC_m .

4. Proof of Theorem 1.4. Let $e \in X$ be an idempotent. Pick $A \in e$ such that the subsets $f(A) + i \subseteq \omega$, $i \in \{-1, 0, 1\}$, are pairwise disjoint. By Lemma 2.3, there is a nondiscrete first countable regular left invariant topology \mathcal{T}_0 on G such that

$$T_0 = \text{Ult}(\mathcal{T}_0) \subseteq X \cap \overline{A}.$$

Since $T_0 \subseteq \overline{A}$, we see that for any $p, q \in T_0$, f(pq) = f(q). By Lemma 2.4, there is a surjective proper homomorphism $\pi : T_0 \to S$. For each $s \in S$, let $X_s = \pi^{-1}(s)$. Notice that X_s is a G_δ subset of G^* . Pick an infinite $D_s \subseteq \omega$ with $D_s^* \subseteq f(X_s)$. By Theorem 1.5, there is a deep subset $Z_s \subseteq D_s^*$. Let

$$J = f^{-1} \Big(\bigcup_{s \in S} Z_s\Big) \cap T_0.$$

Then

- (i) J is a closed left ideal of T_0 ,
- (ii) for each $s \in S$, $J \cap X_s \neq \emptyset$,
- (iii) $f(J) \subseteq \omega^*$ is deep, and
- (iv) $J = f^{-1}(f(J)) \cap T_0.$

Next, enumerate the subsets of G as $\{C_{\alpha} : \alpha < \mathfrak{c}\}$ with $C_0 = G$, and inductively, for every $\alpha > 0$, construct a first countable regular left invariant topology \mathcal{T}_{α} on G such that

- (1) for each $s \in S$, either $T_{\alpha} \cap X_s \subseteq \overline{C_{\alpha}}$ or $T_{\alpha} \cap X_s \subseteq \overline{G \setminus C_{\alpha}}$, where $T_{\alpha} = \text{Ult}(\mathcal{T}_{\alpha})$, and
- (2) for each $s \in S$, $\bigcap_{\gamma < \alpha} T_{\gamma} \cap X_s \cap J \neq \emptyset$.

Fix $\alpha > 0$ and suppose that we have already constructed \mathcal{T}_{γ} for all $\gamma < \alpha$ as required. Let

$$P_{\alpha} = \bigcap_{\gamma < \alpha} T_{\gamma} \cap J.$$

By (i), P_{α} is a closed subsemigroup of T_0 , and by (ii) and (2), $\pi(P_{\alpha}) = S$. Since S is an absolute coretract, there is a homomorphism $\varepsilon_{\alpha} : S \to P_{\alpha}$ such that $\pi \circ \varepsilon_{\alpha} = \operatorname{id}_S$. Let \mathcal{T}'_{α} be the left invariant topology on G with $\operatorname{Ult}(\mathcal{T}'_{\alpha}) = \varepsilon_{\alpha}(S)$. For each $s \in S$, pick $D_{\alpha,s} \in \varepsilon_{\alpha}(s)$ such that either $D_{\alpha,s} \subseteq C_{\alpha}$ or $D_{\alpha,s} \subseteq G \setminus C_{\alpha}$, and let $D_{\alpha} = \bigcup_{s \in S} D_{\alpha,s}$. By Lemma 2.1, \mathcal{T}'_{α} can be weakened to a first countable Hausdorff left invariant topology \mathcal{T}''_{α} such that $\mathcal{T}''_{\alpha} = \operatorname{Ult}(\mathcal{T}''_{\alpha}) \subseteq \overline{D_{\alpha}}$. Let

$$Q_{\alpha} = \bigcap_{\gamma < \alpha} T_{\gamma} \cap T_{\alpha}''.$$

For each $s \in S$, $\varepsilon_{\alpha}(s) \in Q_{\alpha} \cap X_s \cap J$ and $\chi(Q_{\alpha} \cap X_s) \leq |\alpha| + \omega < \mathfrak{c}$, so by (iii), $f(Q_{\alpha} \cap X_s) \cap f(J)$ is infinite. For every $n < \omega$ and $s \in S$, choose

$$u_{\alpha,s}^n \in f(Q_\alpha \cap X_s) \cap f(J)$$

and $E_{\alpha,s}^n \in u_{\alpha,s}^n$ such that the subsets $E_{\alpha,s}^n \subseteq \omega$, $n < \omega$ and $s \in S$, are pairwise disjoint.

This can be done by induction on n as follows. For each $s \in S$, pick $u_{\alpha,s}^n \in (f(Q_{\alpha} \cap X_s) \cap f(J)) \setminus \overline{F_{\alpha}^{n-1}}$ and $E_{\alpha,s}^n \in u_{\alpha,s}^n$, where $F_{\alpha}^{n-1} = \bigcup_{j \leq n-1, s \in S} E_{\alpha,s}^j$, such that (a) the subsets $E_{\alpha,s}^n$, $s \in S$, are pairwise disjoint and disjoint from F_{α}^{n-1} , and (b) $(f(Q_{\alpha} \cap X_s) \cap f(J)) \setminus \overline{F_{\alpha}^n} \neq \emptyset$ for each $s \in S$.

For every $n < \omega$ and $s \in S$, pick $q_{\alpha,s}^n \in Q_\alpha \cap X_s$ such that $f(q_{\alpha,s}^n) = u_{\alpha,s}^n$. By (iv), $q_{\alpha,s}^n \in J$, so

$$q_{\alpha,s}^n \in Q_\alpha \cap X_s \cap J.$$

For every $n < \omega$, let $\mathcal{F}_{\alpha}^{n} = \bigcap_{s \in S} q_{\alpha,s}^{n}$ and $A_{\alpha}^{n} = \bigcup_{s \in S} f^{-1}(E_{\alpha,s}^{n})$. Then $A_{\alpha}^{n} \in \mathcal{F}_{\alpha}^{n}$ and the subsets $f(A_{\alpha}^{n}) \subseteq \omega$, $n < \omega$, are pairwise disjoint. Let \mathcal{F}_{α} be the filter on G with a base consisting of subsets $\bigcup_{n \leq i < \omega} B_{\alpha}^{i}$, where $n < \omega$ and $B_{\alpha}^{i} \in \mathcal{F}_{\alpha}^{i}$, and let $\mathcal{T}_{\alpha}^{\prime\prime\prime} = \mathcal{T}[\mathcal{F}_{\alpha}]$. By Theorem 3.1, \mathcal{F}_{α} is strongly discrete, so $\mathcal{T}_{\alpha}^{\prime\prime\prime}$ is regular. By Lemma 2.1, $\mathcal{T}_{\alpha}^{\prime\prime\prime}$ can be weakened to a first countable regular left invariant topology \mathcal{T}_{α} finer than $\mathcal{T}_{\alpha}^{\prime\prime}$. Clearly, condition (1) is satisfied. To see (2), let q be any limit point of $\{q_{\alpha,s}^{n} : n < \omega\}$. Then $\mathcal{F}_{\alpha} \subseteq q$ and $q \in \bigcap_{\gamma < \alpha} T_{\gamma} \cap X_{s} \cap J$, so $q \in \bigcap_{\gamma < \alpha} T_{\gamma} \cap X_{s} \cap J$.

Finally, let \mathcal{T} be the least upper bound of topologies \mathcal{T}_{α} , $\alpha < \mathfrak{c}$. That is, \mathcal{T} is the left invariant topology on G with a neighborhood base at 1 consisting of subsets $\bigcap_{i\leq n} U_{\alpha_i}$, where $n < \omega$, $\alpha_0 < \cdots < \alpha_n < \mathfrak{c}$, and U_{α_i} is a neighborhood of 1 in \mathcal{T}_{α_i} for each $i \leq n$. Then $T = \text{Ult}(\mathcal{T}) = \bigcap_{\alpha < \mathfrak{c}} \mathcal{T}_{\alpha}$. If each U_{α_i} is closed in \mathcal{T}_{α_i} , then $\bigcap_{i\leq n} U_{\alpha_i}$ is closed in \mathcal{T} . Consequently, \mathcal{T} is regular. Since $T_0 \subseteq X$, one has $T \subseteq X$. By (1) and (2), $T \cap X_s$ is a singleton for each $s \in S$. Hence, $T \ni p \mapsto \pi(p) \in S$ is an isomorphism.

Acknowledgments. Research for this paper was supported by NRF grant IFR2011033100072.

References

- N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification, de Gruyter, Berlin, 1998.
- T. Papazyan, Extremal topologies on a semigroup, Topology Appl. 39 (1991), 229– 243.
- [3] I. Protasov, Filters and topologies on semigroups, Mat. Stud. 3 (1994), 15–28 (in Russian).
- [4] I. Protasov, Maximal topologies on groups, Siberian Math. J. 39 (1998), 1184–1194.
- [5] Y. Zelenyuk, Topological groups with finite semigroup of ultrafilters, Mat. Stud. 6 (1996), 41–52 (in Russian).

Y. Zelenyuk

- [6] Y. Zelenyuk, On topological groups with finite semigroup of ultrafilters, Mat. Stud. 7 (1997), 139–144 (in Russian).
- [7] Y. Zelenyuk, Weak projectives of finite semigroups, J. Algebra 266 (2003), 77–86.
- [8] Y. Zelenyuk, Almost maximal spaces, Topology Appl. 154 (2007), 339–357.
- [9] Y. Zelenyuk, Ultrafilters and Topologies on Groups, de Gruyter, Berlin, 2011.
- Y. Zelenyuk, Principal left ideals of βG may be both minimal and maximal, Bull. London Math. Soc. 45 (2013), 613–617.
- [11] Y. Zelenyuk, Left maximal idempotents in G^* , Adv. Math. 262 (2014), 593–603.

Yevhen Zelenyuk School of Mathematics

University of the Witwatersrand Private Bag 3, Wits 2050 Johannesburg, South Africa

E-mail: yevhen.zelenyuk@wits.ac.za