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1. Introduction. Let ` be a rational prime and K be a number field
containing a primitive `th root of unity. Let c denote an ideal class of K of
order `, p a prime ideal contained in c, and L an abelian extension of K in
which c capitulates, i.e., p becomes principal in L. General descriptions of
which ideal classes capitulate in a given extension L of K do not presently
exist; see [FLR, letter 31] for details on the problem’s development and its
eventual description by Artin as ‘hopeless’. On the other hand, given an ideal
class, there is an easy way of finding an extension of K in which c capitulates:
Let ap be any generator of the principal ideal p`; then c capitulates in the
Kummer extension K(

√̀
ap). Letting q denote a prime ideal of K whose

corresponding Frobenius element generates Gal(K(
√̀
ap)/K) for every choice

of ap, we show that p becomes principal in L if and only if q is not a norm
from a specific ray class field.

2. Notation and conventions. Let ` denote a fixed rational prime,K a
number field containing a primitive `th root of unity, K× the set of nonzero
elements ofK,OK its ring of integers, andO×K the group of global units ofK.
As O×K is a finitely generated group, the extension one gets by adjoining all
of the `th roots of these units is a finite abelian extension of K. Ordinarily,
we would denote this extension by K(

√̀
O×K), but to ease the notational load

later on, we will denote this field by FK . Further, c will denote an ideal class
of K of order `, p a prime ideal in c, and ap a generator of the principal
ideal p`. Now, ap is unique only up to the multiplication of ap by some global
unit η ∈ O×K , so that there are many different extensions of K× one can get
by adjoining the `th root of such an ap. However, since all of the ap’s differ by
a global unit, there is only one extension of FK one gets by adjoining the `th
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root of any such ap. That is, the composite FK(
√̀
ap) is independent of the

choice of ap. Finally, L will denote an abelian extension of K with ` | [L : K].

3. Results

Lemma 3.1. With the notation as above, the ideal class c capitulates in
L if and only if

FK(
√̀
ap) ⊂ FL.

Proof. If c capitulates in L, then pOL = αOL for some α ∈ L, so that
p`OL = α`OL = apOL. Thus ap = α` ·η for some η ∈ O×L ,

√̀
ap = α · √̀η, and

we conclude thatFK(
√̀
ap) = FK(α·√̀η) ⊂ FL, since bothα and

√̀
η are inFL.

Conversely, assume FK(
√̀
ap) ⊂ FL. We consider two cases:

Case I: L = L(
√̀
ap). This implies that

√̀
ap ∈ L, so p`OL = (

√̀
ap)

`OL.
By the unique factorization of ideals in OL, we get pOL = (

√̀
ap)OL, i.e.,

p is principal in L.

Case II:L ⊂ L(
√̀
ap) ⊂ FL. This implies that [L(

√̀
ap) : L] = `. However,

all of the subfields of FL that are degree-` extensions of L are of the form
L(
√̀
η), where η ∈ O×L . So, L(

√̀
η) = L(

√̀
ap) for some such global unit η.

Then by Kummer theory, ap = b` · ηm for b ∈ OL and (m, `) = 1. Hence

p`OL = (b` · ηm)OL ⇒ pOL = bOL,

by the unique factorization of ideals in L, i.e., p is now principal, and c has
capitulated in L.

It will be convenient to recast this as

Corollary 3.2. c does not capitulate in L if and only if

FK = FL ∩ FK(
√̀
ap).

Proof. Since FL already contains FK and since ` is prime, the only
choices for FL ∩ FK(

√̀
ap) are that it equals FK (which we know by Lemma

3.1 is equivalent to c not capitulating) or that it equals FK(
√̀
ap) (which we

know by Lemma 3.1 is equivalent to c capitulating).

Let f denote the conductor of FL over K. The ideal versions of class field
theory [J] then give us:

Fact 1. Because FL is abelian over L, mapping ideals of L that are
prime to f to Gal(FL/F ) via the Frobenius map (or rather its extension)
yields an isomorphism

I fL

NFL/L(I fFL
)i(Lf,1)

∼−→ Gal(FL/L),

where I fL denotes the ideals of L that are prime to f, and i(Lf,1) is the set of
principal ideals of L that have a generator that is congruent to 1 modulo f.
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Fact 2. The maximal abelian extension of K inside FL corresponds to
the FL/K norm of I fFL

. More precisely,

I fK

NFL/K(I fFL
)i(Kf,1)

∼−→ Gal((FL ∩Kab)/K),

so that the image of an ideal under this map acts trivially on FL ∩Kab if
and only if it is contained in NFL/K(I fFL

)i(Kf,1).

For the remainder of the paper, q will denote a prime ideal not dividing

` whose Frobenius element
[FK(

√̀
ap)/K

q

]
generates Gal(FK(

√̀
ap)/FK). That

is, q is to split completely in FK and its Frobenius element is to generate
Gal(FK(

√̀
ap)/FK). Such primes q will be called reciprocal primes of p. Our

theorem below can then be loosely paraphrased as ‘The ideal p of K becomes
principal in L if and only if every one of its reciprocal primes q is not a norm
in a suitable ray class group’:

Theorem 3.3 (Reciprocity). The prime ideal p becomes principal in L
if and only if every reciprocal prime q of p not dividing f is not contained in
NFL/K(I fFL

)i(Kf,1).

Proof. First, assume p becomes principal in L. By Corollary 3.2, this
implies that FK(

√̀
ap) ⊂ FL. Let q be any reciprocal prime of p, i.e., a prime

ideal of K whose Frobenius element
[FK(

√̀
ap)/K

q

]
generates

Gal(FK(
√̀
ap)/FK). With this as our definition of q, we see that

[FL/K
q

]
,

which restricts to the nontrivial
[FK(

√̀
ap)/K

q

]
, cannot be trivial in Gal((FL∩

Kab)/K), hence by Fact 2, q is not contained in NFL/K(I fFL
)i(Kf,1).

Conversely, assume that p does not become principal in L. By Corol-
lary 3.2, this implies that FK(

√̀
ap) 6⊂ FL. Since FL and FK(

√̀
ap) are both

Galois over K, so is their composite FL(
√̀
ap). We would now like to ap-

ply the Chebotarev density theorem, using the same notation as in [L-S,
Theorem 3]; with that in mind, let G = Gal(FL(

√̀
ap)/K), H1 = 〈1〉 ⊂

H2 = Gal(FL(
√̀
ap)/FL). The Chebotarev density theorem then guarantees

the existence of an infinitude of prime ideals q of K, hence at least one

not dividing f, whose Frobenius element
[FL(

√̀
ap)/K

q

]
lies in H2 \ H1, i.e.,

generates H2, since |H2| = ` is a prime. This Frobenius element fixes FL,
hence fixes FK ; it also nontrivially permutes the different `th roots of ap,
all of which are contained in FK(

√̀
ap). Thus, its restriction to FK(

√̀
ap) in

fact generates Gal(FK(
√̀
ap)/FK) (thus validating our calling this prime q).

Finally, since
[FL(

√̀
ap)/K

q

]
does fix FL, the isomorphism of Fact 2 assures us

that q does in fact lie in NFL/K(I fFL
)i(Kf,1).
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In the examples of the next section, we will make use of the following,
using the same notation and conventions as in the theorem:

Corollary 3.4. Let p be any nonprincipal prime ideal of K, and q any
one if its reciprocal primes that does not divide f.

(a) If q does not split completely in L, then p becomes principal in L.
(b) If q splits completely in FL, then p does not become principal in L.

Proof. To prove (a), note that this implies that q does not split com-

pletely in FL∩Kab, hence does not lie in NFL/K(I fFL
)i(Kf,1). The result then

follows from the theorem. To prove (b), note that this implies that q splits

completely in FL ∩ Kab, hence does lie in NFL/K(I fFL
)i(Kf,1). This result,

too, then follows from the theorem.

Remarks. 1. Note that if every set of reciprocal primes contains a non-
principal ideal, we would have a quick proof of a poor man’s version of the
Principal Ideal Theorem, as every nonprincipal prime ideal is not a norm in
the full Hilbert class field, yielding the result that every ideal class of order `
becomes principal there.

2. Note that even if L/K is unramified, the condition of p becoming
principal still requires the use of the conductor f (which in that case is only
divisible by primes of K which divide `).

3. It is tempting to try and conclude that the capitulation kernel VL/K
is isomorphic to the Galois group of FL ∩ Kab/FK , but this latter group
unfortunately includes `-power cyclic extensions of L/K, which have nothing
to do with the capitulation (and whose interference here would have to be
filtered out.)

4. Examples. We would now like to illustrate how the idea of reciprocal
primes can be used to tie the capitulation problem with much of the basics
of class field theory—norms, splitting of primes, Artin reciprocity, even clas-
sical reciprocity laws—using some of the celebrated examples that have been
used to demonstrate the capriciousness of the capitulation process. As de-
scribed in [C, pp. 98–99], these are (i) the ‘bad principalization’ of the field
Q(
√
−21), where every ideal class becomes principal in every subfield of its

Hilbert class field, and (ii) the ‘good principalization’ of the field Q(
√
−195),

where there appears to be a Galois-type correspondence between the ideal
classes and the subfields of the Hilbert class field in which they capitulate.
Nearly all of the numerical evidence cited below was calculated using SAGE.

Example (Bad principalization). The first example, as described in [C,
pp. 98–99], is that of ‘bad principalization’ where every ideal class becomes
principal in every subfield of the Hilbert class field. In our notation, K =
Q(
√
−21), and its class group is of the form C2 × C2, with prime ideal
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generators p5 = 〈5,
√
−21 + 2〉 (one of the two prime ideals of K lying over

over the rational prime 5) and p2 = 〈2,
√
−21 + 1〉 (the lone prime ideal of

K lying over the rational prime ideal (2), which ramifies in K). For each of
these two generating ideal classes and each subfield L of the Hilbert class
field, we will show that a very modest search yields a reciprocal prime q
that does not split in L, hence showing by Corollary 3.4(a) that each p does
become principal in L. For the first prime p5 and subfield L = K(

√
7) we

provide all the details. For each of the other prime ideal-subfield pairs we
will simply cite the reciprocal prime q that satisfies the corollary for that
subfield.

(a) Since all of the nontrivial ideal classes of K have order 2, we know
that p25 must be principal, and in fact, p25 = (

√
−21+2). Since K is a complex

quadratic field that contains no roots of unity, its only units are ±1, hence
FK = K(

√
−1), and then

FK(
√
ap5) = K(

√
−1,

√√
−21 + 2).

Theorem 3.3 asserts that p5 becoming principal in L is equivalent to some
reciprocal prime q to p5 not lying in NFL/K(I fFL

)i(Kf,1). We wish to apply
Corollary 3.4(a), so search for a prime ideal of K which simultaneously
(a) splits completely in FK , (b) does not split completely in FK(

√
ap5) =

K(
√
−1,

√√
−21 + 2), and (c) does not split in L. Note that satisfying (a)

and (b) qualify q as a reciprocal prime and that (c) then shows that q satisfies
the hypothesis of Corollary 3.4(a). Consider the rational prime ideal (41):
Since both Legendre symbols

(−1
41

)
=
(−21

41

)
= 1, (41) splits completely

in FK , factoring in K, say into p41p
′
41. Note further that as the minimal

polynomial of
√√
−21 + 2 over Q is x4 − 4x2 + 25, that FK(

√√
−21 + 2)

is Galois both over K and over Q, and that

x4 − 4x2 + 25 ≡ (x2 + 13)(x2 + 24) (mod 41),

we see both primes p41 and p′41 have degree 2 from FK to FK(
√√
−21 + 2),

i.e., either can serve as reciprocal prime to p5. Let q = p41. Finally, note
that

(
7
41

)
= −1, hence the rational prime ideal (41) does not split in Q(

√
7).

Thus the reciprocal prime q does not split in L = K(
√

7), implying that p5
does become principal in L by Corollary 3.4(a).

(b) The capitulation of all the other ideal class generators follows along
exactly the same lines as in (a); that is, in each case it was possible to
find a reciprocal prime q to the corresponding class’s prime ideal generator
which did not split in L. The following table summarizes this field’s entire
capitulation situation for unramified extensions of K; as in the calculation
above, the reciprocal primes listed refer to either of the two prime ideals
of K occurring in the factorization of the corresponding rational prime.
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Subfield Prime generator Reciprocal prime

K(
√

7) p5 p41

K(
√

7) p2 p5

K(
√

3) p5 p17

K(
√

3) p2 p5

K(
√
−1) p5 p5

K(
√
−1) p2 p41

Example (Good principalization). The second example, also described
in [C, pp. 98–99], is that of ‘good principalization’, where there appears to
be a Galois-type correspondence between the ideal classes and the subfields
of the Hilbert class field in which they capitulate, i.e., in each subfield we
have prime ideals becoming principal while others do not. In this example,
K = Q(

√
−195), whose class group is again of the form C2×C2. Prime ideal

generators for the class group of K are given by p7 = 〈7,−
√
−195/2 + 1/2〉

(one of the two primes of K lying over the rational prime ideal (7)) and
p3 = 〈3,

√
−195/2 + 3/2〉 (the lone prime of K lying over the rational prime

ideal (3), which ramifies in K). As our goal here is to give some concrete
flavor as to how reciprocal primes and capitulation interact, we will look
only at the details of what happens in L = K(

√
65) = K(

√
−3).

(a) The prime p3 becomes principal in L; this can be shown by exhibiting
a reciprocal prime q which splits in FK = K(

√
−1), but not in Q(

√
−3). The

rational prime 17 satisfies(
−195

17

)
=

(
−1

17

)
= 1,

(
−3

17

)
= −1,

so that either prime of K lying above the rational prime ideal (17) satisfies
the criteria of being a reciprocal prime that does not split in L = K(

√
−3),

hence p3 does become principal in L by Corollary 3.4(a).

(b) The other prime ideal of K given above is p7 = 〈7,−
√
−195/2+1/2〉,

which satisfies the relation p27 = (−
√
−195/2+1/2). In order to use Corollary

3.4(b) to show that the class of p7 does not capitulate in L, we need to find
a reciprocal prime that splits completely in FL, so we have to assemble quite
a bit more information:

(i) K is a complex quadratic field whose only units are ±1, hence FK =
K(
√
−1), and then, following the notation of the theorem, FK(

√
ap) =

K
(
i,
√
−
√
−195/2 + 1/2

)
, which is Galois over both K and Q, and the

minimal polynomial of
√
−
√
−195/2 + 1/2 over Q is x4 − x2 + 49.

(ii) The structure of the unit group of L = K(
√

65) = K(
√
−3) is that

of C6 × Z. That is, it contains a primitive sixth root of unity ζ6 (which
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visibly comes from the presence of
√
−3 in the field) and one fundamental

unit. In this case, it is possible to use the fundamental unit η =
√

65 + 8
of Q(

√
65) as L’s fundamental unit. Since ζ12 = i · ζ3 and ζ3 ∈ L, we have

FL = L(
√
ζ6,
√
η) = L(i,

√
η). Finally, since the minimal polynomial of η

over Q is x2−16x+1, the minimal polynomial of
√
η over Q is x4−16x2+1.

In order to use Corollary 3.4(b), we will try to find a rational prime
ideal (q) which splits completely in FL (hence splits in FK ⊂ FL), but does

not split completely in FK(
√
ap7) = K

(
i,
√
−
√
−195/2 + 1/2

)
. Finding a

rational prime number q that satisfies all of the following simultaneously is
sufficient:

(1)
(−195

q

)
=
(−3

q

)
=
(−1

q

)
= 1,

(2) x4 − 16x2 + 1 splits completely (mod q),
(3) x4 − x2 + 49 does not split completely (mod q).

Now, consider the prime q = 193. It is easily verified that this choice of
q satisfies (1) above. Note that

x4 − 16x2 + 1 ≡ (x+ 68)(x+ 88)(x+ 105)(x+ 125) (mod 193),

which shows that (2) is also satisfied. These two facts, together with what
we know about FL, imply that the rational prime ideal (193) splits com-
pletely in FL, hence also splits in FK , and K. Let (193) = p193p

′
193 be the

factorization of (193) in K. Finally, noting that

x4 − x2 + 49 ≡ (x2 + 79)(x2 + 113) (mod 193)

is a factorization into irreducibles, we see that both primes of K dividing

193 have degree 2 in FK(
√
ap7) = K

(
i,
√
−
√
−195/2 + 1/2

)
, and can serve

as reciprocal prime to p7. Thus q = p193 is a reciprocal prime to p7, which
we have already shown splits completely in FL. By Corollary 3.4(b), then,
p7 does not become principal in L.
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