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The dual form of the approximation property for
a Banach space and a subspace
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In memory of Aleksander Pełczyński

Abstract. Given a Banach space X and a subspace Y , the pair (X,Y ) is said to
have the approximation property (AP) provided there is a net of finite rank bounded
linear operators on X all of which leave the subspace Y invariant such that the net
converges uniformly on compact subsets of X to the identity operator. In particular, if
the pair (X,Y ) has the AP then X, Y , and the quotient space X/Y have the classical
Grothendieck AP. The main result is an easy to apply dual formulation of this property.
Applications are given to three-space properties; in particular, if X has the approximation
property and its subspace Y is L∞, then X/Y has the approximation property.

1. Introduction. In [FJP] the authors and the late A. Pełczyński in-
troduced the notion of the bounded approximation property (BAP) for a
Banach space X and a subspace Y . The pair (X,Y ) is said to have the
approximation property (AP) provided the identity on X is the τ -limit of a
net of finite rank bounded linear operators on X all of which leave the sub-
space Y invariant. Here we recall that the τ -topology on the space L(X) of
bounded linear operators on the Banach space X is the topology of uniform
convergence on compact subsets of X. If the approximating net of finite rank
operators can be chosen so that their norms are uniformly bounded by λ,
then (X,Y ) is said to have the λ-bounded approximation property (λ-BAP),
and (X,Y ) has the BAP provided it has the λ-BAP for some λ <∞. When
the subspace Y is either the whole space or the zero subspace, these concepts
reduce to the classical concepts of AP and BAP for a single space.

Obviously if (X,Y ) has the BAP then (X,Y ) has the AP. Non-obvious
is the fact, pointed out by Lissitsin and Oja [LO, Corollary 5.12], that if X
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is reflexive and (X,Y ) has the AP, then (X,Y ) has the 1-BAP. The root for
this is Grothendieck’s classical theorem [Gr] that the AP implies the 1-BAP
for reflexive spaces, as improved by Godefroy–Saphar [GS1, Theorem 1.5],
Oja and collaborators (see, e.g., [LMO] and references therein), and others.
The AP for a pair (X,Y ) was not considered in [FJP], but even if one cares
only about reflexive spaces it is probably worthwhile to consider the concept,
in part because the dual form of the AP is simply stated and easy to work
with, while the dual form of the BAP is more problematical.

In this note we prove in Theorem 2.2 the dual form for what it means for
a pair (X,Y ) to have the AP, and give a couple of applications. In a paper
under preparation we will give a far reaching extension of the duality result
where the subspace Y is replaced by a nest of subspaces of X. Although the
proof of the general result is not essentially more complicated than what is
treated here, it does require introducing concepts extraneous to the context
of this short note. It seemed to us that the special case considered here as well
as the applications were interesting enough to warrant a separate publication.
The applications of Theorem 2.2 are new approximation property three-space
results in the spirit of other such results (see e.g. [GS2] and [CK]).

We use standard Banach space theory notation and concepts, as are
contained e.g. in [LT]. F(X) denotes the finite rank operators on X.

2. Joint AP. We begin with a special case of a known lemma (part (1)
is contained in [R] and part (2) is in [Sp]) but include a simple proof.

Lemma 2.1. Let FY (X) = {T ∈ F(X) : TY ⊆ Y }.
(1) x∗ ⊗ x ∈ FY (X) if and only if either x∗ ∈ Y ⊥ or x ∈ Y .
(2) If F ∈ FY (X), then F is the sum of n rank one elements of FY (X),

where n is the rank of F .

Proof. For (1), if x∗ ∈ Y ⊥ then (x∗ ⊗ x)Y = 0 so x∗ ⊗ x ∈ FY (X). If
x ∈ Y then (x∗ ⊗ x)X ⊆ span {x} ⊆ Y so x∗ ⊗ x ∈ FY (X). This gives “⇐”.
On the other hand, if x∗ 6∈ Y ⊥ and x 6∈ Y , then there is y ∈ Y such that
〈x∗, y〉 6= 0, hence (x∗ ⊗ x)y = 〈x∗, y〉x 6∈ Y , whence x∗ ⊗ x 6∈ FY (X). This
gives “⇒”.

For (2), let x1, . . . , xm be a basis for FX ∩ Y and extend this to a basis
for FX by adding xm+1, . . . , xn, so that

(∗) span{xm+1, . . . , xn} ∩ Y = {0}.
Write F =

∑n
k=1 x

∗
k ⊗ xk. By part (1) of this lemma, x∗k ⊗ xk ∈ FY (X)

for k ≤ m. To complete the proof it is by (1) sufficient to show that for all
k > m we have x∗k ∈ Y ⊥. If for some k > m we had x∗k 6∈ Y ⊥, then, choosing
y ∈ Y with 〈x∗k, y〉 6= 0, by (∗) we would have

∑n
j=m+1〈x∗j , y〉xj 6∈ Y . But∑m

j=1〈x∗j , y〉xj ∈ Y , so we would have Fy 6∈ Y , a contradiction.
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Theorem 2.2 below is the main result of this note. N(X,Z) denotes the
nuclear operators from X to Z and is abbreviated as N(X) when X = Z. In
the hypothesis we assume that the space X has the AP in order to formulate
the theorem with nuclear operators N(X) rather than with the projective
tensor product of X∗ with X. Given T ∈ N(X), tr(T ) is the trace of T ,
which is well-defined when X has the AP by Grothendieck’s fundamental
result [Gr], [LT, Theorem 1.e.15].

Theorem 2.2. Suppose that Y ⊆ X and X has the AP. The following
are equivalent.

(1) The pair (X,Y ) has the AP.
(2) For all T ∈ N(X) for which TX ⊆ Y and TY = 0 we have tr(T ) = 0.

Proof. (1)⇒(2). Assume (2) is false and pick T ∈ N(X) such that TY = 0
and TX ⊆ Y but tr(T ) = 1. So T ∈ L(X, τ)∗ and 〈I, T 〉 = 1. Let F ∈ FY (X).
We want to show that 〈F, T 〉 = 0, which would contradict (1). By Lemma
2.1, it is enough to check that 〈x∗⊗x, T 〉 = 0 if either x∗ ∈ Y ⊥ or x ∈ Y . But
〈x∗⊗x, T 〉 = 〈x∗, Tx〉, so this is clear from the facts that Tx ∈ Y and TY = 0.

(2)⇒(1). If (1) is false, we can separate I from FY (X) with a τ -con-
tinuous linear functional on L(X), which, since X has the AP, is repre-
sented by a nuclear operator T on X (see [Gr], [LT, Theorems 1.e.3, 1.e.4]).
Then tr(T ) = 〈I, T 〉 6= 0 but 〈F, T 〉 = 0 for all F ∈ FY (X). In particular,
〈x∗, Tx〉 = 〈x∗ ⊗ x, T 〉 = 0 if either x∗ ∈ Y ⊥ or x ∈ Y . So if x ∈ X, then for
all x∗ ∈ Y ⊥ we have 〈x∗, Tx〉 = 0, which is to say that Tx ∈ (Y ⊥)⊥ = Y . So
TX ⊆ Y . If y ∈ Y , then for all x∗ ∈ X∗ we have 〈x∗, T y〉 = 〈x∗ ⊗ y, T 〉 = 0,
which says that TY = 0.

A sequence Y → X → Z of Banach spaces is a short exact sequence (ses)
when the operator Y → X is an isomorphic embedding and the operator
X → Z is surjective and has Y as its kernel. Up to passing to equivalent
norms, this is just saying that Y is a subspace of X and Z is the quotient
space X/Y . A ses Y → X → Z locally splits if the dual ses Z∗ → X∗ → Y ∗

splits, which just means that Z∗ is a complemented subspace of X∗. This
is equivalent to saying that finite dimensional subspaces of Z uniformly lift
toX. The theory of ses of Banach spaces is presented in [CG], but much more
than we use is contained in [J, Corollary 1.4] and the discussion preceding
that corollary. If X → X∗∗ is the natural embedding, then the ses X →
X∗∗ → X∗∗/X locally splits, but X → X∗∗ → X∗∗/X need not split (e.g.,
for X = c0).

Proposition 2.3. Suppose that Y → X → X/Y is a short exact se-
quence that locally splits, and Y ∗∗∗ and X both have the AP. Then the pair
(X,Y ) has the AP and hence X/Y has the AP.
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Proof. By Theorem 2.2 it is enough to show that if T is a nuclear operator
on X such that TX ⊆ Y and TY = 0, then the trace of T is zero. Consider T
as an operator intoX∗∗ = Y ⊥⊥⊕Z (where Z is isomorphic to (X/Y )∗∗). This
is also nuclear, and composing with the projection of X∗∗ onto Y ⊥⊥ (≡ Y ∗∗)
we see that T is also nuclear when considered as an operator into Y ∗∗. Since
Y ∗∗∗ has the AP, by the corrected theorem of Grothendieck [Gr] proved by
Oja and Reinov [OR], T is nuclear when considered as an operator from X
into Y . Since T is zero on Y , the trace of T is zero.

Remark. The assumption on Y in Proposition 2.3 cannot be weakened
to “Y ∗∗ has the AP”. (Consider a James–Lindenstrauss space Y such that
Y ∗∗ has a basis and Y ∗∗/Y is a reflexive space that fails the AP, and let
X = Y ∗∗. It was this kind of example that led Oja and Reinov to the correct
statement of Grothendieck’s “theorem”.)

Corollary 2.4. Suppose that Y → X → X/Y is a short exact sequence,
X has the AP, and Y is L∞. Then the pair (X,Y ) has the AP and hence
X/Y has the AP.

Proof. The short exact sequence locally splits because Y is L∞. The
space Y ∗∗∗ is L1 and thus has the AP, so the conclusion follows from Propo-
sition 2.3.

In Corollary 2.4, the roles of X and Y can be interchanged.

Corollary 2.5. Suppose that Y → X → X/Y is a short exact sequence,
X is L∞, and Y has the AP. Then the pair (X,Y ) has the AP and hence
X/Y has the AP.

Proof. By Theorem 2.2 it is enough to show that if T is a nuclear operator
on X such that TX ⊆ Y and TY = 0, then the trace of T is zero. Just as
in Proposition 2.3, for that it is enough to check that T is nuclear when
considered as an operator into Y . It is, by an observation of Stegall and
Retherford [SR, Theorem III.3], because X is L∞.

Remark. The BAP version of Corollary 2.5 was proved in [FJP].

Next we prove a BAP version of Corollary 2.4. It gives a slight improve-
ment of the Castillo–Moreno result [CM, Lemma 3.1] that X/Y has the
BAP if X has the BAP and Y is L∞. Our direct geometrical argument gives
an alternative proof of the Castillo–Moreno result but is clumsier than the
algebraic argument in [CM] or the proof above of Corollary 2.4.

Proposition 2.6. Suppose that Y → X
Q→ X/Y is a short exact se-

quence, X has the BAP, and Y is L∞. Then the pair (X,Y ) has the BAP.

Proof. Let G be a finite dimensional subspace of X. We want to find
T ∈ FY (X) that is the identity on G and has “good” norm (here and in
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the following “good” means that the norm is independent of G). Since Y
is L∞, the short exact sequence locally splits, so there is an operator U :
QG → X with QU the identity on QG and ‖U‖ depends only on how well
the short exact sequence locally splits. So Y + UQG is a “good” direct sum
decomposition of the space Y + UQG because U is a “good” isomorphism
on QG and QU is the identity on the range of QG. By basic linear algebra,
there is a finite dimensional subspace E of Y such that G ⊆ E+UQG. Now
X has the BAP, so there is S ∈ F(X) with S the identity on UQG and the
norm of S controlled by the BAP constant of X.

We next replace S with an operator S1 ∈ F(X) that is still the identity
on UQG, has controlled norm, and is zero on Y (so that S1 ∈ FY (X)). Since
G is arbitrary and UQG = QG, this will give the Castillo–Moreno lemma
mentioned above. To get S1, we define an operator V ∈ F(X) that agrees
with S on Y with SV vanishing on UQG so that ‖V ‖ is controlled and set
S1 := S − V . The L∞ structure of Y is used to define V . Write Y as a
directed union of a net Yα of subspaces of Y so that the Yα are uniformly
isomorphic to `nα

∞ with nα < ∞. Since Y + UQG is a “good” direct sum
decomposition, the projections Pα from Yα + UQG onto Yα that are zero
on UQG have uniformly bounded norm, and, by the injective property of
`∞ spaces, these projections extend to uniformly bounded projections (still
denoted by Pα) from X onto Yα. Of course, the net (Pα) converges pointwise
on Y to the identity on Y , so the net SPα has (since S has finite rank) a
subnet that converges pointwise on X, necessarily to a finite rank operator V
that agrees with S on Y and is zero on UQG. This completes the construction
of S1 := S−V (and, incidentally, our alternative proof for [CM, Lemma 3.1]).
The remainder of the proof is very easy. Just take α so that E is a subspace
of Yα and define T := Pα + S1.
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