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FACTORIZATION OF VECTOR MEASURES
AND THEIR INTEGRATION OPERATORS

BY

JOSÉ RODRÍGUEZ (Murcia)

Abstract. Let X be a Banach space and ν a countably additive X-valued measure
defined on a σ-algebra. We discuss some generation properties of the Banach space L1(ν)
and its connection with uniform Eberlein compacta. In this way, we provide a new proof
that L1(ν) is weakly compactly generated and embeds isomorphically into a Hilbert gener-
ated Banach space. The Davis–Figiel–Johnson–Pełczyński factorization of the integration
operator Iν : L1(ν) → X is also analyzed. As a result, we prove that if Iν is both com-
pletely continuous and Asplund, then ν has finite variation and L1(ν) = L1(|ν|) with
equivalent norms.

1. Introduction. The factorization method of Davis, Figiel, Johnson
and Pełczyński [9] (briefly DFJP) is one of the keystones of Banach space
theory. In this paper we apply this technique to study the Banach lattice
L1(ν) of all real-valued functions which are integrable with respect to a
vector measure ν. Such spaces represent (via order isometries) all order con-
tinuous Banach lattices having weak unit. It is well known that any order
continuous Banach lattice having weak unit, say E, is weakly compactly gen-
erated (WCG) [4] (cf. [8]). Therefore, by the DFJP theorem, there exist a
reflexive Banach space Y and an operator T : Y → E with dense range (we
say that E is generated by Y via T ). An elementary example is E = L1(µ),
where µ is a non-negative finite measure, which is generated by the Hilbert
space L2(µ) via the identity operator from L2(µ) to L1(µ). A Banach space
Z is called Hilbert generated if there exist a Hilbert space H and an operator
T : H → Z with dense range. Hilbert generated spaces are a proper subclass
of WCG spaces containing all separable ones. Kutzarova and Troyanski [19]
proved that every order continuous Banach lattice having weak unit admits
an equivalent uniformly Gâteaux smooth norm, a condition which is equiva-
lent to being isomorphic to a subspace of a Hilbert generated space (see [15],
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cf. [18, Theorem 6.30]). It seems to be unknown whether such spaces are
Hilbert generated in general.

Throughout this paper, (Ω,Σ) is a measurable space, X a Banach space
and ca(Σ,X) denotes the set of all (countably additive) X-valued vector
measures defined on the σ-algebra Σ. In Section 2 we provide a new insight
into the weakly compact generation of L1(ν) for ν ∈ ca(Σ,X). Namely, we
show that L1(ν) is generated by a reflexive space of the form L2(ν̃), where ν̃
is a reflexive Banach space-valued measure through which ν factors (Theo-
rem 2.1). We also give another proof that L1(ν) is isomorphic to a subspace
of a Hilbert generated space by showing that (BL1(ν)∗ , w

∗) is uniform Eber-
lein (Theorem 2.2). Recall that a compact Hausdorff topological space is said
to be uniform Eberlein compact (UEC) if it is homeomorphic to a weakly
compact subset of a Hilbert space. It is known that a Banach space Z is iso-
morphic to a subspace of a Hilbert generated space if and only if (BZ∗ , w∗)
is UEC (see [15], cf. [18, Theorem 6.30]).

In Section 3 we deal with the integration operator

Iν : L1(ν)→ X, Iν(f) :=
�

Ω

f dν,

associated to ν ∈ ca(Σ,X). The operator ideal properties of Iν have strong
connections with the structure of L1(ν). For instance, if Iν is compact, or
p-summing (1 ≤ p < ∞), or completely continuous and X is an Asplund
space, then ν has finite variation and L1(ν) = L1(|ν|) with equivalent norms;
see [22] (cf. [7, 24]), [6, 23] and [7], respectively. By applying the DFJP
factorization method to the integration operator, we are able to generalize
simultaneously these results in the following way: if Iν is completely con-
tinuous and Asplund, then ν has finite variation and L1(ν) = L1(|ν|) with
equivalent norms (Theorem 3.3).

Terminology. All our linear spaces are real. By an operator we mean
a continuous linear map between Banach spaces. By a subspace of a Ba-
nach space we mean a closed linear subspace. The closed unit ball of a
Banach space Z is denoted by BZ and the (topological) dual of Z is denoted
by Z∗. The symbol aco(C) stands for the closed absolutely convex hull of
any set C ⊆ Z. The weak topology (resp. weak∗ topology) of Z (resp. Z∗) is
denoted by w (resp. w∗). We write Z 6⊇ Y to denote that no subspace of Z
is isomorphic to the Banach space Y .

Let ν ∈ ca(Σ,X). We write x∗ν ∈ ca(Σ,R) to denote the composition
of ν with any x∗ ∈ X∗. The semivariation of ν is the function ‖ν‖ : Σ → R
defined by ‖ν‖(A) = supx∗∈BX∗ |x∗ν|(A) for all A ∈ Σ (as usual, |x∗ν|
stands for the variation of x∗ν). The collection of ν-null sets is N (ν) :=
{A ∈ Σ : ‖ν‖(A) = 0}. A Rybakov control measure of ν is a non-negative
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finite measure of the form µ = |x∗0ν| for some x∗0 ∈ BX∗ such that N (ν) =
{A ∈ Σ : µ(A) = 0}. A Σ-measurable function f : Ω → R is said to be
ν-integrable if it is |x∗ν|-integrable for all x∗ ∈ X∗ and, for each A ∈ Σ,
there is a vector

	
A f dν ∈ X such that x∗(

	
A f dν) =

	
A f d(x

∗ν) for every
x∗ ∈ X∗. By identifying functions which coincide ‖ν‖-a.e. we obtain the
Banach lattice L1(ν) of all (equivalence classes of) ν-integrable functions,
equipped with the ‖ν‖-a.e. order and the norm

‖f‖L1(ν) := sup
x∗∈BX∗

�

Ω

|f | d|x∗ν|, f ∈ L1(ν).

For 1 < p <∞, we shall also consider the Banach lattice Lp(ν) made up of
all f ∈ L1(ν) for which |f |p ∈ L1(ν), equipped with the ‖ν‖-a.e. order and
the norm

‖f‖Lp(ν) :=
(∥∥|f |p∥∥

L1(ν)

)1/p
.

The basic properties of the spaces L1(ν) and Lp(ν) can be found in [25,
Chapter 3]. Simple functions are dense in these spaces and the identity map
Lp(ν)→ L1(ν) is an injective operator. By a simple function we mean a finite
linear combination of functions of the form 1A (the characteristic function
of A), where A ∈ Σ.

2. Generating L1 of a vector measure. We begin this section with
an application of the DFJP factorization method to vector measure theory.
Recall first that the range ν(Σ) = {ν(A) : A ∈ Σ} of any ν ∈ ca(Σ,X) is
relatively weakly compact in X (see e.g. [12, p. 14, Corollary 7]).

Theorem 2.1. Let ν ∈ ca(Σ,X). Then:

(i) There exist a reflexive Banach space Y , an injective operator T :
Y → X and ν̃ ∈ ca(Σ,Y ) such that T ◦ ν̃ = ν.

(ii) L2(ν̃) is reflexive and the identity map j : L2(ν̃) → L1(ν) is a well-
defined injective operator with dense range. In particular, L1(ν) is
WCG.

Proof. (i) Since ν(Σ) is relatively weakly compact, aco(ν(Σ)) is weakly
compact (by the Krein–Šmulian theorem, see e.g. [12, p. 51, Theorem 11]).
We can apply the DFJP theorem (see e.g. [1, Theorem 5.37]) to find a
reflexive Banach space Y and an injective operator T : Y → X such
that T (BY ) ⊇ aco(ν(Σ)). Define ν̃ : Σ → Y such that T ◦ ν̃ = ν. Note
that (x∗ ◦ T ) ◦ ν̃ = x∗ ◦ ν is countably additive for all x∗ ∈ X∗. Since
{x∗ ◦ T : x∗ ∈ X∗} ⊆ Y ∗ separates the points of Y (because T is injective)
and Y 6⊇ `∞, we conclude that ν̃ is countably additive (see [10], cf. [12, p. 23,
Corollary 7]).

(ii) The space L2(ν̃) is reflexive because Y is weakly sequentially complete
(see [16, Corollary 3.10]). On the other hand, the equality T ◦ ν̃ = ν implies
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that the identity map L1(ν̃)→ L1(ν) is a well-defined injective operator (see
e.g. [25, Lemma 3.27]), and so is j. Since simple functions are dense in L1(ν),
we deduce that j(L2(ν̃)) is dense in L1(ν).

The proof of the following theorem uses the fact that, for any non-
negative finite measure µ, every weakly compact subset of L1(µ) is UEC
(see [2], cf. [18, Corollary 6.47]). Part (i) extends that result to the vec-
tor measure setting, see also [5, Proposition 2.4] for a slightly more general
statement.

Theorem 2.2. Let ν ∈ ca(Σ,X). Then:

(i) Every weakly compact subset of L1(ν) is UEC.
(ii) (BL1(ν)∗ , w

∗) is UEC. Equivalently, L1(ν) is isomorphic to a subspace
of a Hilbert generated space.

Proof. Let µ be a Rybakov control measure of ν.
(i) According to the comments preceding the theorem, every weakly com-

pact subset of L1(µ) is UEC. Since the identity operator i : L1(ν)→ L1(µ) is
injective and w-w-continuous, any weakly compact set K ⊆ L1(ν) is home-
omorphic to the weakly compact set i(K) ⊆ L1(µ), and so K is UEC.

(ii) Identify L1(ν)∗ with L1(ν)× (the Köthe dual of L1(ν) as a Banach
function space over µ) in the usual way. Namely,

L1(ν)× = {h ∈ L1(µ) : fh ∈ L1(µ) for all f ∈ L1(ν)}
and L1(ν)∗ = {ϕh : h ∈ L1(ν)×}, where for each h ∈ L1(ν)× the functional
ϕh ∈ L1(ν)∗ is given by ϕh(f) :=

	
Ω fh dµ for all f ∈ L1(ν).

Since every weakly compact subset of L1(µ) is UEC, in order to prove
that (BL1(ν)∗ , w

∗) is UEC it suffices to check that the injective map

BL1(ν)∗ → L1(µ), ϕh 7→ h,

is w∗-w-continuous. To this end, let (ϕhα) be a net in BL1(ν)∗ which is w∗-
convergent to ϕh ∈ BL1(ν)∗ . In particular,

(2.1) ϕhα(1A) =
�

A

hα dµ→ ϕh(1A) =
�

A

h dµ for all A ∈ Σ.

On the other hand, (hα) is bounded in L1(µ), because for every α we have�

Ω

|hα| dµ =
�

Ω

sign(hα)hα dµ = ϕhα(sign(hα)) ≤ ‖sign(hα)‖L1(ν) ≤ ‖ν‖(Ω).

The boundedness of (hα) and (2.1) imply that hα → h weakly in L1(µ), as
required.

Corollary 2.3. Let ν ∈ ca(Σ,X). Then aco(ν(Σ)) is UEC and
span(ν(Σ)) is isomorphic to a subspace of a Hilbert generated space.
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Proof. The set K := {f ∈ L1(ν) : |f | ≤ 1 ‖ν‖-a.e.} is weakly compact
in L1(ν) (see e.g. [25, Proposition 2.39]), hence it is UEC (by Theorem 2.2(i)).
Since the class of UEC spaces is closed under continuous images (see [3],
cf. [18, Corollary 6.34]) and the integration operator Iν : L1(ν) → X is
w-w-continuous, Iν(K) is UEC. Notice that K ⊇ {1A : A ∈ Σ} and so
Iν(K) ⊇ ν(Σ). Since Iν(K) is absolutely convex and closed, we get Iν(K) ⊇
aco(ν(Σ)). It follows that aco(ν(Σ)) is UEC as well.

Finally, note that Iν(L1(ν)) = span(ν(Σ)) =:X0. Hence I∗ν : X∗0 →L1(ν)∗

is injective, and so its restriction to BX∗
0
is a w∗-w∗-homeomorphism onto its

image, which is UEC by Theorem 2.2(ii). It follows that (BX∗
0
, w∗) is UEC.

Remark 2.4. Let ν ∈ ca(Σ,X) and Y be the Banach space obtained in
Theorem 2.1. The fact that aco(ν(Σ)) is UEC ensures that BY is UEC (see
[2, Lemma 3.5]).

There are order continuous Banach lattices which are WCG, embed iso-
morphically into a Hilbert generated space, but fail to be isomorphic to any
L1 space of a vector measure. An example of such an space is `p(Γ ) where Γ
is an uncountable set and 1 < p < ∞, p 6= 2 (see [14] and Theorem 2.6
below). Note that, for Γ uncountable, the space `p(Γ ) is Hilbert generated
if and only if 2 ≤ p <∞ (see [14]).

Lemma 2.5. Let ν ∈ ca(Σ,X), Y be a Banach space and S : L1(ν)→ Y
an operator. Define νS : Σ → Y by νS(A) := S(1A) for all A ∈ Σ. Then
νS ∈ ca(Σ,Y ), N (ν) ⊆ N (νS) and IνS (f) = S(f) for every simple func-
tion f .

Proof. Straightforward.

Note that if Γ is an uncountable set and 1 ≤ p <∞, then `p(Γ ) fails to
have a weak unit, and so it cannot be Banach lattice isomorphic to the L1

space of a vector measure. The following result improves this assertion.

Theorem 2.6. Let Γ be a non-empty set and 1 ≤ p <∞ with p 6= 2. If
`p(Γ ) is isomorphic to L1(ν) for some ν ∈ ca(Σ,X), then Γ is countable.

Proof. The case p = 1 is clear since `1(Γ ) is not WCG whenever Γ
is uncountable. Assume that 1 < p < ∞. Let S : L1(ν) → `p(Γ ) be an
isomorphism. We shall check that L1(ν) is separable. We divide the proof
into two cases.

Case 1 < p < 2. Since νS ∈ ca(Σ, `p(Γ )) (Lemma 2.5), the set νS(Σ) is
relatively norm compact in `p(Γ ) (this follows from [26, p. 211, Remark 2], see
e.g. the proof of [25, Lemma 3.53(v)]). In particular, νS(Σ) = {S(1A) : A∈Σ}
is separable, and so {1A : A ∈ Σ} is a separable subset of L1(ν). Since simple
functions are dense in L1(ν), this space is separable.
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Case 2 < p < ∞. Let µ be a Rybakov control measure of ν. Consider
the identity operator i : L1(ν) → L1(µ) and the composition T := i ◦ S−1 :
`p(Γ ) → L1(µ). Let 1 < q < 2 be such that 1/p + 1/q = 1. The adjoint
operator T ∗ : L∞(µ) → `q(Γ ) is compact (see [26, p. 211, Remark 2]) and,
by Schauder’s theorem (see e.g. [1, Theorem 5.2]), T is compact as well.
Therefore, T has separable range and the same holds for i = T ◦ S. Since
i(L1(ν)) = L1(µ), it follows that L1(µ) is separable, which is equivalent to
saying that L1(ν) is separable.

Question 2.7. Is L1(ν) Hilbert generated for any ν ∈ ca(Σ,X)? What
about L2(ν) when BX is UEC?

Remark 2.8. If ν ∈ ca(Σ,X) has finite variation, then L1(ν) is Hilbert
generated. Indeed, the identity map L1(|ν|) → L1(ν) is a well-defined op-
erator with dense range (see e.g. [25, Lemma 3.14]) and L1(|ν|) is Hilbert
generated.

3. Factorization of integration operators. The following lemma can
be found in [21, Lemma 2.2]. We provide another proof which does not rely
on [20] and can be more accessible to the reader.

Lemma 3.1. Let ν ∈ ca(Σ,X). Suppose Iν factors as

L1(ν)
Iν //

S

��

X

Y

T

==

where Y is a Banach space, S and T are operators. Let νS ∈ ca(Σ,Y ) be as
in Lemma 2.5. Then:

(i) ν = T ◦ νS and N (ν) = N (νS).
(ii) Every νS-integrable function is ν-integrable.
(iii) The identity map j : L1(νS)→ L1(ν) is an operator and T ◦ IνS =

Iν ◦ j.

If, in addition, T is injective and Y 6⊇ `∞, then:

(iv) Every ν-integrable function is νS-integrable.
(v) L1(νS) = L1(ν) with equivalent norms.
(vi) S = IνS .

Proof. The equality ν = T ◦ νS follows from the very definitions and
implies that N (ν) ⊇ N (νS). From Lemma 2.5 we obtain N (ν) = N (νS).
Statements (ii) and (iii) also follow from the equality ν = T ◦ νS (see e.g.
[25, Lemma 3.27]).
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Assume now that T is injective and that Y 6⊇ `∞. In order to prove (iv),
let f : Ω → R be a ν-integrable function. Then we can write f = g + h for
some Σ-measurable functions g, h : Ω → R satisfying:

• |g| ≤ 1 ‖ν‖-a.e., so g is both ν-integrable and νS-integrable;
• h =

∑
n αn1An , where (αn) is a sequence of real numbers and (An) is

a sequence of pairwise disjoint elements of Σ; note that h = f − g is
ν-integrable.

It only remains to show that h is νS-integrable. To this end, it suffices to check
that for every Bn ⊆ An, Bn ∈ Σ, the series

∑
n αnνS(Bn) is unconditionally

convergent in Y (see e.g. [25, Theorem 3.5]). Since {x∗ ◦ T : x∗ ∈ X∗} ⊆ Y ∗
separates the points of Y (because T is injective) and Y 6⊇ `∞, in order to
prove that

∑
n αnνS(Bn) is unconditionally convergent it is enough to check

(see [10], cf. [12, p. 23, Corollary 7]) that for every P ⊆ N there is yP ∈ Y
such that

(3.1) (x∗ ◦ T )(yP ) =
∑
n∈P

(x∗ ◦ T )(αnνS(Bn)) =
∑
n∈P

αnx
∗(ν(Bn))

for all x∗ ∈ X∗ (the series being absolutely convergent). Equality (3.1) holds
by taking B :=

⋃
n∈P Bn ∈ Σ and yP := S(h1B), because h is ν-integrable

and so
T (yP ) = Iν(h1B) =

∑
n∈P

αnν(Bn),

the series being unconditionally convergent in X. This shows that h is νS-
integrable and the proof of (iv) is complete.

The equality L1(νS) = L1(ν) is now clear. The equivalence of the norms
‖ · ‖L1(νS) and ‖ · ‖L1(ν) follows from the Open Mapping Theorem and the
fact that the identity j : L1(νS) → L1(ν) is a bijective operator. Finally,
(vi) is a consequence of the density of simple functions in L1(ν) = L1(νS)
and Lemma 2.5.

Let C ⊆ X be an absolutely convex bounded set. The DFJP method
applied to C (see e.g. [1, Theorem 5.37]) generates a Banach space Y and
an injective operator T : Y → X with T (BY ) ⊇ C satisfying some relevant
properties, e.g. Y is reflexive if (and only if) C is relatively weakly compact.
When the DFJP method is applied to a set of the form C = R(BZ), where
Z is a Banach space and R : Z → X is an operator, we get the DFJP
factorization of R as

Z
R //

S

��

X

Y

T

>>
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where S : Z → Y is an operator. Recall that an operator between Banach
spaces is called completely continuous (or Dunford–Pettis) if it maps weakly
convergent sequences to norm convergent ones.

Lemma 3.2. Let ν ∈ ca(Σ,X) and let

L1(ν)
Iν //

S

��

X

Y

T

==

be the DFJP factorization of Iν . Let νS ∈ ca(Σ,Y ) be as in Lemma 2.5.
Then:

(i) νS(Σ) is relatively norm compact if and only if ν(Σ) is relatively
norm compact.

(ii) If, in addition, Y 6⊇ `∞, then IνS is completely continuous if and
only if Iν is completely continuous.

Proof. (i) If νS(Σ) is relatively norm compact, then so is ν(Σ) =
T (νS(Σ)). On the other hand, note that ν(Σ) is contained in a multiple
of the set Iν(BL1(ν)) inducing the DFJP factorization of Iν . Hence if ν(Σ) is
relatively norm compact in X, then T−1(ν(Σ)) = νS(Σ) is relatively norm
compact in Y (see e.g. [1, Theorem 5.40]).

(ii) We shall use the following fact (see [5, Theorem 5.8]):

Fact. Let Z be a Banach space and ξ ∈ ca(Σ,Z). Then Iξ is completely
continuous if and only if L1(ξ) has the positive Schur property (i.e. weakly
null positive sequences in L1(ξ) are norm null) and ξ(Σ) is relatively norm
compact.

Suppose now that Y 6⊇ `∞. By Lemma 3.1, we have L1(νS) = L1(ν) with
equivalent norms and S = IνS . Hence Iν = T ◦ IνS is completely continuous
whenever IνS is. Conversely, assume that Iν is completely continuous. Ac-
cording to the Fact, this is equivalent to saying that L1(ν) has the positive
Schur property and ν(Σ) is relatively norm compact. Since L1(νS) = L1(ν)
with equivalent norms, L1(νS) has the positive Schur property as well. Bear-
ing in mind that νS(Σ) is also relatively norm compact (by (i)), another
appeal to the Fact ensures that IνS is completely continuous.

We arrive at the main result of this section. An operator between Banach
spaces is said to be an Asplund operator if it factors through an Asplund
space. This concept has its origin in [27]. Recall that a Banach space Z
is called Asplund if every separable subspace of Z has separable dual, or
equivalently, Z∗ has the Radon–Nikodým property [12, p. 198].
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Theorem 3.3. Let ν ∈ ca(Σ,X) be such that Iν is completely contin-
uous and Asplund. Then ν has finite variation and L1(ν) = L1(|ν|) with
equivalent norms.

Proof. Let us consider the DFJP factorization of Iν as in Lemma 3.2.
Since Iν is an Asplund operator, Y is an Asplund space (see e.g. [13, The-
orem 1.4.4]). In particular, Y 6⊇ `∞. By Lemma 3.2, the integration opera-
tor IνS is completely continuous. An appeal to [7, Theorem 1.3] ensures that
νS has finite variation, and so does ν = T ◦ νS . The last statement follows
from [23, Proposition 1.1] applied to the operator ideal of all completely
continuous Asplund operators.

All compact operators and all p-summing operators (1 ≤ p < ∞) are
completely continuous and weakly compact (hence Asplund); see e.g. [11,
Theorem 2.17]. Thus, Theorem 3.3 gives a unified approach to the following
known results.

Corollary 3.4 ([22]). Let ν ∈ ca(Σ,X) be such that Iν is compact.
Then ν has finite variation and L1(ν) = L1(|ν|) with equivalent norms.

Corollary 3.5 ([6, 23]). Let ν ∈ ca(Σ,X) be such that Iν is p-summing,
1 ≤ p <∞. Then ν has finite variation and L1(ν) = L1(|ν|) with equivalent
norms.

There remains an open question, raised in [23]: whether ν ∈ ca(Σ,X) has
finite variation whenever Iν is completely continuous and X 6⊇ `1. In order
to reformulate this question we need some terminology. Let R : Z → X be
an operator, where Z is a Banach space. Recall that R is said to be weakly
precompact if every sequence in R(BZ) admits a weakly Cauchy subsequence.
By Rosenthal’s `1-theorem (see e.g. [1, Theorem 4.72]), R is weakly precom-
pact whenever X 6⊇ `1. On the other hand, it is known that if R is weakly
precompact and

Z
R //

S

��

X

Y

T

>>

is the DFJP factorization of R, then Y 6⊇ `1 (see e.g. [17, Theorem 5.3.6]).
Summing up, it follows that an operator is weakly precompact if and only
if it factors through a Banach space not containing subspaces isomorphic
to `1. In particular, Asplund operators are weakly precompact. The proof
of Theorem 3.3 can be adapted to show that the aforementioned question
in [23] is equivalent to the following:
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Question 3.6. Let Y be a Banach space and ν ∈ ca(Σ,Y ) be such
that Iν is completely continuous and weakly precompact. Does ν have finite
variation?
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