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MARKOV–KREIN TRANSFORM

BY

JACQUES FARAUT (Paris) and FAIZA FOURATI (Tunis)

Abstract. The Markov–Krein transform maps a positive measure on the real line
to a probability measure. It is implicitly defined through an identity linking two holo-
morphic functions. In this paper an explicit formula is given. Its proof is obtained by
considering boundary values of holomorhic functions. This transform appears in several
classical questions in analysis and probability theory: Markov moment problem, Dirichlet
distributions and processes, orbital measures. An asymptotic property for this transform
involves Thorin–Bondesson distributions.

1. Introduction. A probability measure µ and a bounded positive mea-
sure ν on R are said to be linked by the Markov–Krein relation if

�

R

1

(z − t)κ
µ(dt) = exp

(
−

�

R

log(z − u) ν(du)
)
,

where κ = ν(R). The study of this relation is motivated by the following
observation by Okounkov (see [O, Proposition 8.2, p. 172]). Consider the
action of the orthogonal group O(n) on the space Sym(n,R) of n × n real
symmetric matrices, or the action of the unitary group U(n) on the space
Herm(n,C) of n × n Hermitian matrices. An orbit O for this action is de-
termined by the eigenvalues a1, . . . , an of a matrix in O. The projection of
the associated orbital measure on the straight line generated by a rank one
matrix is a probability measure µ on R which satisfies the relation

�

R

1

(z − t)nd/2
µ(dt) =

n∏
i=1

1

(z − ai)d/2
,

where d = 1 in the case of Sym(n,R), and d = 2 in the case of Herm(n,C).
This formula is a special case of the Markov–Krein relation with

ν =

n∑
i=1

d

2
δai .
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Received 14 April 2014; revised 21 September 2015.
Published online 9 March 2016.

DOI: 10.4064/cm6235-10-2015 [137] c© Instytut Matematyczny PAN, 2016



138 J. FARAUT AND F. FOURATI

The probability measures appearing in this geometric setting are gen-
eralized spline distributions we will study in Section 2. In Section 3 it will
be proven that given a positive measure ν with compact support, there
is a unique probability measure µ with compact support satisfying the
Markov–Krein relation. Hence we get a map: to the positive measure ν the
Markov–Krein transform associates the probability measure µ. We will see
in Section 2 that this transform is related to the Dirichlet distributions in
case ν is a discrete measure. An explicit formula for the transform is given
in Section 4 by using boundary values of holomorphic functions. This for-
mula is essentially a special case of the one obtained in [Ci]. In Section 6 we
consider a sequence (νn) of positive measures and the sequence (µn) of the
Markov–Krein transforms. We study the asymptotic of µn as νn(R) goes
to infinity. The result we will establish involves Thorin–Bondesson distri-
butions (or extended generalized gamma convolutions, EGGC), a class of
probability measures introduced by Thorin [T1], [T2] (see also [B]).

The Markov–Krein transform shows up in several questions of classical
analysis. We have mentionned its relation to orbital measures. It appears in
the solution of the Markov moment problem by Krein and Nudel’man [Kr].
It plays a central role in the theory of Dirichlet processes. See [Ci], [J].
A large part of the book by Kerov [Ke] is devoted to the Markov–Krein cor-
respondence in the framework of the asymptotic analysis for representations
of the symmetric group. It has been a source of inspiration for our work.

2. The generalized spline distributions Mn(a; τ). We recall defi-
nitions and results from [F1]. For τ = (τ1, . . . , τn) ∈ (R∗+)n (n ≥ 2), the

Dirichlet distribution D
(τ)
n is the probability measure on the simplex

∆n−1 = {u = (u1, . . . , un) ∈ Rn | ui ≥ 0, u1 + · · ·+ un = 1}
defined by

�

∆n−1

f(u)D(τ)
n (du) =

1

Cn(τ)

�

∆n−1

f(u)uτ1−11 . . . uτn−1n α(du),

where α is the uniform probability measure on ∆n−1, i.e. the normalized
restriction to ∆n−1 of the Lebesgue measure on the hyperplane u1 + · · ·+un
= 1, and

Cn(τ) =
�

∆n−1

uτ1−11 . . . uτn−1n α(du).

The evaluation of the constant Cn(τ) gives

Cn(τ) = (n− 1)!
Γ (τ1) . . . Γ (τn)

Γ (|τ |)
,

where |τ | = τ1 + · · ·+ τn.
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For a = (a1, . . . , an) ∈ Rn, with a1 ≤ · · · ≤ an, the probability measure

Mn(a; τ) on R is the image of the Dirichlet distribution D
(τ)
n by the map

∆n−1 → R, u 7→ a1u1 + · · ·+ anun,

i.e., for a continuous function F on R,
�

R

F (t)Mn(a; τ ; dt) =
�

∆n−1

F (a1u1 + · · ·+ anun)D(τ)
n (du).

The support of Mn(a; τ) is compact, supp(Mn(τ ; a)) ⊂ [a1, an]. If τ1 = · · · =
τn = 1, then Mn(a; τ) is a spline distribution (see [Cu]). For τi > 0, we will
say that Mn(a; τ) is a generalized spline distribution.

For instance, for n = 2,

�

R

F (t)M2(a; τ ; dt) =
Γ (τ1 + τ2)

Γ (τ1)Γ (τ2)

1�

0

F
(
a1(1− u) + a2u

)
(1− u)τ1−1uτ2−1 du.

By the change of variable t = a1(1− u) + a2u we get

�

R

F (t)M2(a; τ ; dt) =
(a2 − a1)−(τ1+τ2−1)

B(τ1, τ2)

a2�

a1

F (t)(t− a1)τ2−1(a2 − t)τ1−1 dt.

We define the function log z on C \ ]−∞, 0] and, for α ∈ C, the function
zα as follows: if z = reiθ, with r > 0, −π < θ < π, then log z = log r + iθ
and zα = eα log z = rαeiαθ.

Theorem 2.1. The probability measure Mn(a; τ) satisfies the relation

�

R

1

(z − t)|τ |
Mn(a; τ ; dt) =

n∏
i=1

(
1

z − ai

)τi
for z ∈ C \ ]−∞, an].

(See [F1, Theorem 3.1].) This is a special case of the Markov–Krein
relation we will consider in the next section.

3. The Markov–Krein transform. Let ν be a nonzero positive mea-
sure on R such that �

R

log(1 + |u|) ν(du) <∞,

and µ a probability measure on R. We say that the measures µ and ν are
linked by the Markov–Krein relation if, for z ∈ C \ R,

�

R

1

(z − t)κ
µ(dt) = exp

(
−

�

R

log(z − u) ν(du)
)
,
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where κ = ν(R), the total measure of ν. By Theorem 2.1, the measures
µ = Mn(τ ; a) and

ν =
n∑
i=1

τiδai

are linked by the Markov–Krein relation. In fact, in this case, the relation
becomes

�

R

1

(z − t)κ
µ(dt) =

n∏
i=1

(
1

z − ai

)τi
, κ = τ1 + · · ·+ τn.

Let us assume that the measures µ and ν are compactly supported, and
denote by hm and pm their moments:

hm =
�

R

tm µ(dt), pm =
�

R

tm ν(dt).

(Observe that κ = ν(R) = p0.) Being compactly supported, µ and ν are
determined by the sequences of their moments. Hence, by expanding in
power series both sides of the Markov–Krein relation, one obtains:

Proposition 3.1. The measures µ and ν are linked by the Markov–
Krein relation if and only if the moments hm and pm of µ and ν satisfy

∞∑
m=0

(κ)m
m!

hmw
m = exp

( ∞∑
m=1

pm
m
wm
)

for sufficiently small w. It follows that hm can be written as a polynomial
in p1, . . . , pm:

hm =
m!

(κ)m

m∑
k=1

1

k!

∑
αi≥1, α1+···+αk=m

pα1

α1
. . .

pαk

αk
.

(Recall the Pochhammer symbol (κ)m = κ(κ+ 1) . . . (κ+m− 1).)

Theorem 3.2. For a given nonzero positive measure ν on R with com-
pact support, there is a unique probability measure µ with compact support
such that ν and µ are linked by the Markov–Krein relation.

By definition the Markov–Krein transform is the map which associates
to the positive measure ν the probability measure µ. (Theorem 3.2 can also
be obtained from an explicit inversion formula of the transform, a special
case of [Ci, Theorem 1].)

Proof of Theorem 3.2. If the measure µ exists, it is unique, since, by
Proposition 3.1, the moments of µ are determined by those of ν.
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Assume supp(ν) ⊂ [a, b]. There is a sequence ν(n) of measures with finite
support in [a, b],

ν(n) =

n∑
i=1

τ
(n)
i δ

a
(n)
i

,

which converges weakly to ν. By Theorem 2.1 the measures ν(n) and µ(n) =

Mn(τ (n); a(n)) are linked by the Markov–Krein relation. The moment p
(n)
m

of νn converges to the corresponding moment pm of ν. Observe that h
(0)
m = 1,

and, for m ≥ 1, by Proposition 3.1, the moments h
(n)
m have limits hm. The

numbers hm are moments of a probability measure µ, and µ is the weak limit
of µ(n). Furthermore, µ and ν are linked by the Markov–Krein relation.

4. An explicit formula for the Markov–Krein transform. We
first recall the definition of hyperfunctions of one variable and some of their
elementary properties (see for instance [M]). Let U ⊂ R be open and W ⊂ C
a complex open neighborhood of U with W ∩ R = U . The space B(U) of
hyperfunctions on U is defined as

B(U) = O(W \ U)/O(W ),

where, for V ⊂ C open, O(V ) is the space of holomorphic functions on V .
For F ∈ O(W \ U), the equivalence class of F is denoted by [F ]. Define

F+ =

{
F on W+,

0 on W−,
F− =

{
0 on W+,

−F on W−.

(W± = {z ∈ W | ± Im z > 0}.) The hyperfunctions [F+] and [F−] are
denoted by F (x + i0) and F (x − i0), and called the boundary values of F .
Hence

[F ] = F (x+ i0)− F (x− i0).

Intuitively [F ] is the jump of F along U . A hyperfunction f ∈ B(U) vanishes
on an open set U0 ⊂ U if there is a representative F of f which is holomor-
phic on (W \ U) ∪ U0. The support supp(f) of the hyperfunction f ∈ B(U)
is the smallest closed set C ⊂ U such that f vanishes on U \ C. The space
of hyperfunctions on U with support contained in C is denoted by BC(U).

Recall the space A(K) of holomorphic functions in a neighborhood of
the compact set K ⊂ R:

A(K) =
⋃
U⊃K

O(U),

where U is a complex open neighborhood of K. The space A(K) is endowed
with the inductive limit topology. An analytic functional on K is a contin-
uous linear form on A(K), and the space of analytic functionals on K is
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denoted by A′(K). The Cauchy transform GT of T ∈ A′(K), defined by

GT (z) =

〈
Tt,

1

z − t

〉
,

is holomorphic on C \ K, and defines a hyperfunction [GT ]. The map Φ :
T 7→ f = [GT ] is an isomorphism from A′(K) onto BK(R). It follows that
the space D′K of distributions supported in K can be seen as a subspace of
BK(R).

Let U ⊂ R be open, and ε > 0. A function F defined on

{z = x+ iy | x ∈ U, 0 < |y| < ε}

is said to be of moderate growth along U if, for every K ⊂ U compact, there
is a constant C > 0 and an integer N > 0 such that

|F (x+ iy)| ≤ C

|y|N
(x ∈ K, 0 < |y| < ε).

Let T ∈ A′(K), let f ∈ BK(R) be its image by the isomorphism Φ, and F a
representative of f . Then T is a distribution if and only if F is of moderate
growth along R. In such a case, for ϕ ∈ D(R),

〈T, ϕ〉 = lim
ε→0, ε>0

�

R

(F (t+ iε)− F (t− iε))ϕ(t) dt.

Furthermore supp(T ) = supp(f). For a compactly supported distribution T ,
the classical Cauchy–Stieltjes formula can be written [GT ] = −2iπT .

The distribution Yα is defined, for Reα > 0, by

〈Yα, ϕ〉 =
1

Γ (α)

∞�

0

ϕ(t)tα−1 dt (ϕ ∈ D(R)),

and admits an analytic continuation for α ∈ C. These distributions Yα satisfy

Yα ∗ Yβ = Yα+β, Y0 = δ, Y−m = δ(m) (m ∈ N).

In particular Yα ∗ Y−α = δ.

Recall that, for α ∈ C, the holomorphic function zα in C \ ]−∞, 0] is
defined as follows: if z = reiθ with r > 0, −π < θ < π, then zα = rαeiαθ.
The function zα is of moderate growth along R, and

[zα] = −2iπ
1

Γ (−α)
Y̌α+1.

(For a distribution T on R, Ť is the image of T by the symmetry t 7→ −t:
〈Ť , ϕ〉 = 〈T, ϕ̌〉 with ϕ̌(t) = ϕ(−t).) In particular, for m ∈ N, [zm] = 0, and
for m ≥ 1,

[z−m] = −2iπ
1

(m− 1)!
δ(m−1).
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We will now give an explicit formula for the Markov–Krein transform.
Let ν be a positive measure on R with compact support, κ = ν(R). Recall
that the Markov–Krein transform µ of ν is the unique probability measure µ
such that �

R

1

(z − t)κ
µ(dt) = exp

(
−

�

R

log(z − u) ν(du)
)

(Theorem 3.2). Furthermore, the support of µ is compact.

Theorem 4.1. Let q be the holomorphic function defined on C \ R by

q(z) = exp
(
−

�

R

log(z − u) ν(du)
)
.

Then q is of moderate growth, and

µ = − 1

2iπ
Γ (κ)Y̌κ−1 ∗ [q].

Observe that, if κ = 1, then one obtains the classical Cauchy–Stieltjes
formula µ = − 1

2iπ [q].

Lemma 4.2. Let f be a holomorphic function on C\R, and µ a measure
on R with compact support. Then the function F defined by

F (z) =
�

R

f(z − t)µ(dt)

is holomorphic on C \ R. If f is of moderate growth along R, then F is of
moderate growth as well, and the distributions [f ] and [F ] satisfy

[F ] = [f ] ∗ µ.

Proof. If f is of moderate growth along R, since µ is compactly sup-
ported, an easy estimate shows that F is of moderate growth as well. Then,
for ϕ ∈ D(R),

lim
ε→0, ε>0

�

R

(
F (t+ iε)− F (t− iε)

)
ϕ(t) dt

= lim
ε→0, ε>0

�

R

(�
R

(
f(t+ iε− s)− f(t− iε− s)

)
µ(ds)

)
ϕ(t) dt

=
�

R

(
lim

ε→0, ε>0

�

R

(
f(t+ iε)− f(t− iε)

)
ϕ(t− s) dt

)
µ(ds).

This equality means that [F ] = [f ] ∗ µ. Let us explain why it is possible
to interchange the limit and the integration. In fact, for 0 < ε < ε0 and
|s| ≤ A, there is a constant C such that∣∣∣ �

R

(
f(t+ iε)− f(t− iε)

)
ϕ(t− s) dt

∣∣∣ ≤ C,
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since the distribution Tε defined by

〈Tε, ϕ〉 =
�

R

(
f(t+ iε)− f(t− iε)

)
ϕ(t) dt

converges as ε→ 0, and the set of functions ϕ(· − s) is bounded in D(R) for
|s| ≤ A.

Proof of Theorem 4.1. The Markov–Krein relation can be written
�

R

1

(z − t)κ
µ(dt) = q(z).

(This means that q is a generalized Stieltjes transform of µ.) By Lemma 4.2
the function q is of moderate growth along R, and

[z−κ] ∗ µ = [q].

We saw that

[z−κ] = −2iπ
1

Γ (κ)
Y̌1−κ.

Therefore, since Y̌κ−1 ∗ Y̌1−κ = δ,

µ = − 1

2iπ
Γ (κ)Y̌κ−1 ∗ [q].

(Recall that, if distributions T1, T2, T3 have supports bounded from above,
the following associativity holds: (T1 ∗ T2) ∗ T3 = T1 ∗ (T2 ∗ T3).)

The logarithmic potential of the measure ν is defined on R by

Uν(x) =
�

R

log
1

|x− u|
ν(du),

with values in ]−∞,∞].

Theorem 4.3. If expUν is locally integrable and κ = ν(R) ≥ 1, then
the probability measure µ has a density h. Define

g(x) =
1

π
sin
(
πν(]x,∞[)

)
expUν(x).

(i) If κ = 1, then h(x) = g(x).

(ii) If κ > 1, then

h(x) = (κ− 1)

∞�

x

(s− x)κ−2g(s) ds.

This formula can be obtained from one in [Ci] (part (ii) of Theorem 1,
with τ = −∞, A(−∞) = 0, α∗ = κ−1). The proof there is obtained by using
results of Widder and Hirschman about generalized Stieltjes transforms.
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Proof of Theorem 4.3. By Theorem 4.1 all we have to show is that the
distribution − 1

2iπ [q] is defined by the locally integrable function g. Let

H(z) =
�

R

log
1

z − u
ν(du).

The function log z can be written

log z = log |z|+ iArg(z),

and

lim
ε→0, ε>0

log(x± iε) =

{
log |x| if x > 0,

log |x| ± iπ if x < 0.

It follows that

lim
ε→0, ε>0

H(x± iε) = Uν(x)∓ iπν([x,∞[)

and

− 1

2iπ
lim

ε→0, ε>0

(
q(x+ iε)− q(x− iε)

)
= − 1

2iπ
lim

ε→0, ε>0

(
expH(x+ iε)− expH(x− iε)

)
= − 1

2iπ
expUν(x)

(
e−iπν([x,∞[) − eiπν([x,∞[)

)
=

1

π
expUν(x) sin

(
πν([x,∞[)

)
= g(x).

To prove that this limit holds in the distribution sense one observes that,
for x ∈ R and ε > 0,

|q(x± iε)| = exp
(
−

�

R

log
√

(x− u)2 + ε2 ν(du)
)

≤ exp
(
−

�

R

log |x− u| ν(du)
)

= expUν(x).

Examples. Assume the measure ν is discrete,

ν =

n∑
i=1

τiδai (a1 < · · · < an, n ≥ 3).

Then its Markov–Krein transform is Mn(a1, . . . , an; τ1, . . . , τn). In that case

q(z) =

n∏
i=1

(
1

z − ai

)τi
.
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(a) Assume τ1 = · · · = τn = 1. Then q is a rational function which can
be written

q(z) =
n∑
i=1

ci
1

z − ai
with ci =

∏
j 6=i

1

aj − ai
.

Therefore

[q] = −2iπ

n∑
j=1

ciδai .

Since

Y̌n−1 ∗ δa =
1

(n− 2)!
(a− x)n−2+ ,

the measure µ has a density h given by

h(x) = (n− 1)
∑
ai>x

ci(ai − x)n−2.

This density is a spline function with knots a1, . . . , an: the function h is of
class Cn−3, and its restriction to each interval [aj , aj+1] is a polynomial of
degree ≤ n− 2. In this case Mn(a; τ) is a spline distribution.

(b) Assume 0 < τi < 1 (1 ≤ i ≤ n), κ = τ1 + · · · + τn ≥ 1. Then the
function

expUν(x) =
n∏
i=1

|x− ai|−τi

is locally integrable and

g(x) =
1

π
sin
(
π
∑
ai>x

τi

) n∏
i=1

|x− ai|−τi .

The map

ν 7→ (µ, κ), Mc(R)→M1
c(R)× R+,

where µ is the Markov–Krein transform of ν and κ = ν(R), is injective,
but not surjective. It is an open problem to determine the image of this
map. In case ν is a probability measure, Kerov has the following result. He
defined a continuous diagram supported by a compact interval [a, b] to be a
real function ω defined on R such that

|ω(u1)− ω(u2)| ≤ |u1 − u2| (u1, u2 ∈ R),

and there is c ∈ R such that, for u 6∈ [a, b],

ω = |u− c|.
To a continuous diagram ω ∈ D[a, b] we associate the distribution νω = 1

2ω
′′

(the second derivative is taken in the distribution sense). Then 〈νω, 1〉 = 1
and νω is a probability measure if and only if ω is convex. The map ω 7→ ν ′′ω
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is injective, and if νω is a measure, then

ω(u) =
�

R

|u− x| νω(dx).

By [Ke, p. 152], the map which associates to a continuous diagram ω ∈
D[a, b] the Markov transform µ of νω, determined by the relation

�

[a,b]

1

z − t
µ(dt) = exp

(
−〈νω, log(z − u)〉

)
,

is a homeomorphism from D[a, b] onto the set M1[a, b] of probability mea-
sures on [a, b].

5. Thorin–Bondesson distributions. For ξ ∈ R∗, τ > 0, let γ(ξ, τ)
denote the gamma distribution on R with density

Y (ξu)
|ξ|τ

Γ (τ)
e−ξu|u|τ−1.

(Recall the Heaviside function: Y (t) = 1 for t ≥ 0 and Y (t) = 0 for t < 0.)
The Fourier–Laplace transform ϕ of γ(ξ, τ) is given by

ϕ(z) =
�

R

eztγ(ξ, τ ; dt) =

(
ξ

ξ − z

)τ
.

It is defined for Re z < ξ if ξ > 0, and for Re z > ξ if ξ < 0, and admits a
holomorphic extension to C \ [ξ,∞[ if ξ > 0, and to C \ ]−∞, ξ] if ξ < 0.

A Thorin–Bondesson distribution (or extended generalized gamma con-
volution, EGGC) is a probability measure µ on R which is a limit for the
tight topology of convolution products of gamma distributions:

µ = lim
n→∞

( n∏
i=1

)∗
γ(ξ

(n)
i , τ

(n)
i )

(see [T1], [T2], [B]). The set Te of Thorin–Bondesson distributions is closed
in the tight topology and a semigroup for the convolution. Chapter 9 in [S]
is devoted to the measures in the Bondesson class, denoted BO. These mea-
sures are sub-probabilities supported by [0,∞[. The probability measures
in the Bondesson class are precisely the Thorin–Bondesson distributions (in
our terminology) which are supported by [0,∞[.

The Fourier–Laplace transform ϕ of

γ(ξ1, . . . , ξn; τ1, . . . , τn) := γ(ξ1, τ1) ∗ · · · ∗ γ(ξn, τn)

is given by

ϕ(z) =
�

R

eztγ(ξ1, . . . , ξn; τ1, . . . , τn; dt) =
n∏
i=1

(
ξi

ξi − z

)τi
.
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It is defined for |Re z| < σ, with σ = inf |ξi|, and admits a holomorphic
continuation to C \ ]−∞,−σ] ∪ [σ,∞[. Let us observe that the function ϕ
can be written

ϕ(z) = exp

(�

R

log

(
ξ

ξ − z

)
ν(dξ)

)
,

with

ν =

n∑
i=1

τiδξi .

The measure γ(ξ1, . . . , ξn; τ1, . . . , τn) is infinitely divisible. In fact, for
t > 0, the measures

µt = γ(ξ1, . . . , ξn; tτ1, . . . , tτn)

form a continuous semigroup of probability measures. Since a limit of in-
finitely divisible probability measures is infinitely divisible, every measure µ
in Te is infinitely divisible. Its Fourier–Laplace transform has the form

ϕ(z) =
�

R

ezt µ(dt) = eψ(z),

where ψ is a continuous function on iR. Let Be denote the set of continuous
functions ψ(z) on iR such that eψ(z) is the Fourier–Laplace transform of a
measure µ in Te.

Theorem 5.1. Let ψ be a continuous function on iR, with ψ(0) = 0.
The following properties are equivalent:

(i) ψ belongs to Be: For every t > 0, the function etψ is the Fourier–
Laplace transform of a probability measure in Te.

(ii) The restriction of ψ to iR∗ admits a holomorphic extension to C\R,
the derivative of which is a Pick function.

(iii) ψ admits the representation

ψ(z) = βz + γ
z2

2
+

�

R∗

(
log

ξ

ξ − z
− ξz

1 + ξ2

)
ν(dξ),

where β ∈ R, γ ≥ 0, and ν is a positive measure on R∗ such that
�

0<|ξ|≤1

log
1

|ξ|
ν(dξ) <∞,

�

|ξ|≥1

1

ξ2
ν(dξ) <∞,

or equivalently �

R∗

log

(
1 +

1

ξ2

)
ν(dξ) <∞.

Furthermore

β = Reψ′(i), γ = lim
y→∞

1

y
Imψ′(iy), ν =

1

2iπ
[ψ′].
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This is a reformulation of results in [B, Section 7]. By the change of
variable ξ 7→ u = 1/ξ, we get the representation

ψ(z) = βz + γ
z2

2
−

�

R∗

(
log(1− uz) +

uz

u2 + 1

)
ν0(du),

where the measure ν0, the image of ν by this map, satisfies�

R∗

log(1 + u2) ν0(du) <∞.

Observe that

Reψ(i) = −1

2

(
γ +

�

R∗

log(1 + u2) ν0(du)
)
.

To the measure ν0 on R∗ we associate the bounded positive measure ν̃ on R
defined, for bounded continuous functions f on R, by�

R

f(u) ν̃(du) = γf(0) +
�

R∗

f(u) log(1 + u2) ν0(du).

Noticing that

lim
u→0

1

u2

(
log(1− uz) +

uz

u2 + 1

)
= −1

2
z2,

we obtain the representation

ψ(z) = βz −
�

R

(
log(1− uz) +

uz

1 + u2

)
ν̃(du)

log(1 + u2)
.

By slightly modifying the statement of [B, Theorem 7.1.1], one gets the
following one. On the set Be we consider the topology of uniform convergence
on compact sets in iR, and on the set M(R) of positive bounded measures,
the tight topology.

Theorem 5.2. The map

Be → R×M(R), ψ 7→ (β, ν̃),

is a homeomorphism.

Example (Symmetric stable laws). For 0 < α ≤ 2, the function ψ de-
fined on iR by ψ(iy) = −|y|α belongs to Be. It extension to C\R is given by

ψ(z) =

{−(−iz)α if Im z > 0,

−(iz)α if Im z < 0,

which is a Pick function. If 0 < α < 2, then ψ admits the representation

ψ(z) =
α

π
cos(α− 1)

π

2

�

R∗

(
log

ξ

ξ − z
− ξz

1 + ξ2

)
|ξ|α−1 dξ.

If α = 2, then ψ(z) = z2. In that case β = 0, γ = 2, and ν = 0.



150 J. FARAUT AND F. FOURATI

6. An asymptotic property for the Markov–Krein transform.
In this section we consider a sequence (νn) inMc(R) and the sequence (µn)
of the Markov–Krein transforms: for z ∈ C \ R,

�

R

(1− zt)−κn µn(dt) = exp
(�
R

− log(1− zu) νn(du)
)
,

where κn = νn(R). We will study the convergence of (µn) assuming that
κn = νn(R) goes to infinity.

First consider a simple example. Recall that Mn(a1, . . . , an; τ1, . . . , τn) is
the Markov–Krein transform of the discrete measure ν =

∑n
i=1 τiδai .

Proposition 6.1. Fix ξ ∈ R∗ and τ > 0. For the tight topology we have

lim
n→∞

M2

(
0,
n

ξ
;n, τ

)
= γ(ξ, τ).

Proof. Assume ξ > 0. For a bounded continuous function f on R,

�

R

f(t)M2

(
0,
n

ξ
;n, τ ; dt

)
=

(n/ξ)−(n+τ−1)

B(n, τ)

n/ξ�

0

f(t)

(
n

ξ
− t
)n−1

tτ−1 dt

=
ξτ

nτ Γ (n)Γ (τ)Γ (n+τ)

n/ξ�

0

f(t)

(
1− tξ

n

)n−1
tτ−1 dt.

Hence

lim
n→∞

�

R

f(t)M2

(
0,
n

ξ
;n, τ

)
dt =

ξτ

Γ (τ)

∞�

0

f(t)e−ξttτ−1 dt.

More generally:

Proposition 6.2. Fix ξ1, . . . , ξk ∈ R∗ and τ1, . . . , τk > 0. For the tight
topology we have

lim
n→∞

Mk+1

(
0,
n

ξ1
, . . . ,

n

ξk
;n, τ1, . . . , τk

)
= γ(ξ1, . . . , ξk; τ1, . . . , τk).

Proof. Let

νn = nδ0 +
k∑
i=1

τiδ(n/ξi), µn = Mk+1

(
0,
n

ξ1
, . . . ,

n

ξk
;n, τ1, . . . , τn

)
.

By Theorem 2.1,

�

R

1

(z − t)κn
µn(dt) = z−n

k∏
i=1

1

(z − n/ξi)τi
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with κn = τ1 + · · ·+ τk + n. This relation can also be written as

�

R

1

(1− tz/n)κn
µn(dt) =

k∏
i=1

(
ξi

ξi − z

)τi
.

The first two moments of νn are given by

p
(n)
1 =

k∑
i=1

τi

(
n

ξi

)
= n

n∑
i=1

τi
ξi
, p

(n)
2 =

k∑
i=1

τ2i

(
n

ξ

)2

= n2
k∑
i=1

(
τi
ξi

)2

.

Therefore the second moment of µn, given by

h
(n)
2 =

2

κn(κn + 1)

(
(p

(n)
1 )2 + p

(n)
2

)
,

is bounded. It follows that the sequence (µn) is relatively compact.

Lemma 6.3 (see [Cu, Lemma 3, p. 92]). Let (µn) be a sequence inM(R)
which converges for the tight topology to a measure µ, and let (κn) be a
sequence of positive numbers going to infinity. Then, for y ∈ R,

lim
n→∞

�

R

(
1− i yt

κn

)−κn
µn(dt) =

�

R

eiyt µ(dt)

uniformly on compact sets.

We continue the proof of Proposition 6.2. Let µ0 be the limit of a con-
verging subsequence (µnj ). Then, by Lemma 6.3, for z ∈ iR,

�

R

ezt µ0(dt) =
k∏
i=1

(
ξi

ξi − z

)τi
.

It follows that µ0 = γ(ξ1, . . . , ξk; τ1, . . . , τk), and it is the only possible limit
for a converging subsequence. This proves that (µn) converges with the limit
γ(ξ1, . . . , ξk; τ1, . . . , τk).

Proposition 6.4. Assume that limn→∞ κn = ∞, and that (µn) con-
verges to a probability measure µ in the tight topology. Then µ is a Thorin–
Bondesson distribution. Moreover, every Thorin–Bondesson distribution is
obtained in that way.

Proof. Define

Fn(z) =
�

R

(
1− zt

κn

)−κn
µn(dt).

Then, by Lemma 6.3,

lim
n→∞

Fn(iy) = F (iy) :=
�

R

eity µ(dt)
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uniformly on compact sets in R. On the other hand,

Fn(z) = exp

(�

R

− log

(
1− zu

κn

)
νn(dt)

)
= exp

(�
R

− log(1− zu) ν̃n(du)
)
,

where ν̃n is the image of νn by the dilation of ratio 1/κn. By Theorem 5.1
there are Thorin–Bondesson distributions µ̃n such that, for z ∈ iR,

Fn(z) =
�

R

ezt µ̃n(dt).

By the Lévy–Cramer Theorem,

lim
n→∞

µ̃n = µ

in the tight topology. Since the set Te of Thorin–Bondesson distributions
is closed in the tight topology, it follows that µ is a Thorin–Bondesson
distribution.

The set of such limits is closed. On the other hand, by Proposition 6.2,
this set contains the gamma convolutions γ(ξ1, . . . , ξk; τ1, . . . , τk). Hence this
set is dense in Te. Being closed and dense it is equal to Te.

The following theorem describes a representation for the Fourier–Laplace
transform of the Thorin–Bondesson distribution µ, the limit of (µn). Define

βn =
�

R

uν̃n, σn(du) = u2 ν̃n(du),

where ν̃n is, as before, the image of νn by the dilation of ratio 1/κn.

Theorem 6.5. Assume that βn and σn have limits,

lim
n→∞

βn = β, lim
n→∞

σn = σ

(in the tight topology). Then µn has a limit µ whose Fourier–Laplace trans-
form is given by

�

R

ezt µ(dt) = exp

(
βz −

�

R

log(1− zu) + zu

u2
σ(du)

)
.

Observe that

lim
u→0

log(1− zu) + zu

u2
= −z

2

2
.

Therefore the function

u 7→ log(1− zu) + zu

u2

has a continuous extension to R, and the formula in the theorem can be
written�

R

ezt µ(dt) = exp

(
βz +

1

2
γz2 −

�

R∗

(log(1− zu) + zu)σ0(du)

)
,

with γ = σ({0}), and σ0 is the measure on R∗ given by σ0(du) = u−2σ(du).
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Proof of Theorem 6.5. Let us prove that the sequence (µn) is relatively

compact. For this we will show that the second moments h
(n)
2 of the measures

µn are bounded. We know that

h
(n)
2 =

2

κn(κn + 1)

(
(p

(n)
1 )2 + p

(n)
2

)
,

where p
(n)
m are the moments of order m of the measures νn. Since

p
(n)
1 = κnβn, p

(n)
2 = κ2nσn(R),

we get

h
(n)
2 =

2κn
κn + 1

(β2n + σn(R)).

The sequences
(
σn(R)

)
and (βn) are converging, and hence the sequence

(h
(n)
2 ) is bounded. Therefore (µn) is relatively compact. Let µ0 be the limit

of a converging subsequence of (µn). We get
�

R

ezt µ0(dt) = exp

(
βz −

�

R

log(1− zu) + zu

u2
σ(du)

)
.

This shows that there exists only one possible limit for a converging subse-
quence. Therefore the whole sequence (µn) converges.

Let us consider the case where

νn =
n∑
k=1

τ
(n)
i δ

a
(n)
i

,

where a(n) = (a
(n)
1 , . . . , a

(n)
n ) and τ (n) = (τ

(n)
1 , . . . , τ

(n)
n ) are n-tuples of real

numbers. Then µn = Mn(τ (n); a(n)), and

κn =

n∑
i=1

τ
(n)
i , βn =

n∑
i=1

τ
(n)
i α

(n)
i , σn =

n∑
i=1

τ
(n)
i (α

(n)
i )2δ

α
(n)
i

,

with α
(n)
i = κ−1n a

(n)
i .

Theorem 6.6. Assume that the numbers τ
(n)
i satisfy τ

(n)
i ≥ τ > 0.

Assume that the measures σn converge to a measure σ in the tight topology.

(i) Then σ has the form

σ =

∞∑
j=1

τjα
2
jδαj + γδ0,

where γ ≥ 0, (αj) is a sequence of real numbers, τj ≥ τ , and
∞∑
j=1

τjα
2
j <∞.
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(ii) Assume moreover that limn→∞ βn = β. Then the measure µn =
Mn(τ (n); a(n)) converges to a Thorin–Bondesson distribution µ such
that

�

R

ezt µ(dt) = e
1
2
γz2eβz

∞∏
j=1

(
e−αjz

1− zαj

)τj
.

Lemma 6.7. Let (µn) be a sequence of discrete measures of the form

µn =

n∑
i=1

τ
(n)
i δ

α
(n)
i

,

where α
(n)
i and τ

(n)
i are real numbers. Assume that τ

(n)
i ≥ τ > 0 for all n

and i, and µn converges to µ in the vague topology. Then µ is of the form

µ =
∞∑
j=1

τjδαj ,

where (αj) is a sequence of real numbers, and τj ≥ τ .

Proof. Let A denote the set of atoms of the measure µ. Then A is count-
able. Let a < b be real numbers not in A. Then µ([a, b]) = µ(]a, b[), hence
limn→∞ µn(]a, b[) = µ([a, b]), therefore either µ([a, b]) = 0 or µ([a, b]) ≥ τ .
For an atom a of µ, there are two sequences (an) and (bn) such that for every
n we have an < a < bn, and an, bn 6∈ A, with limit a. Hence µ([an, bn]) ≥ τ ,
and since {a} =

⋂∞
n=0[an, bn],

µ({a}) = lim
n→∞

µ([a,bn]) ≥ τ.

It follows that every bounded interval contains only a finite number of atoms.
Hence A is discrete.

Let a < b be two consecutive atoms of µ. Let a0 and b0 be such that
a < a0 < b0 < b. There are a finite number of intervals [ai, bi] such that

[a0, b0] ⊂
⋃

[ai, bi] and µ([ai, bi]) < τ.

Therefore µ([a0, b0]) = 0 and µ(]a, b[) = 0. This shows that there is an
increasing sequence (ai), possibly finite, and real numbers τj ≥ τ such that

µ =

∞∑
j=1

τjδαj .

Proof of Theorem 6.6. For (i) consider the sequence of measures µn
defined on R \ {0} by µn(du) = u−2σn,

µn =
∑

i, a
(n)
i 6=0

τ
(n)
i δ

α
(n)
i

.
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Then µn converges to µ = u−2σ on R\{0} in the vague topology. By Lemma
6.7 the measure µ has the form

µ =

∞∑
j=1

τjδαj .

Hence σ restricted to R \ {0} is equal to u2µ, therefore there exists γ ≥ 0
such that σ = u2µ+ γδ0.

Part (ii) follows from Theorem 6.5.

For a1 < · · · < an and τ1 = · · · = τn = 1, the probability measure
Mn(a1, . . . , an; 1, . . . , 1) is a spline distribution. In that special case one ob-
tains the following theorem, originally established by Schoenberg and Curry:

Theorem 6.8 ([Cu, Theorem 6, p. 93]). Assume that the sequence µn =

Mn(a
(n)
1 , . . . , a

(n)
n ; 1, . . . , 1) converges to a measure µ. Then µ is a Pólya

distribution: its Fourier–Laplace transform is a Pólya function,

Φ(z) =
�
ezt µ(dt) = e

1
2
γz2eβz

∞∏
j=1

e−αjz

1− zαj
,

with

γ ≥ 0, β ∈ R, αj ∈ R,
∞∑
j=1

α2
j <∞.

Conversely, every Pólya distribution is the limit of such a sequence of spline
distributions.
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