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Existence of two positive solutions for a class of semilinear
elliptic equations with singularity and critical exponent

Jia-Feng Liao (Chongqing and Zunyi), Jiu Liu (Chongqing),
Peng Zhang (Zunyi) and Chun-Lei Tang (Chongqing)

Abstract. We study the following singular elliptic equation with critical exponent
−∆u = Q(x)u2∗−1 + λu−γ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, and λ > 0, γ ∈ (0, 1) are real
parameters. Under appropriate assumptions on Q, by the constrained minimizer and per-
turbation methods, we obtain two positive solutions for all λ > 0 small enough.

1. Introduction and main result. Consider the following singular
elliptic equation with the Dirichlet boundary value conditions:

(1.1)


−∆u = Q(x)u2

∗−1 + λu−γ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 3), λ > 0 is a real pa-
rameter, and γ ∈ (0, 1) is a constant. The coefficient function Q ∈ C(Ω) is
positive. The exponent 2∗−1 = (N + 2)/(N − 2) is the critical Sobolev expo-
nent for the embedding of H1

0 (Ω) into Lq(Ω) for every q ∈ [1, 2N/(N − 2)].
Here H1

0 (Ω) is the completion of C∞0 (Ω) with respect to the norm ‖u‖ =
(
	
Ω(∇u,∇u) dx)1/2.
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In many papers the following problem has been studied:

(1.2)


−∆u = µup + λk(x)u−γ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where µ ≥ 0, 1 < p ≤ 2∗ − 1 and k is a nonzero nonnegative function. In
[7], [8], [9], [12], [13], the authors have studied problem (1.2) with µ ≡ 0,
under different assumptions on k, and obtained the existence of positive
solutions. The case of µ > 0 has also been discussed in [2], [3], [6], [10],
[11], [14]–[17], [19]. When the exponent satisfies 1 < p < 2∗ − 1, problem
(1.2) has at least two positive solutions under some appropriate conditions
via variational methods [2], [3], [6], [11], [14], [16]. When p is the critical
exponent, several papers have discussed problem (1.2) (see [10], [11], [15],
[17], [19]), also establishing the multiplicity of positive solutions of problem
(1.2). In [10], [11] and [19], two positive solutions of problem (1.2) with µ = 1
were obtained by different variational methods for λ > 0 small enough, while
[15] and [17] obtained two positive solutions with λ = 1 and µ > 0 small
enough by the Nehari method. In particular, [11] considered problem (1.2)
with k(x) = λ = 1. Combining the sub-supersolution method and a linking
theorem, it was shown that there exists Λ > 0 such that for every µ ∈ (0, Λ),
problem (1.2) has at least two positive solutions, for µ = Λ, it has at least
one positive solution, and for µ > Λ, it has no positive solution.

When Q(x) 6≡ const, the analysis of compactness turns out to be more
difficult. A natural question is whether problem (1.1) has two positive solu-
tions for λ > 0 small enough. In the present note, we give a positive answer.
First, we obtain a local minimizer solution; next, we study a sequence of
mountain-pass solutions of a perturbation problem, and prove that its limit
is a positive solution of problem (1.1). Moreover, we distinguish the two so-
lutions by their different values of the corresponding variational functional.
Here, we would like to point out some difficulties we will encounter. The first
one is the lack of compactness of the embedding H1

0 (Ω) ↪→ L2∗(Ω), which
we overcome by using the Brézis–Lieb Lemma. The second problem is the
existence of the second positive solution, where we get rid of the singularity
by a perturbation method.

In this paper, we assume that Q satisfies the following condition:

(Q0) There exists x0 ∈ Ω such that Q(x0) = QM = maxx∈Ω Q(x) and

Q(x)−Q(x0) = o(|x− x0|N−2) as x→ x0.

Let S be the best Sobolev constant, namely

(1.3) S := inf
u∈H1

0 (Ω)\{0}

	
Ω |∇u|

2 dx

(
	
Ω |u|2

∗ dx)2/2∗
.
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For the convenience of the reader, we recall the Brézis–Lieb Lemma (see [4,
Theorem 2] or [18, Lemma 1.32]), which plays an important role in proving
Theorem 1.1 below.

Lemma A. Let Ω ⊂ RN be an open set and {un} be a bounded sequence
in Lp(Ω) (1 ≤ p <∞) which converges to u almost everywhere in Ω. Then

lim
n→∞

( �
Ω

|un|p dx−
�

Ω

|un − u|p dx
)

=
�

Ω

|u|p dx.

We define

I(u) =
1

2
‖u‖2 − 1

2∗

�

Ω

Q(x)(u+)2
∗
dx− λ

1− γ

�

Ω

(u+)1−γ dx, ∀u ∈ H1
0 (Ω).

In general, a function u is called a weak solution of problem (1.1) if u ∈
H1

0 (Ω) with (u+)−γϕ ∈ L1(Ω) for every ϕ ∈ H1
0 (Ω) and satisfies

(1.4)
�

Ω

(∇u,∇ϕ) dx−
�

Ω

Q(x)(u+)2
∗−1ϕdx− λ

�

Ω

(u+)−γϕdx = 0

for all ϕ ∈ H1
0 (Ω).

Our main result can be stated as follows:

Theorem 1.1. Assume that (Q0) holds and γ ∈ (0, 1). Then there exists
Λ̃ > 0 such that problem (1.1) has at least two positive solutions for any
λ ∈ (0, Λ̃).

Remark 1.1. To our best knowledge, problem (1.1) with Q(x) 6≡ const
has not been considered yet. We generalize the corresponding results of [10],
[11], [15], [17] and [19] to problem (1.1) with Q(x) 6≡ const.

Remark 1.2. Motivated by [16] and [19], we find the first solution u∗
as a local minimizer of I on H1

0 (Ω) with I(u∗) < 0 by a minimax method.
Here we encounter two difficulties. One is the lack of compactness of the
embedding H1

0 (Ω) ↪→ L2∗(Ω). We overcome this difficulty by using the
Brézis–Lieb Lemma. The other is how to prove that the local minimizer of
I on H1

0 (Ω) is a solution of problem (1.1).

Remark 1.3. To find the second solution, by a perturbation method we
get rid of the singularity. This method is different from the methods of [10],
[11], [15], [17] and [19]. First, we obtain a sequence of positive solutions of
the approximating problem by the Mountain Pass Lemma; then we prove
that the limit of this sequence is a solution of problem (1.1). We distinguish
this solution u∗∗ from u∗ by I(u∗∗) > 0.

This paper is organized as follows. In Section 2, we prove the existence
of the first solution of problem (1.1). We study the mountain-pass solutions
of the approximating problem in Section 3. In Section 4, we give the proof
of Theorem 1.1.
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Throughout this paper, we make use of the following notation: the norm
in H1

0 (Ω) is denoted by

‖u‖ =
( �
Ω

(∇u,∇u) dx
)1/2

=
( �
Ω

|∇u|2 dx
)1/2

;

the norm in Lp(Ω) is denoted by ‖u‖p = (
	
Ω |u|

p dx)1/p; C,C0, C1, C2, . . .
denote positive constants; and u+ = max{u, 0}, u− = max{0,−u}.

2. Existence of the first solution of problem (1.1). In this part,
our main work is to prove that problem (1.1) has a local minimum solution in
H1

0 (Ω). To obtain the first solution of problem (1.1), we prove the following
important lemma.

Lemma 2.1. There exists a constant λ∗ > 0 such that the functional I
attains a negative minimum in H1

0 (Ω) for all 0 < λ < λ∗, that is, there exists
u∗ ∈ BR such that I(u∗) = m < 0, where BR = {u ∈ H1

0 (Ω) : ‖u‖ ≤ R} is
a closed ball. Moreover, u∗ ∈ BR.

Proof. By the Hölder and Sobolev inequalities, there exists a constant
C0 > 0 such that

(2.1)
�

Ω

(u+)1−γ dx ≤
�

Ω

|u|1−γ dx ≤ ‖u‖1−γ2∗ |Ω|
(2∗+γ−1)/2∗ ≤ C0‖u‖1−γ ,

and by the definition of S we have

(2.2)
�

Ω

Q(x)(u+)2
∗
dx ≤ QM

�

Ω

|u|2∗ dx ≤ QMS−2
∗/2‖u‖2∗ .

From (2.1) and (2.2), one gets

I(u) =
1

2
‖u‖2 − 1

2∗

�

Ω

Q(x)(u+)2
∗
dx− λ

1− γ

�

Ω

(u+)1−γ dx(2.3)

≥ 1

2
‖u‖2 − QM

2∗S2∗/2
‖u‖2∗ − λC0

1− γ
‖u‖1−γ ,

which implies that there exists λ∗ > 0 such that for any λ ∈ (0, λ∗), there
are R > 0 and ρ > 0 such that

(2.4)



1

2
‖u‖2 − 1

2∗

�

Ω

Q(x)(u+)2
∗
dx ≥ 2ρ, ∀u ∈ ∂BR,

1

2
‖u‖2 − 1

2∗

�

Ω

Q(x)(u+)2
∗
dx ≥ 0, ∀u ∈ BR,

I(u) ≥ ρ, ∀u ∈ ∂BR,

where ∂BR = {u ∈ H1
0 (Ω) : ‖u‖ = R}. Since Q(x) ≥ 0 in Ω and λ > 0,

we have I(u) ≤ 1
2‖u‖

2. Combining this with (2.3) shows that I is bounded
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on BR. Fix λ ∈ (0, λ∗); then m = infu∈BR I(u) is well defined. Since 0 <
1− γ < 1, for R small enough we have

m = inf
u∈BR

I(u) < 0.

Next, we prove that I attains this minimum m in BR. Obviously, there
exists a minimizing sequence {un} in BR such that limn→∞ I(un) = m < 0.
Since {un} is bounded and BR is a closed convex set, there exists u∗ ∈ BR ⊂
H1

0 (Ω) and a subsequence, still denoted by {un}, such that

(2.5)


un ⇀ u∗ weakly in H1

0 (Ω),

un → u∗ strongly in Ls(Ω), 1 ≤ s < 2∗ − 1,

un(x)→ u∗(x) a.e. in Ω,

as n→∞. We let wn = un − u∗.
Since 0 < γ < 1, one has the following standard inequality:

|x1−γ − y1−γ | ≤ |x− y|1−γ , ∀x, y ≥ 0.

Combining it with the Hölder inequality, we obtain∣∣∣ �
Ω

(u+n )1−γ dx−
�

Ω

(u+∗ )1−γ dx
∣∣∣ ≤ �

Ω

|un − u∗|1−γ dx ≤ ‖wn‖1−γ2 |Ω|(1+γ)/2.

Combining the above with (2.5) yields

(2.6)
�

Ω

u1−γn dx =
�

Ω

u1−γ∗ dx+ o(1),

where o(1) is an infinitesimal as n→∞. Moreover, according to Lemma A
and the weak lower semicontinuity of norm, one gets

�

Ω

Q(x)(u+n )2
∗
dx =

�

Ω

Q(x)(w+
n )2

∗
dx+

�

Ω

Q(x)(u+∗ )2
∗
dx+ o(1),(2.7)

�

Ω

|∇un|2 dx =
�

Ω

|∇wn|2 dx+
�

Ω

|∇u∗|2 dx+ o(1).(2.8)

Since infu∈∂BR I(u) ≥ ρ and m < 0, using (2.3) we obtain ‖un‖ ≤ R − ε0
for some ε0 > 0 independent of n, in particular u∗ ∈ BR. Then, from (2.8),

wn = un − u∗ ∈ BR
for n sufficiently large. According to (2.4) we can deduce that

(2.9)
1

2
‖wn‖2 −

1

2∗

�

Ω

Q(x)(w+
n )2

∗
dx ≥ 0.

From (2.6)–(2.9) and the definition of m, one obtains
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m = lim
n→∞

{
1

2

�

Ω

|∇un|2 dx−
1

2∗

�

Ω

Q(x)(u+n )2
∗
dx− λ

1− γ

�

Ω

(u+n )1−γ dx

}
= lim

n→∞

(
1

2
‖wn‖2 −

1

2∗

�

Ω

Q(x)(w+
n )2

∗
dx

)
+

1

2
‖u∗‖2 −

1

2∗

�

Ω

Q(x)(u+∗ )2
∗
dx− λ

1− γ

�

Ω

(u+∗ )1−γ dx

≥ I(u∗) + o(1) ≥ m+ o(1),

so m = I(u∗) < 0. This completes the proof of Lemma 2.1.

Theorem 2.1. Assume that γ ∈ (0, 1). Then problem (1.1) has at least
one positive solution for any λ ∈ (0, λ∗), where λ∗ comes from Lemma 2.1.

Proof. For all 0 < λ < λ∗, we take u∗ as provided by Lemma 2.1.
We claim that u∗ ≥ 0 in Ω. Indeed, since ‖u∗‖2 = ‖u+∗ ‖2 + ‖u−∗ ‖2, we

have I(u∗) = I(u+∗ ) + 1
2‖u

−
∗ ‖2. Since u∗ ∈ BR, one has u+∗ ∈ BR. Suppose

u−∗ 6= 0; then I(u+∗ ) < I(u∗) = m, which contradicts the definition of m.
Thus u−∗ ≡ 0 and our claim is true.

Now we prove that u∗ is a weak solution of problem (1.1). Let φ ∈ H1
0 (Ω)

with φ ≥ 0. Since u∗ ∈ BR, there exists ξ > 0 such that u∗ + tφ ∈ BR for
all t with |t| < ξ. Since u∗ is a minimizer in BR, we have

0 ≤ I(u∗ + tφ)− I(u∗)

t
(2.10)

=
�

Ω

(∇u∗,∇φ) dx+
t

2

�

Ω

|∇φ|2 dx

− 1

2∗

�

Ω

Q(x)
(u∗ + tφ)2

∗ − u2∗∗
t

dx

− λ

1− γ

�

Ω

(u∗ + tφ)1−γ − u1−γ∗
t

dx.

Using the Lebesgue Dominated Convergence Theorem, one obtains

(2.11) lim
t→0+

1

2∗

�

Ω

Q(x)
(u∗ + tφ)2

∗ − u2∗∗
t

dx =
�

Ω

Q(x)u2
∗−1
∗ φdx.

For any x ∈ Ω, we denote

h(t) =
(u∗ + tφ)1−γ − u1−γ∗

(1− γ)t
.

Since s 7→ s1−γ is a concave function, h is nonincreasing for any x ∈ Ω. It
is clear that h converges pointwise to u−γ∗ (x)φ(x) as t → 0+. Then we can
use the Monotone Convergence Theorem (Beppo Levi) and obtain
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(2.12) lim
t→0+

1

1− γ

�

Ω

Q(x)
(u∗ + tφ)1−γ − u1−γ∗

t
dx =

�

Ω

u−γ∗ φdx.

Therefore, combining (2.10) and (2.11) with (2.12) shows that u−γ∗ φ ∈ L1(Ω)
and

(2.13)
�

Ω

[(∇u∗,∇φ)−Q(x)u2
∗−1
∗ φ− λu−γ∗ φ] dx ≥ 0

for all φ ∈ H1
0 (Ω) with φ ≥ 0. In particular, for u∗ there exists ξ′ ∈ (0, 1)

such that u∗ + tu∗ ∈ BR for all |t| ≤ ξ′. Let

h(t) = I((1 + t)u∗);

then h attains its minimum at t = 0. Thus

(2.14) h′(0) = ‖u∗‖2 −
�

Ω

Q(x)u2
∗
∗ dx− λ

�

Ω

u1−γ∗ dx = 0.

Now we claim that (2.13) is true for all φ ∈ H1
0 (Ω). In fact, suppose

φ ∈ H1
0 (Ω) and t > 0, and define Ψ ∈ H1

0 (Ω) by

Ψ ≡ (u∗ + tφ)+,

where (u∗ + tφ)+ = max{u∗ + tφ, 0}. Replacing φ with Ψ in (2.13), coupled
with (2.14), one gets

0 ≤
�

Ω

[
(∇u∗,∇Ψ)−Q(x)u2

∗−1
∗ Ψ − λu−γ∗ Ψ

]
dx

=
�

{x :u∗+tφ≥0}

[(∇u∗,∇(u∗ + tφ))−Q(x)u2
∗−1
∗ (u∗ + tφ)] dx

− λ
�

{x :u∗+tφ≥0}

u−γ∗ (u∗ + tφ) dx

=
[
‖u∗‖2 −

�

Ω

Q(x)u2
∗
∗ dx− λ

�

Ω

u1−γ∗ dx
]

+ t
�

Ω

[
(∇u∗,∇φ)−Q(x)u2

∗−1
∗ φ− λu−γ∗ φ

]
dx

−
�

{x :u∗+tφ<0}

[
(∇u∗,∇(u∗ + tφ))−Q(x)(u∗)

2∗−1(u∗ + tφ)
]
dx

+ λ
�

{x :u∗+tφ<0}

u−γ∗ (u∗ + tφ) dx

≤ t
�

Ω

[
(∇u∗,∇φ)−Q(x)u2

∗−1
∗ φ− λu−γ∗ φ

]
dx− t

�

{x :u∗+tφ<0}

(∇u∗,∇φ) dx.

Since the measure of the domain of integration {x : u∗ + tφ < 0} tends to
zero as t → 0+, it follows that

	
{x :u∗+tφ<0}(∇u∗,∇φ) dx → 0 as t → 0+.
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Dividing by t and letting t→ 0+, one infers that�

Ω

[
(∇u∗,∇φ)−Q(x)u2

∗−1
∗ φ− λu−γ∗ φ

]
dx ≥ 0.

Noticing that φ ∈ H1
0 (Ω) is arbitrary, one has

(2.15)
�

Ω

[
(∇u∗,∇φ)−Q(x)u2

∗−1
∗ φ− λu−γ∗ φ

]
dx = 0, ∀φ ∈ H1

0 (Ω),

which implies that u∗ is a weak solution of problem (1.1).
Now, we prove that u∗ is a positive solution of problem (1.1). Since

I(u∗) = m < 0, we have u∗ 6≡ 0. Then u∗ ≥ 0 and u∗ 6≡ 0. By the strong
maximum principle,

u∗(x) > 0 a.e. x ∈ Ω.
Thus the proof of Theorem 2.1 is finished.

3. The mountain-pass solution of the perturbation problem.
Seeking the second solution of problem (1.1), we will study the corresponding
approximation problem, truncating the singular term so that it becomes a
problem with no singularity at the origin; that is, we consider the following
perturbation problem:

(3.1)

{
−∆u = Q(x)(u+)2

∗−1 + λ(u+ + α)−γ in Ω,

u = 0 on ∂Ω,

where α > 0 is small. The solutions of problem (3.1) correspond to the
critical points of the C1-functional on H1

0 (Ω) given by

Iα(u) =
1

2
‖u‖2 − 1

2∗

�

Ω

Q(x)(u+)2
∗
dx− λ

1− γ

�

Ω

[(u+ + α)1−γ − α1−γ ] dx.

We observe that I0 = I, and

(3.2) I(u) ≤ Iα(u), ∀u ∈ H1
0 (Ω).

By a weak solution of problem (3.1) we mean a function u ∈ H1
0 (Ω) such

that

(3.3)
�

Ω

(∇u,∇φ) dx−
�

Ω

Q(x)(u+)2
∗−1φdx− λ

�

Ω

(u+ + α)−γφdx = 0

for all φ ∈ H1
0 (Ω). A sequence {vn} in H1

0 (Ω) is called a (PS)c sequence if

(3.4) Iα(vn)→ c and I ′α(vn)→ 0 as n→∞.
We say Iα satisfies condition (PS)c if any (PS)c sequence {vn} ⊂ H1

0 (Ω) has
a convergent subsequence.

Lemma 3.1. There exists B > 0 (depending on γ, N and |Ω|) such that
if {vn} is a (PS)c sequence of Iα with
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(3.5) c <
SN/2

NQ
(N−2)/2
M

−Bλ2/(1+γ),

then {vn} has a convergent subsequence.

Proof. We claim that {vn} is bounded in H1
0 (Ω). For contradiction,

assume that {vn} is not bounded in H1
0 (Ω). Then, up to a subsequence,

‖vn‖ → ∞, and we have

c = Iα(vn)− 1

2∗
〈I ′α(vn), vn〉+o(1)

≥ 1

N
‖vn‖2−

λ

1−γ

�

Ω

[(v+n +α)1−γ−α1−γ ] dx+
λ

2∗

�

Ω

(v+n +α)−γvn dx+o(1)

≥ 1

N
‖vn‖2−C1

λ

1−γ
‖vn‖1−γ +o(1).

Since 0 < 1−γ < 1, the last inequality is absurd. Therefore, {vn} is bounded
in H1

0 (Ω).

Hence there exists a subsequence, still denoted {vn}, such that there
exists v∗ ∈ H1

0 (Ω) with
vn ⇀ v∗ weakly in H1

0 (Ω),

vn → v∗ strongly in Lp(Ω), 1 < p < 2∗,

vn(x)→ v∗(x) a.e. in Ω,

as n → ∞. Now, we only need to prove that vn → v∗ strongly in H1
0 (Ω).

Let wn = vn − v∗. Since I ′α(vn)→ 0 in (H1
0 (Ω))∗, we have

‖vn‖2 −
�

Ω

Q(x)(v+n )2
∗
dx− λ

�

Ω

(v+n + α)−γv+n dx = o(1).

Consequently, by Lemma A and the Dominated Convergence Theorem,

(3.6) ‖wn‖2 + ‖v∗‖2 −
�

Ω

Q(x)(w+
n )2

∗
dx−

�

Ω

Q(x)(v+∗ )2
∗
dx

− λ
�

Ω

(v+∗ + α)−γv+∗ dx = o(1)

and

(3.7) lim
n→∞

〈I ′α(vn), v∗〉 = ‖v∗‖2−
�

Ω

Q(x)(v+∗ )2
∗
dx−λ

�

Ω

(v+∗ +α)−γv+∗ dx = 0.

From (3.6) and (3.7),

lim
n→∞

‖wn‖2 = lim
n→∞

�

Ω

Q(x)(w+
n )2

∗
dx = l.
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Since �

Ω

|wn|2
∗
dx ≥

�

Ω

Q(x)

QM
|wn|2

∗
dx ≥

�

Ω

Q(x)

QM
(w+

n )2
∗
dx,

we have ‖wn‖2
∗

2∗ ≥ l/QM as n →∞. Applying the Sobolev inequality, from
(1.3) one obtains

‖wn‖2 ≥ S‖wn‖22∗ .

Then l≥S(l/QM )2/2
∗
, which implies that either l=0 or l≥SN/2/Q(N−2)/2

M .

We claim that l = 0. For contradiction suppose

(3.8) l ≥ SN/2

Q
(N−2)/2
M

.

Combining (3.8) with the elementary inequality

(a+ b)1−γ ≤ a1−γ + b1−γ ∀a, b > 0, 0 < γ < 1,

and using (3.6)–(3.8), we get

c = Iα(vn)− 1

2∗
〈I ′α(vn), vn〉+ o(1)

≥ 1

N
‖vn‖2 −

λ

1− γ

�

Ω

[(v+n + α)1−γ − α1−γ ] dx

+
λ

2∗

�

Ω

(v+n + α)−γvn dx+ o(1)

≥ SN/2

NQ
(N−2)/2
M

+
1

N
‖v∗‖2 −

λ

1− γ

�

Ω

(v+n )1−γ dx

≥ SN/2

NQ
(N−2)/2
M

+
1

N
‖v∗‖2 −

C2λ

1− γ
‖v∗‖1−γ + o(1)

≥ SN/2

NQ
(N−2)/2
M

−Bλ2/(1+γ),

where, in the last inequality, B can be chosen using the Young inequality.
This contradicts (3.5), so our claim is true.

Thus, vn → v∗ strongly in H1
0 (Ω), and the proof of Lemma 3.1 is com-

plete.

From now on, B will be as in Lemma 3.1. According to [5], whenΩ = RN ,
the infimum in (1.3) is achieved by the function

uε(x) =
CNε

(N−2)/2

(ε2 + |x|2)(N−2)/2
, ∀x ∈ RN ,
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where CN = [N(N − 2)](N−2)/4. Take a cut-off function η ∈ C∞0 (Ω) with
0 ≤ η ≤ 1 and

η(x) =

{
1, |x− x0| ≤ δ̃/2,
0, |x− x0| ≥ δ̃.

Set vε(x) = η(x)uε(x− x0). Then

‖vε‖2 = K1 +O(εN−2),(3.9)

‖vε‖22∗ = K2 +O(εN ),(3.10)

where K1 and K2 are positive constants which only depend on N and such
thatK1/K2 = S, O(εN−2) and O(εN ) denote quantities such that there exist
constants L1, L2 > 0 such that |O(εN−2)/εN−2| ≤ L1 and |O(εN )/εN | ≤ L2

for ε small enough.

Lemma 3.2. Suppose (Q0) holds. Then for every γ ∈ (0, 1) there exists
u0 ∈ H1

0 (Ω) such that

(3.11) sup
t≥0

Iα(tu0) <
SN/2

NQ
(N−2)/2
M

−Bλ2/(1+γ)

for all λ > 0 small enough.

Proof. For t ≥ 0, let

Iα(tvε) =
t2

2
‖vε‖2 −

1

2∗
t2
∗
�

Ω

Q(x)v2
∗
ε dx− λ

1− γ

�

Ω

[(tvε + α)1−γ − α1−γ ] dx.

Then

lim
t→+0

Iα(tvε) = 0 uniformly for all 0 < ε < ε0,

lim
t→∞

Iα(tvε) = −∞ uniformly for all 0 < ε < ε0,

where ε0 > 0 is a small constant. Let

Iε,1(t) =
t2

2
‖vε‖2 −

t2
∗

2∗

�

Ω

Q(x)v2
∗
ε dx,

Iε,2(t) =
1

1− γ

�

Ω

[α1−γ − (tεvε + α)1−γ ] dx.

Then I ′ε,1(t) = t(‖vε‖2 − t2
∗−2‖vε‖2

∗
2∗). Considering I ′ε,1(t) = 0, one sees that

Tε =

(
‖vε‖2	

Ω Q(x)v2∗ε dx

)1/(2∗−2)

is such that I ′ε,1(t) > 0 for all 0 < t < Tε, and I ′ε,1(t) < 0 for all t > Tε,
so Iε,1(t) attains its maximum at Tε. So for λ > 0 small, Iα(Tεvε) > 0.
Therefore, using the behavior of Iα(tvε) at t = 0 and t =∞, one finds that
supt≥0 Iα(tvε) is attained for some tε > 0.
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Moreover, we claim that there exist constants t0, T0 > 0, independent
of ε, such that t0 < tε < T0. In fact, from limt→+0 Iα(tvε) = 0 uniformly
for all ε, we choose ε = Iα(tεvε)/4 > 0; then there exists t0 > 0 such that
|Iα(t0vε)| = |Iα(t0vε)−Iα(0)| < ε. By the monotonicity of Iα(tvε) near t = 0,
we have tε > t0. Similarly, we can show that tε < T0.

We claim that from (Q0) we have, as ε→ 0+,

(3.12)
( �
Ω

Q(x)v2
∗
ε dx

)2/2∗
= Q

2/2∗

M ‖vε‖22∗ + o(εN−2).

In fact, for all ε > 0,∣∣∣ �
Ω

Q(x)v2
∗
ε dx−

�

Ω

QMvε
2∗ dx

∣∣∣ ≤ �

Ω

|Q(x)−Q(x0)|v2
∗
ε dx(3.13)

≤
�

Ω′

|Q(x)−Q(x0)|v2
∗
ε dx,

where Ω′ = {x ∈ Ω : |x − x0| ≤ δ̃}. From (Q0), for all ζ > 0, there exists
δ > 0 such that

|Q(x)−Q(x0)| < ζ|x− x0|N−2 for all 0 < |x− x0| < δ.

When ε > 0 is small enough, for δ > ε1/2 it follows from (3.13) and (Q0) that∣∣∣ �
Ω

Q(x)v2
∗
ε dx−

�

Ω

QMv
2∗
ε dx

∣∣∣
≤

�

{x∈Ω : |x−x0|≤δ̃}

|Q(x)−Q(x0)|v2
∗
ε dx

<
�

{x∈Ω : |x−x0|≤δ}

ζ|x− x0|N−2
[N(N − 2)ε2]N/2

[ε2 + |x− x0|2]N
dx

+
�

{x∈Ω : δ<|x−x0|≤δ̃}

[N(N − 2)ε2]N/2

[ε2 + |x− x0|2]N
dx

= cNζ

δ�

0

r
εN

(ε2 + r2)N
dr + cN

δ̃�

δ

εNrN−1

(ε2 + r2)N
dr

= cNζε
N−2

δ/ε�

0

r

(1 + r2)N
dr + cN

δ̃/ε�

δ/ε

rN−1

(1 + r2)N
dr

≤ C2ζε
N−2 + C3ε

N ,

where cN = [N(N − 2)]N/2. Consequently,

|
	
Ω Q(x)v2

∗
ε dx−

	
Ω QMv

2∗
ε dx|

εN−2
≤ C2ζ + C3ε

2,
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which implies that

lim sup
ε→0+

|
	
Ω Q(x)v2

∗
ε dx−

	
Ω QMv

2∗
ε dx|

εN−2
≤ C2ζ.

Then from the arbitrariness of ζ, we obtain (3.12).
Combining (3.10) and (3.12) gives

(3.14)
( �
Ω

Q(x)v2
∗
ε dx

)2/2∗
= Q

2/2∗

M K2 + o(εN−2).

From (3.14) and (3.10), one has

Iε,1(Tε) =

(
‖vε‖2	

Ω Q(x)v2∗ε dx

)2/(2∗−2)(‖vε‖2
2
− ‖vε‖

2

2∗

)
(3.15)

=
1

N

(
‖vε‖2	

Ω Q(x)v2∗ε dx

)N/2
≤ SN/2

NQ
(N−2)/2
M

+ C4ε
N−2,

where C4 > 0 is a constant.
Next, we concentrate on the estimate of Iε,2. We claim that

(3.16) α1−γ − (α+ β)1−γ ≤ −(1− γ)β(1−γ)/4α3(1−γ)/4, β > α > 0.

In fact, dividing (3.16) by β1−γ and setting t = α/β, for t > 0 small enough,
one has

(3.17) t1−γ − (1 + t)1−γ ≤ −(1− γ)t3(1−γ)/4.

Let

f(t) = t1−γ − (1 + t)1−γ + (1− γ)t3(1−γ)/4.

We only need to prove that f(t) ≤ 0 for t > 0 small. Indeed, since f(0) = −1,
we obtain f(t) ≤ 0 for t > 0 small by continuity. So (3.17) is true, thus (3.16)
holds.

According to (3.16),

Iε,2(t) ≤
1

1− γ

�

{x : |x−x0|≤ε(1−γ)/8}

[α1−γ − (tεvε + α)1−γ ] dx

≤ −C5

�

{x : |x−x0|≤ε(1−γ)/8}

(tεvε)
(1−γ)/4 dx

= −C5

�

{x : |x−x0|≤ε(1−γ)/8}

[
tεε

(N−2)/2η(x)

(ε2 + |x− x0|2)(N−2)/2

](1−γ)/4
dx

≤ −C6ε
(1−γ)(7N+γN−6−2γ)/32.

By the above inequality and (3.15), there exists λ∗∗ > 0 small enough such
that
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Iα(tεvε) = Iε,1(tε) + λIε,2(tε)

≤ SN/2

NQ
(N−2)/2
M

+ C4ε
N−2 − C6λε

(1−γ)(7N+γN−6−2γ)/32

≤ SN/2

NQ
(N−2)/2
M

+ C4λ
2/(1+γ) − C6λ

(1−γ)(7N+γN−6−2γ)+16(N−2)(1+γ)
16(N−2)(1+γ)

≤ SN/2

NQ
(N−2)/2
M

+ C4λ
2/(1+γ)

(
1− C7λ

(1−γ)[(N−2)γ−9N+26]
16(N−2)(1+γ)

)
<

SN/2

NQ
(N−2)/2
M

−Bλ2/(1+γ),

where we choose ε = λ2/((1+γ)(N−2)) for 0 < λ < λ∗∗ and (N−2)γ−9N+26
< 0 for all 0 < γ < 1 and every N ≥ 3. This implies that (3.11) holds for
all 0 < λ < λ∗∗. Thus Lemma 3.2 holds.

Proposition 3.1. For every α > 0, problem (3.1) has a positive moun-
tain-pass solution vα for all 0 < λ < min{λ∗, λ∗∗}.

Proof. Let ω ∈ H1
0 (Ω), ω 6≡ 0. Then for all t > 0,

Iα(tω) =
t2

2
‖ω‖2 − t2

∗

2∗

�

Ω

Q(x)(ω+)2
∗
dx

− λ

1− γ

�

Ω

[
(tω+ + α)1−γ − α1−γ] dx

≤ t2

2
‖ω‖2 − t2

∗

2∗

�

Ω

Q(x)(ω+)2
∗
dx,

which implies that there exists t0 > 0 such that Iα(t0ω) < 0 and ‖t0ω‖ > R,
where the choice of t0ω is independent of λ and ε. Setting ω0 = t0ω and

Γ = {h ∈ C([0, 1], H1
0 (Ω)) : h(0) = 0, h(1) = ω0},

we can define the mountain-pass level for Iα,

c = inf
h∈Γ

max
t∈(0,1)

Iα(h(t)).

Consequently, from (2.4) and (3.2),

(3.18) 0 < ρ < c ≤ max
t∈[0,1]

Iα(tω) ≤ sup
t≥0

Iα(tω) <
SN/2

NQ
(N−2)/2
M

−Bλ2/(1+γ)

for all 0 < λ < min{λ∗, λ∗∗} and α > 0. By Lemmas 3.1 and 3.2, Iα satisfies
the geometry of the Mountain-Pass Theorem [1]. According to Lemma 3.1,
{vn} ⊂ H1

0 (Ω) has a convergent subsequence, still denoted by {vn}, such
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that vn → vα in H1
0 (Ω) as n→∞. Hence, it follows from (3.18) that

(3.19) Iα(vα) = lim
n→∞

Iα(vn) = c > ρ > 0.

So from (3.19), vα 6≡ 0. Furthermore, from the continuity of I ′α, we find that
vα is a solution of problem (3.1), namely

(3.20)
�

Ω

(∇vα,∇ϕ) dx−
�

Ω

Q(x)(v+α )2
∗−1ϕdx− λ

�

Ω

ϕ

(v+α + α)γ
dx = 0

for all ϕ ∈ H1
0 (Ω). Taking the test function ϕ = v−α in (3.20), one has

−‖v−α ‖2 = λ
�

Ω

v−α
(v+α + α)γ

dx ≥ 0;

this implies that v−α = 0, therefore vα ≥ 0 and vα 6≡ 0. Hence, by the
strong maximum principle, vα is a positive solution of problem (3.1). This
completes the proof of Proposition 3.3.

4. Proof of Theorem 1.1. Let γ ∈ (0, 1) and Λ̃ = min{λ∗, λ∗∗}; then
our lemmas and proposition all hold for all 0 < λ < Λ̃. Hence Theorem 2.1
also holds. Thus problem (1.1) has a solution u∗, which is a local minimum
for the corresponding functional I.

Now, we only need to prove that problem (1.1) has another positive
solution. Since {vα} are solutions of problem (3.1), one has

(4.1) ‖vα‖2 −
�

Ω

Q(x)v2
∗
α dx− λ

�

Ω

(vα + α)−γvα dx = 0.

According to Proposition 3.3, by (4.1) we obtain

SN/2

NQ
(N−2)/2
M

−Bλ2/(1+γ) > Iα(vα)

=
1

N
‖vα‖2 +

λ

2∗

�

Ω

(vα + α)−γvα dx

− λ

1− γ

�

Ω

[(vα + α)1−γ − α1−γ ] dx

≥ 1

N
‖vα‖2 −

λ

1− γ

�

Ω

[(vα + α)1−γ − α1−γ ] dx

≥ 1

N
‖vα‖2 − C8‖vα‖1−γ .

Since γ ∈ (0, 1), it follows that {vα} is bounded in H1
0 (Ω). Going if necessary
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to a subsequence, also denoted by {vα}, there exists u∗∗ ∈ H1
0 (Ω) such that

(4.2)


vα ⇀ u∗∗ weakly in H1

0 (Ω),

vα → u∗∗ strongly in Lp(Ω), 1 < p < 2∗,

vα(x)→ u∗∗(x) a.e. in Ω.

Next, we prove that u∗∗ is a solution of problem (1.1). According to
Proposition 3.1, we have u∗∗(x) ≥ 0 in Ω.

We claim that {vα} has a uniform lower bound. Indeed, set

h(t) = t2
∗−1 +

λ

(t+ 1)γ
.

Then for 0 < t < 1,

h(t) ≥ λ

(1 + 1)γ
=

λ

2γ
,

while for t ≥ 1 we have h(t) ≥ 1. Therefore, for any α ∈ (0, 1) and t ≥ 0,

t2
∗−1 +

λ

(t+ α)γ
≥ t2∗−1 +

λ

(t+ 1)γ
≥ min{1, λ/2γ}.

Noticing that vα satisfies problem (3.1), we have

−∆vα = Q(x)v2
∗−1
α +

λ

(vα + α)γ
≥ min{1, Qm}min{1, λ/2γ},

where Qm = minx∈Ω Q(x) > 0. Denote by e the positive solution of{
−∆u = 1 in Ω,

u = 0 on ∂Ω.

Then e(x) > 0 in Ω. By the maximum principle,

(4.3) vα ≥ min{1, Qm}min{1, λ/2γ}e > 0

in Ω. Thus our claim is true.
Notice that vα ⇀ u∗∗ as α→ 0+. Take v = φ ∈ H1

0 (Ω)∩C0(Ω) as a test
function in (3.20), where C0(Ω) is the subset of C(Ω) consisting of functions
with compact support in Ω. Letting α→ 0+ and applying (4.3), one obtains
u∗∗ ≥ min{1, Qm}min{1, λ/2γ}e > 0 and

(4.4)
�

Ω

(∇u∗∗,∇φ) dx =
�

Ω

Q(x)u2
∗−1
∗∗ φdx+ λ

�

Ω

u−γ∗∗ φdx.

We claim that (4.4) holds for any φ ∈ H1
0 (Ω). Indeed, let φn ∈ H1

0 (Ω)∩
C0(Ω) satisfy

(4.5)
�

Ω

(∇u∗∗,∇φn) dx =
�

Ω

Q(x)u2
∗−1
∗∗ φn dx+ λ

�

Ω

u−γ∗∗ φn dx.

Since H1
0 (Ω) ∩ C0(Ω) is dense in H1

0 (Ω), for any φ ∈ H1
0 (Ω) there exists a

sequence φn ∈ H1
0 (Ω) ∩ C0(Ω) such that φn → φ as n → ∞. Replacing φn
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with φn − φm in (4.5), one has

(4.6)
�

Ω

(∇u∗∗,∇|φn − φm|) dx

=
�

Ω

Q(x)u2
∗−1
∗∗ |φn − φm| dx+ λ

�

Ω

u−γ∗∗ |φn − φm| dx.

Since φn → φ as n → ∞, from (4.6) we infer that {φn/uγ∗∗} is a Cauchy
sequence in L1(Ω), hence there exists ν ∈ L1(Ω) such that φn/u

γ
∗∗ → ν as

n→∞, which implies that φn/u
γ
∗∗ → ν as n→∞ in measure. By the Riesz

Theorem, going if necessary to a subsequence of {φn/uγ∗∗}, still denoted by
{φn/uγ∗∗}, we get

(4.7) φn(x)/uγ∗∗(x)→ ν(x) a.e. x ∈ Ω,
as n→∞. On the other hand, since φn(x)/uγ∗∗(x)→ φ(x)/uγ∗∗(x) a.e. in Ω,
by (4.7) we obtain ν = φ/uγ∗∗. Consequently,

	
Ω(φn/u

γ
∗∗) dx→

	
Ω(φ/uγ∗∗) dx

as n→∞. From (4.5) one gets

(4.8)
�

Ω

(∇u∗∗,∇φ) dx =
�

Ω

Q(x)u2
∗−1
∗∗ φdx+ λ

�

Ω

u−γ∗∗ φdx, ∀φ ∈ H1
0 (Ω).

Therefore, our claim is true, and u∗∗ is a solution of problem (1.1).

Finally, we prove that u∗∗ is different from u∗. We claim that vα → u∗∗
as α → 0+ in H1

0 (Ω). Indeed, setting ωα = vα − u∗∗, we need to prove
‖ωα‖ → 0 as α → 0+. Suppose there exists a subsequence, still denoted

by ωα, such that limα→0 ‖ωα‖2 = l > 0. Since 0 ≤ vα/(vα + α)γ ≤ v1−γα , by
the Hölder inequality and subadditivity, from (4.2) one has

�

Ω

vα
(vα + α)γ

dx ≤
�

Ω

v1−γα dx ≤
�

Ω

|wα|1−γ dx+
�

Ω

u1−γ∗∗ dx

≤ ‖wα‖1−γ2 |Ω|(1+γ)/2 +
�

Ω

u1−γ∗∗ dx

≤
�

Ω

u1−γ∗∗ dx+ o(1).

Similarly, �

Ω

u1−γ∗∗ dx ≤
�

Ω

vα
(vα + α)γ

dx+ o(1).

Hence

(4.9) lim
α→0+

�

Ω

vα
(vα + α)γ

dx =
�

Ω

u1−γ∗∗ dx.

Since vα is a positive solution of problem (3.1), one has
�

Ω

|∇vα|2 dx−
�

Ω

Q(x)v2
∗
α dx− λ

�

Ω

vα
(vα + α)γ

dx = 0.
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Consequently, according to Lemma A and (4.9),

(4.10) ‖ωα‖2 + ‖u∗∗‖2−
�

Ω

Q(x)ω2∗
α dx−

�

Ω

Q(x)u2
∗
∗∗ dx− λ

�

Ω

u1−γ∗∗ dx = o(1).

Taking φ = u∗∗ in (4.8), one has

‖u∗∗‖2 −
�

Ω

Q(x)u2
∗
∗∗ dx− λ

�

Ω

u1−γ∗∗ dx = 0,

and (4.10) implies that

(4.11) ‖ωα‖2 −
�

Ω

Q(x)ω2∗
α dx = o(1).

Thus
lim
α→0+

‖ωα‖2 = lim
α→0+

�

Ω

Q(x)ω2∗
α dx = l > 0.

Since �

Ω

|ωα|2
∗
dx ≥

�

Ω

Q(x)

QM
|ωα|2

∗
dx ≥

�

Ω

Q(x)

QM
(ω+
α )2

∗
dx,

we get ‖ωα‖2
∗

2∗ ≥ l/QM as α → 0+. Applying the Sobolev inequality, from
(1.3) one obtains

‖ωα‖2 ≥ S‖ωα‖22∗ .

Then l ≥ S(l/QM )2/2
∗
, which implies that l ≥ S(N)/2/Q

(N−2)/2
M . On the one

hand,

I(u∗∗) =
1

2
‖u∗∗‖2 −

1

2∗

�

Ω

Q(x)u2
∗
∗∗ dx−

λ

1− γ

�

Ω

u1−γ∗∗ dx(4.12)

=
1

N
‖u∗∗‖2 − λ

(
1

1− γ
− 1

2∗

) �

Ω

u1−γ∗∗ dx

≥ 1

N
‖u∗∗‖2 − C9λ‖u∗∗‖1−γ ≥ −Bλ2/(1+γ),

where the last inequality follows from the Young inequality. On the other
hand, from

Iα(vα) <
SN/2

NQ
(N−2)/2
M

−Bλ2/(1+γ) and l ≥ SN/2

Q
(N−2)/2
M

,

it follows by (4.10) and (4.11) that

I(u∗∗) = Iα(vα)− 1

N
‖ωα‖2 + o(1)

≤ 1

N

(
SN/2

NQ
(N−2)/2
M

− l
)
−Bλ2/(1+γ) ≤ −Bλ2/(1+γ),

which contradicts (4.12). Thus our claim holds.
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Consequently, from (3.19), we obtain

I(u∗∗) = lim
α→0

Iα(vα) > ρ > 0.

Therefore, u∗ and u∗∗ are two different solutions of problem (1.1). Moreover,
u∗∗ 6≡ 0. Combining this with u∗∗(x) ≥ 0 and (4.8), by the strong maximum
principle one has u∗∗(x) > 0 a.e. x ∈ Ω. Thus u∗∗ is a positive solution of
problem (1.1). This completes the proof of Theorem 1.1.
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[19] H. T. Yang, Multiplicity and asymptotic behavior of positive solutions for a singular

semilinear elliptic problem, J. Differential Equations 189 (2003), 487–512.

Jia-Feng Liao
School of Mathematics and Statistics
Southwest University
400715 Chongqing
People’s Republic of China
and
School of Mathematics
and Computational Science
Zunyi Normal College
563002 Zunyi, Guizhou
People’s Republic of China
E-mail: liaojiafeng@163.com

Jiu Liu, Chun-Lei Tang (corresponding author)
School of Mathematics and Statistics

Southwest University
400715 Chongqing

People’s Republic of China
E-mail: jiuliu2011@163.com

tangcl@swu.edu.cn

Peng Zhang
School of Mathematics

and Computational Science
Zunyi Normal College

563002 Zunyi, Guizhou
People’s Republic of China

E-mail: gzzypd@sina.com

http://dx.doi.org/10.1016/S0362-546X(03)00244-X
http://dx.doi.org/10.1006/jdeq.2000.3973
http://dx.doi.org/10.1016/j.na.2013.03.019
http://dx.doi.org/10.1016/S0022-0396(02)00098-0

	1 Introduction and main result
	2 Existence of the first solution of problem (1.1)
	3 The mountain-pass solution of the perturbation problem
	4 Proof of Theorem 1.1
	References

