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Abstract. In 1926 Birkhoff defined the center depth, one of the fundamental invari-
ants that characterize the topological structure of a dynamical system. In this paper, we
introduce the concepts of prolongational centers and their depths, which lead to a com-
plete family of topological invariants. Some basic properties of the prolongational centers
and their depths are established. Also, we construct a dynamical system in which the
depth of a prolongational center is a prescribed countable ordinal.

1. Introduction. In a dynamical system, the closure of the set of points
belonging to the Poisson stable trajectories is called the center and the tra-
jectories in it are called central trajectories. As was indicated by Birkhoff [4],
one of the fundamental invariants that characterize the topological structure
of a dynamical system is the ordinal number of the central trajectories, that
is, the center depth. In the literature, there are three different algorithms
for finding center depths defined respectively by Birkhoff [4], Birkhoff and
Smith [6], and Maier [7]. For a detailed description of these different pro-
cesses, see Maier [8] and Neumann [10]. Those algorithms put the dynamical
system into correspondence with different topological invariants—the ordi-
nal numbers of the center depth: βA (Birkhoff’s algorithm), βB (Birkhoff
and Smith’s algorithm), βC (Maier’s algorithm). In [8], it was shown that

(1) βA ≥ βB ≥ βC .
An important problem is the range of βA, βB and βC . Much significant work
in this direction has been done by Birkhoff, Maier, Neumann, Reed [14],
Schwartz and Thomas [15], Sharkovskĭı [16], Shil’nikov [17] and others.

To extend the notions of recurrent motion in a dynamical system, us-
ing continuous real valued functions on the phase space, Auslander [1]
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introduced the notion of prolongational recurrence (or generalized recur-
rence). The set of prolongational recurrent points contains the periodic
points, recurrent (or Poisson stable) points and non-wandering points. It
is known that prolongational recurrence is an important concept in the
theory of structural stability. As in the construction of central sequences
by removing the set of wandering points, we establish prolongational cen-
tral sequences from nested sets of prolongational recurrent points of sub-
systems. In this paper, we shall define prolongational centers and their
depths, which leads to a complete family of topological invariants for dy-
namical systems. Some fundamental properties of the centers and their
depths are presented. In general, a similar relation to (1) for different or-
der centers is impossible, but if two different order centers are the same
set, then an inequality between their depths holds. Also, it is shown that
the depths of prolongational centers can be arbitrarily chosen countable
ordinals.

2. Prolongational recurrence. Throughout the paper, X denotes a
metric space with metric d. For a subset A ⊆ X, A denotes the closure of A.
Let B(x, δ) = {y ∈ X : d(x, y) < δ} be the open ball with center x and
radius δ > 0. Let R be the real line, R+ and R− the subsets of R consisting
of the non-negative and non-positive real numbers, respectively.

A dynamical system or (continuous) flow on X is a triple (X,π,R), where
π is a continuous mapping from X × R onto X satisfying the following
axioms:

(1) π(x, 0) = x for each x ∈ X,

(2) π(π(x, t), s) = π(x, t+ s) for all x ∈ X and t, s ∈ R.

For brevity, we suppress the mapping π notationally and just write x · t
in place of π(x, t). Similarly, let A · J = {x · t : x ∈ A, t ∈ I} for A ⊆ X
and I ⊆ R. If either A or J is a singleton, i.e., A = {x} or I = {t}, then
we simply write x · J and A · t in place of {x} · J and A · {t}, respectively.
A set S ⊆ X is positively [negatively] invariant if S · R+ = S [S · R−=S],
and is invariant if S ·R = S. Recall that y ∈ X is called an ω-limit point [α-
limit point ] of x ∈ X if there is a sequence of real numbers ti →∞ [ti → −∞]
such that x · ti → y as i → ∞. The set of ω-limit points [α-limit points] of
x is denoted by ω(x) [α(x)]. A point x ∈ X is Poisson stable if x ∈ ω(x) ∩
α(x). The first prolongational set and the first prolongational limit set are
defined, respectively, by D1(x) = {y ∈ X : there are sequences {xn} ⊆ X,
{tn} ⊆ R+ such that xn → x and xn · tn → y} and J1(x) = {y ∈ X :
there are sequences {xn} ⊆ X, {tn} ⊆ R+ such that xn → x, tn → ∞ and
xn · tn → y}. We say a point x ∈ X is non-wandering if x ∈ J1(x). For each
x ∈ X, we have D1(x) = x ·R+ ∪ J1(x). Note that ω(x), α(x) and J1(x) are



Prolongational centers and their depths 289

closed invariant sets, and D1(x) is a closed and positively invariant set. For
the elementary properties of dynamical systems, consult [3, 5, 9].

Let X be the collection of all subsets ofX, andM = {Γ : Γ is a map from
X to X }. For Γ ∈M andA ∈X , we define Γ (A) =

⋃
{Γ (x) : x ∈ A}. If n is

a positive integer, the map Γn : X →X is defined inductively by Γ 1 = Γ and
Γn = Γ ◦Γn−1, i.e., Γ 1(x) = Γ (x) and Γn(x) = Γ (Γn−1(x)) for x ∈ X. Now,
we introduce two operators D and S on the collectionM. IfΓ ∈M, we define

DΓ (x) =
⋂
δ>0

Γ (B(x, δ)) and S Γ (x) =

∞⋃
n=1

Γn(x) for x ∈ X.

It is easy to see that y ∈ DΓ (x) if and only if there are sequences {xn}
and {yn} with yn ∈ Γ (xn) such that xn → x and yn → y. Also, y ∈ S Γ (x)
if and only if there are points x = x0, x1, . . . , xn = y with xi ∈ Γ (xi−1)
(i = 1, . . . , n). Obviously, D and S may be regarded as a ‘closure’ operator
and a ‘transitizing’ operator on M respectively.

In the study of a dynamical system, the set-valued maps ω, D1 and J1
are the most important ones in M. Starting with D1, we use the operators
D and S to define higher prolongation maps {Dα} (α is an ordinal) as
follows. By transfinite induction, if α is a successor ordinal, then having
defined Dα−1, we set Dα = DSDα−1; if α is a limit ordinal, then having
defined Dβ for every β < α, we set Dα = D(

⋃
β<α SDβ). In [2], it is

shown that higher prolongations are important in the theory of stability.
Similarly, we can consider the higher prolongational limit maps, which lead
to the concept of prolongational recurrence (or Auslander recurrence). Let
Γ = J1, and define J2 = DS J1. Inductively, if α is a successor ordinal,
having defined Jα−1 we set Jα = DS Jα−1; if α is a limit ordinal, having
defined Jβ for each β < α we set Jα = D(

⋃
β<α S Jβ). For each ordinal α

and x ∈ X, Jα(x) is a closed invariant set and Dα(x) = γ+(x)∪ Jα(x). The
reader is referred to [1] for details.

Definition 2.1. For each ordinal α, let Rα = {x ∈ X : x ∈ Jα(x)},
called the α-order recurrent set. Then define R =

⋃
Rα, the prolongational

recurrent set. An element of R is called a prolongational recurrent point.

The notion of prolongational recurrence was first introduced by Auslan-
der, and in the literature it is also called Auslander recurrence or generalized
recurrence. Some fundamental properties of prolongational recurrence were
established by Auslander [1]. The prolongational recurrent set R is an in-
variant closed set, and it is closely related to the structural stability of a
dynamical system (see [11]). In particular, Nitecki [12] proved that a dynam-
ical system is C0-explosive if and only if R 6= ∅, and Peixoto [13] perturbed
a vector field with a non-periodic prolongational recurrent point to get a
periodic orbit (a closing lemma).
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Lemma 2.2. For each ordinal α, Rα is closed and invariant.

Proof. In fact, R1 = {x ∈ X : x ∈ J1(x)} is a non-wandering set, which
is closed and invariant. We proceed by transfinite induction. Assume that
Rλ is closed for each ordinal λ < α. Let {xn} be a sequence in Rα such that
xn → y. Since xn ∈ Jα(xn), for each n there exist sequences {pnk}, {qnk} such

that pnk → xn, qnk → xn as k → ∞ and pnk ∈ J
lk
λk

(qnk ) (λk < α, lk a positive
integer). Thus, let subsequences pnkn , qnkn be such that pnkn → y, qnkn → y

as n → ∞, pnkn ∈ J
ln
λn

(qnkn) (λn < α, ln a positive integer). It follows that
y ∈ Jα(y), and hence Rα is closed. Next, let x ∈ Rα and t ∈ R. By [1, p. 69,
Lemma 3], it follows from x ∈ Jα(x) that x · t ∈ Jα(x) · t = Jα(x · t), i.e.,
x · t ∈ Rα. Hence, Rα is invariant.

Let α and β be a pair of ordinals. If α < β, by the definition of Jα we
have Jα(x) ⊆ Jβ(x) for x ∈ X, i.e., the map Jα is monotone. Thus, for x ∈ X
and α < β, if x ∈ Jα(x) then x ∈ Jβ(x), which means that Rα ⊆ Rβ. In [2],
it was shown that Dα = Dω1 for α > ω1, where ω1 is the first uncountable
ordinal. Since Dα(x) = Jα(x) for x ∈ Rα, we also have Jα(x) = Jω1(x) if
α > ω1. Hence, we have the following result.

Lemma 2.3. There exists an ordinal ς ≤ ω1 such that R = Rς .
In the next section, it is proved that ifX is a second countable topological

space, then ς is countable. Note that if X is compact, then Rα 6= ∅ for each
ordinal α.

Definition 2.4. Let ς be the least ordinal such that R = Rς ( 6= ∅);
then we call ς the recurrence order of (X,π), and let ς = D(π).

A function ρ : X × R → R is called a reparametrization if (i) ρ( , x) :
R → R is surjective, and (ii) ρ( , x) : R → R is strictly increasing for each
x ∈ X. Let π and ψ be dynamical systems defined in metric spaces X
and Y , respectively. If there exist a homeomorphism h : X → Y and a
reparametrization ρ : X × R → R such that h(π(x, ρ(x, t))) = ψ(h(x), t)
for all x ∈ X and t ∈ R, then π and ψ are said to be topologically equiva-
lent or isomorphic. The pair (h, ρ) is a topological equivalence from π to ψ.
For the special case ρ(x, t) = t for all x ∈ X and t ∈ R, π and ψ are
said to be topologically conjugate. Obviously, these two notions show the
topological similarity between dynamical systems, and many of their tra-
jectory properties are preserved by topological equivalence. In particular, if
x ∈ X, it is easy to see that h(J1(x)) = J1(h(x)). By transfinite induction,
h(Jα(x)) = Jα(h(x)) for each ordinal α ≥ 1. So, we obtain the following
result.

Property 2.5. Let (h, ρ) be a topological equivalence from π to ψ. For

every ordinal α, denote by Rπα and Rψα the respective α-order recurrent sets.
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Then h(Rπα) = Rψα. Also, h(Rπ) = Rψ, where Rπ and Rψ are the prolon-
gational recurrent sets of π and ψ. In particular, D(π) = D(ψ).

3. Prolongational center. Let X be a second countable topological
space, i.e., X has a countable base. Every separable metric space is second
countable. In the following, we always assume that X is a separable metric
space, and let π be a dynamical system on X such that R 6= ∅. We recall
the Baire Theorem (see [9, p. 312]):

Theorem 3.1 (Baire). Let X be a second countable topological space. If

{K1, . . . ,Kn, . . . ,Kω0 ,Kω0+1, . . . ,Kλ, . . . }
is a collection of closed subsets of X such that

K1 ⊇ · · · ⊇ Kn ⊇ · · · ⊇ Kω0 ⊇ Kω0+1 ⊇ · · · ⊇ Kλ · · · ,
where ω0 is the first infinite ordinal, then there exists a countable ordinal ς
such that Kς = Kλ for all ordinals λ ≥ ς.

Let Ω(π) be the set of all non-wandering points in the flow (X,π); it is
a closed invariant set. A point x ∈ Ω(π) is not necessarily non-wandering
in the subflow π|Ω on Ω(π), i.e., Ω(π|Ω) may be a proper subset of Ω(π).
Now, let Ω1 = Ω(π), and for each positive integer n define Ωn+1 = Ω(π|Ωn).
We let Ωω0 =

⋂∞
n=1Ωn. The set Ωω0 is again a closed invariant set, thus

define Ωω0+1 = Ω(π|Ωω0 ). This process can be continued to all ordinals by
transfinite induction. If λ = κ + 1 for some ordinal κ, then define Ωλ =
Ω(π|Ωκ). If λ is a limit ordinal, then define Ωλ =

⋂
κ<λΩκ. Thus, we obtain

a transfinite sequence of closed sets

Ω1 ⊇ · · · ⊇ Ωn ⊇ · · · ⊇ Ωω0 ⊇ Ωω0+1 ⊇ · · · ⊇ Ωλ ⊇ · · · .
By the Baire Theorem, there exists a countable ordinal σ1 such thatΩλ = Ωσ1
for all λ > σ1. The set C1 = Ωσ1 is the center of π. An element of the center is
a central point of π. For a detailed discussion, see Birkhoff [5] and Nemytskĭı
and Stepanov [9]. By Lemma 2.2, the above procedure can be applied to
each Rα for an ordinal α > 1 and the prolongational recurrence set R.

Definition 3.2. For an ordinal α, let R1
α = Rα. Define Rλα inductively

as follows. If λ is a successor ordinal, let Rλα = Rα(π|Rλ−1
α

) be the α-order

recurrent set of the subflow π|Rλ−1
α

. If λ is a limit ordinal, letRλα =
⋂
η<λR

η
α.

Then there exists a countable ordinal σα such that Rλα = Rσαα for all λ > σα.
The set Cα = Rσαα is said to be the α-order center. In particular, C1 is called
the Birkhoff center.

Definition 3.3. Let R1 = R. Define Rλ inductively as follows. If λ is a
successor ordinal, let Rλ = R(π|Rλ−1) be the generalized recurrent set of the
subflow π|Rλ−1 . If λ is a limit ordinal, let Rλ =

⋂
β<λRβ. Then there exists
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a countable ordinal σ such that Rλ = Rσ for all λ > σ. The set C = Rσ is
said to be the prolongational center.

Lemma 3.4. For two ordinals α and β, if α < β, then Cα ⊆ Cβ. In
particular, Cα ⊆ C for each α.

Proof. For α < β, we have Rα ⊆ Rβ. Let R1
α = Rα and R1

β = Rβ.

Assume that Rηα ⊆ Rηβ for all η < λ. Thus, if λ is a successor ordinal, we

have Rλα = Rα(π|Rλ−1
α

) ⊆ Rα(π|Rλ−1
β

) ⊆ Rβ(π|Rλ−1
β

) = Rλβ. If λ is a limit

ordinal, then Rλα =
⋂
η<λR

η
α ⊆

⋂
η<λR

η
β = Rλβ. It follows that Cα ⊆ Cβ for

α < β.

By Lemma 2.3, we have the prolongational center C = Cς , where ς =
D(π) is a countable ordinal. Thus, for a flow π on a separable metric space
X there exists a collection of centers satisfying C1 ⊆ · · · ⊆ Cς . In the following
example, we see that Cα may be a proper subset of Cβ for α < β.

Example 3.5. Consider a flow in D = {(x1, x2) : x21 + x22 ≤ 1} ⊂ R2,
defined in polar coordinates as follows:

(2)
dr

dt
= r(1− r)f(r, θ) and

dθ

dt
= f(r, θ) (0 ≤ r ≤ 1),

where f(r, θ) is a smooth function such that f(1, 0) = 0, f(1, π/(2n)) = 0
(n = 1, 2, . . . ) and f(r, θ) > 0 elsewhere. It is easy to see that the Birkhoff
center consists of all the rest points, i.e., C1 = {(1, π/(2n)) : n = 1, 2, . . . } ∪
{(0, 0), (1, 0)}. Let p1 = (1, 0) and p2 = (1, π). Note that for the subflow
on the unit circle S = ∂D, we have J2(p2) = {p1} and J2(p1) = S. Hence,
C2 = C1. Finally, it is easy to see that C3 = S ∪ {(0, 0)}, which is also the
prolongational center C.

By Property 2.5, we have the following conclusion.

Property 3.6. The family {C1, . . . , CD(π)} of prolongational centers are
invariants of topological equivalence.

4. Depth of center. In the process of obtaining the Birkhoff center C1,
there exists a least countable ordinal σ1 such that Ωλ = Ωσ1 for all λ > σ1;
this ordinal is said to be the depth of C1. Similarly, we can define the depth
of an α-order center for each α > 1.

Definition 4.1. Let α be an ordinal. The depth of the α-order center Cα,
denoted dα, is the least ordinal σα such that Rλα = Rσαα = Cα for all λ > σα.
In particular, the depth of the prolongational center CD(π) is the least ordinal

dD(π) such that RλD(π) = RdD(π)

D(π) = CD(π) for all λ > σD(π).

Now, we construct two systems so that one satisfies d1 > d2 and the
other d1 < d2.



Prolongational centers and their depths 293

Example 4.2. Consider the flow π defined by (2) with f(1, 0) = 0 and
f(r, θ) > 0 for (r, θ) 6= (1, 0). It is easy to see that the Birkhoff center C1
is {(0, 0), (1, 0)} and d1 = 2. For the subflow (S, π), let p ∈ S, J2(p) = {y :
xn → p and yn → y with xn ∈ S, yn ∈ Jkn1 (xn) (kn a positive integer)} = S.
Thus, C2 = {(0, 0)} ∪ S and d2 = 1.

Example 4.3. First, we consider a simple system in D = {(x1, x2) :
x21 + x22 ≤ 1}, defined in polar coordinate as follows:

(3)
dr

dt
= r(1− r) and

dθ

dt
= 1 (0 ≤ r ≤ 1).

Let p = (1/2, 0) and X = p · R ∪ S ∪ {(0, 0)}, where X is a closed invariant
set of the system (3). Then we define a dynamical system π on X by the
following ordinary differential equations:

(4)
dr

dt
= r(1− r)f(r, θ) and

dθ

dt
= f(r, θ) (0 ≤ r ≤ 1),

where f(r, θ) is a smooth function such that f(r, θ) = 0 if θ = 0 or (r, θ) =
(1, π/(2n)) (n = 1, 2, . . .), otherwise f(r, θ) > 0. Let F be the set of inter-
section points of the positive x1-axis and the trajectory p ·R of (3). Clearly,
each point in F is a rest point of (4). It is easy to see that the Birkhoff
center C1 is

F ∪ {(0, 0), (1, 0)} ∪ {(1, π/(2n)) : n = 1, 2, . . .}
and d1 = 1. For each p ∈ S, there exist sequences xn ∈ p · R and yn ∈
S J1(xn) such that xn → p and yn → p, hence R2 = F ∪ S ∪ {(0, 0)}.
Observe that

R2(π|S) = {(1, 0)} ∪ {(1, π/(2n)) : n = 1, 2, . . .}.
Thus, C2 = C1 and d2 = 2.

In the above system with d1 > d2, we have C1 6= C2. In general, for the
case Cα = Cβ (α > β), since Rβ ⊆ Rα always holds, it is easy to deduce the
following result.

Theorem 4.4. For ordinals α > β ≥ 1, if Cα = Cβ, then dα ≥ dβ.

Now, we state our main result:

Theorem 4.5. For any countable ordinals α and β there exists a dy-
namical system with dβ = α.

To prove this theorem, we just construct a concrete system with dβ = α.
First, let Y = (−1, 1) and consider a flow on Y defined by dx/dt = g(x),
where g(x) is a smooth function. Let p = −1/2 and q = 2/3. If g(0) = 0 and
g(x) > 0 for x 6= 0, it is easy to see that q 6∈ J1(p) = {0} and q ∈ J2(p). If
g(x) = 0 for x = 0, x = 1/n (n = 2, 3, . . . ) and g(x) > 0 elsewhere, then we
have q 6∈ J2(p) and q ∈ J3(p). Similarly, if g(x) = 0 for x = 0, x = 1

n+1/m
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(n = 2, 3, . . . and m = 1, 2, . . .) and g(x) > 0 elsewhere, then we obtain
q 6∈ J3(p) = {0} and q ∈ J4(p).

Now, if n is any positive integer, it is clear that we may define a func-
tion gn, similar to g above, so that in the dynamical system πn determined
by the equation dx/dt = gn(x), we have q 6∈ Jn−1(p) and q ∈ Jn(p).

By appropriately combining the πn, we may define a dynamical system
πω0 such that q 6∈ Jn(p) for any positive integer n and q ∈ Jω0(p), where
ω0 is the first infinite ordinal. In fact, we may suppose that gω0(x) = 0 for
x = 0 and x = 1/n (n = 2, 3, . . . ). Then, in each interval

Yn =

[
1

n+ 1
,

1

n

)
(n ≥ 2)

we define gω0(x) as gn(x) in [0, 2/3) using a linear contraction, i.e.,

gω0(x) = gn

(
2

3
n(n+ 1)

(
x− 1

n+ 1

))
for x ∈ Yn.

If we let πω0 be the dynamical system determined by dx/dt = gω0(x), then
πω0 behaves on Yn like πn on [0, 2/3). So, q 6∈ Jn(p) for any positive integer n,
but q ∈ Jω0(p).

Next, we define πω0+1 in a similar way so that the dynamical behavior
of πω0+1 on each Yn is the same as the behavior of πω0 on [0, 2/3). Thus,
for πω0+1, we have q 6∈ Jω0(p) and q ∈ Jω0+1(p). Clearly, by transfinite
induction, we can obtain the following result.

Property 4.6. For each countable ordinal β, there exists a dynamical
system πβ on Y such that if β is a successor ordinal then q 6∈ Jβ−1(p) and
q ∈ Jβ(p), while if β is a limit ordinal then q 6∈ Jγ(p) for all γ < β and
q ∈ Jβ(p).

In order to construct a system such that for a given countable ordinal β,
dβ is a given countable ordinal α, we apply Neumann’s construction [10,
Sec. 3, pp. 5–8]. In Neumann’s notation, let Eα be a 2-manifold on which
there exists a dynamical system (Eα, φα) such that the depth of the Birkhoff
center C1 is α. We may adjust φα so that the points of some given subset in
Eα become rest points. According to Property 4.6, let F be the set of rest
points of πβ on Y . Define Fβ = {(x, y) ∈ R2 : x ∈ F and y ∈ (−1, 0]}, which
is a subset of the open unit square U = {(x, y) ∈ R2 : |x| < 1 and |y| < 1}.
According to Neumann’s construction, let Uα be the image of U in Eα and
W be the corresponding image of Fβ in Uα. Then, we adjust φα to a new
flow ψα on Eα such that the points of W become rest points of ψα. Thus,
we clearly get a dynamical system (Eα, ψα) with the following property.

Theorem 4.7. For each countable ordinal β ≥ 1, there exists a dynam-
ical system such that dβ is a given countable ordinal α.
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Clearly, by Properties 2.5 and 3.6, the depths of centers are also in-
variants of topological equivalence. Thus, we can introduce the following
concept, which is also an invariant of topological equivalence.

Definition 4.8. Let (X,π) be a dynamical system on a separable met-
ric space. The family of pairs {(C1, d1), . . . , (CD(π), dD(π))} is said to be the
recurrent index of (X,π).

Finally, we suggest a subject of further study: To what extent does the
recurrent index determine the dynamical behavior of a dynamical system?
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