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Irreducible Sobol’ sequences in prime power bases
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Henri Faure (Marseille) and Christiane Lemieux (Waterloo)

1. Introduction. The family of low-discrepancy sequences introduced
by Sobol’ in his 1967 paper [19] has had a tremendous impact on the
field of quasi-Monte Carlo methods. Two important ways in which this im-
pact has taken place are: 1) it gave rise to several other important con-
tributions giving variations, extensions, and generalizations of this con-
struction and the concepts used to study it; 2) despite all the general-
izations that have been proposed, this construction continues to play an
important role in the application of quasi-Monte Carlo methods in prac-
tice, with implementations offered in many software/calculation packages
[1, 9, 10, 11, 23, 24].

The goal of this work is to study generalizations of Sobol’ sequences that
preserve two fundamental properties of the original construction, namely:
(a) one-dimensional projections that are (0, 1)-sequences, and (b) an easy-
to-implement column-by-column construction for the generating matrices,
based on linear recurrences determined by monic irreducible polynomials
over Fb, where b is a prime power. We compare this generalization—which, as
announced in the title, we call “irreducible Sobol’ sequences in prime power
bases”—with other closely related families of digital (t, s)-sequences. In par-
ticular, we describe in detail how our construction is included in the larger
family of generalized Niederreiter sequences introduced by Tezuka [20].

The paper is organized as follows. In Section 2, we recall different frame-
works to build the low-discrepancy sequences that are relevant to this work.
Section 3 is devoted to connections between Niederreiter sequences in base 2
and Sobol’ sequences, with our generalization of the latter introduced in
Section 4, along with a description of its relation to generalized Niederreiter
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sequences. An analysis similar to the one in Section 3 for the base 2 case
is performed in Section 5 for the generalized constructions in prime power
bases. We conclude with some final remarks in Section 6.

The remainder of this section is devoted to recalling the basic concepts
that will be used throughout this paper, starting with the notion of discrep-
ancy, which measures the uniformity properties of sequences of points in the
unit hypercube Is := [0, 1)s.

Consider a point set PN = {X1, . . . , XN} ⊆ Is, and denote by J ∗ the
set of intervals J of Is of the form J =

∏s
j=1[0, zj). Then the discrepancy

function of PN on J is the difference

E(J ;N) = A(J ;PN )−NV (J),

where A(J ;PN ) = #{n : 1 ≤ n ≤ N, Xn ∈ J} is the number of points in
PN that fall in the subinterval J , and V (J) =

∏s
j=1 zj is the volume of J .

Then, the star (extreme) discrepancy D∗ of PN is defined as

D∗N = sup
J∈J ∗

|E(J ;N)|.

A sequence of points (Xn)n≥1 in Is is said to be a low-discrepancy se-
quence if the (star) discrepancy D∗N of its first N points satisfies D∗N ∈
O((logN)s).

The constructions in this paper achieve this low-discrepancy property by
focusing on b-adic intervals of [0, 1)s in the definition of D∗N above. That is,
they are built so that an appropriate number of points is placed in intervals
of the form

E =
s∏
i=1

[aib
−qi , (ai + 1)b−qi)

(called elementary intervals) with integers qi ≥ 0 and 0 ≤ ai < bqi for
1 ≤ i ≤ s. Hence E is of volume b−q, where q =

∑s
i=1 qi. A point set

PN ⊆ Is with N = bm points is said to be a (t,m, s)-net if every interval E
with q =

∑s
i=1 qi ≤ m − t contains bm−q points. It should be clear that a

smaller value of t yields better uniformity properties for PN .

To introduce the concept of (t, s)-sequence, we first need to define the
truncation operator introduced by Tezuka [20] and then Niederreiter and
Xing [16, 17] to handle new constructions for low-discrepancy sequences.

Let X =
∑∞

l=1 hlb
−l be a b-adic expansion of X ∈ [0, 1], with the possi-

bility that hl = b − 1 for all but finitely many l. For every integer m ≥ 1,
the m-truncation of X is given by [X]b,m =

∑m
l=1 hlb

−l (depending on X
via its expansion). In the case where X ∈ Is, the notation [X]b,m means the
m-truncation is applied to each coordinate of X.

An s-dimensional sequence (Xn)n≥1, with prescribed b-adic expansions
for all coordinates, is a (t, s)-sequence (in the broad sense) if the point set
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{[Xn]b,m : kbm < n ≤ (k + 1)bm} is a (t,m, s)-net in base b for all integers
k ≥ 0 and m ≥ t.

Niederreiter [14] proved that the equidistribution property of (t, s)-se-
quences over intervals of the form E was sufficient to ensure these sequences
had a low discrepancy, as stated in the next result. Note that this property
was established in [19] and [4] for the specific constructions introduced in
these earlier papers. It reads as follows:

The first N ≥ 1 points of a (t, s)-sequence in base b satisfy

(1.1) D∗N ≤ cs(logN)s +O((logN)s−1),

where cs is a constant depending only on s.

The low-discrepancy sequences of interest in this paper are (t, s)-sequen-
ces that all fit within the digital method introduced by Niederreiter [14],
which we now describe. Let b ≥ 2. We first need to choose:

(1) a commutative ring R with identity and card(R) = b;
(2) bijections ψr : Zb → R;
(3) bijections λi,j : R→ Zb for j ≥ 1 and 1 ≤ i ≤ s;
(4) ∞×∞ generating matrices C(1), . . . , C(s) over R with elements de-

noted as c
(i)
j,r, and rows denoted by c

(i)
j , for j, r ≥ 1.

Note that for b a prime power, the ring R is taken to be the finite field Fb
of order b.

Now, for n ≥ 1, let

n− 1 =
∞∑
r=0

ar(n)br

be the expansion of n − 1 in base b, where ar(n) ∈ Zb and ar(n) = 0 for r
sufficiently large. Let n be the vector in R∞ whose rth component is given
by nr = ψr(ar−1(n)), r ≥ 1. Then let

X
(i)
n,j = λi,j(c

(i)
j · n) = λi,j

( ∞∑
r=1

c
(i)
j,rnr

)
,

and define X
(i)
n =

∑∞
j=1X

(i)
n,jb
−j . The sequence of points obtained by this

digital method is given by (Xn)n≥1 with Xn = (X
(1)
n , . . . , X

(s)
n ).

A desirable property for a (t, s)-sequence is to have one-dimensional pro-
jections that are all (0, 1)-sequences. In turn, this requires that the first
m×m entries of each generating matrix form a non-singular matrix for all
m ≥ 1, a condition that is satisfied when using non-singular upper triangu-
lar (NUT) matrices. The Sobol’ and (0, s)-sequences introduced respectively
in [19] and [4] are both based on NUT generating matrices. But this is not
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necessarily the case for the generalizations that will be discussed in the
next section, namely for Niederreiter [15] and generalized Niederreiter [20]
sequences. As mentioned previously, one way in which our proposed gener-
alization of Sobol’ sequences differs from these other ones is that it preserves
this useful property of having NUT generating matrices.

2. Frameworks for the construction of (t, s)-sequences

2.1. The framework of Sobol’. The construction introduced by
Sobol’ [19], mentioned in the introduction, was originally named LPτ -se-
quences, but is now widely known as Sobol’ sequences. It was the first digital
sequence that was proposed. It is defined in base 2, which makes its sequence
generation very fast, a property that has contributed to its popularity with
practitioners. For this sequence, the generating matrices C(i) in the digital
method are constructed column by column, using monocyclic operators (ob-
tained from primitive polynomials over F2) and so-called direction numbers,
which are used to initialize the first columns of the generating matrices.

To simplify the presentation, we explain how to construct a given gener-
ating matrix based on a primitive polynomial p(x) over F2[x], thus dropping
for now the index i denoting the dimension 1 ≤ i ≤ s considered.

Let p(x) = aex
e + ae−1x

e−1 + · · · + a1x + a0 be a primitive polynomial
in F2[x] of degree e ≥ 1. Let Vr be a column vector of infinite length with
entries in F2, with its jth entry denoted vj,r, for j, r ≥ 1. For r = 1, . . . , e,
let dr be an odd number between 1 and 2r, and let the first e entries of
V1, . . . , Vr be defined via

dr
2r

=
r∑
j=1

vj,r2
−j

and vj,r = 0 for j > r. Note that since dr is odd, vr,r = 1 for r = 1, . . . , e. The
e integers d1, . . . , de are called the direction numbers associated with p(x).
The remaining vectors Vj for j > e are obtained using the following linear
recurrence associated with p(x):

(2.1) Vr+e =
1

2e
a0Vr + a0Vr + a1Vr+1 + · · ·+ ae−1Vr+e−1, r ≥ 1,

where 1/2e in the first term indicates that we multiply by 2−e the fraction
whose binary expansion is contained in Vr, or equivalently, the jth entry of
(1/2e)Vr is given by the (j − e)th entry of Vr for j > e, while the first e
entries are 0.

The generating matrix C is then obtained by taking Vr as its rth column,
for r ≥ 1. It is easy to see from (2.1) and the property that vr,r = 1 for
r = 1, . . . , e (by definition of the direction numbers) that the matrix C is
NUT and therefore yields a (0, 1)-sequence.
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We point out that Sobol’ uses the term direction numbers for all vec-
tors Vr, r ≥ 1, while we call direction numbers only the first e ones giving
the first e columns of C. Hence, in terms of generating matrices, the direc-
tion numbers associated with p(x) can be defined as the NUT e×e direction
matrix D = (vj,r)1≤j≤r≤e (the first infinite vectors Vr of C being filled in
with zeros).

As shown in [19] (but using a different terminology), Sobol’ sequences
are (t, s)-sequences in base 2 with t =

∑s
i=1(ei − 1), where ei is the degree

of the primitive polynomial used to construct the ith generating matrix.

2.2. The framework of Faure–Niederreiter. The second family of
digital (t, s)-sequences that was proposed by the first author [4] was the
construction for (0, s)-sequences in a prime base b ≥ s, later generalized
to prime power bases b ≥ s by Niederreiter [14]. The key idea to get the
optimal value of 0 for t is to work with the NUT Pascal matrix P over Fb,
whose element in the jth row and rth column is given by

Pj,r =

(
r − 1

j − 1

)
for r ≥ j ≥ 1. The ith generating matrix is then obtained as C(i) = P i−1

for i = 1, . . . , s. As noted in [4, Sect. 3.1], this implies that for 2 ≤ i ≤ s,
C(i) has entries of the form

(2.2) c
(i)
j,r = (i− 1)r−j

(
r − 1

j − 1

)
for r ≥ j ≥ 1.

The construction proposed in [14, Thm. 6.18] extends the above Faure
sequences to prime power bases b. The matrices C(i) are defined similarly
to the above, but with the term i − 1 in (2.2) replaced by some element
βi of Fb, with βi’s distinct for i = 2, . . . , s. Note that the construction in
[14, Thm. 6.18] is in fact defined for arbitrary bases b, but as discussed in
[14, Cors. 6.19 and 6.20], the restriction to prime power bases ensures the
existence of a (0, s)-sequence for any s ≤ b, while for arbitrary bases this
can only be ensured if s ≤ 2. Hence the appropriate generalization of Faure
sequences from [4] is the one based on prime power bases.

2.3. The framework of Niederreiter. The next family of construc-
tions are the Niederreiter sequences introduced by Niederreiter [15]. Al-
though this construction is described for a general base b in [15, Sect. 4],
here we assume b is a prime power. The construction requires s pairwise co-
prime polynomials p1(x), . . . , ps(x) ∈ Fb[x] of respective positive degrees ei,
and then a series of polynomials gi,j(x) ∈ Fb[x] for i = 1, . . . , s and j ≥ 1
such that gcd(pi(x), gi,j(x)) = 1 for all i, j. The generating matrices are de-
fined through their rows by first developing the formal Laurent series (where
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0 ≤ k < ei, and w ≤ 1 may depend on i, j, k)

(2.3)
xkgi,j(x)

pi(x)j
=
∞∑
r=w

a(i)(j, k, r)x−r.

The elements of the generating matrices are then defined as

c
(i)
j,r = a(i)(q + 1, u, r)

for r ≥ 1, and where q and u depend on i and j through the relation
j − 1 = qei + u with 0 ≤ u ≤ ei − 1.

Let us explain in more detail the “mechanics” behind this definition for
a given i. Consider the first block of ei rows of C(i). The (k + 1)th row
is obtained via the coefficients a(i)(1, k, r) of the formal Laurent series of
xkgi,1(x)/pi(x). To get the next block of ei rows, we change the polynomial
gi,1(x) to gi,2(x) and raise the power pi(x) used in the denominator to 2,
i.e., the (ei + k + 1)th row contains the coefficients of the formal Laurent
series of xkgi,2(x)/(pi(x))2, for k = 0, . . . , ei − 1. The jth block of ei rows is
obtained in a similar fashion, using the polynomial gi,j(x) in the numerator
and raising pi(x) to the power j in the denominator.

It is shown in [15] that the construction thus obtained is a digital (t, s)-
sequence in base b with t =

∑s
i=1(ei − 1), provided limj→∞(jei − deg(gi,j))

=∞ for all 1 ≤ i ≤ s. This formula for t is also valid for the Sobol’ sequence,
as explained in Section 2.1, but with primitive polynomials. Here, however,
the requirement on the polynomials pi(x) is that they be co-prime, and thus
typically pi(x) is taken to be the ith element in a list of monic irreducible
polynomials over Fb sorted in non-decreasing order of degrees, so as to obtain
the best possible t. This implies that Niederreiter sequences in base 2 are
known to be (t, s)-sequences with a value of t smaller than the one that
works for Sobol’ sequences. Note, however, that the expression

∑s
i=1(ei−1)

is an upper bound on t, and thus it is possible that the construction obtained
is a (t∗, s)-sequence for t∗ < t. The smallest such value of t∗ is often referred
to as the “exact t”. Conditions under which t =

∑s
i=1(ei − 1) is exact are

given in [3].

2.4. The framework of Tezuka. The next and last family of construc-
tions that is of relevance to this work is the one introduced by Tezuka [20],
also discussed more comprehensively in [21]. Here we follow the framework
given in [21] to describe this construction, which is called generalized Nieder-
reiter sequences by Tezuka. The way in which it generalizes the construction
discussed in Section 2.3 is that (2.3) is replaced by the expansion

yi,k(x)

pi(x)j
=
∞∑
r=w

a(i)(j, k, r)x−r,
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where 1 ≤ i ≤ s, j, k ≥ 1, and the polynomials yi,k(x) must be chosen so that
the (residue) polynomials yi,k(x) mod pi(x) for (j − 1)ei ≤ k − 1 < jei are

linearly independent over Fb. The generating matrices C(i) are then obtained
as

c
(i)
k,r = a(i)(qi + 1, k, r),

where qi = b(k − 1)/eic.
Following [21, Remark 4], we note that for Niederreiter sequences, we

have yi,k(x) = xugi,j(x), where u and j satisfy k − 1 = (j − 1)ei + u with
0 ≤ u < ei.

For the Sobol’ sequences [21, Remark 2], and as explained in Section 2.1,
the direction numbers determine the ei × ei direction (sub)matrix D(i) of
C(i), and thus correspond to choosing certain polynomials yi,1(x), . . . , yi,ei(x)
that will be described in Section 4, more precisely in Theorem 4.4. We note

that having v
(i)
r,r = 1 for r = 1, . . . , ei implies that yi,r is of degree ei − r for

1 ≤ r ≤ ei, and thus the linear independence property mentioned above is
satisfied (of course, this fundamental property is proved by Sobol’ [19] in
another way).

3. Sobol’ and Niederreiter sequences in base 2

3.1. A founding example. We consider the first non-trivial primitive
polynomial p(x) = x2+x+1 corresponding to the monocyclic linear operator
ui+2 +ui+1 +ui of order 2 in [19] (the monocyclic operator of the first order
corresponds to the Pascal matrix modulo 2).

In the framework of Sobol’, we consider the matrix associated with p,
with starting direction numbers (1, 3), resulting from the recurrence relation
Vi+2 = Vi+1 + Vi + Vi/4 on column vectors (see [19, Section 3.2]).

In the framework of Niederreiter, we consider the matrix associated
with p, generated row-by-row by the formal Laurent series xk/p(x)j ,
0 ≤ k < 2 (see [15, Section 6]).

A simple examination of these two matrices shows they are the same
after permutation of odd and even rows of one of them. Details are shown in
Figure 1. Also, it is easy to check for these two matrices that the recurrence
relation of Sobol’ applies to the Niederreiter matrix. In other words, taking
x1−k/p(x)j (0 ≤ k < 2) in equation (2.3) gives the Sobol’ matrix above. As
mentioned before, the Sobol’ matrices are NUT and therefore they gener-
ate (0, 1)-sequences. This is an advantage since there is no “leading-zeros
phenomenon” (see [2, Section 3.3]) for Sobol’ sequences. Another advan-
tage for implementation is that there is only one recurrence relation for the
whole Sobol’ matrix instead of a recurrence relation for each odd row of a
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Niederreiter matrix in base 2. Hence the interest of a generalization of our
example.



1 1 0 1 1 0 1 1 0 . . .

0 1 1 0 1 1 0 1 1 . . .

0 0 1 0 1 0 0 0 1 . . .

0 0 0 1 1 1 0 0 0 . . .

0 0 0 0 1 1 1 0 1 . . .
...

...
...

...
...

...
...

...
...

. . .





0 1 1 0 1 1 1 0 1 . . .

1 1 0 1 1 0 1 1 0 . . .

0 0 0 1 0 1 0 0 0 . . .

0 0 1 0 1 0 0 0 1 . . .

0 0 0 0 0 1 1 1 0 . . .
...

...
...

...
...

...
...

...
...

. . .


Fig. 1. Generating matrices based on p(x) = x2 +x+ 1 for: Sobol’ sequence with starting
direction numbers (1, 3) (left); Niederreiter sequence based on gi,j = 1 (right).

3.2. Generalization

Lemma 3.1 (Fundamental lemma for base 2). The matrix of a Nieder-
reiter sequence in base 2 generated by the formal Laurent series xk/p(x)j

(for 0 ≤ k < e and j ≥ 1), where p is an irreducible polynomial of degree e,
satisfies a Sobol’ recurrence relation associated with p.

Proof. We only consider irreducible polynomials p(x) of degree e ≥ 2,
since the case e = 1 concerns the van der Corput sequence and its image by
the Pascal matrix for which the matrices coincide.

Let p(x) = aex
e +ae−1x

e−1 + · · ·+a1x+a0, where ae = a0 = 1 (we keep
ae and a0 for more clarity). Then

1

p(x)
=

∞∑
r=1

ur
xr

=

∞∑
r=e

ur
xr

with u1 = · · · = ue−1 = 0, ue = 1 and aeur+e = a0ur + · · ·+ ae−1ur+e−1 for
all r ≥ 1.

We say that the linear recurrence relation formally associated with p is
the relation (where + means addition modulo 2)

Vr+e =
1

2e
a0Vr + a0Vr + a1Vr+1 + · · ·+ ae−1Vr+e−1 =

1

2e
a0Vr +

e−1∑
h=0

ahVr+h

for all r ≥ 1, where Vr is the rth column of the generating matrix associated
with p in the framework of Sobol’ (see Section 2.1). Of course, in the case
where p is primitive, this relation coincides with equation (2.1).

Our goal is to prove that the matrix generated by the formal series
xk/p(x)j in the framework of Niederreiter satisfies such a relation. To this
end, we establish the link between 1/p(x)j and 1/p(x)j+1 thanks to the



Irreducible Sobol’ sequences 67

product of the formal series 1/p(x)j and 1/p(x). Set

1

p(x)j
=

∞∑
r=1

vr
xr

=

∞∑
r=ej

vr
xr

and
1

p(x)j+1
=

∞∑
r=1

wr
xr

=

∞∑
r=ej+e

wr
xr
.

Then, for r ≥ ej + e,

wr = uevr−e + ue+1vr−e−1 + · · ·+ ur−ejvej =

r−ej∑
l=e

ulvr−l.

Hence, our objective is to prove the following linear recursion for the entries
wr of the e(j+ 1)th row in relation with the entries of the ejth row (for the
remaining rows the property will follow from multiplication by the successive
powers of x):

Σ := a0wr + · · ·+ aewr+e =

e∑
f=0

afwr+f = vr for all r ≥ 1.

To this end, for r ≥ ej + e, we collect the summands in Σ according to the
factors vl for ej ≤ l ≤ r:
Σ = aeuevr + (ae−1ue + aeue+1)vr−1 + (ae−2ue + ae−1ue+1 + aeue+2)vr−2

+ · · ·+ (a0ur−ej + a1ur+1−ej + · · ·+ aeur+e−ej)vej .

Now we observe that all factors corresponding to vr−1, vr−2, . . . , vej are
nought since they correspond to the recurrence relation in the expansion
of p(x)−1.

In the case of primitive polynomials, Lemma 3.1 gives rise to the following
generalization of the example in §3.1:

Theorem 3.2. After reordering the rows to get NUT matrices, Nieder-
reiter sequences in base 2 generated by the formal series xk/pi(x)j, where pi,
1 ≤ i ≤ s, are distinct primitive polynomials, are Sobol’ sequences associated
with the polynomials pi.

3.3. A further example with a non-primitive polynomial. We
consider here p(x) = x4 + x3 + x2 + x+ 1, a non-primitive irreducible poly-
nomial of degree 4. The recurrence relations to expand the formal series
in the framework of Niederreiter are vr+4 = vr+3 + vr+2 + vr+1 + vr for
the first row, vr+8 = vr+6 + vr+4 + vr+2 + vr for the row of rank 5, and
so on. The linear (non-monocyclic) operator in the framework of Sobol’ is
Vi+4 = Vi+3 +Vi+2 +Vi+1 +Vi +Vi/16. The NUT matrix resulting from the
permutation of rows of the Niederreiter matrix generated by xk/(p(x)j (for
0 ≤ k < 4) is equal to a Sobol’ type matrix with starting direction numbers
(1, 3, 3, 3) and the linear operator above. This relation is also satisfied by
the Niederreiter matrix according to Lemma 3.1, and can easily be checked
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on the matrices, as illustrated in Figure 2. But formally, we cannot speak of
Sobol’ matrices and sequences since the latter are only defined for primitive
polynomials in base 2.



1 1 0 0 0 1 1 0 0 . . .

0 1 1 0 0 0 1 1 0 . . .

0 0 1 1 0 0 0 1 1 . . .

0 0 0 1 1 0 0 0 1 . . .

0 0 0 0 1 0 1 0 0 . . .

0 0 0 0 0 1 0 1 0 . . .

0 0 0 0 0 0 1 0 1 . . .

0 0 0 0 0 0 0 1 0 . . .
...

...
...

...
...

...
...

...
...

. . .





0 0 0 1 1 0 0 0 1 . . .

0 0 1 1 0 0 0 1 1 . . .

0 1 1 0 0 0 1 1 0 . . .

1 1 0 0 0 1 1 0 0 . . .

0 0 0 0 0 0 0 1 0 . . .

0 0 0 0 0 0 1 0 1 . . .

0 0 0 0 0 1 0 1 0 . . .

0 0 0 0 1 0 1 0 0 . . .
...

...
...

...
...

...
...

...
...

. . .


Fig. 2. Generating matrices based on p(x) = x4 + x3 + x2 + x + 1 for: Sobol’ sequence
with starting direction numbers (1, 3, 3, 3) (left); Niederreiter sequence based on gi,j = 1
(right).

4. Irreducible Sobol’ sequences in prime power bases

4.1. Definition and generalization of Theorem 3.2. Here is the
natural extension of the original Sobol’ sequences in base 2 with primi-
tive polynomials to arbitrary prime power bases and with monic irreducible
polynomials.

Definition 4.1. Let p(x) = xe − ae−1xe−1 − · · · − a1x− a0 be a monic
irreducible polynomial of degree e over Fb, where b is a prime power. Define
a generating matrix C associated with p by the linear recurrence relation

(4.1) Vr+e − ae−1Vr+e−1 − · · · − a1Vr+1 − a0Vr =
1

be
Vr,

where Vr (r ≥ 1) is the rth column of C, and with e starting direction
numbers d1, . . . , de (1 ≤ dr < br with gcd(dr, b) = 1) defining an NUT e× e
direction matrix D for C (see Section 2.1). Then, according to the general
principle of construction, an s-dimensional irreducible Sobol’ sequence is ob-
tained from s different monic irreducible polynomials pi generating s such
matrices C(i) (typically, one chooses the first s ones in a list of all monic irre-
ducible polynomials sorted according to non-decreasing degree, as is done for
Niederreiter sequences). For short, we will often refer to irreducible Sobol’
sequences as IS-sequences. Note that when working in a general prime power
base b, one also needs to choose bijections ψr and λi,j to go back and forth
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between Fb and Zb so that points in [0, 1) can then be defined (see the
definition of the digital method in Section 1).

By construction, the generating matrices of irreducible Sobol’ sequences
are NUT, so that their one-dimensional projections are (0, 1)-sequences.
Also, it is worth noting that no truncation is required in their definition
(in contrast with other types of low-discrepancy sequences).

Further, we point out that column-by-column constructions other than
(2.1) and our proposed generalization (4.1) have been used elsewhere. Namely,
Hofer [7] and Hofer and Niederreiter [8] have recently introduced different
families of low-discrepancy sequences that also use this principle to construct
their underlying generating matrices. However, the nature of their construc-
tions is quite different; in particular, the columns are not defined through a
recursive relation based on a given polynomial as in (2.1) and (4.1).

Next, we prove the analog of Lemma 3.1 for irreducible Sobol’ sequences
in prime power bases. Then, we show their close relation with the class
of Niederreiter sequences generated by formal Laurent series of the form
xk/pi(x)j , i.e., Niederreiter sequences whose polynomials are gi,j = 1 (this
is the class for which Dick and Niederreiter determine the exact t-value in
[3, Section 3]).

Lemma 4.2 (Fundamental lemma for prime power base b). The matrix
of a Niederreiter sequence in prime power base b generated by the formal
Laurent series xk/p(x)j (for 0 ≤ k < e and j ≥ 1), where p is a monic ir-
reducible polynomial over Fb with deg(p) = e, satisfies the Sobol’ recurrence
relation (4.1) associated with p.

Proof. First, as was noted in the proof of Lemma 3.1 (the case b = 2),
we only need to consider polynomials of degree e ≥ 2.

Let p(x) = xe − ae−1xe−1 − · · · − a1x − a0 (we adopt the notation of
Niederreiter as in [15, Section 6]). Then

(4.2)
1

p(x)
=

∞∑
r=1

ur
xr

=

∞∑
r=e

ur
xr

with u1 = · · · = ue−1 = 0, ue = 1 and aeur+e = a0ur + · · · + ae−1ur+e−1
for all r ≥ 1. For b = 2, we recover the expression for p in the proof of
Lemma 3.1 (since −1 = 1 in F2).

We first recall the link established in that proof between 1/p(x)j and
1/p(x)j+1 (thanks to the product of the series 1/p(x)j and 1/p(x)): with

1

p(x)j
=

∞∑
r=1

vr
xr

=

∞∑
r=ej

vr
xr

and
1

p(x)j+1
=

∞∑
r=1

wr
xr

=

∞∑
r=ej+e

wr
xr

for r ≥ ej + e, we have wr = uevr−e + ue+1vr−e−1 + · · · + ur−ejvej =∑r−ej
l=e ulvr−l.
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According to the form of the linear recurrence relation (4.1), we have to
prove that for r ≥ 1 (see the proof of Lemma 3.1 for more details),

Σ := wr+e − ae−1wr+e−1 − · · · − a1wr+1 − a0wr = wr+e −
e−1∑
f=0

afwr+f = vr.

To this end, for r ≥ ej + e, we collect the summands in Σ according to the
factors vl for ej ≤ l ≤ r:
Σ = uevr + (ue+1 − ae−1ue)vr−1 + (ue+2 − ae−1ue+1 − ae−2ue)vr−2

+ · · ·+ (ur+e−ej − ae−1ur+e−1−ej − · · · − a1ur+1−ej − a0ur−ej)vej .
Now we observe that all factors corresponding to vr−1, vr−2, . . . , vej are
nought, since they correspond to the recurrence relation in the expansion of
p(x)−1.

As announced earlier, we can now provide the analog of Theorem 3.2,
adapted to the more general context of this section.

Theorem 4.3. After reordering the rows to get NUT matrices, Niederre-
iter sequences in a prime power base b generated by the formal Laurent series
xk/pi(x)j, where pi, 1 ≤ i ≤ s, are distinct monic irreducible polynomials,
are IS-sequences associated with the polynomials pi.

4.2. Characterization within the family of generalized Nieder-
reiter sequences. In this section, we study the connections between ir-
reducible Sobol’ sequences and generalized Niederreiter sequences, starting
with the following result.

Theorem 4.4 (Membership property). Irreducible Sobol’ sequences in
a prime power base are generalized Niederreiter sequences (in the frame-
work of Tezuka) in which the polynomials pi are distinct monic irreducible
polynomials and the polynomials yi,k equal yi,h, where deg(yi,h) = ei−h and
h = k − 1 mod ei + 1. More precisely, the polynomials yi,h are given by the

polynomial part of pi(x)(v
(i)
h,hx

−h + v
(i)
h,h+1x

−(h+1) + · · ·+ v
(i)
h,ex

−e), where the

v
(i)
h,l for 1 ≤ h, l ≤ ei are the entries of the direction matrix D(i), 1 ≤ i ≤ s.

Conversely, in the next result, we identify which generalized Niederreiter
sequences are irreducible Sobol’ sequences. To do so, we make use of the
matrix of direction numbers

(4.3) D
(i)
gN =


u
(i)
e u

(i)
e+1 . . . u

(i)
2e−1

0 u
(i)
e

. . . u
(i)
2e−2

0
. . .

. . .
...

0 0 0 u
(i)
e

 ,
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where the u
(i)
r come from the expansion of 1/pi(x) as in (4.2). (When we

write DgN without the superscript i, we refer to the matrix (4.3) associated
with the coefficients of 1/p(x).)

Note that the IS-sequences mentioned in Theorem 4.3 are based on di-

rection matrices given precisely by D
(i)
gN for 1 ≤ i ≤ s.

Theorem 4.5. Generalized Niederreiter sequences (in the framework of
Tezuka) in a prime power base in which the polynomials pi are distinct monic
irreducible polynomials and the polynomials yi,k equal yi,h, where deg(yi,h) =
ei − h and h = k − 1 mod ei + 1, are irreducible Sobol’ sequences based on

the polynomials pi and direction matrices D(i) = Y (i)D
(i)
gN , where the (l, r)th

entry of Y (i) is given by the coefficient of xe−r in yi,l(x), 1 ≤ l, r ≤ ei.

Remark 4.6. In his book [21, Definition 6.6], Tezuka gives a definition
of what he calls generalized Sobol’ sequences in base b = 2 as a special case
of his definition of generalized Niederreiter sequences in which all mappings
λi,j and ψr are identity mappings and the polynomial pi is the ith irreducible
polynomial in a list of all irreducible polynomials in base 2 sorted according
to non-decreasing degree. But curiously, he does not require any condition
on the polynomials yi,k, as he did in his interpretation of Sobol’ sequences
in his framework [21, Remark 2] where our condition above is mentioned.

In order to prove Theorems 4.4 and 4.5, we use the following two technical
lemmas, which help understand the relation between different IS-sequences
and different generalized Niederreiter sequences, respectively.

Lemma 4.7. Consider an IS-sequence in prime power base b based on the
monic irreducible polynomial p of degree e and with e×e direction matrix D.
Consider the IS-sequence also based on p but with a direction matrix given by
the identity matrix. Let their generating matrices be denoted by CD and CI ,
respectively. Then CD = ACI , where A is a block diagonal matrix with e× e
blocks given by D.

Lemma 4.8. Consider a generalized Niederreiter sequence in a prime
power base b based on the monic irreducible polynomial p of degree e and
generated by the polynomials yk(x) = xe−h, where h = k − 1 mod e + 1,
for k ≥ 1. Let its generating matrix be denoted by CgN . Consider another
generalized Niederreiter sequence in base b based on the same monic irre-
ducible polynomial p, but generated by polynomials yk(x) such that yk(x) is
of degree e− h for k ≥ 1, with h defined as above. Let its generating matrix
be denoted by C. Then C = ACgN , where A is a block diagonal matrix with
blocks Aj of size e× e and (h, r)th entry given by the coefficient of xe−r in
yk(x), where (k − 1) = (j − 1)e+ (h− 1).
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Lemma 4.8 is straightforward once we observe that each polynomial yk(x)
associated to C is a linear combination of the polynomials {1, x, . . . , xe−1}
that are associated with the matrix CgN , and therefore the expansion of
yk(x)/(pi(x)j) is obtained by taking an appropriate combination of the rows
of the jth block of CgN . Lemma 4.7 is closely related to [13, Proposition 2],
except that the latter is for a Sobol’ sequence in base 2 based on primitive
polynomials. However, the proof given there rests on the fact that the cor-
responding generating matrix is built on a recurrence of the form (4.1), and
hence can be easily adapted to the case of a prime power base and a monic
irreducible polynomial, as shown below.

Proof of Lemma 4.7. We first define the matrices

Q =


a0 0 · · · 0

a1 a0
. . . 0

...
. . .

. . .
...

ae−1 · · · a1 a0


and Rk, which is an e × e matrix with zeros everywhere except in the first
k − 1 entries of the kth column, given by ae−(k−1), . . . , ae−1. We also define

F = (I +R2) · · · (I +Re),

where I is the e× e identity matrix. Finally, we split the generating matrix
CD into blocks Bl,r of size e× e, in such a way that

C =


B1,1 B1,2 B1,3 · · ·

0 B2,2 B2,3 · · ·
0 0 B3,3 · · ·
...

. . .
. . .

. . .

 ,

where the 0’s indicate an e×e zero matrix, i.e., Bl,r is the zero matrix when
l > r. The main ingredient of the proof is to observe that (4.1) implies that
the blocks are updated recursively using

(4.4)
B1,r = B1,r−1QF for r > 1, Bl,r = (Bl,r−1Q+Bl−1,r−1)F for l, r > 1,

with B1,1 = D as a starting matrix (which leads to Bl,l = DF l−1 as the
starting matrix for the lth row of blocks).

To see why this holds, first consider the case l = 1. The (j, c)th entry
of B1,r is obtained by first taking the product of the jth row of B1,r−1 by
the vector containing c− 1 zeros followed by a0, . . . , ae−c, which is precisely
what the multiplication by Q achieves. To this product, we must then add
ae−c+1 times the first entry in the jth row of B1,r−1Q, plus ae−c+2 times the
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second (updated) entry in that same row, up until ae−1 times the (c− 1)th
(updated) entry in that row. This is done via multiplication by I +Rc. But
first we need to perform successive multiplications of B1,r−1Q by I +Rl for
l = 2, . . . , c − 1 to ensure the previous elements of the row are updated.
Multiplication by I +Rl for l > c has no effect on entry (j, c).

The case l > 1 is obtained similarly, but before applying F—which, as
we just saw, has the effect of adding the terms that come from the current
block itself—we must add to Bl,r−1Q the block Bl−1,r−1 corresponding to
the term Vr/b

e in (4.1).
The recursions given in (4.4) show that each block has the form Bl,r =

DHl,r where Hl,r does not depend on D. Observing that CI is made up of
the blocks Hl,r yields the desired result.

We can now prove the two preceding theorems. In both cases, we show the
result for a given dimension i and drop the index i to ease the presentation.
Also, both results make use of the direction matrix DgN given in (4.3).

Proof of Theorem 4.4. From Theorem 4.3 we can see that the generating
matrix of an IS-sequence based on the direction matrix DgN is equal to
the generating matrix of a generalized Niederreiter sequence based on the
polynomials yk(x) = xe−h for k ≥ 1, where h = k−1 mod e+1. Denote this
common generating matrix by CgN .

Then, Lemma 4.7 shows that the generating matrix C of an IS-sequence
based on a general direction matrix D is related to CgN via the relation
C = ACgN , where A is the block diagonal matrix with a common NUT
e× e block matrix AD given by AD = D ·D−1gN .

Next we need to show that the matrix C corresponds to a generalized
Niederreiter sequence, but this follows from Lemma 4.8, which implies that
the generalized Niederreiter sequence based on the polynomials yk(x) =
ah(x) where ah(x) = ah,hx

e−h + ah,h+1x
e−h−1 + · · · + ah,e for 1 ≤ h ≤ e,

and where ah,l is the entry on the hth row and lth column of AD, has a
generating matrix given precisely by ACgN .

The last step is to show that these polynomials ah(x) are in fact given by
the polynomial part of p(x)(vh,hx

−h + vh,h+1x
−(h+1) + · · ·+ vh,ex

−e), which
we denote as yh(x) for 1 ≤ h ≤ e, and where the vh,l are the entries of the
direction matrix D. In other words, we want to show that the rows of the
matrix AD = DD−1gN are given by

(4.5) Ah = (0, . . . , 0, yh,e−h, yh,e−h−1, . . . , yh,0) for 1 ≤ h ≤ e,
where the yh,l are such that yh(x) = yh,e−hx

e−h + yh,e−h−1x
e−h−1 + · · ·+ y0.

We actually show instead the equivalent statement that the matrix AD
defined by (4.5) satisfies ADDgN = D. Obserwe that by definition of yh(x),

(4.6) yh,e−l = vh,l − ae−1vh,l+1 − · · · − ae−(l−h)vh,h for h ≤ l ≤ e.
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Now, to establish that ADDgN = D, we must prove

(4.7) (0, . . . , 0, yh,e−h, yh,e−h−1, . . . , yh,0)

· (ue+l−1, ue+l−2, . . . , ue, 0, . . . , 0) = vh,l

for 1 ≤ h, l ≤ e. We first note that if l < h, then both sides of (4.7) are 0. If
l ≥ h, then we replace each yh,l on the left-hand-side of (4.7) by its definition
given in (4.6). Hence we get

(4.8) ue+l−hvh,h + ue+l−h−1(vh,h+1 − ae−1vh,h)

+ · · ·+ ue(vh,l − ae−1vh,l−1 − · · · − ae−(l−h)vh,h)

= vh,h(ue+l−h − ae−1ue+l−h−1 − · · · − ae−(l−h)ue)
+ vh,h+1(ue+l−h−1 − ae−1ue+l−h−2 − · · · − ae−(l−h−1)ue)
+ · · ·+ vh,l−1(ue+1 − ae−1ue) + vh,lue = vh,l,

since in (4.8) the term multiplying vh,i for h ≤ i < l is 0, by definition of
the ul’s, while vh,l is multiplied by ue = 1.

Proof of Theorem 4.5. From Theorem 4.3, we can see that a generalized
Niederreiter sequence based on yi,k = xe−h, where h = k − 1 mod e + 1,
has the same generating matrix as an IS-sequence based on the direction
matrix DgN . Denote this common generating matrix by CgN .

Next, we observe (from Lemma 4.8) that the generating matrix of a
generalized Niederreiter sequence as in the statement is C = ACgN , where
A is a block diagonal matrix with blocks Y of size e× e given by

Y =


y1,e−1 y1,e−2 . . . y1,0

0 y2,e−2 . . . y2,0
...

. . .
. . .

...

0 . . . 0 ye,0

 ,
where the yh,l come from the polynomials yh(x), i.e., yh(x) = yh,e−hx

e−h +
· · ·+yh,0 for 1 ≤ h ≤ e. We thus need to show that C satisfies the conditions
of an IS-sequence. This is achieved via Lemma 4.7, which implies that C =
ACgN is an IS-sequence based on the direction matrix D = Y DgN .

4.3. Discrepancy properties of irreducible Sobol’ sequences. In
this section, we collect the main properties of irreducible Sobol’ sequences
regarding discrepancy and resulting from the membership property stated
in Theorem 4.4. We thus view them as corollaries of this result.

Corollary 4.9. An IS-sequence in prime power base b based on distinct
monic irreducible polynomials pi of respective degrees ei has the following
properties:
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(1) It is a digital (t, s)-sequence in base b with t =
∑s

i=1(ei − 1).
(2) Its discrepancy satisfies (1.1) with

cs =


bt

s!

b2

2(b2 − 1)

(
b− 1

2 log b

)s
if b is even (from [5]),

bt

s!

1

2

(
b− 1

2 log b

)s
if b is odd (from [12]).

(3) In the framework introduced in [22], it is also a (0, e, s)-sequence in
base b with e = (e1, . . . , es).

(4) Its discrepancy also satisfies (1.1) with

cs =
1

s!

s∏
i=1

bei − 1

2ei log b
(from [22] for b odd and [6] for b even).

As mentioned above, once we have the membership property given in
Theorem 4.4, the above properties follow from known results on gene-
ralized Niederreiter sequences. More precisely, property (1) follows from
[21, Thm. 6.3 and Lemma 6.1], while property (3) follows directly from
[22, Thm. 1]. Once we have these two properties, we simply recall the best
known discrepancy bounds for (t, s) and (0, e, s)-sequences in properties (2)
and (4), respectively.

It is worth mentioning that in base 2, the expression for cs obtained from
the (0, e, s)-sequence representation of an IS-sequence (given in property (4)
above) is shown to satisfy cs = O(1/(s(2 log 2)s)) in [22, p. 246], which goes
to 0 with s. The proof relies on a result of Pollack [18] on the prime num-
ber theorem for polynomials over a finite field, combined with Atanassov’s
approach to studying the constant cs for Halton sequences. Since this result
requires the underlying sequence to be based on a list of all irreducible poly-
nomials over F2 sorted by non-decreasing degree, it holds for IS-sequences,
but not for the original Sobol’ sequences. For the latter, based on the bound
given in property (2) above and the known behaviour of t as a function of s
for these sequences, the constant cs instead goes to infinity with s.

5. Niederreiter sequences compared to Sobol’ sequences in
prime power base. In this section, our aim is to investigate which Nieder-
reiter sequences (with gi,j = gi for all j ≥ 1) are IS-sequences after reordering
of the rows of their generating matrices, so as to situate these two families
of generalized Niederreiter sequences in the framework of Tezuka.

First, we proceed to a direct study to find which necessary conditions a
Niederreiter sequence has to satisfy to be an IS-sequence. Then, we will give
a characterization of such sequences.

Our first observation is that a Niederreiter sequence based on a monic
irreducible polynomial p with deg(p) = e can be an IS-sequence only if there
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exists a polynomial z(x)∈ Fb[x]/(p(x)) such that {z(x), xz(x), . . . , xe−1z(x)}
has exactly one polynomial of degree l for 0 ≤ l < e (see the definitions
of Niederreiter sequences and IS-sequences). Such a polynomial z(x) then
becomes a candidate for gi(x).

So, we first need a polynomial of degree 0 in the above set, which im-
plies the only possible polynomials z are the inverses of powers of x in
Fb[x]/(p(x)). In order to determine these inverses, we observe that the poly-
nomial (where p(x) = xe − ae−1xe−1 − · · · − a1x− a0)

g(x) = (p(x) + a0)/x = xe−1 − ae−1xe−2 − · · · − a2x− a1
is the inverse of x/a0, so that gl is the inverse of (x/a0)

l for 0 ≤ l < e. There-
fore g0 = 1, g, . . . , ge−1 are the only polynomials among the 2e polynomials
in Fb[x]/(p(x)) that can be suitable. Notice that the case e = 1 is trivial (in
this case, the generating matrices are the powers of the Pascal matrix for
both families), hence from now on we take e ≥ 2.

Next, we have to deal with the condition on the degrees, which (as we are
going to see) involves the coefficients of p. We already have the degrees 0 and
e− 1 with g0 and g. For the other powers of g, we consider the polynomials
p from binomials to the general case where, for some 0 < m < e, am 6= 0.

• First let p(x) = xe − a0. In this case g(x) = xe−1, so gl(x) = al−10 xe−l

for 0 < l < e, and hence all powers of g are suitable (notice that this case
does not occur if b = 2).

• Next let p(x) = xe− ae−1xe−1− a0 with ae−1 6= 0. In this case, g(x) =
xe−1−ae−1xe−2, so gl(x) = al0/x

l = (al−10 /xl−1)g(x) = al−10 xe−l−1(x−ae−1),
and hence deg(gl) = e− l for 1 < l < e−1. Here also we find that all powers
of g from 0 to e− 1 are suitable.

• Further, suppose p(x) = xe − ae−1xe−1 − · · · − afxf − a0 with af 6= 0
(1 ≤ f < e− 1). In this case,

g(x) = xe−1 − ae−1xe−2 − · · · − afxf−1 = xf−1(xe−f − · · · − af+1x− af ).

Hence, gl(x) = al0/x
l = (al−10 /xl−1)g(x) = al−10 xf−l(xe−f − · · · − a0) for

0 < l ≤ f , so that deg(gl) = e− l for 0 < l ≤ f . But

gf+1 = gfg = af−10 (xe−f − · · · − a0)a0/x = af0(xe−f−1 − · · · − af+1 − g(x)).

Thus deg(gf+1) = deg(g) = e − 1, which implies that gf+1 does not sat-
isfy the condition on the degrees since we have already selected g. And so
neither do the next powers of g because multiplication by powers of x still re-
introduces g to the list (indeed, for f+1 < l < e, we have g(x) = xl−1gl(x)).
We conclude that when af 6= 0 there are exactly f + 1 polynomials satis-
fying the condition on the degrees: g0, g, . . . , gf . In the end, if a1 6= 0, i.e.,
f = 1, we only have the two polynomials we found when starting the process:
g0 and g.
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From the preceding direct study, we are now in a position to state the
following characterization.

Theorem 5.1. Let p(x) = xe−ae−1xe−1−· · ·−a1x−a0 be a monic irre-
ducible polynomial over Fb where b is a prime power base. The polynomials
z ∈ Fb[x]/(p(x)) such that {xkz(x)/p(x) : k = 0, . . . , e−1} generates an e×e
NUT matrix are the polynomials g0, g, . . . , gf where g(x) = (p(x) + a0)/x
and where f is the least positive index satisfying af 6= 0.

Proof. The direct part follows from the observations above. Conversely,
suppose that f is the least positive index for which af 6= 0. Then p(x) =
xfh(x) − a0 with deg(h) = e − f and h(0) 6= 0, so that g(x) = a0/x =

xf−1h(x) and gl(x) = al−10 xf−lh(x). Hence, deg(gl) = e − l for 1 ≤ l ≤ f .

Moreover, gf+1 = af0h(x)/x, which implies that deg(gf+1) = deg(g) (since
h(0)/x = g(x)h(0)/a0) and the same holds for the next powers of g. Thus
we have shown that z(x) ∈ Fb[x]/(p(x)) of the form g0, g, . . . , gf is such that
xkz(x)/p(x) generates an NUT matrix (but not the next powers of g).

Using the characterization provided in Theorem 5.1, we can now deter-
mine which Niederreiter sequences are also IS-sequences. It turns out that
the only ones are those based on gi,j(x) = 1 for all i and j. The other poly-
nomials g found in Theorem 5.1 do not yield IS-sequences because, although
they provide an NUT matrix for the upper left e× e block of the generating
matrix, this property does not hold on the following blocks, as shown in the
proof of the next result.

Theorem 5.2. The only Niederreiter sequences in a prime power base b
that are IS-sequences (after reordering the rows to get NUT matrices) are
those based on gi,j(x) = 1 for all i = 1, . . . , s and j ≥ 1.

Proof. From Theorem 4.2, we already know that taking gi,j = 1 yields an
IS-sequence. Drop the subscript i and focus on a given coordinate based on
a monic irreducible polynomial p; what remains to be proved is that taking
gj(x) = gl(x) with 1 ≤ l ≤ f for all j ≥ 1, with g(x) and f as described in
Theorem 5.1, does not yield an NUT matrix.

By definition, gl(x) is of degree e− l. Thus the expansion of gl(x)/p2(x)
has a non-zero coefficient for x−e−l. This implies that the expansion of
xkgl(x)/(p2(x)) has a non-zero coefficient for x−(e+l−k) and e + l − k ≤ e
when k ≥ l, which is a valid value for k since it runs from 0 to e − 1 and
1 ≤ l ≤ e − 1. Since we have a non-zero coefficient in one of the first e
columns and on a row with rank larger than e, the corresponding matrix is
not NUT.

From the proof of Theorem 5.2, we can see more precisely why we do
not get an NUT matrix when gi,j 6= 1: the problem is that in the defi-
nition of Niederreiter sequences, rows are obtained using the expansion of
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xkgi,j(x)/pj(x), where polynomials are multiplied in Fb[x] in the numerator
rather than in Fb[x]/p(x). Since this yields numerators with degrees larger
than e − 1, when dividing by pj(x) with j > 1, we obtain non-zero coef-
ficients to the left of the diagonal. This suggests a simple modification to
the definition of Niederreiter sequences in order to allow for the existence
of such sequences that are also IS-sequences, other than those generated by
gi,j = 1, as we now describe.

Definition 5.3. A reduced Niederreiter sequence in a prime power base
b is obtained by choosing s pairwise co-prime polynomials p1(x), . . . , ps(x) ∈
Fb[x] of respective degrees ei, and a series of polynomials gi,j(x) ∈ Fb[x] for
i = 1, . . . , s and j ≥ 1 such that gcd(gi,j(x), pi(x)) = 1 for all i, j. The
generating matrices are defined through their rows by first developing the
formal Laurent series

(5.1)
xkgi,j(x) mod pi(x)

(pi(x))j
=

∞∑
r=w

a(i)(j, k, r)x−r−1.

The elements of the generating matrices are then defined as

c
(i)
j,r = a(i)(qi + 1, u, r − 1),

where qi and u depend on i and j through the relation j− 1 = qiei +u with
0 ≤ u ≤ ei − 1.

Hence a reduced Niederreiter sequence only differs from the original def-
inition through the modpi(x) operation applied to xkgi,j(x) before dividing

by pji (x) to get the formal Laurent series expansion. It thus belongs to the
larger set of generalized Niederreiter sequences. With this simple modifica-
tion, the characterization provided in Theorem 5.1 tells us which reduced
Niederreiter sequences yield IS-sequences, as stated in the next result.

Theorem 5.4. The only reduced Niederreiter sequences in a prime power
base b that are IS-sequences (after reordering the rows to get NUT matrices)
are those based on gi,j(x) = gi(x), for all i = 1, . . . , s and j ≥ 1, with gi
given by the characterization of Theorem 5.1.

Proof. We consider a fixed dimension i and show the result is true for
that coordinate, dropping the subscript i to simplify the notation. We also
use zj(x) to represent a feasible polynomial for the jth block of rows, i.e.,
zj(x) is such that taking gi,j(x) = zj(x) for j ≥ 1 yields an IS-sequence on
the ith coordinate.

We already know from Theorem 5.1 that z1(x) must be in {g0, . . . , gf}
in order for the NUT property to hold on the first e rows, where we recall
that f is the least positive index such that af 6= 0 in p(x) = xe−ae−1xe−1−
· · · − a1x − a0. What we need to establish is that taking zj(x) = z(x) for
all j ≥ 1, where z(x) ∈ {g0, . . . , gf}, is the only possible choice to get an
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IS-sequence. But this follows directly from Theorem 4.4, which implies that
a generalized Niederreiter sequence must satisfy the condition yi,k = yi,h
with h = k− 1 mod e+ 1 for all k ≥ 1 in order to be an IS-sequence. In the
above setting, this can only happen if zj(x) = z(x) for all j ≥ 1.

6. Conclusion. In this paper, we have introduced a generalization of
Sobol’ sequences that preserves two key properties of this widely used con-
struction, namely (0, 1)-sequences for each one-dimensional projection, and
an easy-to-implement column-by-column construction for the generating
matrices based on linear recurrences determined by monic irreducible poly-
nomials over Fb, where b is a prime power. Our generalization, which we
call irreducible Sobol’ (IS) sequences, is included in the very wide family of
generalized Niederreiter sequences introduced by Tezuka [20], and we have
shown precise connections between these two constructions. We have also
shown that Niederreiter sequences and IS-sequences are quite different, as
they intersect only for one specific choice of parameters, and after reordering
the rows of the Niederreiter sequences to get NUT matrices.

An immediate item of interest for future work would be to search for
good direction matrices for our proposed IS-sequences, initially for base 2
but for other prime power bases as well. A starting point to do so will be the
implementation developed in [2] and its accompanying comparative study
of different sequences. While in that work, the basic Niederreiter sequences
(with gi,j = 1) were seen to suffer from the leading-zeros phenomenon, this
problem is avoided by IS-sequences by design, since they are based on NUT
matrices. We thus expect that when tools to implement IS-sequences are
developed and their performance in practice is assessed, their potential for
use in quasi-Monte Carlo methods will become very clear.
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