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GENERAL REILLY-TYPE INEQUALITIES
FOR SUBMANIFOLDS OF WEIGHTED EUCLIDEAN SPACES

BY

JULIEN ROTH (Marne-la-Vallée)

Abstract. We prove new upper bounds for the first positive eigenvalue of a family
of second order operators, including the Bakry–Émery Laplacian, for submanifolds of
weighted Euclidean spaces.

1. Introduction. A weighted manifold (M̄, ḡ, µ̄f ) is a Riemannian man-
ifold (M̄, ḡ) endowed with a weighted volume form µ̄f = e−fdvḡ, where f
is a real-valued smooth function on M̄ and dvḡ is the Riemannian volume
form associated with the metric ḡ. In the present note, we will focus on the
case where (M̄, ḡ) is the Euclidean space (RN , can) with its canonical flat
metric, and we will consider isometric immersions of Riemannian manifolds
(Mn, g) into (RN , can). For such an immersion, we define the weighted mean
curvature vector Hf = H − (∇f)⊥, where H is the mean curvature vector
of the immersion and (∇f)⊥ is the projection of ∇f on the normal bundle
T⊥M .

We can define on M a divergence and a Laplace operator associated with
the volume form µf = e−fdvg by

divf (Y ) = div(Y )− 〈∇f, Y 〉 and ∆fu = −divf (∇u) = ∆u+ 〈∇f,∇u〉,

where ∇ is the gradient on M , that is, the projection of ∇ on TM . We
call them the f -divergence and the f -Laplacian; the latter is often called
the Bakry–Émery Laplacian, Witten Laplacian or drifting Laplacian in the
literature. It is a classical fact that ∆f has a discrete spectrum composed of
an infinite sequence of non-negative real numbers

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞.

The eigenvalue λ0 = 0 has multiplicity one and corresponds to constant
functions.
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In [4], Batista, Cavalcante and Pyo proved the following upper bound
for the first positive eigenvalue of ∆f :

(1.1) λ1(∆f ) ≤
	
M ‖Hf −∇f‖2µf

n volf (M)
=

	
M (‖H‖2 + ‖∇f‖2)µf

n volf (M)
,

where volf (M) =
	
M µf is the f -volume of M . (1.1) is a weighted version of

the classical Reilly inequality (see [9])

λ1(∆) ≤ 1

n vol(M)

�

M

‖H‖2 dvg.

Very recently, Domingo-Juan and Miquel [6] obtained (1.1) with a more com-
plete characterization of the equality case by the use of mean curvature flow.

The aim of this note is to give a general inequality, which contains the
above one, for a larger class of f -divergence-type operators. More precisely,
for a positive symmetric divergence-free (1, 1)-tensor T , we define the oper-
ator LT,f by

LT,fu = −divf (T∇u)

for any C2 function u on M . We prove the following theorem.

Theorem 1.1. weighted Let (Mn, g) be a connected and oriented closed
Riemannian manifold isometrically immersed into the weighted Euclidean
space RN with density e−f . Let S and T be two symmetric divergence-free
(1, 1)-tensors over M . Assume moreover that T is positive. Then the first
positive eigenvalue of the operator LT,f satisfies the inequality

(1.2) λ1(LT,f )
( �

M

tr(S)µf

)2
≤
( �

M

tr(T )µf

) �

M

(‖HS‖2 + ‖S∇f‖2)µf .

Moreover, if equality holds in the case S = Id then M is a self-shrinker
for the mean curvature flow and f|M = a− 1

2cr
2
p, where rp is the Euclidean

distance to p, the center of mass of M . In particular, if n = N − 1 and
H > 0, or n = 2, N = 3 and M is embedded and has genus 0, then M is a
geodesic hypersphere.

As a corollary, we obtain a similar inequality for submanifolds of the
sphere SN which generalizes the corresponding inequality of [4] and [6] for
the operator LT,f (see Corollary 4.4). We also prove a general non-weighted
Reilly-type inequality (Theorem 5.1).

2. Preliminaries. Let (Mn, g) be a connected and oriented closed Rie-
mannian manifold isometrically immersed into RN . We denote by X its
position vector, B its second fundamental form and H = tr(B) its mean
curvature vector. For the case of hypersurfaces, we will also consider the
real-valued mean curvature H = 〈H, ν〉, where ν is a unit normal vector



GENERAL REILLY-TYPE INEQUALITIES 129

field (H is defined up to sign, depending of the choice of ν). We denote
by {∂1, . . . , ∂N} the canonical frame of RN and for k ∈ {1, . . . , N} by
Xk = 〈X, ∂k〉 the coordinate functions. We begin by giving the following
elementary lemma.

Lemma 2.1. If A is a field of endomorphisms on M , then

N∑
k=1

〈A(∇Xk),∇Xk〉 = tr(A).

Proof. Let {e1, . . . , en} be a local orthonormal frame of TM . It is a
classical fact that ∇Xk = ∂>k =

∑n
i=1〈∂k, ei〉ei. Hence,

N∑
k=1

〈A(∇Xk),∇Xk〉 =

N∑
k=1

n∑
i,j=1

〈∂k, ei〉〈∂k, ej〉〈Aei, ej〉

=
n∑

i,j=1

( N∑
k=1

〈∂k, ei〉〈∂k, ej〉
)
〈Aei, ej〉

=

n∑
i,j=1

〈ei, ej〉〈Aei, ej〉 = tr(A).

Note that, in particular, for A = Id, we recover the well-known identity∑N
k=1 ‖∇Xk‖2 = n.
Now, we recall briefly some basic facts about the f -divergence. We first

have the weighted version of the divergence theorem:

(2.1)
�

M

divf (Y )µf = 0

for any vector field Y on M . From this, we easily deduce the integration by
parts formula

(2.2)
�

M

udivf (Y )µf = −
�

M

〈∇u, Y 〉µf

for any smooth function u and any vector field Y on M .
Now, let T be a divergence-free symmetric (1, 1)-tensor. We associate

with T the second order differential operator LT defined by LTu :=
−div(T∇u) for any C2 function u on M . We also associate with T the
normal vector field

HT =

n∑
i,j=1

〈Tei, ej〉B(ei, ej),(2.3)

where {e1, . . . , en} is a local orthonormal frame of TM . We defined in Sec-
tion 1 a corresponding weighted operator by LT,fu = −divf (T∇u) for any
C2 function u. We have the following weighted Hsiung–Minkowski formula.
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Lemma 2.2. We have
�

M

(〈X,HT − T∇f〉+ tr(T ))µf = 0.

Proof. First, it is well known that LTX = −HT . The proof is standard
and completely analogous to the case T = Id, that is, ∆X = −nH, and uses
the fact that div(T ) = 0. From this, we deduce

LT ‖X‖2 =
N∑
k=1

LT ((Xk)2) = −2
N∑
k=1

div(XkT (∇Xk))(2.4)

= 2

N∑
k=1

(
XkLTX

k − 〈∇Xk, T (∇Xk)〉
)

= −2〈X,HT 〉 − 2tr(T ),

where we have also used Lemma 2.1 for the last line. Therefore,

1
2LT,f‖X‖2 = 1

2LT ‖X‖2 + 1
2〈T (∇‖X‖2),∇f〉

= −〈X,HT 〉 − tr(T ) + 1
2〈∇‖X‖

2, T∇f〉
= −〈HT − T∇f,X〉 − tr(T ),

where we have used (2.4), the symmetry of T and the fact that ∇‖X‖2 =
2X>. We conclude by integrating over M for the measure µf and using the
fact that

	
M LT,f‖X‖2µf = 0 by (2.1).

3. Proof of Theorem 1.1. Now, we have all the ingredients to prove
the main theorem of this note. First, since we assume that the tensor T is
positive, the operator LT,f has a discrete non-negative spectrum. The first
eigenvalue λ0 = 0 is of multiplicity one and the associated eigenfunctions
are constants. We denote by λ1(LT,f ) the first positive eigenvalue. From the
definition of LT,f and (2.2) we have the following variational characterization
of λ1(LT,f ):

λ1(LT,f ) = inf

{	
M 〈T∇u,∇u〉µf	

M u2µf

∣∣∣∣ u ∈ C∞(M),
�

M

uµf = 0

}
.

Up to a translation if needed, we may assume that the µf -center of mass

of M is the origin, that is,
	
M Xµf = ~0. Hence, the coordinates can be used

as test functions in the Rayleigh quotient and we have

λ1(LT,f )
�

M

‖X‖2µf ≤
�

M

N∑
k=1

〈T∇Xk,∇Xk〉µf ,
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which gives, by Lemma 2.1,

(3.1) λ1(LT,f )
�

M

‖X‖2µf ≤
�

M

tr(T )µf .

Now,

λ1(LT,f )
( �

M

tr(S)µf

)2
= λ1(LT,f )

( �

M

(
〈X,HS − S∇f〉

)
µf

)2

≤ λ1(LT,f )
( �

M

‖X‖2µf
)( �

M

‖HS − S∇f‖2µf
)

≤
( �

M

tr(T )µf

)( �

M

‖HS − S∇f‖2µf
)
,

where we have used successively the weighted Hsiung–Minkowski formula,
the Cauchy–Schwarz inequality and (3.1). Since HS is normal and S∇f is
tangent to M , we get the required upper bound (1.2).

Equality case. Now, we assume that S = Id. Then (1.2) becomes

λ1(LT,f ) ≤
	
M tr(T )µf

n2Volf (M)2

�

M

(‖H‖2 + ‖∇f‖2)µf .

If equality occurs, then all the above inequalities are equalities. In particular,
equality occurs in the Cauchy–Schwarz inequality and we have H − ∇f =
cX for some constant c. Identifying tangential and normal parts, we get
∇f = −cX> and H = cX⊥.

The normal equation H = cX⊥ is exactly the definition of a self-similar
solution of the mean curvature flow. Since M is a compact submanifold
of RN , c cannot be zero. The case c > 0 is no more possible. Indeed, if
c > 0, then M is a self-expander, but it is well known that there exists no
compact self-expander. Hence, the only possibility is c < 0, that is, M is a
self-shrinker.

In addition, as X> = 1
2∇‖X‖

2, the tangential equation becomes

∇(f + 1
2c‖X‖

2) = 0. Since M is connected, there exists a constant a with

f|M = a− 1
2c‖X‖

2.

In the particular cases N = n + 1 and H > 0, or n = 2, N = 3 and M
embedded and of genus 0, we know from [8] and [5] respectively that M has
to be a geodesic hypersphere. This finishes the proof of the equality case.

4. Some corollaries. In this section, we state some corollaries of The-
orem 1.1. The first one is just a particular case of the theorem involving
higher order mean curvatures. Before stating it, we recall briefly the def-
inition of higher order mean curvatures and their associated tensors. For
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r ∈ {1, . . . , n}, we set

Tr =
1

r!

∑
i,i1,...,ir
j,j1,...,jr

ε

(
i, i1, . . . , ir

j, j1, . . . , jr

)
〈Bi1j1Bi2j2〉 · · · 〈Bir−1jr−1Birjr〉e∗i ⊗ e∗j

if r is even, and

Tr =
1

r!

∑
i,i1,...,ir
j,j1,...,jr

ε

(
i, i1, . . . , ir

j, j1, . . . , jr

)
〈Bi1j1Bi2j2〉 · · · 〈Bir−1jr−1Birjr〉Bir,jr⊗e∗i ⊗e∗j

if r is odd, where theBij ’s are the coefficients of the second fundamental form
B in a local orthonormal frame {e1, . . . , en} and ε is the standard signature
for permutations. Here, {e∗1, . . . , e∗n} is the dual coframe of {e1, . . . , en}. By
definition, the rth mean curvature is

Hr =
1

c(r)
tr(Tr), where c(r) = (n− r)

(
r

n

)
.

Note that Hr is a real function if r is even, and a normal vector field if r
is odd; in the latter case, we will denote it by Hr. By convention, we set
H0 = 1. Moreover, if r is even, we easily show that HTr = c(r)Hr+1, where
HTr is given by (2.3).

In the case of hypersurfaces, we can consider the higher order mean
curvatures as scalar functions also for odd indices by taking for B the real-
valued second fundamental form.

By the symmetry of B, these tensors are clearly symmetric. Moreover, we
have the following well-known lemma (as can be found in [7] for instance).

Lemma 4.1.

(1) If n = N − 1, then div(Tr) = 0 for any r ∈ {0, . . . , n− 1}.
(2) If n ≤ N − 2, then div(Tr) = 0 for any even r ∈ {0, . . . , n− 1}.

The tensor Tr is the linearized operator associated with the rth mean
curvature and plays a crucial role in the study of the r-stability of hyper-
surfaces with constant rth mean curvature (see [1] for instance).

The following corollary of Theorem 1.1 is immediate, since the tensors
Tr are divergence-free. Note that this is a weighted version of an inequality
of Alias and Malacarne [2].

Corollary 4.2. Let (Mn, g) be a connected and oriented closed Rie-
mannian manifold isometrically immersed into the weighted Euclidean
space RN with density e−f . Let r, s ∈ {1, . . . , n − 1}. Assume that r and s
are even if N > n + 1 and assume moreover that Tr is positive. Then the
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first positive eigenvalue of the operator Lr,f = LTr,f satisfies the inequality

λ1(Lr,f )
( �

M

Hsµf

)2
≤ c(r)

c(s)2

( �

M

Hrµf

) �

M

(c(s)2‖Hs+1‖2 + ‖Ts∇f‖2)µf .

Remark 4.3. In the case of hypersurfaces, it is sufficient to have Hr+1

> 0 to ensure that Tr is positive (see [3] for instance).

Now, using the embedding of the sphere SN into the Euclidean space
RN+1, we can prove another corollary for submanifolds of the sphere SN .
More precisely:

Corollary 4.4. Let (Mn, g) be a connected and oriented closed Rie-
mannian manifold isometrically immersed into the sphere SN endowed with
a density e−f . Let S and T be two symmetric divergence-free (1, 1)-tensors
over M . Assume moreover that T is positive. Then the first positive eigen-
value of the operator LT,f satisfies the inequality

λ1(LT,f )
( �

M

tr(S)µf

)2
≤
( �

M

tr(T )µf

) �

M

(
‖HS‖2 + tr(S)2 + ‖S∇f‖2

)
µf .

Proof. The proof comes easily from Theorem 1.1. We denote by φ the
immersion of M into SN , we consider the canonical immersion i of SN into
RN+1, and we extend the weight f defined on SN to a weight f̃ on RN+1, for

instance by taking f̃(x) = |x|f(x/|x|) for any x ∈ SN and f̃(0) = 0. From
Theorem 1.1 we have

(4.1) λ1(LT,f )
( �

M

tr(S)µf

)2
≤
( �

M

tr(T )µf

) �

M

(|H ′S |2 + |S∇f̃ |2)µf ,

where H ′S is defined by HS =
∑n

i,j=1 S(ei, ej)B
′(ei, ej) with B′ the second

fundamental form of the immersion of M into RN+1. Obviously, the second
fundamental forms B of φ and B′ of i ◦φ are linked by B′ = B− gφ. Hence,
we immediately get H ′S = HS − tr(S)φ. Therefore, ‖H ′S‖2 = ‖HS‖2 + tr(S)2

since HS and φ are orthogonal, and ‖φ‖ = 1 since M is contained in the

sphere SN . Inserting this in (4.1), since f coincides with f̃ on M , we have

∇f̃ = ∇f and so

λ1(LT,f )
( �

M

tr(S)µf

)2

≤
( �

M

tr(T )µf

) �

M

(‖HS‖2 + tr(S)2 + ‖S∇f‖2)µf .

For submanifolds of spheres, we immediately have the following corollary
involving higher order mean curvatures.
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Corollary 4.5. Let (Mn, g) be a connected, oriented closed Rieman-
nian manifold isometrically immersed into the sphere SN endowed with a
density e−f . Let r, s ∈ {1, . . . , n − 1}. Assume that r and s are even if
N > n + 1 and assume moreover that Tr is positive. Then the first eigen-
value of the operator Lr,f satisfies

λ1(Lr,f )
( �

M

Hsµf

)2

≤ c(r)

c(s)2

( �

M

Hrµf

) �

M

(
c(s)2‖Hs+1‖2 + c(s)2H2

s + ‖Ts∇f‖2
)
µf .

5. A general non-weighted inequality. In the classical case, that is,
without density, the equality case can be characterized in a more rigid way.
Namely, we have the following result.

Theorem 5.1. Let (Mn, g) be a connected, oriented closed Riemannian
manifold isometrically immersed into RN . Assume that M is endowed with
two symmetric and divergence-free (1, 1)-tensors S and T . Assume in addi-
tion that T is positive. Then the first positive eigenvalue of the operator LT

satisfies

(5.1) λ1(LT )
( �

M

tr(S) dvg

)2
≤
( �

M

tr(T ) dvg

)( �

M

‖HS‖2 dvg
)
.

Moreover, if N > n + 1 and HS does not vanish identically and equality
occurs, then tr(S) and ‖HS‖ are non-zero constants and M is S-minimally
immersed into a geodesic hypersphere of RN of radius |tr(S)|/‖HS‖.

In particular, if n = N − 1 and HS does not vanish identically, then
if equality holds, then tr(S) and HS are non-zero constants and M is a
geodesic hypersphere of radius |tr(S)|/|HS |.

Remarks 5.2. (1) Note that for this theorem, in contrast to Theorem
1.1, we do not need to assume that M is embedded to characterize the
equality case, the embedding being obtained as a consequence.

(2) For T = Id, we have

λ(∆)
( �

M

tr(S) dvg

)2
≤ n vol(M)

�

M

‖HS‖2 dvg,

which was proved by Grosjean [7].

Proof of Theorem 5.1. Inequality (5.1) is immediate from Theorem 1.1
with f identically zero. If equality occurs, then all the inequalities in the
proof of Theorem 1.1 become equalities. In particular, we have HS = cX
from the equality case of the Cauchy–Schwarz inequality, where c is a non-
zero constant. This means that the position vector X is everywhere normal
to M . But, on the other hand, since ∇‖X‖2 = 2X>, we get ∇‖X‖2 = 0.
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Hence, M being connected, ‖X‖ = r is constant and M lies in a geodesic
hypersphere of radius r. Moreover, HS = cX shows that ‖HS‖ is also con-
stant, and from (2.3) we conclude that tr(S) = −〈X,HS〉 = c−1‖HS‖2.
Thus, tr(S) is also constant. Note that, since we assume that HS does
not vanish identically, tr(S) and ‖HS‖ are non-zero constants and we have
r = |tr(S)|/‖HS‖.

Now, we will show that the immersion of M in the hypersphere SN−1(r)

is S-minimal, that is, H̃S = 0, where H̃S is defined by

H̃S =
n∑

i,j=1

S(ei, ej)B̃(ei, ej),

with B̃ the second fundamental form of M in SN−1(r). Clearly, B = B̃ +B
where B is the second fundamental form of SN−1 in RN and is given by
Bij = −r−2δijX. From this fact and the definition of HS and H̃S , we get

HS = H̃S −
1

r2

n∑
i,j

S(ei, ej)δijX = H̃S −
1

r2
tr(S)X

= H̃S −
|HS |2

tr(S)
X = H̃S + cX = H̃S +HS .

We deduce that H̃S = 0, that is, M is S-minimally immersed into SN−1(r).

If n = N − 1, then if equality occurs, by the above discussion and since
M has no boundary, we deduce that M is SN−1(r).
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