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On Baker type lower bounds for linear forms

by

Tapani Matala-aho (Oulu)

1. Introduction. We give a criterion for studying (explicit) Baker type
lower bounds of linear forms in given numbers Θ0, . . . , Θm ∈ C∗. Through-
out this work, let I denote an imaginary quadratic field with ZI its ring of
integers. By an explicit Baker type lower bound we mean any positive lower
bound

(1.1) |β0Θ0 + · · ·+ βmΘm| > F (H0, . . . ,Hm,m)

valid for all β = (β0, . . . , βm)T ∈ Zm+1
I \ {0} with

∏m
j=0Hj ≥ Ĥ ≥ 1,

Hj ≥ hj = max{1, |βj |}, where the dependence on each individual term
H0, . . . ,Hm, m and the numbers Θ0, . . . , Θm is explicitly given in the func-
tional dependence F (H0, . . . ,Hm,m) and the dependence on Θ0, . . . , Θm,m
is explicitly given in the constant Ĥ = Ĥ(Θ0, . . . , Θm,m).

With the assumption that γ0, . . . , γm ∈ Q∗ are distinct, Baker [1] proved
that there exist positive constants δ1, δ2 and δ3 such that

(1.2) |β0eγ0 + · · ·+ βme
γm | > δ1M

1−δ(M)∏m
j=0 hj

for all β = (β0, . . . , βm)T ∈ Zm \ {0}, hj = max{1, |βj |}, with

(1.3) δ(M) ≤ δ2√
log logM

, M = max
0≤j≤m

{|βj |} ≥ δ3 > e.

Here we note that the constants δ1, δ2, δ3 in Baker’s work [1] are not explicitly
given. Mahler [9] made Baker’s result completely explicit.

There are many subsequent works where the authors prove Baker type
lower bounds for values of functions belonging usually to a class of Siegel’s
E- or G-functions or q-hypergeometric functions evaluated at rational points
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(see e.g. [5], [6], [13] and [14]). For a more comprehensive list of references,
see [6]. In the above mentioned works Siegel’s lemma is a standard tool for
producing a first or second kind Padé-approximation construction of certain
auxiliary functions. These constructions correspond to one linear form (one
auxiliary function) or simultaneous linear forms (several auxiliary functions).

In this work we shall not do such constructions, but we are interested in
the next step. Namely: how to use appropriate linear forms to prove Baker
type lower bounds? We shall answer the above question by giving a criterion
in the simultaneous linear forms case.

Let us describe our criterion in a nutshell. Fix Θ1, . . . , Θm ∈ C∗ and set
n = (n1, . . . , nm)T , N = N(n) = n1 + · · · + nm. Assume that we have a
sequence of simultaneous linear forms

(1.4)
Lk,j(n) = Ak,0(n)Θj +Ak,j(n), k = 0, . . . ,m, j = 1, . . . ,m, n ∈ Zm≥1,

where Ak,j = Ak,j(n) ∈ ZI satisfy a certain determinant condition. Suppose
also that

|Ak,0(n)| ≤ e(aN+b logN)g(N)+b0N(logN)1/2+b1N+b2 logN+b3 ,(1.5)

|Lk,j(n)| ≤ e(dN−cnj)g(N)+e0N(logN)1/2+e1N+e2 logN+e3 ,(1.6)

for k, j = 0, 1, . . . ,m, where a, b, c, d, bi, ei are non-negative parameters sat-
isfying a, c−dm > 0. Then, in the cases g(N) ∈ {1, logN,N}, we shall prove
that there exist explicit positive constants Fl, Gl (l ∈ {1, 2, 3}) such that

(1.7) |β0 + β1Θ1 + · · ·+ βmΘm| > Fl

( m∏
j=1

(2mHj)
)− a

c−dm−εl(H)

for all β = (β0, β1, . . . , βm)T ∈ Zm+1
I \ {0} and H =

∏m
j=1(2mHj) ≥ Gl,

Hj ≥ hj = max{1, |βj |} with an error term εl(H) → 0 as H →∞. The
constants Fl, Gl and the error term will be given explicitly in terms of the
parameters a, b, c, d, bi, ei and in particular of m.

The underlying idea behind our treatment is well known already from
Baker’s work [1]. Namely, the idea (see [1, formula (22)]) is to fix the pa-
rameter nj with the corresponding individual height Hj (in our notation).
In our work we shall express this phenomenon first in a nutshell (see (4.10))
and then in a refined form (see (4.14)).

An advantage of our treatment compared with existing treatments is
that one can easily see if the contribution to the lower bound is coming
from the Diophantine method itself or from the auxiliary construction. For
example, apart from the condition n1 + · · · + nm = N , we do not need
any extra condition relating nj and N . Of course, some extra conditions
may be needed for good auxiliary constructions. In particular, this is the
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case when Siegel’s lemma is involved. See e.g. [13, formula (14)], where
the authors additionally assume that nj > δN , j = 1, . . . ,m, for some
0 < δ < 1/m. In [10, formula (4) in Chapter III] the corresponding condition
reads nj > 2N/logN , j = 1, . . . ,m. In [4], however, one can find a slightly
different approach.

Our Theorems 3.2, 3.4 and 3.6 are designed to be applied in the following
manner. Let f(z) be a G-, E- or q-hypergeometric function and denote Θ1 =
f(α1), . . . , Θm = f(αm), α1, . . . , αm ∈ I∗. Suppose that one can construct
simultaneous linear forms of the type (1.4) satisfying the estimates (1.5) and
(1.6) with a certain determinant condition; then our Theorem 3.2, 3.4 or 3.6
will give a corresponding Baker type lower bound (1.7). So far our results
(Theorems 3.4 and 3.6) have been applied in [4] and [8].

In [4], Ernvall-Hytönen, Leppälä and Matala-aho constructed simultane-
ous linear forms of the type (1.4) (satisfying (1.5)–(1.6) with g(N) = logN)
for the exponential function values eα0 , . . . , eαm , where α0, . . . , αm ∈ I. (Note
that the exponential function belongs to the class of Siegel’s E-functions.)
By applying Theorem 3.4 of the present paper the authors in [4] proved
substantial improvements of the explicit versions (see Mahler [9] and Sankil-
ampi [10]) of Baker’s work [1] about exponential values at rational points.
In particular, the dependence on m is improved. As an example from [4] we
mention a new explicit Baker type lower bound

|β0 + β1e+ β2e
2 + · · ·+ βme

m| > 1

h1+ε̂(h)
, h = h1 · · ·hm,

valid for all β = (β0, . . . , βm)T ∈ ZmI \ {0}, hi = max{1, |βi|} with

ε̂(h) =
(4 + 7m)

√
log(m+ 1)√

log log h
,

log h ≥ m2(41 log(m+ 1) + 10)em
2(81 log(m+1)+20).

As far as we know, the published dependences on m in ε̂(h) have been at
least quadratic and in lower bounds of log log h at least quartic.

The second application of our work is presented in Leinonen’s paper [8].
In a pioneer work [13] Väänänen and Zudilin proved Baker type results
for a class of q-hypergeometric series. Following [13], Leinonen [8] con-
structed simultaneous linear forms of the type (1.4) (satisfying (1.5)–(1.6)
with g(N) = N) and proved some generalizations of the results in [13].
Moreover, she applied our Theorem 3.6 with her linear forms, and gave ex-
plicit Baker type lower bounds which sharpened her results as well as the
results of Väänänen and Zudilin.

2. Background from metrical theory. From the general metrical
theory (see [2], [3], [6], [11], [12]) we get the following well known results.
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Theorem 2.1. Let 1, Θ1, . . . , Θm ∈ R be linearly independent over Q.
Then there exist infinitely many primitive vectors (β0, . . . , βm)T ∈ Zm+1\{0}
with hj := max{1, |βj |}, j = 1, . . . ,m, satisfying

|β0 + β1Θ1 + · · ·+ βmΘm| <
1∏m

j=1 hj
.

In the complex case, Shidlovskii [12] studies linear forms over the ring
of rational integers and gives the following result.

Theorem 2.2 ([12]). Let Θ0 = 1, Θ1, . . . , Θm ∈ C and H ∈ Z≥1 be
given. Then there exists a non-zero rational integer vector (β0, β1, . . . , βm)T

∈ Zm+1 \ {0} with |βj | ≤ H, j = 0, 1, . . . ,m, satisfying

|β0 + β1Θ1 + · · ·+ βmΘm| ≤
c

H(m−1)/2 , c =
√

2
m∑
j=0

|Θj |.

We are interested in linear forms over the ring of integers ZI in an imag-
inary quadratic field Q(

√
−D), D ∈ Z≥1, D 6≡ 0 (mod 4). For that purpose

we prove

Theorem 2.3. Let Θ1, . . . , Θm ∈ C and H1, . . . ,Hm ∈ Z≥1 be given.
Then there exists a non-zero integer vector (β0, β1, . . . , βm)T ∈ Zm+1

I \ {0}
with |βj | ≤ Hj, j = 1, . . . ,m, satisfying

(2.1) |β0 + β1Θ1 + · · ·+ βmΘm| ≤
(

2τD1/4

√
π

)m+1 1

H1 · · ·Hm
,

where τ = 1 if D ≡ 1 or 2 (mod 4), and τ = 1/2 if D ≡ 3 (mod 4).

3. Results

3.1. A general target. Let f(z) belong to one of the following classes
of functions:

1. The class of Siegel’s G-functions. Typical examples are logarithm and
Gauss hypergeometric functions and more generally non-entire hyper-
geometric series.

2. The class of Siegel’s E-functions. Typical examples are exponential
and Bessel functions and more generally entire hypergeometric series.
For definition of Siegel’s E- and G-functions we refer to [6].

3. The q-hypergeometric series. Typical examples are
∞∑
n=0

qn
2

and

∞∑
n=1

1/

n∏
i=1

(1− qi), |q| < 1.

Our Theorems 3.2, 3.4 and 3.6 are designed to be applied in the following
manner. Denote Θ1 = f(α1), . . . , Θm = f(αm), α1, . . . , αm ∈ I∗. Suppose
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that one can construct simultaneous linear forms of the type (3.2) satisfying
the conditions (3.4)–(3.7). Then Theorem 3.2, 3.4 or 3.6 will give a Baker
type lower bound for the quantity

(3.1) |β0 + β1Θ1 + · · ·+ βmΘm|.
It is a general phenomenon in the field of Diophantine approximations that
Padé approximations and Siegel’s lemma give estimates of the shape (3.6)
and (3.7). However, it is often hard to find such bounds if also the condition
(3.5) holds.

3.2. A criterion. Fix now Θ1, . . . , Θm ∈ C∗ and write

n = (n1, . . . , nm)T , N = N(n) = n1 + · · ·+ nm.

Assume that we have a sequence of simultaneous linear forms

(3.2) Lk,j(n) = Ak,0(n)Θj +Ak,j(n), n ∈ Zm≥1,
k = 0, 1, . . . ,m, j = 1, . . . ,m, where

(3.3) Ak,j = Ak,j(n) ∈ ZI, k, j = 0, 1, . . . ,m,

satisfy a determinant condition, say,

(3.4) ∆ =

∣∣∣∣∣∣∣∣
A0,0 A0,1 · · · A0,m

A1,0 A1,1 · · · A1,m
. . . . . . . . . . . . . . . . . . . . . . . .
Am,0 Am,1 · · · Am,m

∣∣∣∣∣∣∣∣ 6= 0.

Further, let a, b, c, d, bi, ei ∈ R≥0, a > 0, and suppose that

c, c− dm > 0,(3.5)

|Ak,0(n)| ≤ Q(n) = eq(N),(3.6)

|Lk,j(n)| ≤ Rj(n) = e−rj(n),(3.7)

where

q(N) = (aN + b logN)g(N) + b0N(logN)1/2 + b1N + b2 logN + b3,

−rj(n) = (dN − cnj)g(N) + e0N(logN)1/2 + e1N + e2 logN + e3

for all k, j = 0, 1, . . . ,m.
Let the above assumptions be valid for all N ≥ Nl, l = 1, 2, 3 (where l

refers to case number) in our cases:

Case 1: 
g(N) = g1(N) := 1,

q(N) = q1(N) := aN + b logN,

−rj(n) = −rj,1(n) := dN − cnj + e2 logN,

and all other b’s and e’s are zero.
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Case 2:
g(N) = g2(N) := logN, b = 0,

q(N) = q2(N) := aN logN + b0N(logN)1/2 + b1N + b2 logN + b3,
−rj(n) = −rj,2(n)

:= (dN − cnj) logN + e0N(logN)1/2 + e1N + e2 logN + e3.

Case 3: 
g(N) = g3(N) := N,

q(N) = q3(N) := aN2 + b1N,

−rj(n) = −rj,3(n) := (dN − cnj)N + e1N,

and all other b’s and e’s are zero.

The following theorem gives a unified result in the above three cases.

Theorem 3.1. Under the above assumptions there exist explicit positive
constants Fl and Gl not depending on H such that

(3.8) |β0 + β1Θ1 + · · ·+ βmΘm| > Fl

( m∏
j=1

(2mHj)
)− a

c−dm−εl(H)

for all β = (β0, β1, . . . , βm)T ∈ Zm+1
I \ {0} and

(3.9) H =
m∏
j=1

(2mHj) ≥ Gl, Hj ≥ hj = max{1, |βj |},

with an error term εl(H)→ 0 as H →∞.

In Subsections 3.3–3.5 we consider the three cases more closely.

3.3. Case 1

Theorem 3.2. Denote f = 2/(c− dm) and

A1 =
acm

c− dm
+B1 log(ef), B1 =

ae2m

c− dm
+ b.

Then

F−11 = 2eA1 , ε1(H) = B1
log logH

logH

and

(3.10) G1 = max{m,N1, e
x1/f}, x1 = max{S1, 1},

where S1 is the largest solution of the equation

(3.11) S = f(e2m logS + dm2 + e2m).
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3.4. Case 2. Before stating our results we introduce a function z :
R→ R, the inverse function of the function y(z) = z log z, z ≥ 1/e, consid-
ered in [7].

Lemma 3.3 ([7]). The inverse function z(y) of the function y(z) =
z log z, z ≥ 1/e, is strictly increasing. Define z0(y) = y and zn(y) =
y/log zn−1 for n ∈ Z+. Suppose y > e. Then z1 < z3 < · · · < z < · · · <
z2 < z0. Thus the inverse function may be given by the infinite nested loga-
rithm fraction

z(y) = lim
n→∞

zn(y) =
y

log y
log y

log...

for y > e. In particular,

(3.12) z(y) < z2(y) =
y

log y
log y

for y > e.

Theorem 3.4. Denote f = 2/(c− dm) and

A2 = b0 +
ae0m

c− dm
, B2 = a+ b0 + b1 +

ae1m

c− dm
,

C2 = am+ b2 +
a(dm2 + e2m)

c− dm
, D2 = b0m+

ae0m
2

c− dm
,

E2 = (a+ b0 + b1)m+ b2 + b3 +
a((2d+ 2e0 + e1)m

2 + (e2 + e3)m)

c− dm
.

Then F−12 = 2eE2 and

ε2(H) = ξ(z,H) := A2

(
f
z(f logH)

logH

)1/2

+B2
z(f logH)

logH
(3.13)

+ C2
log z(f logH)

logH
+D2

(log z(f logH))1/2

logH

with

(3.14) G2 = max{m,N2, e
(x2 log x2)/f , ee/f}, x2 = max{S2, 1},

where S2 is the largest solution of the equation

(3.15) S logS = f
(
e0mS(logS)1/2 + e1mS + (dm2 + e2m) logS

+ e0m
2(logS)1/2 + 2dm2 + 2e0m

2 + e1m
2 + e2m+ e3m

)
.

In this case the estimate corresponding to (3.8) may be written as follows:

(3.16) |β0 + β1Θ1 + · · ·+ βmΘm| ≥

F2(z(f logH))−C2H
− a
c−dm−A2

(
f
z(f logH)

logH

)1/2
−B2

z(f logH)
logH

−D2
(log z(f logH))1/2

logH .
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Note that

(3.17) z(f logH) < z2(f logH)

for f logH > e by (3.12), and thus

(3.18) ε2(H) = ξ(z,H) < ξ(z2, H)

for f logH > e. Write now

ρ2(x) =
log x

log x− log log x
.

Then (3.17) may further be estimated by using

(3.19) z2(f logH) ≤ ρ2(x0)f
(

1− log f

log(f logH)

)
logH

log logH

valid for all

(3.20) f logH ≥ x0 ≥ ee, H > e.

Note that if 0 < c− dm ≤ 2, then

(3.21) z2(f logH) ≤ ρ2(x0)f
logH

log logH
.

By using the estimate (3.21) we get the following corollary where the lower
bound in (3.23) is a generalization of what we see in the works on E-
functions.

Corollary 3.5. Write ρ = ρ2(x0). If 0 < c− dm ≤ 2, H > e and

(3.22) f logH ≥ x0 := max{f logm, f logN2, x2 log x2, e
e},

then

(3.23) |β0 + β1Θ1 + · · ·+ βmΘm| ≥

1

2eE2(fρ)C2

(
log logH

logH

)C2

H
− a
c−dm−

A2f
√
ρ√

log logH
− B2fρ

log logH
− D2

logH

√
log
(
fρ logH
log logH

)
.

In [4], c = 1 and d = 0, so Corollary 3.5 applies.

In most of the existing works only the terms corresponding to A2 and C2

are presented, and usually only a main term is given, while the other terms
are included implicitly. Hence in such a situation explicit dependence on the
parameters, say for example on m, may become invisible. Further, all the
methods applied to E-functions seem to yield the situation where A2 6= 0.
If we had A2 = 0, then the terms with B2 and C2 would become more
important. That would be the case if e.g. one could find appropriate explicit
Padé type approximations instead of those produced by Siegel’s lemma.
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3.5. Case 3

Theorem 3.6. We have

F−13 = 2eB3 , ε3(H) = A3
1√

logH
, G3 = max{m,N3, e},

where the general A3 and B3 are given in the proof section. In the particular
case of b1 = e1 = 0, they read

A3 =
2acm

(c− dm)3/2
, B3 =

acm2(c+ dm+ 2
√
cdm)

(c− dm)2
.

4. Proofs

4.1. Proof of Theorem 2.3. For D ∈ Z≥1, D 6≡ 0 (mod 4) the ring of

integers may be given by ZI = Z+Z(h+ l
√
−D) with h = 0, l = 1 if D ≡ 1

or 2 (mod 4), and h = l = 1/2 if D ≡ 3 (mod 4).
We start with a simple principle. First we define a lattice

λ = Z(1, 0) + Z(h, l
√
D), detλ =

√
D 2−2h

and a complex disk

DR = {x+ y(h+ l
√
−D) ∈ C | x, y ∈ R, |x+ y(h+ l

√
−D)| ≤ R}

with radius R > 0, and a corresponding real disk

CR = {(v, w)T ∈ R2 | v2 + w2 ≤ R2}, Vol CR = πR2.

Then

(4.1) x+ y(h+ l
√
−D) ∈ DR ∩ ZI ⇔ (x+ yh, yl

√
D)T ∈ CR ∩ λ.

Next we define a lattice

(4.2) Λ = Zl1 + · · ·+ Zl2m+2 ⊆ R2m+2

generated by
l1 = (1, 0, 0, 0, . . . , 0, 0)T , l2 = (h, l

√
D, 0, 0, . . . , 0, 0)T ,

l3 = (0, 0, 1, 0, . . . , 0, 0)T , l4 = (0, 0, h, l
√
D, 0, 0, . . . , 0, 0)T ,

. . .

l2m+1 = (0, 0, . . . , 0, 0, 1, 0)T , l2m+2 = (0, 0, . . . , 0, 0, h, l
√
D)T .

Immediately, detΛ = (
√
D 2−2h)m+1.

By using the notations

a+ b(h+ l
√
−D) = −(z1Θ1 + · · ·+ zmΘm), zk = xk + yk(h+ l

√
−D),

vk = xk + ykh, wk = ykl
√
D, xk, yk ∈ R, k = 0, 1, . . . ,m,

and

R0 :=

(
2τD1/4

√
π

)m+1 1

H1 · · ·Hm
,
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we define the sets

D = {(z0, z1, . . . , zm)T ∈ Cm+1 | |z0 − (a+ b(h+ l
√
−D))| ≤ R0,

|zk| ≤ Hk, k = 1, . . . ,m},
C = {(v0, w0, v1, w1, . . . , vm, wm)T ∈ R2m+2 |

(v0 − (a+ bh))2 + (w0 − bl
√
D)2 ≤ R2

0, v
2
k + w2

k ≤ H2
k , k = 1, . . . ,m}.

First we note that C is a symmetric convex body. For the volume of C we
get

Vol C =
�
· · ·

� ( � �

(v0−(a+bh))2+(w0−bl
√
D)2≤R2

0

dv0 dw0

)
dv1 dw1 · · · dvm dwm

= πR2
0

�
· · ·

� ( � �

v21+w
2
1≤H2

1

dv1 dw1

)
dv2 dw2 · · · dvm dwm

= · · · = πm+1H2
1 · · ·H2

mR
2
0

= πm+1H2
1 · · ·H2

m

(
22τ
√
D

π

)m+1 1

H2
1 · · ·H2

m

= 22m+2

(√
D

22h

)m+1

= 22m+2 detΛ.

Thus by Minkowski’s convex body theorem (see [11]) there exists a non-zero
lattice vector

(4.3) (x0 + y0h, y0l
√
D, . . . , xm + ymh, yml

√
D)T ∈ C ∩ Λ \ {0}.

Consequently, by the above principle (4.1), we get a non-zero integer vector

(β0, β1, . . . , βm)T = (x0 + y0(h+ l
√
−D), . . . , xm + ym(h+ l

√
−D))T

∈ D ∩ Zm+1
I \ {0}

with |βk| ≤ Hk, k = 1, . . . ,m, satisfying

(4.4) |β0 + β1Θ1 + · · ·+ βmΘm| ≤
(

2τD1/4

√
π

)m+1 1

H1 · · ·Hm
.

4.2. Proof of Theorems 3.1–3.6. Our proof starts in a classical man-
ner, and then we give a rough description how to get Baker type estimates.
Next we will introduce our tuning process, which allows us to continue from
the classical startup.

4.2.1. A classical start. We use the notation

Λ := β0 + β1Θ1 + · · ·+ βmΘm, βj ∈ ZI,

for the linear form to be estimated. Using our simultaneous linear forms

Lk,j(n) = Ak,0(n)Θj +Ak,j(n)
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from (3.2), we get

(4.5) Ak,0Λ = Ωk + β1Lk,1(n) + · · ·+ βmLk,m(n),

where

(4.6) Ωk = Ωk(n) = Ak,0(n)β0 − β1Ak,1(n)− · · · − βmAk,m(n) ∈ ZI.

If now Ωk 6= 0, then by (3.6), (3.7), (3.9), (4.5) and (4.6) we get

1 ≤ |Ωk| = |Ak,0Λ− (β1Lk,1 + · · ·+ βmLk,m)|(4.7)

≤ |Ak,0| |Λ|+
m∑
j=1

|βj | |Lk,j | ≤ Q(n)|Λ|+
m∑
j=1

HjRj(n).

Here we want to have, say,

(4.8)
m∑
j=1

HjRj(n) ≤ 1

2
,

in order to get a lower bound

(4.9) 1 ≤ 2|Λ|Q(n)

for our linear form Λ.

4.2.2. A rough version. Here we outline a rough version of the proof by
studying the case b = b0 = b1 = b2 = b3 = e0 = e1 = e2 = e3 = 0, for
simplicity. It starts by fixing the remainders and heights:

HjRj(n) =
1

2m
⇔ 2mHj = erj(n) = e(−dN+cnj)g(N)(4.10)

⇒ e(−dmN+c
∑m
j=1 nj)g(N) = e(c−dm)Ng(N) =

m∏
j=1

(2mHj)

⇒ Q(n) = eaNg(N) =
( m∏
j=1

(2mHj)
)a/(c−dm)

⇒ 1 ≤ 2|Λ|Q(n) = 2|Λ|
( m∏
j=1

(2mHj)
)a/(c−dm)

.

4.2.3. Tuning. Now a direct generalization of the second equality of
(4.10) would be

(4.11) rj(n) = log(2mHj),

where

rj(n) = (−dN + cnj)g(N)− e0N(logN)1/2 − e1N − e2 logN − e3.
However, (4.11) will be too rough, and thus we tune it into right frequency
by defining
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(4.12) Bj = log(2mHj) + dmĝl(W ) + e0m((logW )1/2 + 2) + e1m+ e2,

where

ĝ1(W ) = 1, ĝ2(W ) = logW + 2, ĝ3(W ) = 2W +m,

corresponding to our three cases. Now we state a new system of equations

m∑
j=1

wj = W,(4.13)

rj(w) = Bj , j = 1, . . . ,m.(4.14)

Here (4.14) reads

(4.15) (−dW + cwj)g(W )− e0W (logW )1/2 − e1W − e2 logW − e3
= log(2mHj) + dmĝl(W ) + e0m((logW )1/2 + 2) + e1m+ e2,

which by (4.13) gives

(4.16) (c− dm)Wg(W )− dm2ĝl(W )− e0mW (logW )1/2 − e1mW
− e2m logW − e3m− e0m2((logW )1/2 + 2)− e1m2 − e2m = logH.

The equation (4.16) has a solution W ≥ m if H is large enough. Then we
choose the largest W , say S := WL ≥ m. (Any solution W ≥ 1 would
be satisfactory but for technical reasons we choose W ≥ m.) From our
assumptions it follows that m ≥ 2, c > 0, g(S) ≥ 1, gl(S) ≥ 1 for l = 1, 2, 3,
and Hj ≥ 1 for j = 1, . . . ,m. Hence Bj ≥ log 4 for j = 1, . . . ,m, which by
(4.15) implies

sj := wj =
Bj + e0S(logS)1/2 + e1S + e2 logS + e3 + dSg(S)

cg(S)
(4.17)

>
log 4

cg(S)
> 0.

Consequently, also the estimate (4.17) is valid for H large enough (indepen-
dently of each individual term Hj).

Write σj = bsjc and σ = (σ1, . . . , σm)T , 1 = (1, . . . , 1)T . Then

(4.18) σ ≤ s < σ + 1.

First we note that

(4.19) T := N(σ + 1) = N(σ) +m ≤ N(s) +m = S +m, S < T.

Next we give an estimate for the difference
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(4.20) rj(s)− rj(σ + 1)

= (−dN(s) + csj)g(S)− e0N(s)(logN(s))1/2 − e1N(s)− e2 logN(s)− e3
−
(
(−dN(σ+ 1) + c(σj + 1))g(N(σ+ 1))− e0N(σ + 1)(logN(σ + 1))1/2

− e1N(σ + 1)− e2 logN(σ + 1)− e3
)

= d(Tg(T )− Sg(S)) + c(sjg(S)− (σj + 1)g(T ))

+ e0(T (log T )1/2 − S(logS)1/2) + e1(T − S) + e2(log T − logS).

By sj < σj + 1, the increasing property of g(x) and the mean value theorem
we get

(4.21) rj(s)− rj(σ + 1)

≤ d(Tg(T )− Sg(S)) + e0m((logS)1/2 + 2) + e1m+ e2.

Hence

(4.22)

rj(s) < rj(σ+1)+dmĝl(S)+e0m((logS)1/2 +2)+e1m+e2, l ∈ {1, 2, 3},
which is the reason to define (4.12).

From the non-vanishing of the determinant (3.4) and the assumption
β = (β0, β1, . . . , βm)T 6= 0 it follows that

(4.23) Ωk(σ + 1) ∈ ZI \ {0}
with some integer k ∈ [0,m]. Now we are ready to prove the essential esti-
mate

(4.24)
m∑
j=1

HjRj(σ + 1) =
m∑
j=1

Hje
−rj(σ+1)

(4.22)
<

m∑
j=1

Hje
−Bj+dmĝl(S)+e0m((logS)1/2+2)+e1m+e2 =

1

2
.

Hence by (4.7) we get

(4.25) 1 < 2|Λ|Q(σ + 1) = 2|Λ|eq(N(σ+1)) ≤ 2|Λ|eq(S+m),

where

q(S +m) = (a(S +m) + b log(S +m))g(S +m)

+ b0(S +m)(log(S +m))1/2 + b1(S +m) + b2 log(S +m) + b3.

Since g(x) is increasing we get

(4.26) g(S +m) = g(S) +mV (S), V (S) = max
S≤x≤S+m

{g′(x)}.

Or, remembering the assumption m ≤ S, we may use the estimates

(4.27) log(S +m) ≤ logS + 1, (log(S +m))1/2 ≤ (logS)1/2 + 1.



318 T. Matala-aho

Consequently,

(4.28) q(S +m) ≤ aSg(S) + Y (S),

where

Y (S) = amg(S) + amSV (S) + am2V (S) + bg(S +m) log(S +m)

+ b0(S +m)(log(S +m))1/2 + b1(S +m) + b2 log(S +m) + b3.

From (4.16) we get

(4.29) Sg(S) =
logH

c− dm
+

X(S)

c− dm
,

where

X(S) = dm2ĝl(S) + e0mS(logS)1/2 + e1mS + e2m logS

+ e0m
2((logS)1/2 + 2) + e1m

2 + e2m+ e3m.

Hence

(4.30) Q(σ + 1) ≤ H
a

c−dm+Z(S), Z(S) =
1

logH

(
a

c− dm
X(S) + Y (S)

)
.

In the following we will consider S as a variable greater than WL.

4.2.4. Case 1. We have ĝ1(S) = 1 and thus

Z(S) =
1

logH

(
a

c− dm
(dm2 + e2m logS + e2m) + am+ b log(S +m)

)
≤ 1

logH

(
a(dm2 + e2m)

c− dm
+ am+ b

)
+

logS

logH

(
ae2m

c− dm
+ b

)
.

Here (4.16) reads

(4.31) (c− dm)W − dm2 − e2m logW − e2m = logH.

Let W1 denote the largest solution of the equation

(4.32) (c− dm)W − dm2 − e2m logW − e2m = 1
2(c− dm)W.

Hence

(4.33) (c− dm)S − dm2 − e2m logS − e2m ≥ 1
2(c− dm)W1

for all S ≥ x1 := max{W1,WL,m}. Further, we choose H such that

(4.34) x1 ≤ S ≤ f logH, f =
2

c− dm
.

Thus

(4.35) Z(S) ≤ A1
1

logH
+B1

log logH

logH
,
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where

B1 =
ae2m

c− dm
+ b,

A1 =
adm2

c− dm
+ am+

ae2m

c− dm
+ b+B1 log f =

acm

c− dm
+B1 log(ef).

Hence

(4.36) 1 < 2|Λ|Q(σ + 1) ≤ |Λ|2eA1H
a

c−dm+B1
log logH
logH ,

where Λ = β0 + β1Θ1 + · · · + βmΘm is our linear form. This proves Theo-
rem 3.2.

4.2.5. Case 2. Here

q2(S +m) ≤ a(S +m) log(S +m) + b0(S +m)(log(S +m))1/2

+ b1(S +m) + b2 log(S +m) + b3
(4.27)

≤ aS log(S) + Y (S)

and

Y (S) = b0S(logS)1/2 + (a+ b0 + b1)S + (am+ b2) logS

+ b0m(logS)1/2 + (a+ b0 + b1)m+ b2 + b3.

From (4.16) we get

(4.37) S logS =
logH

c− dm
+

X(S)

c− dm
,

where

X(S) = dm2ĝ2(S) + e0mS(logS)1/2 + e1mS + e2m logS

+ e0m
2(logS)1/2 + (2e0 + e1)m

2 + e2m+ e3m,

ĝ2(S) = logS + 2.

Hence, by (4.30),

Z(S) =
1

logH

(
A2S(logS)1/2 +B2S + C2 logS +D2(logS)1/2 + E

)
,

where A2, B2, C2, D2, E2 are as in the statement of Theorem 3.4. Here
(4.16) has the form

(4.38) (c− dm)W logW − dm2(logW + 2)− e0mW (logW )1/2 − e1mW
− e2m logW − e0m2((logW )1/2 + 2)− e1m2 − e2m− e3m = logH.

Let W2 denote the largest solution of the equation

(4.39) (c− dm)W logW − dm2(logW + 2)− e0mW (logW )1/2 − e1mW

−e2m logW −e0m2((logW )1/2 +2)−e1m2−e2m−e3m =
c− dm

2
W logW.
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Assume then S ≥ x2 := max{W2,WL,m}. Analogously to Case 1 we may
choose H such that

(4.40) S logS ≤ f logH, f =
2

c− dm
.

By (3.12) we get

(4.41) S ≤ z(f logH) ≤ z2(f logH) =
f logH

log f logH
log(f logH)

valid for

(4.42) f logH > e.

Note the estimate

S(logS)1/2

logH
=
S1/2(S logS)1/2

logH
≤
(
f
z(f logH)

logH

)1/2

≤
(
f
z2(f logH)

logH

)1/2

,

too. By using the notation ξ(z,H) given in (3.13) we have

(4.43) Q(σ + 1) ≤ H
a

c−dm+Z(S) ≤ eE2H
a

c−dm+ξ(z,H),

where the error term satisfies

(4.44) ξ(z,H) ≤ ξ(z2, H).

Note that

B2
z(f logH)

logH
= o

(
A2

(
f
z(f logH)

logH

)1/2)
,

and similarly for the terms involving C2 and D2. Thus

A2

(
f
z(f logH)

logH

)1/2

will be the main error term, for any H large enough, if A2 6= 0.

Further, we note that the estimate (4.43) may be written as follows:

(4.45) Q(σ + 1) ≤

eE2(z(f logH))C2H
a

c−dm+A2

(
f
z(f logH)

logH

)1/2
+B2

z(f logH)
logH

+D2
(log z(f logH))1/2

logH ,

which by (4.44) implies

(4.46) Q(σ + 1) ≤

eE2(z2(f logH))C2H
a

c−dm+A2

(
f
z2(f logH)

logH

)1/2
+B2

z2(f logH)
logH

+D2
(log z2(f logH))1/2

logH .

Next we shall prove the estimates (3.19), (3.21) under the assumption (3.20).
First we get
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z2(y) =
y

log y − log log y
≤ log x0

log x0 − log log x0

y

log y
= ρ2(x0)

y

log y

to be valid for all y ≥ x0 ≥ ee. Further, we have

z2(fy) ≤ ρ2(x0)f
y

log fy
= ρ2(x0)f

(
1− log f

log fy

)
y

log y

for fy ≥ x0. In particular,

z2(f logH) ≤ ρ2(x0)f
(

1− log f

log(f logH)

)
logH

log logH
(4.47)

≤ ρ2(x0)f
logH

log logH

for all

f logH ≥ x0 ≥ ee, H > e,

where the last inequality in (4.47) is valid with 0 < c− dm ≤ 2. Hence

(4.48)

Q(σ + 1) ≤ eE2

(
fρ

logH

log logH

)C2

H
a

c−dm+
A2f
√
ρ√

log logH
+

B2fρ
log logH

+
D2

logH

√
log
(
fρ logH
log logH

)
,

if ρ ≥ ρ2(x0), by (4.44) and (4.47). Now substitute (4.43), (4.45) and (4.48),
respectively, into

(4.49) 1 < 2|Λ|Q(σ + 1),

proving (3.13), (3.16) and (3.23). This ends the proof of Theorem 3.4 and
Corollary 3.5.

4.2.6. Case 3. Here ĝ3(S) = 2S +m, so (4.16) reads

(4.50) (c− dm)W 2 − (2dm2 + e1m)W − dm3 − e1m2 = logH.

Now we simply choose the larger solution

(4.51)

S =
2dm2 + e1m+

√
(2dm2 + e1m)2 + 4(dm3 + e1m2 + logH)(c− dm)

2(c− dm)
.

For convenience, we will use the estimate

(4.52) 1 = S3 ≤ S ≤ v1 + v2
√

logH

with

v1 =
2dm2 + e1m+

√
e21m

2 + 4cdm3 + 4ce1m2

2(c− dm)
, v2 =

1√
c− dm

.
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Now, by (4.50) and (4.52), we get

q3(S +m) = a(S +m)2 + b1(S +m)

=
a

c− dm
logH +

(
a(2dm2 + e1m)

c− dm
+ 2am+ b1

)
S

+
a(dm3 + e1m

2)

c− dm
+ am2 + b1m

≤ a

c− dm
logH + v2w1

√
logH + v1w1 + w2,

where

w1 =
a(2dm2 + e1m)

c− dm
+ 2am+ b1, w2 =

a(dm3 + e1m
2)

c− dm
+ am2 + b1m.

Hence

Q(σ + 1) ≤ H
a

c−dm+
B3

logH
+

A3√
logH = eB3H

a
c−dm+A3

1√
logH ,

where

A3 = v2w1, B3 = v1w1 + w2.

In particular, if b1 = e1 = 0, then

A3 =
2acm

(c− dm)3/2
, B3 =

acm2(c+ dm+ 2
√
cdm)

(c− dm)2
.

This proves Theorem 3.6.

4.2.7. The term Gl. Yet we need to determine terms Gl, l = 1, 2, 3.
In each case, there are some assumptions imposed on H. The determinant
condition (3.4) and the conditions S ≥ m, (4.34) and (4.40) should be
satisfied. So, if we define f1 = x1/f , f2 = (x2 log x2)/f , f3 = S3 and suppose

(4.53) H ≥ Gl := max{m,Nl, e
fl},

then Theorem 3.1 is proved. Finally we note that in Corollary 3.5 we also
need the assumption (3.20). The condition (4.53) applied in Case 2 shows
in particular that

(4.54) f logH ≥ f logG2 ≥ x2 log x2,

and thus in (3.22) we may choose

ρ =
log(x0)

log(x0)− log log(x0)
, x0 = max{f logm, f logN2, x2 log x2, e

e}.
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