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Abstract. We introduce the class of split regular Hom-Poisson algebras formed by
those Hom-Poisson algebras whose underlying Hom-Lie algebras are split and regular. This
class is the natural extension of the ones of split Hom-Lie algebras and of split Poisson
algebras. We show that the structure theorems for split Poisson algebras can be extended
to the more general setting of split regular Hom-Poisson algebras. That is, we prove that
an arbitrary split regular Hom-Poisson algebra P is of the form P = U +

∑
j Ij with U

a linear subspace of a maximal abelian subalgebra H and any Ij a well described (split)
ideal of P, satisfying {Ij , Ik} + IjIk = 0 if j 6= k. Under certain conditions, the simplicity
of P is characterized, and it is shown that P is the direct sum of the family of its simple
ideals.

1. Introduction and first definitions. We recall that a (not neces-
sarily commutative) Poisson algebra is a Lie algebra (P, {·, ·}) over a base
field K, endowed with an associative product, denoted by juxtaposition, such
that the Leibniz identity

{xy, z} = {x, z}y + x{y, z}

holds for any x, y, z ∈ P.
The interest in Poisson algebras has grown in the last years, motivated

especially by their applications in geometry and mathematical physics. For
instance, we can find them in gauge theories, especially in the study of path
integrals in quantum field theory. They can also be seen as a procedure for
the quantization of physical systems with symmetries in the Lagrangian for-
malism (see [5, 14, 17]). As another example, we note that Poisson algebras
are the key to recover Hamiltonian mechanics from the coordinate space of
the theory [21]. We can list many more applications (see [4, 15, 16, 17, 22]).
A split Poisson algebra is a Poisson algebra P whose underlying Lie algebra
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structure is split, that is,

P = H ⊕
⊕
α∈Λ
Pα

where H is a maximal abelian subalgebra of the Lie algebra (P, {·, ·}) and
where Pα = {vα ∈ P : {h, vα} = α(h)vα for any h ∈ H} for α ∈ H∗ and
Λ := {α ∈ H∗\{0} : Pα 6= 0}. See [6, 24].

On the other hand, a Hom-algebra is an algebra such that a linear ho-
momorphism appears in the identities satisfied by its multiplication. In the
case of a Lie algebra, we are dealing with Hom-Lie algebras. This class
of algebras appeared in the study of quasi-deformations of Lie algebras
of vector fields, in particular quasi-deformations of Witt and Virasoro al-
gebras, [13]. Many authors have been interested in the study of Hom-Lie
algebras, motivated in part by their applications in physics; see for instance
[2, 3, 10, 11, 12, 18, 19, 20, 23, 25, 26, 28]. A Hom-Poisson algebra is de-
fined as a Hom-Lie algebra (P, {·, ·}) over an arbitrary base field K endowed
with a Hom-associative product and with both products compatible via a
Hom-Leibniz identity.

Definition 1.1. A Hom-Lie algebra P is a vector space over a base field
K endowed with a bilinear product

{·, ·} : P×P→ P

and with a linear map φ : P→ P such that

(1) {x, y} = −{y, x},
(2) {{x, y}, φ(z)}+{{y, z}, φ(x)}+{{z, x}, φ(y)} = 0 (Hom-Jacobi iden-

tity),

for any x, y, z ∈ P.

Definition 1.2.A Hom-Poisson algebra is a Hom-Lie algebra (P, {·, ·}, φ)
endowed with a Hom-associative product, that is, a bilinear product denoted
by juxtaposition such that

(xy)φ(z) = φ(x)(yz)

for any x, y, z ∈ P, and such that the Hom-Leibniz identity

{xy, φ(z)} = {x, z}φ(y) + φ(x){y, z}

holds for any x, y, z ∈ P.

If φ is furthermore a Poisson automorphism, that is, a linear bijection
such that φ({x, y}) = {φ(x), φ(y)} and φ(xy) = φ(x)φ(y) for any x, y ∈ P,
then P is called a regular Hom-Poisson algebra.
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Example 1.3. Consider a 3-dimensional linear space P over a base field
K with basis {e1, e2, e3}. Define the products

e1e1 = e1, e1e2 = e2e1 = e3,

{e1, e1} = ae2 + be3, {e1, e3} = ce2 + de3,

set the remaining products equal to zero, and define the linear map φ as

φ(e1) = λ1e2 + λ2e3, φ(e2) = λ3e2 + λ4e3, φ(e3) = λ5e2 + λ6e3,

where a, b, c, d, λ1, λ2, λ3, λ4, λ5, λ6 ∈ K. Then P becomes a Hom-Poisson
algebra.

Example 1.4. Consider a Poisson algebra (P, ·, [·, ·]) and a linear bi-
jection φ : P → P multiplicative for · and [·, ·]. Then P with the Hom-
associative product (with respect to φ) defined by the composition φ ◦ · and
the Hom-Lie product (with respect to φ) given by φ◦ [·, ·] becomes a regular
Hom-Poisson algebra (with respect to φ).

A subalgebra A of P is a linear subspace such that {A,A} + AA ⊂ A
and φ(A) = A. A linear subspace I of P is called an ideal if {I,P}+ IP +
PI ⊂ I and φ(I) = I. A Hom-Poisson algebra P will be called simple if
{P,P}+PP 6= 0 and its only ideals are {0} and P. We refer to [20, 27] for
a first approach to Hom-Poisson algebras.

In the present paper we introduce the class of split Hom-Poisson al-
gebras P formed by those Hom-Poisson algebras whose underlying Hom-Lie
algebras are split. We recall that given a Hom-Lie algebra (P, {·, ·}, φ) and
a maximal abelian subalgebra H of P, for a linear functional

α : H → K,

we define the root space of P (with respect to H) associated to α to be the
subspace

Pα = {vα ∈ P : {h, vα} = α(h)φ(vα) for any h ∈ H}.

The functionals α : H → K satisfying Pα 6= 0 are called the roots of P with
respect to H and we denote Λ := {α ∈ H∗ \ {0} : Pα 6= 0}. We say that P
is a split Hom-Lie algebra with respect to H if

P = H ⊕
⊕
α∈Λ

Pα.

We also say that Λ is the root system of P.

To ease notation, the mappings φ|H , φ|−1
H : H → H will be denoted by

φ and φ−1 respectively.

We recall some properties of split regular Hom-Lie algebras that can be
found in [1, Lemmas 1.3 and 1.4].
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Lemma 1.5. Let (P, {·, ·}, φ) be a split regular Hom-Lie algebra. Then
for any α, β ∈ Λ ∪ {0}:

(1) φ(Pα) ⊂ Pαφ−1 and φ−1(Pα) ⊂ Pαφ.
(2) {Pα,Pβ} ⊂ Pαφ−1+βφ−1.
(3) If α ∈ Λ then αφ−z ∈ Λ for any z ∈ Z.
(4) P0 = H.

Definition 1.6. A split Hom-Poisson algebra is a Hom-Poisson algebra
in which the Hom-Lie algebra (P, {·, ·}) is split with respect to a maximal
abelian subalgebra H of (P, {·, ·}).

Note that by taking φ = Id, split Poisson algebras become examples
of split regular Hom-Poisson algebras. Maybe the main topic in the theory
of Hom-algebras consists in studying whether a known result for a class of
nondeformed algebras still holds true for the corresponding class of Hom-
algebras. Following this line, the present paper shows to what extent the
structure theorems obtained in [6] for split Poisson algebras also hold for
the class of split regular Hom-Poisson algebras. All of the constructions
carried out along this paper strongly involve the structure map φ which
makes the proofs different from the nondeformed Poisson case.

Lemma 1.7. Let P be a split regular Hom-Poisson algebra. Then for any
α, β ∈ Λ ∪ {0} we have PαPβ ⊂ Pαφ−1+βφ−1.

Proof. Let h ∈ H, vα ∈ Pα and vβ ∈ Pβ, and denote h′ = φ(h). By
applying the Hom-Leibniz identity we get

{h′, vαvβ} = {φ(h), vαvβ}
= −{vαh}φ(vβ)− φ(vα){vβ, h} = α(h)φ(vα)φ(vβ) + β(h)φ(vα)φ(vβ)

= (α+ β)(h)φ(vα)φ(vβ) = (α+ β)φ−1(h′)φ(vαvβ).

That is, vαvβ ∈ Pαφ−1+βφ−1 .

The paper is organized as follows. In §2 we develop connections of roots
techniques in the framework of split regular Hom-Poisson algebras P, and
show that any of these algebras is of the form P = U +

∑
j Ij with U

a linear subspace of H and any Ij a well defined ideal of P, satisfying
{Ij , Ik} + IjIk = 0 if j 6= k. Finally, in §3, and under mild conditions, the
simplicity of P is characterized, and it is shown that P is the direct sum of
the family of its simple ideals.

Throughout this paper we will denote by N the set of all nonnegative
integers and by Z the set of all integers. Finally, note that our split regular
Hom-Poisson algebras are of arbitrary dimension and over an arbitrary base
field K.
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2. Decomposition as direct sum of ideals. In the following, P de-
notes a split regular Hom-Poisson algebra and

P = H ⊕
⊕
α∈Λ

Pα

the corresponding root space decomposition. Given a linear functional α :
H → K, we denote by −α : H → K the element in H∗ defined by (−α)(h) :=
−α(h) for all h ∈ H. We also write

−Λ = {−α : α ∈ Λ}.

Definition 2.1. Let α, β ∈ Λ. We will say that α is connected to β if
either

β = εαφz for some z ∈ Z and ε ∈ {±1},
or there exists {α1, . . . , αk} ⊂ ±Λ, k ≥ 2, such that:

(1) α1 ∈ {αφ−n : n ∈ N}.
(2) α1φ

−1 + α2φ
−1 ∈ ±Λ,

α1φ
−2 + α2φ

−2 + α3φ
−1 ∈ ±Λ,

α1φ
−3 + α2φ

−3 + α3φ
−2 + α4φ

−1 ∈ ±Λ,
· · ·
α1φ

−i + α2φ
−i + α3φ

−i+1 + · · ·+ αi+1φ
−1 ∈ ±Λ,

· · ·
α1φ

−k+2 +α2φ
−k+2 +α3φ

−k+3 + · · ·+αiφ−k+i+ · · ·+αk−1φ
−1 ∈ ±Λ.

(3) α1φ
−k+1 + α2φ

−k+1 + α3φ
−k+2 + · · · + αiφ

−k+i−1 + · · · + αkφ
−1 ∈

{±βφ−m : m ∈ N}.

In this case, we will also say that {α1, . . . , αk} is a connection from α to β.

The proof of the next result is analogous to the one of [1, Proposition
2.4]. For the sake of completeness we give a sketch of the proof.

Proposition 2.2. The relation ∼ in Λ, defined by α ∼ β if and only if
α is connected to β, is an equivalence relation.

Proof. Clearly α ∼ α. If α ∼ β, then either β = εαφz for some z ∈ Z
and ε ∈ {±1}, and so β is connected to α; or there exists a connection
{α1, . . . , αk} ⊂ ±Λ, k ≥ 2, from α to β with

α1φ
−k+1 + α2φ

−k+1 + α3φ
−k+2 + · · ·+ αkφ

−1 = εβφ−m

for some ε ∈ {±1} and some m ∈ N. Then we can verify that

{βφ−m,−εαkφ−1,−εαk−1φ
−3,−εαk−2φ

−5, . . . ,−εα2φ
−2k+3}

is a connection from β to α and so the relation ∼ is symmetric.

Finally, suppose α ∼ β and β ∼ γ. In case β ∈ εαφz or γ ∈ εβφz for
some z ∈ Z and ε ∈ {±1}, we easily find that α is connected to γ. Hence,
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suppose {α1, . . . , αk}, k ≥ 2, is a connection from α to β which satisfies

α1φ
−k+1 + α2φ

−k+1 + α3φ
−k+2 + · · ·+ αkφ

−1 = εβφ−m

for some m ∈ N, ε ∈ {±1}; and {h1, . . . , hp} is a connection from β to γ.
Then {α1, . . . , αk, εh2, . . . , εhp} is a connection from α to γ, so the connection
relation is also transitive.

From Proposition 2.2 we can consider the quotient set

Λ/∼ = {[α] : α ∈ Λ},

with [α] being the set of nonzero roots connected to α.

Our next goal is to associate an ideal I[α] to any [α]. Fix [α] ∈ Λ/∼. We
start by defining

IH,[α] := spanK{{Pβ,P−β}+ PβP−β : β ∈ [α]} ⊂ H.

Next, we define

V[α] :=
⊕
β∈[α]

Pβ.

Finally, we denote by I[α] the direct sum of the two subspaces above:

I[α] := IH,[α] ⊕ V[α].

Proposition 2.3. Let [α] ∈ Λ/∼. Then:

(1) {I[α], I[α]}+ I[α]I[α] ⊂ I[α].
(2) φ(I[α]) = I[α].
(3) For any [β] 6= [α] we have {I[α], I[β]}+ I[α]I[β] = 0.

Proof. (1) Let us begin by showing that {I[α], I[α]} ⊂ I[α]. We can write

{I[α], I[α]} = {IH,[α] + V[α], IH,[α] + V[α]}(2.1)

⊂ {IH,[α], V[α]}+ {V[α], V[α]}.

Since IH,[α] ⊂ H, we have {IH,[α], V[α]} ⊂ V[α], and so consider the prod-
uct {V[α], V[α]} in (2.1). If we take β, γ ∈ [α] such that {Pβ,Pγ} 6= 0, in
case γ = −β clearly {Pβ,Pγ} ⊂ IH,[α]. So suppose γ 6= −β. By Lemma
1.5, {Pβ,Pγ} ⊂ Pβφ−1+γφ−1 , and since {β, γ} is a connection from β to
βφ−1 + γφ−1, we get {Pβ,Pγ} ⊂ V[α]. Consequently, {I[α], I[α]} ⊂ I[α].

Second, let us verify that I[α]I[α] ⊂ I[α]. We have

I[α]I[α] = (IH,[α] + V[α])(IH,[α] + V[α])(2.2)

⊂ IH,[α]IH,[α] + IH,[α]V[α] + V[α]IH,[α] + V[α]V[α].

By arguing as above, but now taking into account Lemma 1.7, we have

IH,[α]V[α] + V[α]IH,[α] + V[α]V[α] ⊂ IH,[α].
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Hence it just remains to study the product IH,[α]IH,[α] in (2.2). To do so,
observe that

IH,[α]IH,[α] ⊂
(∑
β∈[α]

({Pβ,P−β}+ PβP−β)
)
H(2.3)

⊂
(∑
β∈[α]

{Pβ,P−β}
)
H +

(∑
β∈[α]

PβP−β

)
H.

Consider the first summand on the right hand side of (2.3). By the Hom-
Leibniz identity we have

{Pβ,P−β}φφ−1(H) ⊂ {Pβφ
−1(H), φ(P−β)}+ φ(Pβ){φ−1(H),P−β}

⊂ {Pβφ−1 ,P−βφ−1}+ Pβφ−1P−βφ−1 ⊂ IH,[α].

Finally, consider the last summand in (2.3). By Hom-associativity,

(PβP−β)φ(φ−1(H)) = φ(Pβ)(P−βφ
−1(H)) ⊂ Pβφ−1P−βφ−1 ⊂ IH,[α].

(2) is a consequence of Lemma 1.5(1).
(3) We have to study the expression {I[α], I[β]}+ I[α]I[β]. Observe that

{I[α], I[β]} = {IH,[α] ⊕ V[α], IH,[β] ⊕ V[β]}(2.4)

⊂ {IH,[α], V[β]}+ {IH,[β], V[α]}+ {V[α], V[β]}
and

I[α]I[β] = (IH,[α] ⊕ V[α])(IH,[β] ⊕ V[β]))(2.5)

⊂ IH,[α]IH,[β] + IH,[α]V[β] + V[α]IH,[β] + V[α]V[β].

We begin by showing that

(2.6) {V[α], V[β]}+ V[α]V[β] = 0.

Indeed, if there exist γ ∈ [α] and ρ ∈ [β] such that 0 6= {Pγ ,Pρ}+PγPρ ⊂
Pγφ−1+ρφ−1 then {γ, ρ,−γφ−1} would be a connection from γ to ρ, a con-
tradiction.

Consider now the first summand {IH,[α], V[β]} on the right hand side of
(2.4) and the second one, IH,[α]V[β], of (2.5); and suppose there exist γ ∈ [α]
and ρ ∈ [δ] such that

{{Pγ ,P−γ},Pρ}+ {PγP−γ ,Pρ}+ {Pγ ,P−γ}Pρ + (PγP−γ)Pρ 6= 0.

Then some of the four summands are different from zero.
If

{{Pγ ,P−γ},Pρ} 6= 0,

then the Hom-Jacobi identity gives

0 6= {{Pγ ,P−γ}, φ(φ−1(Pρ)}
⊂ {{P−γ , φ−1(Pρ)}, φ(Pγ)}+ {{φ−1(Pρ),Pγ}, φ(P−γ)}.
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Hence

{P−γ , φ−1(Pρ)}+ {Pγ , φ
−1(Pρ)} 6= 0,

which contradicts (2.6). Hence, {{Pγ ,P−γ},Pρ} = 0.

If the second, third or fourth summand were nonzero, we can argue as
above but using the Hom-Leibniz or Hom-associativity identities to show
that these products are zero. Consequently,

{IH,[α], V[β]}+ IH,[α]V[β] = 0.

In a similar way we prove that the remaining summands in (2.4) and (2.5)
are zero, and the proof is complete.

Lemma 2.4. For any [α] ∈ Λ/∼ we have IH,[α]H +HIH,[α] ⊂ IH,[α].

Proof. Fix any β ∈ [α] . On the one hand, by the Hom-Leibniz identity
we get

{Pβ,P−β}H +H{Pβ,P−β} = {Pβ,P−β}φ(H) + φ(H){Pβ,P−β}
⊂ {PβH,φ(P−β)}+ φ(Pβ){H,P−β}+ {HPβ, φ(P−β)}+ {H,P−β}φ(Pβ)

⊂ {Pβφ−1 ,P−βφ−1}+ Pβφ−1P−βφ−1 + P−βφ−1Pβφ−1 ⊂ IH,[α].

On the other hand, by Hom-associativity,

(PβP−β)H +H(PβP−β) = (PβP−β)φ(H) + φ(H)(PβP−β)

⊂ φ(Pβ)(P−βH) + (HPβ)φ(P−β) ⊂ Pβφ−1P−βφ−1 ⊂ IH,[α].

Since IH,[α] =
∑

β∈[α]({Pβ,P−β}+ PβP−β) the proof is complete.

Theorem 2.5.

(1) For any [α] ∈ Λ/∼, the linear subspace I[α] = IH,[α] ⊕ V[α] of P
associated to [α] is an ideal of P.

(2) If P is simple, then there exists a connection from α to β for any
α, β ∈ Λ and H =

∑
α∈Λ({Pα,P−α}+ PαP−α).

Proof. (1) Since {I[α], H} ⊂ I[α], Proposition 2.3 shows that

{I[α],P} =
{
I[α], H ⊕

(⊕
β∈[α]

Pβ

)
⊕
(⊕
γ /∈[α]

Pγ

)}
⊂ I[α].

By Lemma 2.4 and Proposition 2.3 we also have

I[α]P + PI[α]

=I[α]

(
H⊕

(⊕
β∈[α]

Pβ

)
⊕
(⊕
γ /∈[α]

Pγ

))
+
(
H⊕

(⊕
β∈[α]

Pβ

)
⊕
(⊕
γ /∈[α]

Pγ

))
I[α]⊂I[α].

As by Proposition 2.3(2) also φ(I[α])=I[α], we conclude that I[α] is an ideal
of I.
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(2) The simplicity of P implies I[α] = P. Hence it is clear that [α] = Λ
and H =

∑
α∈Λ({Pα,P−α}+ PαP−α).

Theorem 2.6. We have

P = U +
∑

[α]∈Λ/∼

I[α],

where U is a linear complement in H of spanK{{Pα,P−α} + PαP−α :
α ∈ Λ} and any I[α] is one of the ideals of P described in Theorem 2.5(1),
satisfying {I[α], I[β]}+ I[α]I[β] = 0 if [α] 6= [β].

Proof. I[α] is well defined and, by Theorem 2.5(1), an ideal of P, since
it is clear that

P = H ⊕
(⊕
α∈Λ

Pα

)
= U +

∑
[α]∈Λ/∼

I[α].

Finally Proposition 2.3(3) gives {I[α], I[β]}+ I[α]I[β] = 0 if [α] 6= [β].

Denote by Z(P) = {v ∈ P : {v,P}+ vP + Pv = 0} the center of P.

Corollary 2.7. If Z(P) = 0 and H =
∑

α∈Λ({Pα,P−α} + PαP−α),
then P is the direct sum of the ideals given in Theorem 2.5,

P =
⊕

[α]∈Λ/∼

I[α],

with {I[α], I[β]}+ I[α]I[β] = 0 if [α] 6= [β].

Proof. Since H=
∑

α∈Λ({Pα,P−α}+PαP−α) we get P=
∑

[α]∈Λ/∼ I[α].

To verify that the sum is direct, take some v ∈ I[α] ∩
∑

[β]∈Λ/∼, [β] 6=[α] I[β].

Since v ∈ I[α], the fact that {I[α], I[β]}+ I[α]I[β] = 0 when [α] 6= [β] gives{
v,

∑
[β]∈Λ/∼, [β] 6=[α]

I[β]

}
+ v
( ∑

[β]∈Λ/∼, [β] 6=[α]

I[β]

)
+
( ∑

[β]∈Λ/∼, [β]6=[α]

I[β]

)
v = 0.

In a similar way, since v ∈
∑

[β]∈Λ/∼, [β] 6=[α] I[β] we get {v, I[α]}+ vI[α] + I[α]v

= 0. That is, v ∈ Z(P) and so v = 0.

3. The simple components. In this section we are going to present
a framework in which the decomposition of P given in Corollary 2.7 is
actually by means of the family of its minimal (simple) ideals, thus getting a
second Wedderburn type theorem for the class of split regular Hom-Poisson
algebras. We recall that a root system Λ of a split regular Hom-Poisson
algebra P is called symmetric if α ∈ Λ implies −α ∈ Λ. From now on we
will suppose Λ is symmetric.

Lemma 3.1. Suppose H =
∑

α∈Λ({Pα,P−α}+PαP−α). If I is an ideal
of P such that I ⊂ H, then I ⊂ Z(P).
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Proof. Observe that {I,H} ⊂ {H,H} = 0 and{
I,
⊕
α∈Λ

Pα

}
+ I
(⊕
α∈Λ

Pα

)
+
(⊕
α∈Λ

Pα

)
I

⊂ I ∩
(⊕
α∈Λ

Pα

)
⊂ H ∩

(⊕
α∈Λ

Pα

)
= 0.

Since H =
∑

α∈Λ({Pα,P−α}+PαP−α), we also infer, by Hom-associativity,
the Hom-Leibniz identity, and the above observation, that HI + IH = 0.
Consequently, I ⊂ Z(P).

Let us introduce the concepts of root-multiplicativity and maximal length
in the framework of split Hom-Poisson algebras, in a similar way to the
cases of split Lie algebras, split 3-Lie algebras, split Lie superalgebras or
split Poisson algebras (see [6, 7, 8, 9] for these notions and examples).

Definition 3.2. A split regular Hom-Poisson algebra P is root-multi-
plicative if whenever α, β ∈ Λ are such that αφ−1+βφ−1 ∈ Λ, then {Pα,Pβ}
+ PαPβ + PβPα 6= 0.

Definition 3.3. A split regular Hom-Lie algebra P is of maximal length
if dimPα = 1 for any α ∈ Λ.

Theorem 3.4. Let P be a split regular Hom-Poisson algebra of maximal
length and root-multiplicative. Then P is simple if and only Z(P) = 0,
H =

∑
α∈Λ({Pα,P−α}+ PαP−α) and Λ has all of its elements connected.

Proof. Suppose P is simple. Since Z(P) is an ideal of P, we have
Z(P) = 0. Now Theorem 2.5(2) completes the proof of the direct impli-
cation.

To prove the converse, consider a nonzero ideal I of P. Since I is also
an ideal of the split regular Hom-Lie algebra (P, {·, ·}), by [1, Lemma 4.3]
we can write I = (I ∩H)⊕ (

⊕
α∈Λ Iα), where Iα = I ∩Pα. By the maximal

length of P, if we denote ΛI := {α ∈ Λ : Iα 6= 0} we can write I =
(I ∩H)⊕ (

⊕
α∈ΛI Pα), where ΛI 6= ∅ as a consequence of Lemma 3.1. Pick

α0 ∈ ΛI with 0 6= Pα0 ⊂ I. Since φ(I) = I, Lemma 1.5(1) allows us to
assert that

(3.1) if α ∈ ΛI then {αφz : z ∈ Z} ⊂ ΛI ,

that is,

(3.2) {Pα0φz : z ∈ Z} ⊂ I.

Now, take any β ∈ Λ satisfying β /∈ {±α0φ
z : z ∈ Z}. Since α0 and β are

connected, we have a connection {α1, . . . , αk}, k ≥ 2, from α0 to β satisfying:
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(i) α1 = α0φ
−n for some n ∈ N.

(ii) α1φ
−1 + α2φ

−1 ∈ Λ,
α1φ

−2 + α2φ
−2 + α3φ

−1 ∈ Λ,
· · ·
α1φ

−k+2 +α2φ
−k+2 +α3φ

−k+3 + · · ·+αiφ
−k+i+ · · ·+αk−1φ

−1 ∈ Λ.
(iii) α1φ

−k+1 + α2φ
−k+1 + α3φ

−k+2 + · · ·+ αiφ
−k+i−1 + · · ·+ αkφ

−1 =
εβφ−m for some m ∈ N and ε ∈ {±1}.

Taking into account that α1, α2 ∈ Λ and α1φ
−1 + α2φ

−1 ∈ Λ, the root-
multiplicativity and maximal length of P allow us to assert that either
0 6= {Pα1 ,Pα2} = Pα1φ−1+α2φ−1 or 0 6= Pα1Pα2 +Pα2Pα1 = Pα1φ−1+α2φ−1 .

Since 0 6= Pα1 ⊂ I as a consequence of (3.2), we get

0 6= Pα1φ−1+α2φ−1 ⊂ I.
A similar argument applied to α1φ

−1 + α2φ
−1, α3 and

(α1φ
−1 + α2φ

−1)φ−1 + α3φ
−1 = α1φ

−2 + α2φ
−2 + α3φ

−1

gives 0 6= Pα1φ−2+α2φ−2+α3φ−1 ⊂ I. Continuing, we get

0 6= Pα1φ−k+1+α2φ−k+1+α3φ−k+2+···+αkφ−1 ⊂ I,
and so

either Pβφ−m ⊂ I or P−βφ−m ⊂ I.

From (3.1) and (3.2), we now get

(3.3) either {Pαφ−z : z ∈ Z} ⊂ I or {P−αφ−z : z∈Z} ⊂ I for any α ∈ Λ.
This can be reformulated by saying that for any α ∈ Λ either {αφ−z :
z ∈ Z} or {−αφ−z : z ∈ Z} is contained in ΛI . Taking into account H =∑

α∈Λ({Pα,P−α}+ PαP−α) we have

(3.4) H ⊂ I.
Now for any α ∈ Λ, since Pα = {H,Pα} by the maximal length of P, (3.4)
gives Pα ⊂ I, and so I = P. That is, P is simple.

Theorem 3.5. Let P be a split regular Hom-Poisson algebra of maximal
length, root-multiplicative, with Z(P) = 0 and satisfying

H =
∑
α∈Λ

({Pα,P−α}+ {Pα,P−α}).

Then

P =
⊕

[α]∈Λ/∼

I[α],

where any I[α] is a simple (split) ideal whose root system, ΛI[α], has all of
its elements ΛI[α]-connected.
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Proof. By Corollary 2.7 we can write P as the direct sum
⊕

[α]∈Λ/∼ I[α]

of the family of ideals

I[α] = IH,[α] ⊕ V[α] = spanK{{Pβ,P−β}+ PβP−β : β ∈ [α]} ⊕
⊕
β∈[α]

Pβ,

where each I[α] is a split regular Hom-Poisson algebra with root system
ΛI[α] = [α]. To make use of Theorem 3.4 in each I[α], we observe that the
root-multiplicativity of P and Proposition 2.3(3) show that ΛI[α] has all of its
elements ΛI[α]-connected, that is, connected through connections contained
in ΛI[α] . Moreover, each I[α] is root-multiplicative by the root-multiplicativity
of P. Clearly I[α] is of maximal length, and finally ZI[α](I[α]) = 0 (where
ZI[α](I[α]) denotes the center of I[α] in I[α]), because {I[α], I{β}}+I[α]I{β} = 0
if [α] 6= [β] (Theorem 2.6) and Z(P) = 0. We can apply Theorem 3.4 to
any I[α] to conclude that I[α] is simple. It is clear that the decomposition
P =

⊕
[α]∈Λ/∼ I[α] satisfies the assertions of the theorem.
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Springer, New York, 2011, 243–268.

[18] H. Li and T. Ma, A construction of the Hom-Yetter–Drinfeld category, Colloq. Math.
137 (2014), 43–65.

[19] T. Ma, H. Li and T. Yang, Cobraided smash product Hom-Hopf algebras, Colloq.
Math. 134 (2014), 75–92.

[20] A. Makhlouf and S. Silvestrov, Notes on 1-parameter formal deformations of Hom-
Lie and Hom-Lie algebras, Forum Math. 22 (2010), 715–739.

[21] C. Paufler, A vertical exterior derivate in multisymplectic geometry and graded Pois-
son bracket for nontrivial geometries, Rep. Math. Phys. 47 (2001), 101–119.

[22] V. D. Rottenberg, Generalized superalgebras, Nucl. Phys. B 139 (1978), 189–202.
[23] Y. Sheng, Representations of Hom-Lie algebras, Algebr. Represent. Theor. 12 (2012),

1081–1098.
[24] N. Stumme, The structure of locally finite split Lie algebras, J. Algebra 220 (1999),

664–693.
[25] D. Yau, The Hom-Yang–Baxter equation and Hom-Lie algebras, J. Math. Phys. 52

(2011), 053502, 19 pp.
[26] S. X. Wang and S. H. Wang, Hom-Lie algebras in Yetter–Drinfeld categories, Comm.

Algebra 42 (2014), 4526–4547.
[27] S. X. Wang and X. Zhang, On the structures of Hom-Lie algebras, J. Math. Res.

Appl. 34 (2014), 459–466.
[28] R. Zhang, D. Hou and C. Bai, A Hom-version of the affinizations of Balinskii–

Novikov and Novikov superalgebras, J. Math. Phys. 52 (2011), 023505, 19 pp.
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