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Abstract

We consider a characteristic initial value problem for a class of symmetric hyperbolic systems
with initial data given on two smooth null intersecting characteristic surfaces. We prove ex-
istence of solutions on a future neighborhood of the initial surfaces. The result is applied to
general semilinear wave equations, as well as the Einstein equations with or without sources,
and conformal variations thereof.
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1. Introduction

There are several reasons why a characteristic Cauchy problem is of interest in general

relativity. First, the general relativistic constraint equations on characteristic surfaces are

trivial to solve (see e.g. [7, 12, 38]), while they are not on spacelike ones. Thus, a good

understanding of the characteristic Cauchy problem is likely to provide more flexibility

in constructing space-times with interesting properties. Next, an observer can in prin-

ciple measure the initial data on her past light cone, and use those to determine the

physical fields throughout her past by solving the field equations backwards in time; on

the other hand, initial data on a spacelike surface near the observer cannot be measured

instantaneously. Finally, Friedrich’s conformal field equations may be used to construct

space-times using initial data prescribed on past null infinity [13, 23, 27] which, at least

in some situations, is a null cone emerging from a single point representing past timelike

infinity.

The characteristic initial value problem for the vacuum Einstein equations with initial

data given on two smooth null intersecting hypersurfaces has been studied by several

authors [5, 6, 9, 15, 16, 21, 22, 34, 37, 39]; compare, in different settings, [3, 4, 28]. The most

satisfactory treatment of the local evolution problem, for a large class of quasi-linear

wave equations and symmetric hyperbolic systems, has been given by Rendall [38], who

proved existence of a solution in a neighborhood of the intersection of the initial data

hypersurfaces. A similar result for a neighborhood of the tip of a light-cone has been

established by Dossa [17]. The region of existence has been extended by Cabet [1, 2] for

a class of nonlinear wave equations satisfying certain structure conditions. In these last

papers existence of the solution in a whole neighborhood of the initial data hypersurfaces,

rather than of their intersection, is established. We will refer to this kind of results

as “the neighborhood theorem”. Similar results have been established by Dossa and

collaborators [18–20, 29, 30] for various families of semilinear wave equations. Finally,

Luk [33] established the neighborhood theorem for the vacuum Einstein equations in four

space-time dimensions, through an argument which makes use of the specific structure

of the nonlinearities occurring in those equations.

The aim of this work is to show that no conditions on the nonlinearity are necessary

for existence near an (optimal) maximal subset of the initial data hypersurfaces for the

large class of nonlinear wave equations which can be written in a doubly-null form.

We further show that our result applies to Einstein equations in four space-time

dimensions, as well as to a version, due to Paetz [35], of the conformal field equations of

Friedrich.

[5]



6 1. Introduction

As a result we deduce that vacuum general relativistic characteristic initial data with

suitable asymptotic behavior (as analyzed in detail in [14, 36]) lead to space-times with

a piece of smooth Scri, without any smallness conditions on the data (1). Moreover,

a global-to-the-future Scri is obtained if the data are sufficiently close to Minkowskian

ones.

Higher-dimensional Einstein equations can be handled by a variation of our tech-

niques; this will be discussed elsewhere.

Our analysis is tailored to a setting where the initial data are given on two transversely

intersecting smooth characteristic surfaces. The characteristic initial value problem with

initial data on a light cone issued from a point is readily reduced to the one considered

here, by first solving locally near the tip (see [10, 17] and references therein), and then

using the results proved here to obtain a solution near the maximal domain, within the

light-cone, of existence of solutions of the transport equations.

(1) Once this work was completed we have been made aware of a similar result in [32].



2. The basic energy identity

Let Y be an (n− 1)-dimensional compact manifold without boundary. We are interested

in quasi-linear first order symmetric hyperbolic systems of the form

Lf = G, (2.1)

on subsets of

M̃ := {u ∈ [0,∞), v ∈ [0,∞), y ∈ Y }. (2.2)

In (2.1), f is assumed to be a section of a real vector bundle over M̃, equipped with

a scalar product; similarly for G. We will use the same symbol ∇, respectively 〈·, ·〉, to

denote connections, respectively scalar products, on all relevant vector bundles. Both the

scalar product and the connection coefficients are allowed to depend upon f , and we

assume that ∇ is compatible with 〈·, ·〉. Similarly, M̃ will be assumed to be equipped

with a measure dµ, possibly dependent upon f . Furthermore, L is a first order operator

of the form

L = Aµ∇µ,

where the Aµ’s are self-adjoint, and are smooth functions of f and of the space-time

coordinates. The summation convention is used throughout.

Let qr, r = 1, . . . ,m, denote a collection of smooth vector fields on Y such that for

each y ∈ Y the vectors qr(y) span TyY ; clearly m ≥ dimY . For k ∈ N let Pk denote the

collection of differential operators of the form

∇̊qr1 . . . ∇̊qr` , 0 ≤ ` ≤ k. (2.3)

Here ∇̊ is a fixed, arbitrarily chosen, smooth connection which is f -, u-, and v-independent.

We number the operators (2.3) in an arbitrary way and call them Pr, thus

Pk = {Pr : r = 1, . . . , N(k)}

for a certain N(k), with P1 = 1, the identity map. We will often write ∇̊r for ∇̊qr .
Let wr be any smooth functions on M̃. We set

Xµ(k) :=

N(k)∑
r=1

wr〈Prf,AµPrf〉, (2.4)

so that

∇µ(Xµ(k))=
∑
r

{
〈Prf,AµPrf〉∂µwr︸ ︷︷ ︸

Ir

+wr
(
〈Prf, (∇µAµ)Prf〉︸ ︷︷ ︸

IIr

+ 2〈Prf, LPrf〉︸ ︷︷ ︸
IIIr

)}
. (2.5)

[7]



8 2. The basic energy identity

Let

Ωa,b = [0, a]︸︷︷︸
3u

× [0, b]︸︷︷︸
3v

× Y︸︷︷︸
3xB

,

and let dµ = du dv dµY be any measure, absolutely continuous with respect to the coor-

dinate Lebesgue measure, on Ωab, with smooth density function. From Stokes’ theorem

we have ∫
∂Ωa,b

Xα(k) dSα =

∫
Ωa,b

∇µ(Xµ(k)) dµ,

so that ∫
u=a

Xα(k) dSα +

∫
v=b

Xα(k) dSα =

∫
u=0

Xα(k) dSα +

∫
v=0

Xα(k) dSα

+

∫
Ωa,b

∇µ(Xµ(k)) dµ. (2.6)

From now on we specialise to f ’s which are of the form

f =

(
ϕ

ψ

)
, (2.7)

with Av and Au satisfying

Au =

(
Auϕϕ 0

0 0

)
, Av =

(
0 0

0 Avψψ

)
, and Avψψ, A

u
ϕϕ > 0. (2.8)

It is further assumed that the connections ∇ and ∇̊ preserve the splitting (2.7). We

will write

G =

(
Gϕ
Gψ

)
. (2.9)

From (2.7)–(2.8) we obtain, for fields supported in a compact set K,∫
u=a

Xα(k) dSα ≥ c(K)
∑
r

∫
u=a

wr〈Prϕ, Prϕ〉 dv dµY ,

=: c(K)Ek,{wr}[ϕ, a], (2.10)∫
v=b

Xα(k) dSα ≥ c(K)
∑
r

∫
v=b

wr〈Prψ, Prψ〉 du dµY

=: c(K) Ek,{wr}[ψ, b], (2.11)

for some constant c(K). Equations (2.5)–(2.6) thus give

Ek,{wr}[ϕ, a] + Ek,{wr}[ψ, b] ≤ C1(K)
{
Ek,{wr}[ϕ, 0] + Ek,{wr}[ψ, 0]

+

∫
Ωa,b

∑
r

(Ir + wr(IIr + IIIr))
}
, (2.12)

for some constant C1(K).

Let λ ≥ 0. We choose the weights to be independent of r:

wr = e−λ(u+v), (2.13)
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and we will write Ek,λ for Ek,{wr} with this choice of weights, and similarly for Ek,λ.

From (2.10) we find

Ek,λ[ϕ, a] =
∑

0≤j≤k

∫
[0,b]×Y

|∇̊qr1 . . . ∇̊qrjϕ(a, v, ·)|2e−λ(a+v) dv dµY

=:

∫ b

0

e−λ(a+v)‖ϕ(a, v)‖2Hk(Y ) dv, (2.14)

where one recognises the usual Sobolev norms Hk(Y ) on Y . One similarly has

Ek,λ[ψ, b] =
∑

0≤j≤k

∫
[0,a]×Y

|∇̊qr1 . . . ∇̊qrjψ(u, b, ·)|2e−λ(u+b) du dµY

=:

∫ a

0

e−λ(u+b)‖ψ(u, b)‖2Hk(Y ) du. (2.15)

We recall some general inequalities, which will be used repeatedly. Recall that Y is

a compact manifold without boundary (compare, however, Remark 3.10). First, we have

the Moser product inequality

‖fg‖Hk(Y ) ≤ CM (Y, k)
(
‖f‖L∞(Y )‖g‖Hk(Y ) + ‖f‖Hk(Y )‖g‖L∞(Y )

)
. (2.16)

Next, we have the Moser commutation inequality, for 0 ≤ r ≤ k

‖Pr(fg)− Pr(f)g‖L2(Y )

≤ CM (Y, k)
(
‖f‖L∞(Y )‖g‖Hk(Y ) + ‖f‖Hk−1(Y )‖g‖W 1,∞(Y )

)
. (2.17)

We shall also need the Moser composition inequality:

‖F (f, ·)‖Hk(Y ) ≤ ĈM
(
Y, k, F, ‖f‖L∞(Y )

)(
‖F (f = 0, ·)‖Hk(Y ) + ‖f‖Hk(Y )

)
. (2.18)

The constants CM and ĈM also depend upon the connection ∇̊.

We return to the energy identity on a set U × Y , with U coordinatised by u and v. If

X(k) is given by (2.4), with wr = e−λ(u+v), then writing LPrf as PrLf + [L,Pr]f , and

assuming

〈ϕ,Auϕϕϕ〉 ≥ c|ϕ|2, 〈ψ,Avψψψ〉 ≥ c|ψ|2, (2.19)

with c > 0, for k > (n− 1)/2 one obtains∫
U×Y

∇α(Xα(k)) dµ

≤
∫
U
e−λ(u+v)

{(
‖∇µAµ‖L∞(Y ) − cλ

)
‖f‖2Hk(Y ) + C(Y, k)‖f‖Hk(Y )‖G‖Hk(Y )

+ 2

∫
U×Y
〈Prf, [L,Pr]f〉e−λ(u+v) dµ

}
. (2.20)

Some special cases are worth pointing out:

1. The case of ODE’s in u with a parameter v, or vice versa, corresponds to Y being

a single point, and k = 0.

2. The usual energy inequality for symmetric hyperbolic systems is obtained when

U = I is an interval in R.
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To control the commutators we will assume (2.8). We identify (ϕ, 0) with ϕ, and similarly

for (0, ψ) and ψ, and write

[Aµ∇µ, Pr]f = [Au∇u, Pr]f + [Av∇v, Pr]f + [AB∇B , Pr]f
= [Au∇u, Pr]ϕ+ [Av∇v, Pr]ψ + [AB∇B , Pr]f. (2.21)

Thus, it suffices to estimate [Auϕϕ∇u, Pr]ϕ, [Avψψ∇v, Pr]ψ, and [AB∇B , Pr]f . We define

the relative connection coefficients Γµ by the formula

Γµf := ∇µf − ∇̊µf. (2.22)

By hypothesis the connections preserve the (ϕ,ψ) decomposition, so that Γµ can be

written as

Γµ =

(
Γϕϕ,µ 0

0 Γψψ,µ

)
. (2.23)

This leads to the following form of [AB∇B , Pr]f :

‖[AB∇B , Pr]f‖L2(Y ) = ‖[AB∇̊B , Pr]f + [ABΓB , Pr]f‖L2(Y ).

By using (2.17)–(2.18), the first term is estimated as

C ′M
(
‖A‖W 1,∞(Y )‖f‖Hk(Y ) + ‖A‖Hk(Y )‖f‖W 1,∞(Y )

)
,

and the second as

C ′′M
(
‖ABΓB‖W 1,∞(Y )‖f‖Hk−1(Y ) + ‖ABΓB‖Hk(Y )‖f‖L∞(Y )

)
,

leading, by (2.16), to an overall estimation

‖[AB∇B , Pr]f‖L2(Y ) ≤ C
(
Y, k, ‖f‖W 1,∞(Y ), ‖A‖W 1,∞(Y ), ‖Γ‖W 1,∞(Y )

)
×
(
‖f‖Hk(Y ) + ‖A‖Hk(Y ) + ‖Γ‖Hk(Y )

)
. (2.24)

Here we have written

‖A‖Hk(Y ) =
∑
µ

‖Aµ‖Hk(Y ), ‖Γ‖Hk(Y ) =
∑
µ

‖Γµ‖Hk(Y ). (2.25)

Writing ∇µϕ as ∂µϕ+ γϕϕ,µϕ we have

[Auϕϕ(∂u + γϕϕ,u), Pr]ϕ︸ ︷︷ ︸
α

= [Auϕϕ, Pr] ∂uϕ︸︷︷︸
∇uϕ−γϕϕ,uϕ

+ [Auϕϕγϕϕ,u, Pr]ϕ

= [Auϕϕ, Pr]
{

(Auϕϕ)−1
[

−ABϕϕ∇Bϕ−ABϕψ∇Bψ︸ ︷︷ ︸
−ABϕϕ(∇̊B+Γϕϕ,B)ϕ−ABϕψ(∇̊B+Γψψ,B)ψ

+Gϕ
]

︸ ︷︷ ︸
α1

−γϕϕ,µϕ
}

+ [Auϕϕγϕϕ,u, Pr]ϕ︸ ︷︷ ︸
α3

=: α1 + α2 + α3, (2.26)

with α2 defined by the last equality. Set

ÃBϕϕ,u :=
(
Auϕϕ

)−1
ABϕϕ, ÃBϕψ,u :=

(
Auϕϕ

)−1
ABϕψ, G̃ϕ =

(
Auϕϕ

)−1
Gϕ,

ÃBψϕ,v :=
(
Avψψ

)−1
ABψϕ, ÃBψψ,v :=

(
Auψψ

)−1
ABψψ, G̃ψ =

(
Avψψ

)−1
Gψ.
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By (2.17)–(2.18) we have the estimate

‖α1‖L2(Y ) ≤ CM
(
‖Au‖W 1,∞(Y )‖∇uϕ‖Hk−1(Y ) + ‖Au‖Hk(Y )‖∇uϕ‖L∞(Y )

)
≤ C

(
Y, k, ‖f‖W 1,∞(Y ), ‖Au‖W 1,∞(Y ), ‖Ã‖L∞(Y ), ‖Γ‖L∞(Y ), ‖G̃ϕ‖L∞(Y )

)
×
(
‖f‖Hk(Y ) + ‖Au‖Hk(Y ) + ‖Ã‖Hk−1(Y ) + ‖Γ‖Hk−1(Y ) + ‖G̃ϕ‖Hk−1(Y )

)
.

(2.27)

Similarly,

‖α2‖L2(Y ) ≤ C
(
Y, k, ‖ϕ‖L∞(Y ), ‖Au‖W 1,∞(Y ), ‖γϕϕ,u‖L∞(Y )

)
×
(
‖ϕ‖Hk−1(Y ) + ‖Au‖Hk(Y ) + ‖γϕϕ,u‖Hk−1(Y )

)
, (2.28)

‖α3‖L2(Y ) ≤ C
(
Y, k, ‖ϕ‖L∞(Y ), ‖Au‖W 1,∞(Y ), ‖γϕϕ,u‖W 1,∞(Y )

)
×
(
‖ϕ‖Hk−1(Y ) + ‖Au‖Hk(Y ) + ‖γϕϕ,u‖Hk(Y )

)
. (2.29)

By symmetry we have a similar contribution from [Avψψ∇v, Pr]ψ. It follows that there

exists a constant

Ĉ1 = C
(
Y, k, ‖f‖W 1,∞(Y ), ‖A‖W 1,∞(Y ), ‖Ã‖L∞(Y ), ‖γ‖W 1,∞ ,

‖Γ‖W 1,∞ , ‖G‖W 1,∞ , ‖G̃‖L∞
)

(2.30)

such that (2.20) can be rewritten as∫
U×Y

∇µ(Xµ(k)) dµ ≤
∫
U
e−λ(u+v)

{(
‖∇µAµ‖L∞(Y ) − cλ

)
‖f‖2Hk(Y )

+ Ĉ1‖f‖Hk(Y )

(
‖f‖Hk(Y ) + ‖A‖Hk(Y ) + ‖Ã‖Hk−1(Y )

+ ‖Γ‖Hk(Y ) + ‖γ‖Hk(Y ) + ‖G‖Hk(Y ) + ‖G̃‖Hk−1(Y )

)}
du dv. (2.31)



3. The iterative scheme

3.1. Outline of the iteration argument. For the purpose of the arguments in this

section, we let

N− := {u = 0, v ∈ [0, b0]} × Y, N+ := {u ∈ [0, a0], v = 0} × Y ;

we will see later how to handle general initial characteristic hypersurfaces for systems

arising from wave equations. The initial data f ≡ f |N will be given on

N := N− ∪N+,

and will belong to a suitable Sobolev class. More precisely, we are free to prescribe

ϕ(v) ≡ ϕ(0, v) on N− and ψ(u) ≡ ψ(u, 0) on N+, and then the fields ψ(0, v) on N−
and ϕ(u, 0) on N+ can be calculated by solving transport equations. In this section we

assume that these equations have global solutions on N±; this hypothesis will be relaxed

later.

Throughout we use the convention that overlining a field denotes restriction to N
(consistently with the last paragraph).

Our hypotheses will be symmetric with respect to the variables u and v, and therefore

the result will also be symmetric. We will construct solutions on a neighborhood of N−
in

Ωa0,b0 := {u ∈ [0, a0], v ∈ [0, b0]} × Y,

and a neighborhood of N+ can then be obtained by applying the result to the system in

which u is interchanged with v.

The method is to use a sequence f i of smooth initial data approaching f , and to solve

a sequence of linear problems: We let f0 be any smooth extension of f0 to Ωa0,b0 . Then,

given fi, the field fi+1 is defined as the solution of the linear system

Lifi+1 = Gi, (3.1)

where

Li = Aµ(fi, ·)∇(i)µ, Gi = G(fi, ·), (3.2)

and where we have used the symbol ∇(i) to denote ∇, as determined by fi. (The reader

may wonder why we do not replace ∇ by an f -independent connection, putting all the

dependence of ∇ upon f into the right-hand side of the equation. However, in some

situations the new connection might not be compatible with the scalar product, which

has been assumed in our calculations.) For smooth initial data and fi, (3.1) always has

a global smooth solution on Ωa0,b0 by [38].

[12]



3.2. Bounds for the iterative scheme 13

By continuity, the fi’s will satisfy a certain set of inequalities, to be introduced shortly,

on a subset

Ωi := {u ∈ [0, ai], v ∈ [0, b0]} × Y.

We will show that there exists a∗ > 0 such that ai ≥ a∗, so that there will be a common

domain

Ω∗ := {u ∈ [0, a∗], v ∈ [0, b0]} × Y

on which the desired inequalities will be satisfied by all the fi’s. This will allow us to

show convergence to a solution of the original problem defined on Ω∗.

We note that our system implies a system of nonlinear constraint equations on f ,

sometimes called transport equations. The solutions of these constraints might blow up in

finite time; see e.g. [1] for an example arising from a semilinear wave equation. It is part

of our hypotheses that the constraints are satisfied throughout N ; in some situations this

might require choosing a0 and b0 small enough so that a smooth solution of the constraint

equations exists.

3.2. Bounds for the iterative scheme. In order to apply the energy identity of

Section 2 we need to estimate the volume integrals appearing in (2.6). We could appeal

to (2.31), but it is instructive to analyse (2.12) directly. All terms arising from Ir in (2.5)

give a negative contribution, bounded above by

−λc(K)

∫ a

0

∫ b

0

e−λ(u+v)‖fi+1(u, v)‖2Hk(Y ) du dv. (3.3)

The terms arising from IIr give a contribution which, using obvious notation, is estimated

by

‖(∇µAµ)i‖L∞
∫ a

0

∫ b

0

e−λ(u+v)‖fi+1(u, v)‖2Hk(Y ) du dv. (3.4)

The estimation of the terms arising from IIIr requires care, as we need to control

λ-dependence of the constants. One can proceed as follows:

2
∑
r

∫ a

0

∫ b

0

〈Prfi+1, LPrfi+1〉e−λ(u+v) du dv dµY

= 2
∑
r

∫ a

0

∫ b

0

〈Prfi+1, PrGi + [Li, Pr]fi+1〉e−λ(u+v) du dv dµY

≤ 2

∫ a

0

∫ b

0

e−λ(u+v)‖fi+1(u, v)‖Hk(Y )

×
(
‖Gi(u, v)‖Hk(Y )︸ ︷︷ ︸

III1

+
∑
r

‖[Li, Pr]fi+1(u, v)‖L2(Y )︸ ︷︷ ︸
III2

)
du dv dµY .

The term III1 can be estimated by the usual Moser inequality on Y ,

‖Gi(u, v)‖Hk(Y ) ≤ C
(
k, Y, ‖fi(u, v)‖L∞(Y )

)(
‖G̊(u, v)‖Hk(Y ) + ‖fi(u, v)‖Hk(Y )

)
,

where G̊ = G(f = 0). Let 0 < ε ≤ 1 be a constant which will be determined later.

The inequality ab ≤ a2/(4ε) + εb2 then leads to a contribution of III1 in (2.12) which is
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estimated by

C3

(
k, Y, sup

u,v
‖fi(u, v)‖L∞(Y )

) ∫ a

0

∫ b

0

e−λ(u+v)

×
(
‖G̊(u, v)‖2Hk(Y ) + ε‖fi(u, v)‖2Hk(Y ) + c1(ε)‖fi+1(u, v)‖2Hk(Y )

)
du dv, (3.5)

with c1(ε) → ∞ as ε → 0. The analysis of III2 proceeds as in (2.21). Since the Pr’s are

u-independent we have

[Au∂u, Pr]ϕ = [Au, Pr]∂uϕ,

and, calculating as in (2.26), we can use the equation satisfied by ϕi+1 to replace ∂uϕi+1

by a first order differential operator in fi+1 tangential to Y (with coefficients that perhaps

depend upon fi); similarly for Av∂vψi+1. The Moser commutation inequality (2.17) on Y

can then be used to obtain the following estimation for the corresponding contribution

to (2.12):

C3

(
k, Y, sup

u,v
‖fi(u, v)‖W 1,∞(Y ), sup

u,v
‖fi+1(u, v)‖W 1,∞(Y )

)
×
∫ a

0

∫ b

0

e−λ(u+v)
(
ε‖fi(u, v)‖2Hk(Y ) + c2(ε)‖fi+1(u, v)‖2Hk(Y ) + ‖Å‖2Hk(Y )

+ ‖ ˚̃A‖2Hk−1(Y ) + ‖Γ̊‖2Hk(Y ) + ‖̊γ‖2Hk(Y ) + ‖G̊‖2Hk(Y ) + ‖˚̃G‖2Hk−1(Y )

)
du dv, (3.6)

where

Åµ = Aµ|f=0, Γ̊µ = Γµ|f=0, etc.,

with norms defined as in (2.25).

Define

C0 = 1 + sup
i∈N, (u,v)∈([0,a0]×{0})∪({0}×[0,b0])

‖f i(u, v)‖W 1,∞(Y ).

We assume that C0 is finite.

Let K be a compact neighborhood of the image of the initial data map f . We will

assume that the sequence f i converges to f in L∞(N ), and similarly for first and second

order derivatives. In particular we can assume that the image of f i lies in K.

Let

Cdiv := sup |∇µAµ|+ 1, (3.7)

where the supremum is taken over all points in N+ ∪ N− and over all (ϕ,ψ,∇ϕ,∇ψ)

satisfying

(ϕ,ψ) ∈ K, |∇̊Bf(u, v)| ≤ 2C0, |∂uψ| ≤ 2 sup
i

∥∥∥∥∂ψi∂u

∥∥∥∥
L∞(N+∪N−)

+ 1,

|∂vϕ| ≤ 2 sup
i

∥∥∥∥∂ϕi∂v

∥∥∥∥
L∞(N+∪N−)

+ 1.

(3.8)

(The suprema over i will be finite in view of our hypotheses on the sequence f i.) We note

that

∇µAµ = ∂ψA
µ∂µψ + ∂ϕA

µ∂µϕ+ terms independent of derivatives of f, (3.9)
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so that to control Cdiv one needs to control those derivatives of f which appear in

∂ψA
µ∂µψ + ∂ϕA

µ∂µϕ. Now, on the right-hand side of (3.9) the values ∂uϕ and ∂vψ

can be algebraically determined in terms of other fields involved using the field equa-

tions: Indeed, using (2.1) we can view ∂uϕ as a function, say F , of f and ∇̊Bf . Then,

when calculating Cdiv, we consider all values of F with f ∈ K and |∇̊Bf | ≤ 2C0; similarly

for ∂vψ.

Remark 3.1. It should be clear from (3.9) that the condition on ∂vϕ in (3.8) is irrelevant

if Av does not depend upon ϕ. Similarly, the condition on ∂uψ in (3.8) is irrelevant if Au

does not depend upon ψ.

Let ai be the largest number in (0, a0] such that

‖(∇µAµ)i‖L∞(Ωai,b0 ) ≤ Cdiv, (3.10a)

sup
(u,v)∈[0,ai]×[0,b0]

‖fi(u, v)‖W 1,∞(Y ) ≤ 4C0. (3.10b)

For any ε > 0 we can choose λ large enough, independent of i, so that the sum of

(3.3), (3.4), and of the fi+1 contribution to (3.5) and (3.6), is negative on

Ωâi,b0 , where âi = min(a1, . . . , ai+1).

If we let Mk(u, v) be any function satisfying

Mk(u, v) ≥ ‖G̊(u, v)‖2Hk(Y ) + ‖˚̃G(u, v)‖2Hk−1(Y ) + ‖Å‖2Hk(Y )

+‖ ˚̃A(u, v)‖2Hk−1(Y ) + ‖̊γ(u, v)‖2Hk(Y ) + ‖Γ̊(u, v)‖2Hk(Y ), (3.11)

we conclude that:

Lemma 3.2. Let 0 ≤ b ≤ b0 <∞, and suppose that Y is compact and (3.10) holds. Then

for every 0 < ε ≤ 1 there exist constants λ0(k,C0, Cdiv, Y, ε) and C4(a0, b0, Y, k, C0, Cdiv)

such that for all λ ≥ λ0 and 0 ≤ a ≤ âi ≤ a0 we have

Ek,λ[ϕi+1, a] + Ek,λ[ψi+1, b] ≤ C4

{
Ek,λ[ϕi+1] + Ek,λ[ψi+1]

+

∫ a

0

∫ b

0

e−λ(u+v)
(
Mk(u, v) + ε‖fi(u, v)‖2Hk(Y )

)
du dv

}
. (3.12)

We need, next, to get rid of the i-dependent terms in the integrals on the right-hand

side of (3.12). This can be done as follows: Set

Ĉ(a, b) := C4

{
sup
i∈N

(Ek,λ[ϕi+1] + Ek,λ[ψi+1]) +

∫ a

0

∫ b

0

e−λ(u+v)Mk(u, v) du dv

}
; (3.13)

note that this depends only upon the initial data and the structure of the equations.

Suppose that ∫ a

0

∫ b

0

e−λ(u+v)‖fi(u, v)‖2Hk(Y ) du dv ≤ 2Ĉ(a0 + b0). (3.14)

We then have, using (3.12),
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0

∫ b

0

e−λ(u+v)‖ϕi+1(u, v)‖2Hk(Y ) du dv =

∫ a

0

Ek,λ[ϕi+1, u] du

≤
∫ a

0

(Ĉ + 2εC4Ĉ(a0 + b0)) du ≤ (Ĉ + 2εC4Ĉ(a0 + b0))a0 ≤ 2Ĉa0,

if ε is chosen small enough. Similarly,∫ a

0

∫ b

0

e−λ(u+v)‖ψi+1(u, v)‖2Hk(Y ) du dv =

∫ b

0

Ek,λ[ψi+1, v] dv

≤ (Ĉ + 2εC4Ĉ(a0 + b0))b0 ≤ 2Ĉb0.

Adding, one obtains (3.14) with i replaced by i+ 1. Decreasing ε if necessary we obtain:

Lemma 3.3. Let Ĉ be defined by (3.13). Under the hypotheses of Lemma 3.2, one can

choose ε0(a0, b0, Y, k, C0, Cdiv) so that (3.14)is preserved under iteration for all 0 ≤ b ≤ b0,

provided that 0 ≤ a ≤ âi ≤ a0, with the right-hand side of (3.12) being less than 2Ĉ(a0, b0)

for all λ ≥ λ0(k,C0, Cdiv, Y, ε0).

To continue, let us write

Aµ =

(
Aµϕϕ Aµϕψ
Aµψϕ Aµψψ

)
.

Since, by hypothesis, the only nonvanishing component of Au is Auϕϕ, on any level set of

u the field ψi+1 is a solution of the symmetric hyperbolic system

(Aµψψ∇µ)iψi+1 ≡ Aµψψ(fi, ·)∇µ(i)ψi+1 = (Ĝψ)i, (3.15)

where

(Ĝψ)i ≡ (Gψ)i − (Aµψϕ∇µ)iϕi+1 := Gψ(fi, ·)−Aµψϕ(fi, ·)∇µ(i)ϕi+1.

Set

Cdiv,ψψ = sup |∇µAµψψ| ≤ Cdiv, (3.16)

where the sup is taken as in (3.7). A calculation similar to the one leading to the proof

of Lemma 3.3 shows that for any 0 < δ ≤ 1 there exists λ1(k,C0, Cdiv,ψψ, Y, δ) <∞ such

that for λ ≥ λ1 we obtain (recall that ψi+1(u, 0) = ψi+1(u))

‖ψi+1(u, v)‖2Hk−1(Y ) ≤ C5(Y, k, C0, Cdiv,ψψ)eλv
{
‖ψi+1(u)‖2Hk−1(Y )

+ δ

∫ v

0

e−λs
(
‖fi(u, s)‖2Hk−1(Y ) +Mk(u, s) + ‖(Ĝψ)i(u, s)‖2Hk−1(Y )︸ ︷︷ ︸

∗

)
ds

}
. (3.17)

The contribution of ∗ can be estimated as follows:∫ v

0

∗ ds =

∫ v

0

e−λs‖((Gψ)i − (ABψϕ∇B)iϕi+1)(u, s)‖2Hk−1(Y ) ds

≤ 2

∫ v

0

e−λs
(
‖(Gψ)i(u, s)‖2Hk−1(Y ) + ‖(ABψϕ∇B)iϕi+1(u, s)‖2Hk−1(Y )

)
ds

≤ C6(Y, k, C0)

∫ v

0

e−λs
(
‖G̊ψ(u, s)‖2Hk−1(Y ) + ‖Å‖2Hk−1(Y )

+ ‖Γ̊‖2Hk−1(Y ) + ‖fi(u, s)‖2Hk−1(Y ) + ‖ϕi+1(u, s)‖2Hk(Y )

)
ds
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= C6(Y, k, C0)
{∫ v

0

e−λs
(
‖G̊ψ(u, s)‖2Hk−1(Y ) + ‖Å‖2Hk−1(Y )

+ ‖Γ̊‖2Hk−1(Y ) + ‖fi(u, s)‖2Hk−1(Y )

)
ds+ eλuEk,λ[ϕi+1, u]

}
,

with G̊ψ(·) = Gψ(f = 0, ·). It follows that, for 0 ≤ u ≤ a ≤ âi ≤ a0,

e−λv‖ψi+1(u, v)‖2Hk−1(Y ) ≤ C7(Y, k, C0, Cdiv,ψψ)

{
‖ψi+1(u)‖2Hk−1(Y )

+

∫ v

0

e−λs
(
Mk(u, s) + δ‖fi(u, s)‖2Hk−1(Y )

)
ds+ eλuEk,λ[ϕi+1, u]

}
.

By Lemma 3.3 the ϕi part of the fi contribution can be estimated by eλuEk−1,λ[ϕi, u] ≤
2eλuĈ(u, v) ≤ 2eλuĈ(u, b), so that

e−λv‖ψi+1(u, v)‖2Hk−1(Y ) ≤ C7(Y, k, C0, Cdiv,ψψ)

{
‖ψi+1(u)‖2Hk−1(Y ) + 2eλuĈ(u, b)

+

∫ v

0

e−λs
(
Mk(u, s) + δ‖ψi(u, s)‖2Hk−1(Y )

)
ds+ eλuEk,λ[ϕi+1, u]

}
. (3.18)

Integrating in v one obtains, for 0 ≤ b ≤ b0,∫ b

0

e−λv‖ψi+1(u, v)‖2Hk−1(Y ) dv

≤ C̃ψ(u, b) + C7(Y, k, C0, Cdiv,ψψ)δ

∫ b

0

∫ v

0

e−λs‖ψi(u, s)‖2Hk−1(Y ) ds dv, (3.19)

where

C̃ψ(a, b) = C7(Y, k, C0, Cdiv,ψψ) sup
i∈N, u∈[0,a]

{
b‖ψi+1(u)‖2Hk−1(Y )

+

∫ b

0

∫ v

0

e−λsMk(u, s) ds dv + 2beλuĈ(u, b) + beλuEk,λ[ϕi+1, u]

}
.

Suppose that there exists a constant Cdiv,ψψ such that

sup
i
|(∇µAµψψ)i| ≤ Cdiv,ψψ (3.20)

(note that we necessarily have Cdiv,ψψ ≤ Cdiv), and that

∀ 0 ≤ v ≤ b,
∫ v

0

e−λs‖ψi(u, s)‖2Hk−1(Y ) ds ≤ 2C̃ψ(u, b). (3.21)

Equation (3.19) shows that∫ b

0

e−λv‖ψi+1(u, v)‖2Hk−1(Y ) dv ≤ C̃ψ(u, b) + C7δ

∫ b

0

∫ v

0

e−λs‖ψi(u, s)‖2Hk−1(Y ) ds dv

≤ C̃ψ(u, b) + 2δb0C7C̃ψ(u, b) ≤ 2C̃ψ(u, b), (3.22)

if δ = δ(b0, C̃ψ(a0, b0), C7) is chosen small enough. It follows that (3.21) is preserved

under the iteration scheme if (3.10) and (3.20) hold. With this choice of δ, (3.18) gives
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e−λv‖ψi+1(u, v)‖2Hk−1(Y ) ≤ C7(Y, k, C0, Cdiv)

{
‖ψi+1(u)‖2Hk−1(Y )

+ 2eλuĈ(u, b) +

∫ v

0

e−λsMk(u, s) ds+ 2δC̃ψ(u, b) + eλuEk,λ[ϕi+1, u]

}
. (3.23)

By an essentially identical argument using the symmetry of the equations under the

interchange of u and v, but still working with 0 ≤ u ≤ âi, 0 ≤ v ≤ b0, if we let Cdiv,ϕϕ

be a constant such that

sup
i
|(∇µAµϕϕ)i| ≤ Cdiv,ϕϕ (3.24)

(note that Cdiv,ϕϕ ≤ Cdiv), then the condition

∀ 0 ≤ u ≤ âi,
∫ u

0

e−λs‖ϕi(s, v)‖2Hk−1(Y ) ds ≤ 2C̃ϕ(a, v), (3.25)

where

C̃ϕ(a, b) = C7(Y, k, C0, Cdiv,ϕϕ) sup
i∈N,v∈[0,b]

{
a‖ϕi+1(v)‖2Hk−1(Y )

+

∫ a

0

∫ u

0

e−λsMk(s, v) ds du+ 2aeλvĈ(a, v) + aeλvEk,λ[ψi+1, v]

}
,

is preserved under iteration, and we are led to:

Lemma 3.4. Under the hypotheses of Lemma 3.2, the inequalities (3.21) and (3.25) are

preserved under iteration, and there exist constants

λ2 = λ2(k,C0, Cdiv, Y, C̃ψ(a0, b0), C̃ϕ(a0, b0)),

C7 = C7(Y, k, C0, Cdiv),

C8 = C8(Y, k, C0, Cdiv, a0, b0, C̃ψ(a0, b0), C̃ϕ(a0, b0))

such that for all λ ≥ λ2 we have, for (u, v) ∈ [0, âi]× [0, b0],

‖fi+1(u, v)‖2Hk−1(Y ) ≤ C7e
λ(a0+b0)

{
‖ϕi+1(v)‖2Hk−1(Y ) + ‖ψi+1(u)‖2Hk−1(Y )

+

∫ a0

0

e−λsMk(s, v) ds+

∫ b0

0

e−λsMk(u, s) ds

+ C8

(
Ĉ(a0, b0) + C̃ψ(a0, b0) + C̃ϕ(a0, b0)

)}
. (3.26)

From now on, we will use the inequalities

(3.12), (3.17) and (3.26) with λ chosen to be the largest of λ0, λ1 and λ2

regardless of the value of the parameter λ that might occur in the equation in which one

of these inequalities is being used. In what follows, the letter C will denote a constant

which depends perhaps upon C0, Ĉ, C̃ψ, C̃ϕ, Y , a0, b0 and k, and which may vary from

line to line; similarly, the numbered constants Cn that follow may depend upon all those

quantities, but not on i. We wish to show that we can choose 0 < a∗ ≤ a0 small enough

so that âi ≥ a∗, hence for 0 ≤ u ≤ a∗ the inequalities (3.10), (3.20) and (3.24) hold.

Suppose

k1 is the smallest integer such that k1 > (n− 1)/2 + 3. (3.27)
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For k ≥ k1, from (3.26) with k = k1 we obtain, by Sobolev’s embedding, for 0 ≤ u ≤ âi,

0 ≤ v ≤ b0,

‖fi+1(u, v)‖C2(Y ) ≤ C. (3.28)

It follows from the equations satisfied by f that

‖∂uϕi+1(u, v)‖C1(Y ) ≤ C, (3.29)

‖∂vψi+1(u, v)‖C1(Y ) ≤ C. (3.30)

Integrating (3.29) in u from (0, v) to (u, v) we find that

‖ϕi+1(u, v)‖C1(Y ) ≤ C0 + Cu ≤ C0 + Ca ≤ 2C0 (3.31)

for a small enough, namely

0 ≤ a ≤ min(âi, C0C
−1). (3.32)

(Note that the bound is independent of k.) Further,

‖ϕi+1(u, v)‖C1(Y ) ≤ 2C0 for 0 ≤ u ≤ C0C
−1. (3.33)

Next, we u-differentiate the equation satisfied by ψi+1,

(Aµψψ∇µ)i
∂ψi+1

∂u
= −∂u

(
(Aµψψ∇µ)i

)
ψi+1 − ∂u

(
(Aµψϕ∇µ)iϕi+1 − (Gψ)i

)
=: (Bψ)i

∂ψi
∂u

+ (bψ)i, (3.34)

where, symbolically,

(Bψ)i := −∂ψ
(
(Aµψψ∇µ)i

)
ψi+1 − ∂ψ

(
(Aµψϕ∇µ)iϕi+1 − (Gψ)i

)
.

The system (3.34) is again a symmetric hyperbolic system of first order, linear in ∂uψi
and ∂uψi+1, to which we apply (2.31) with U = {u} × [0, v] and 0 ≤ u ≤ âi. Note that,

from the definition of âi (see (3.10)) the relevant constant Ĉ1 there will be bounded from

above by a finite constant, say, Č1 ≥ 1 which is i-, λ-, and fi-independent. Thus, by

(2.31) with k there replaced by m,

e−λ(u+v)‖∂uψi+1(u, v)‖2Hm(Y ) ≤ Č1

{
e−λu‖∂uψi+1(u, 0)‖2Hm(Y )

+

∫ v

0

e−λ(u+s)
(
‖(∇µAµψψ)i‖L∞(Y ) − cλ

)
‖∂uψi+1‖2Hm(Y ) + ‖∂uψi+1‖Hm(Y )

×
(
‖∂uψi+1‖Hm(Y ) + ‖(A)i‖Hm(Y ) + ‖(Ã)i‖Hm−1(Y ) + ‖(Γ)i‖Hm(Y ) + ‖(γ)i‖Hm(Y )

+

∥∥∥∥(Bψ)i
∂ψi
∂u

+ (bψ)i

∥∥∥∥
Hm(Y )

+

∥∥∥∥(B̃ψ)i
∂ψi
∂u

+ (b̃ψ)i

∥∥∥∥
Hm−1(Y )

)
ds

}
, (3.35)

where (B̃ψ)i = (Avψψ)−1
i (B̃ψ)i, (b̃ψ)i = (Avψψ)−1

i (b̃ψ)i and (A)i, the value of the matrix

A as determined by fi. Again from (2.18) we have

‖(A)i‖Hm(Y ) + ‖(Ã)i‖Hm−1(Y ) + ‖(Γ)i‖Hm(Y ) + ‖(γ)i‖Hm(Y )

≤ C(Y,m, ‖fi‖L∞)
(
‖fi‖Hm+‖Å‖Hm(Y )+‖ ˚̃A‖Hm−1(Y )+‖Γ̊‖Hm(Y )+‖̊γ‖Hm(Y )

)
≤ C(Y, k, C0)

(
‖fi‖Hm(Y ) +

√
Mk(u, s)

)
for m ≤ k. (3.36)
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Now, after eliminating ∂vψi+1 and ∇B∂uϕi+1 using the equations, we have (Bψ)i =

Bψ(fi, fi+1, ∇̊Bfi+1) and

(bψ)i = bψ
(
fi, fi+1, ∇̊Bfi+1, ∇̊B∇̊Cfi+1, ∂uϕi

)
,

which are affine functions of ∇̊Bfi+1 and ∇̊B∇̊Cfi+1. Using again (2.18) we have∥∥∥∥(Bψ)i
∂ψi
∂u

+ (bψ)i

∥∥∥∥
Hm(Y )

+

∥∥∥∥(B̃ψ)i
∂ψi
∂u

+ (b̃ψ)i

∥∥∥∥
Hm−1(Y )

≤ C
(
Y,m, ‖fi‖L∞ , ‖fi+1‖W 2,∞ , ‖∂uϕi‖L∞

)
×
(
‖∂uψi‖Hm(Y ) + ‖fi‖Hm(Y ) + ‖fi+1‖Hm+2(Y ) + ‖∂uϕi‖Hm(Y )

+ ‖B̊ψ‖Hm(Y ) + ‖̊bψ‖Hm(Y ) + ‖ ˚̃Bψ‖Hm(Y ) + ‖˚̃bψ‖Hm(Y )

)
. (3.37)

For k ≥ 3 let M̂k(u, v) be any function such that

M̂k(u, v) ≥Mk(u, v) + ‖B̊ψ(u, v)‖2Hk−3(Y ) + ‖̊bψ(u, v)‖2Hk−3(Y )

+ ‖ ˚̃Bψ(u, v)‖2Hk−3(Y ) + ‖˚̃bψ(u, v)‖2Hk−3(Y ). (3.38)

Then, by using simultaneously the inequalities (3.10), and (3.26)–(3.29) with i+ 1 there

replaced by i (note that âi is decreasing by definition), for m+ 2 = k − 1 one obtains∥∥∥∥(Bψ)i
∂ψi
∂u

+ (bψ)i

∥∥∥∥
Hk−3(Y )

+

∥∥∥∥(B̃ψ)i
∂ψi
∂u

+ (b̃ψ)i

∥∥∥∥
Hk−3(Y )

≤ C
(
‖∂uψi‖Hk−3(Y ) +

√
M̂k(u, s) + C

)
. (3.39)

Adding (3.36) and (3.39) we obtain

e−λ(u+v)‖∂uψi+1(u, v)‖2Hk−3(Y ) ≤ C9

{
e−λu‖∂uψi+1(u)‖2Hk−3(Y )

+

∫ v

0

e−λ(u+s)
[(
‖(∇µAµψψ)i‖L∞(Y ) − cλ

)
‖∂uψi+1‖2Hk−3(Y )

+ ‖∂uψi+1‖Hk−3(Y )

(
‖∂uψi+1‖Hk−3(Y ) + ‖∂uψi‖Hk−3(Y ) +

√
M̂k(u, s) + C10

)]
ds

}
≤ C9

{
e−λu‖∂uψi+1(u)‖2Hk−3(Y ) +

∫ v

0

e−λ(u+s)
(
ε‖∂uψi‖2Hk−3(Y )

+ M̂k(u, s) + C2
10 +

(
‖(∇µAµψψ)i‖L∞(Y ) − cλ+ C(ε)

)
‖∂uψi+1‖2Hk−3(Y )

)
ds

}
, (3.40)

where in the last step we have used Cauchy–Schwarz with ε. It then follows from (3.20)

that there exists a constant λ3 = λ3(Y, k, C0, Cdiv) such that for all λ ≥ λ3,

e−λv‖∂uψi+1(u, v)‖2Hk−3(Y ) ≤ C9

{
‖∂uψi+1(u)‖2Hk−3(Y )

+

∫ v

0

e−λs
(
M̂k(u, s) + C2

10 + ε‖∂uψi‖2Hk−3(Y )

)
ds

}
. (3.41)
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Set

Čψ = C9

{
sup
i∈N

sup
u∈[0,a0]

‖∂uψi(u)‖2Hk−3(Y ) +

∫ b0

0

e−λs
(
M̂k(u, s) + C2

10

)
ds

}
+ 1.

By an argument which should be standard by now, one can choose ε small enough such

that the inequality

‖∂uψi+1(u, v)‖2Hk−3(Y ) ≤ 2eλvČψ (3.42)

is preserved under iteration on [0, âi]× [0, b0]× Y .

(This is not good enough yet for our purposes when Au depends upon ψ, as we

will then need (3.42) with 2C0 on the right-hand side to be able to make sure that the

contribution from (∇µAµ)i can be estimated by Cdiv; therefore some more work will have

to be done in the general case.)

In any case, let

k2 be the smallest integer larger than or equal to (n+ 7)/2. (3.43)

For k ≥ k2 we can use (3.42) with k replaced by k2 there and the Sobolev embedding to

obtain

∀(u, v) ∈ [0, âi]× [0, b0], ‖∂uψi+1(u, v)‖C1(Y ) ≤ C. (3.44)

By integration in u we therefore find that

‖ψi+1(u, v)‖C1(Y ) ≤ C0 + Cu ≤ 2C0, (3.45)

again in the range (3.32) (but note that the constant C there might have to be taken

larger now, remaining independent of i and k).

Keeping in mind (3.33), we conclude that the condition

‖fi+1(u, v)‖C1(Y ) ≤ 4C0 for 0 ≤ u ≤ C0C
−1 (3.46)

is stable under iteration.

Moreover, after replacing the bound C0C
−1 by a smaller i-independent number,

say a∗, if necessary, integration in u shows that

fi+1(u, v) cannot leave the neighborhood K for 0 ≤ u ≤ a∗ (3.47)

with K as in (3.8).

If Av does not depend upon ϕ, and Au does not depend upon ψ, then the conditions

on ∂uψ and ∂vϕ in (3.8) are irrelevant for all the estimates so far, and so

the bound (3.10b) cannot be violated for 0 ≤ u ≤ a∗. (3.48)

Hence, by the definition of Cdiv,

the inequalities (3.10) cannot be violated for 0 ≤ u ≤ a∗. (3.49)

Recall that âi was defined as either a0 or the first number at which the inequalities (3.10)

fail for fi or fi+1. So, if we assume that (3.10) hold at the induction step i with ai ≥ a∗,
we conclude that ai+1 ≥ a∗ as well. Hence

âi ≥ a∗.

The above implies that (3.20) and (3.24) hold for 0 ≤ u ≤ a∗. We have therefore

obtained:
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Proposition 3.5. Let k > (n+ 7)/2, assume that Av does not depend upon ϕ, and that

Au does not depend upon ψ. Suppose that there exists a constant C such that

sup
N−∪N+

{
|∂vf i|+ |∂uf i|+ ‖f i(u, v)‖Hk(Y ) +Mk(u, v)

}
≤ C. (3.50)

There exists a constant 0 < a∗ = a∗(a0, b0, C, Y ) ≤ a0 such that all the fields fi satisfy

the hypotheses of Lemmata 3.2–3.4 on [0, a∗] × [0, b0] × Y , as well as their conclusions

with âi replaced by a∗.

It remains to obtain the pointwise bounds (3.10a), (3.20) and (3.24) in the general

case; these will follow from pointwise estimates on ∂vϕ, and improved estimates on ∂uψ.

We start by showing that the inequality

sup
i

sup
(u,v)∈[0,a∗]×[0,b0]

|∂uψi(u, v)| ≤ 2 sup
i

sup
v∈[0,b0]

|∂uψi(0, v)|+ 1

is preserved under iteration, after reducing a∗ if necessary.

We consider the restriction of the u-differentiated equation satisfied by ψi+1 on N−,

that is, for u = 0, which we write as

(Aµψψ∇µ)i
∂ψi+1

∂u
= (Bψ)i

∂ψi
∂u

+ (bψ)i. (3.51)

Setting Ψi = ∂ψi
∂u −

∂ψi
∂u and subtracting (3.51) from (3.34) gives an equation of the form

(Aµψψ∇µ)iΨi+1 = (Bψ)iΨi + Ei, (3.52)

where

Ei = −
(
(Aµψψ∇µ)i − (Aµψψ∇µ)i

)∂ψi+1

∂u︸ ︷︷ ︸
∆1

+
(
(Bψ)i − (Bψ)i

)∂ψi
∂u︸ ︷︷ ︸

∆2

+ (bψ)i − (bψ)i︸ ︷︷ ︸
∆3

. (3.53)

It is easy to see that both (Bψ)i and (bψ)i are affine in ∇̊Bfi+1 and ∇̊B∇̊Cfi+1 with

coefficients depending upon fi and fi+1, thus if k − 1 > (n − 1)/2 + 3 then by (3.26),

(3.28), (2.16) and (2.18) we have

‖(Bψ)i‖Hk−2(Y ) + ‖(bψ)i‖Hk−3(Y ) + ‖(Bψ)i‖W 1,∞(Y ) + ‖(bψ)i‖W 2,∞(Y ) < C. (3.54)

Further,

(Aµψψ∇µ)i
∂ψi+1

∂u
= (Avψψ)i

∂u∂ψi+1

∂v
+
(
(Avψψγψψ,v)i + (ABψψ)i∇̊B + (ABψψΓψψ,B)i

)∂ψi+1

∂u
.

Hence we have the following contribution to the first term in (3.53):(
(Avψψ)i − (Avψψ)i

)
∂u∂vψi+1

=

{
u

∫ 1

0

∂(Avψψi)

∂u

(
tu, v, tfi(u, v) + (1− t)fi(0, v)

)
dt+ (fi(u, v)− fi(0, v))

×
∫ 1

0

∂(Avψψi)

∂f

(
tu, v, tfi(u, v) + (1− t)fi(0, v)

)
dt

}
∂u∂vψi+1.

Now recall that by hypothesis supv∈[0,b0] supi ‖∂v∂uψi‖Hk(Y ) is bounded and ∂ψi+1/∂v

is an affine function of fi+1 and ∇̊fi+1 with coefficients depending upon fi. Thus there
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exists a constant

C = C
(
C0, sup

v∈[0,b0]

sup
i
‖∂v∂uψi‖Hk(Y )

)
> 0, (3.55)

which is i-independent, such that for all (u, v) ∈ [0, âi]× [0, b0],∥∥((Aµψψ∇µ)i − (Aµψψ∇µ)i
)
∂uψi+1

∥∥
L2(Y )

≤ C(u+ ‖fi(u, v)− fi(0, v)‖L2(Y )).

The L2 norm of the remaining terms in the first term ∆1 of (3.53) are estimated in the

same way with (Aµψψ)i replaced successively by (Avψψγψψ,v)i, (ABψψ)i∇̊B , (ABψψΓψψ,B)i,

and ∂u∂vψi+1 replaced by ∂uψi+1, leading to the following estimate for ∆1:

∀(u, v) ∈ [0, âi]× [0, b0], ‖∆1(u, v)‖L2(Y ) ≤ C
(
u+ ‖fi(u, v)− fi(0, v)‖L2(Y )

)
. (3.56)

We continue with the analysis of the second term ∆2 of (3.53). The explicit expression

of (Bψ)i shows that (Bψ)i is a collection of terms of the form ΓiPrfi+1, 0 ≤ r ≤ 1, where

the Γi’s are smooth functions depending upon the fields fi. We order these terms in an

arbitrary way and write

(Bψ)i =

p∑
m=1

Γi,mPrmfi+1,

where Prm is either the identity or ∇̊B . We have

∆2 =
(
(Bψ)i − (Bψ)i

)
∂uψi =

p∑
m=1

(
Γi,mPrmfi+1 − Γi,mPrmfi+1

)
∂uψi.

Thus,

(ΓiPrfi+1 − ΓiPrfi+1)∂uψi

= Γi
(
Prfi+1 − Prfi+1

)
∂uψi + (Γi − Γi)Prfi+1∂uψi

= Γi
(
Prfi+1 − Prfi+1

)
∂uψi + u

[ ∫ 1

0

∂Γi
∂u

(tu, tfi(u, v) + (1− t)fi(0, v)) dt

]
Prfi+1∂uψi

+ (fi(u, v)− f(0, v))

[ ∫ 1

0

∂Γi
∂f

(tu, tfi(u, v) + (1− t)fi(0, v)) dt

]
Prfi+1∂uψi.

We then see that

‖(ΓiPrfi+1 − ΓiPrfi+1)∂uψi‖L2(Y )

≤ C(C0)
(
u+ ‖fi(u, v)− fi(0, v)‖L2(Y ) + ‖fi+1(u, v)− fi+1(0, v)‖H1(Y )

)
,

which gives

‖∆2‖L2(Y ) ≤ C(C0)
(
u+‖fi(u, v)−fi(0, v)‖L2(Y )+‖fi+1(u, v)−fi+1(0, v)‖H1(Y )

)
. (3.57)

As far as the last term ∆3 of (3.53) is concerned, we note that (bψ)i is a sum of terms of

the form

Γ̃i∇̊r1 . . . ∇̊rjfi+1,

with 0 ≤ j ≤ 2 and Γ̃i depending upon fi and ∂uϕi. Thus, as in the previous case, we
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see that

‖∆3‖L2(Y ) ≤ C(C0)
(
u+ ‖fi(u, v)− fi(0, v)‖L2(Y ) + ‖∂uϕi(u, v)− ∂uϕi(0, v)‖L2(Y )

+ ‖fi+1(u, v)− fi+1(0, v)‖H2(Y )

)
. (3.58)

Now from (3.29) and (3.44) we find (note that from these inequalities and the equation

satisfied by ϕi+1, the L∞ norm of ∂2
uϕi is uniformly bounded) that

∀(u, v) ∈ [0, âi]× [0, b0]× Y ‖Ei(u, v)‖L2(Y ) ≤ Cu. (3.59)

By (3.54), the L2 norm of the right-hand side of (3.52) is estimated as follows:

‖(Bψ)iΨi + Ei‖L2(Y ) ≤ ‖(Bψ)iΨi‖L2(Y ) + ‖Ei‖L2(Y ) ≤ Cu+ ‖(Bψ)i‖L∞(Y )‖Ψi‖L2(Y )

≤ C(u+ ‖Ψi‖L2(Y )). (3.60)

Next, we write the energy estimate for the system (3.52). Consider the vector field (recall

wr = e−λ(u+v))

Zµ := wr〈Ψi+1, (A
µ
ψψ)iΨi+1〉, (3.61)

so that

∇µ(Zµ) = {−2λ〈Ψi+1, (A
v
ψψ)iΨi+1〉
+ 〈Ψi+1, (∇µAµψψ)iΨi+1〉+ 2〈Ψi+1, (A

µ
ψψ∇µ)iΨi+1〉}wr.

We apply Stokes’ theorem on the set {u} × [0, v]× Y and obtain

e−λv‖Ψi+1(u, v)‖2L2(Y ) ≤ C
{
‖Ψi+1(u, 0)‖2L2(Y ) + eλu

∫ v

0

∇µ(Zµ)(s, v) ds dµY

}
≤ C

{
‖Ψi+1(u, 0)‖2L2(Y ) − 2λ

∫ v

0

e−λs
(
〈Ψi+1, (A

v
ψψ)iΨi+1〉

+ 〈Ψi+1, (∇µAµψψ)iΨi+1〉+ 2〈Ψi+1, (A
µ
ψψ∇µ)iΨi+1〉

)
ds dµY

}
≤ C

{
‖Ψi+1(u, 0)‖2L2(Y )

+

∫ v

0

e−λs
{(
‖(∇µAµψψ)i‖L∞(Y ) − 2cλ

)
‖Ψi+1(u, s)‖2L2(Y )

+ 2‖Ψi+1(u, s)‖L2(Y )‖((Bψ)iΨi + Ei)(u, s)‖L2(Y )

}
ds

}
.

Now from (3.60), we have

e−λv‖Ψi+1(u, v)‖2L2(Y ) ≤ C
{
‖Ψi+1(u, 0)‖2L2(Y )

+

∫ v

0

e−λs
{(
‖(∇µAµψψ)i‖L∞(Y ) − 2cλ

)
‖Ψi+1(u, s)‖2L2(Y )

+ ‖Ψi+1(u, s)‖L2(Y )(u+ ‖Ψi(u, s)‖L2(Y )

)}
ds

}
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≤ C
{
‖Ψi+1(u, 0)‖2L2(Y )

+

∫ v

0

e−λs
{(
‖(∇µAµψψ)i‖L∞(Y ) − 2cλ+ C(ε)

)
‖Ψi+1(u, s)‖2L2(Y )

+ (u2 + ε‖Ψi(u, s)‖2L2(Y ))
}
ds

}
≤ C

{
‖Ψi+1(u, 0)‖2L2(Y ) +

∫ v

0

e−λs(u2 + ε‖Ψi(u, s)‖2L2(Y )) ds

}
for λ large enough. Thus there exists λε > 0 such that for all (u, v) ∈ Ωâi ,

e−λεv‖Ψi+1(u, v)‖2L2(Y ) ≤ C
{
‖Ψi+1(u, 0)‖2L2(Y ) +

∫ v

0

e−λεs(u2 + ε‖Ψi(u, s)‖2L2(Y )) ds

}
.

Recall Ψi+1(u, 0) = ∂uψ(u, 0)− ∂uψ(0, 0); thus,

|Ψi+1(u, 0)| ≤ u · sup
i∈N

sup
u∈[0,a0]

‖∂2
uψi(u, 0)‖L∞(Y )︸ ︷︷ ︸
=:ĉ

,

leading to

e−λεv‖Ψi+1(u, v)‖2L2(Y )

≤ u2

(
ĉ2µY (Y ) + C

∫ v

0

e−λεs ds

)
+ εC

∫ v

0

e−λεs‖Ψi(u, s)‖2L2(Y ) ds.

Suppose now for the purpose of induction that (the constant C0 will be chosen shortly,

see (3.64))

(u, v) ∈ [0, âi]× [0, b0], ‖Ψi(u, v)‖2L2(Y ) ≤ C0e
λε(v−b0). (3.62)

Then by the previous inequality,

e−λε(v−b0)‖Ψi+1(u, v)‖2L2(Y ) ≤ u
2 eλεb0

(
ĉ2µY (Y ) + C/λε

)︸ ︷︷ ︸
=:C(λε)

+ εCC0b0.

We choose ε small enough such that εCb0 ≤ 1/2. Once this choice of ε is made (then

C(λε) is fixed) we see that u2C(λε) ≤ C0/2 provided that

0 < u ≤ C0

(√
2C(λε)

)−1
. (3.63)

We have thus proved that in the range of the u-variable given by (3.63),

‖Ψi+1(u, v)‖2L2(Y ) ≤ C0e
λε(v−b0).

This proves that (3.62) is preserved under iteration.

Now, recall from (3.42) that

e−λv‖∂uψi+1(u, v)‖2Hk−3(Y ) ≤ 2Čψ.

Note that the constant Čψ in (3.62) can be chosen independently of λ, and that the λ

here is independent of λε in the previous inequalities, but it is convenient to choose them

to be equal, and we shall do so. Thus we can write

e−λv/2‖Ψi+1(u, v)‖Hk−3(Y ) ≤ C0 + (2Čψ)1/2 =: C.
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By interpolation, there exists a constant cm > 0 such that, for all m ∈ (0, k − 3),

‖Ψi+1(u, v)‖Hm(Y ) ≤ cm‖Ψi+1(u, v)‖θHk−3(Y )‖Ψi+1(u, v)‖1−θL2(Y ),

with a certain constant θ ∈ (0, 1). Then multiplying by e−λv/2 we obtain

e−λv/2‖Ψi+1(u, v)‖Hm(Y ) ≤ cm‖e−λv/2Ψi+1(u, v)‖θHk−3(Y )‖e
−λv/2Ψi+1(u, v)‖1−θL2(Y )

≤ cmCθ(C0e
−λb0)1/2(1−θ),

which can be rewritten as

e−λ(v−b0)/2‖Ψi+1(u, v)‖Hm(Y ) ≤ cmCθ(C0)1/2(1−θ)(eλb0)θ/2.

For m = k−4 > (n− 1)/2 (which is possible if k > (n+ 7)/2), from Sobolev’s embedding

theorem there exists a constant CS > 0 such that

e−λ(v−b0)/2‖Ψi+1(u, v)‖L∞(Y ) ≤ CSCθ(C0)1/2(1−θ)(eλb0)θ/2.

Finally, we choose C0 small enough so that

CSC
θ(C0)1/2(1−θ)(eλb0)θ/2 < sup

i
sup

v∈[0,b0]

|∂uψi(0, v)|+ 1, (3.64)

and obtain

‖Ψi+1(u, v)‖L∞(Y ) ≤ eλ(v−b0)/2
(

sup
i

sup
v∈[0,b0]

|∂uψi(0, v)|+ 1
)
,

which leads to

‖∂uψi+1(u, v)‖L∞(Y ) ≤ 2 sup
i

sup
v∈[0,b0]

|∂uψi(0, v)|+ 1 (3.65)

for all v ∈ [0, b0] and all u in the range of (3.63), with C0 defined in (3.64). Thus we

conclude, as after (3.49), that up to reducing a∗ if necessary,

sup
i

sup
(u,v)∈[0,a∗]×[0,b0]

|∂uψi(u, v)| ≤ 2 sup
i

sup
v∈[0,b0]

|∂uψi(0, v)|+ 1.

The estimate (|∇µAµ|)i ≤ Cdiv for all i follows when Av does not depend upon ϕ.

When Av depends upon ϕ it remains to obtain a pointwise estimate on ∂vϕ. We start

by v-differentiating the equation satisfied by ϕ:

(Aµϕϕ∇µ)i
∂ϕi+1

∂v
= −∂v

(
(Aµϕϕ∇µ)i

)
ϕi+1 − ∂v

(
(Aµϕψ∇µ)iψi+1 − (Gϕ)i

)
=: (Bϕ)i

∂ϕi
∂v

+ (bϕ)i, (3.66)

where

(Bϕ)i := −∂ϕ
(
(Aµϕϕ∇µ)i

)
ϕi+1 − ∂ϕ

(
(Aµϕψ∇µ)iψi+1 − (Gϕ)i

)
,

and with (bϕ)i containing all the remaining terms. After replacing v-derivatives of ψi+1

using the field equations, (Bϕ)i and (bϕ)i become affine in ∇̊Bfi+1 and ∇̊B∇̊Cfi+1, with

coefficients depending upon fi.

Recall that k2 has been defined in (3.43); for k ≥ k2 by (2.16) and (2.18) we have the

estimate

‖(Bϕ)i‖Hk−2(Y ) + ‖(bϕ)i‖Hk−3(Y ) + ‖(Bϕ)i‖W 2,∞(Y ) + ‖(bϕ)i‖W 1,∞(Y ) ≤ C9. (3.67)
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Applying (2.31) with k replaced by k − 3, with U = [0, u] × {v}, f = ∂ϕi+1/∂v, etc., to

(3.66), we obtain

e−λ(u+v)

∥∥∥∥∂ϕi+1

∂v
(u, v)

∥∥∥∥2

Hk−3(Y )

≤ C10

{
e−λv

∥∥∥∥∂ϕi+1

∂v
(0, v)

∥∥∥∥2

Hk−3(Y )︸ ︷︷ ︸∥∥ ∂ϕi+1
∂v (v)

∥∥2

Hk−3(Y )

+

∫ u

0

e−λ(s+v)

{(
‖(∇µAµϕϕ)i(s, v)‖L∞(Y ) − cλ

)∥∥∥∥∂ϕi+1

∂v
(s, v)

∥∥∥∥2

Hk−3(Y )

+ C11

∥∥∥∥∂ϕi+1

∂v
(s, v)

∥∥∥∥
Hk−3(Y )

(∥∥∥∥∂ϕi∂v
(s, v)

∥∥∥∥
Hk−3(Y )

+

∥∥∥∥∂ϕi+1

∂v
(s, v)

∥∥∥∥
Hk−3(Y )

+ C12

)}
ds

}
.

(3.68)

As before, using the inequality ab ≤ a2/(4ε) + εb2, one is led to

e−λu
∥∥∥∥∂ϕi+1

∂v
(u, v)

∥∥∥∥2

Hk−3(Y )

≤ C10

{∥∥∥∥∂ϕi+1

∂v
(v)

∥∥∥∥2

Hk−3(Y )

+

∫ u

0

e−λs
{(
‖(∇µAµϕϕ)i(s, v)‖L∞(Y ) + 2C11 +

C11

4ε
− cλ

)∥∥∥∥∂ϕi+1

∂v
(s, v)

∥∥∥∥2

Hk−3(Y )

+ εC11

∥∥∥∥∂ϕi∂v
(s, v)

∥∥∥∥2

Hk−3(Y )

+ C11C
2
12

}
ds

}
. (3.69)

Since (see (3.10a))

|(∇µAµϕϕ)i| ≤ |(∇µAµ)i| ≤ Cdiv, ∀(u, v) ∈ [0, ai]× [0, b0],

there exists a constant λ3 = λ3(C10, Cdiv, C0, k) which does not depend on i such that,

for all λ ≥ λ3, the previous inequality implies

e−λu
∥∥∥∥∂ϕi+1

∂v
(u, v)

∥∥∥∥2

Hk−3(Y )

≤ C10

{∥∥∥∥∂ϕi+1

∂v

∥∥∥∥2

Hk−3(Y )

+ C11

∫ u

0

e−λs
{
ε

∥∥∥∥∂ϕi∂v
(s, v)

∥∥∥∥2

Hk−3(Y )

+ C2
12

}
ds

}
. (3.70)

Integrating in u, for 0 ≤ u ≤ âi ≤ a0, one obtains∫ u

0

e−λt
∥∥∥∥∂ϕi+1

∂v
(t, v)

∥∥∥∥2

Hk−3(Y )

dt ≤ C10

{
a0

∥∥∥∥∂ϕi+1

∂v
(v)

∥∥∥∥2

Hk−3(Y )

+ C11

∫ u

0

∫ t

0

e−λs
{
ε

∥∥∥∥∂ϕi∂v

∥∥∥∥2

Hk−3(Y )

+ C2
12

}
ds dt

}
. (3.71)

Let

C̊ϕ(u) := C10

{
sup
i∈N

sup
v∈[0,b0]

a0

∥∥∥∥∂ϕi+1

∂v
(v)

∥∥∥∥2

Hk−3(Y )

+

∫ u

0

∫ t

0

C11C
2
12 ds dt

}
. (3.72)

Proceeding as before, one gets rid of the ∂ϕi/∂v terms in the integral appearing in (3.70),
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for all 0 ≤ u ≤ âi, as follows: suppose that

∀0 ≤ t ≤ u ≤ âi ≤ a0

∫ t

0

e−λs
∥∥∥∥∂ϕi∂v

(s, v)

∥∥∥∥2

Hk−3(Y )

ds ≤ 2C̊ϕ(t); (3.73)

then (3.71) gives∫ u

0

e−λt
∥∥∥∥∂ϕi+1

∂v
(t, v)

∥∥∥∥2

Hk−3(Y )

dt ≤ C̊ϕ(u) + 2a0εC10C11C̊ϕ(u).

Thus, one can choose ε = ε(C10, C11, C12, Cdiv, C0, k, λ3) small enough so that∫ u

0

e−λt
∥∥∥∥∂ϕi+1

∂v
(t, v)

∥∥∥∥2

Hk−3(Y )

dt ≤ 2C̊ϕ(u),

which shows that (3.73) is preserved under iteration.

For any λ ≥ λ3|k=k2 we deduce from (3.70) that∥∥∥∥∂ϕi+1

∂v
(u, v)

∥∥∥∥2

Hk2−3(Y )

≤ C.

Now, Sobolev’s embedding implies∥∥∥∥∂ϕi+1

∂v
(u, v)

∥∥∥∥
W 1,∞(Y )

≤ C.

As this holds for all i, (3.66) proves that∥∥∥∥∂2ϕi+1

∂u∂v
(u, v)

∥∥∥∥
L∞(Y )

≤ C. (3.74)

By integration∣∣∣∣∂ϕi+1

∂v
(u, v)

∣∣∣∣ ≤ ∣∣∣∣∂ϕi+1

∂v
(0, v)

∣∣∣∣+ Cu ≤ 2 sup
i∈N

∥∥∥∥∂ϕi∂v

∥∥∥∥
L∞(N+∪N−)

,

provided that

0 ≤ u ≤ C−1

(
sup
i∈N

∥∥∥∥∂ϕi∂v

∥∥∥∥
L∞(N+∪N−)

)
. (3.75)

Now, we choose a∗ to be the smallest of a0 and of the four constants appearing on

the right-hand side of inequalities (3.33), (3.46), (3.63) and (3.75). Recall that ai was

defined as either a0 or the first number at which the inequalities (3.10) fail for fi or fi+1.

So, if we assume that the inequalities (3.10) hold at the induction step i with ai ≥ a∗,

we conclude that ai+1 ≥ a∗ as well. Hence âi ≥ a∗ for all i ∈ N. The above implies that

(3.20) and (3.24) hold for 0 ≤ u ≤ a∗. Since a∗ is independent of k, we have obtained:

Proposition 3.6. Let N 3 k > (n + 7)/2, and suppose that there exists a constant C
such that for (u, v) ∈ [0, a0]× [0, b0] we have

sup
N−∪N+

{∣∣∂vf i∣∣+
∣∣∂uf i∣∣+ ‖f i(u, v)‖Hk(Y ) +Mk(u, v)

}
≤ C. (3.76)

There exists a constant 0 < a∗ = a∗(a0, b0, C, Y ) ≤ a0 such that the fields fi satisfy the

hypotheses of Lemma 3.2 on [0, a∗]× [0, b0]×Y . As a consequence, there exists a constant
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C = C(a0, b0, C, Y, k) such that for (u, v) ∈ [0, a∗]× [0, b0] we have∫ a∗

0

‖ψi(s, v)‖2Hk(Y ) ds+

∫ b0

0

‖ϕi(u, s)‖2Hk(Y ) ds+ ‖fi(u, v)‖Hk−1(Y )

+ ‖∂vψi(u, v)‖Hk−2(Y ) + ‖∂uϕi(u, v)‖Hk−2(Y )

+ ‖∂uψi(u, v)‖Hk−3(Y ) + ‖∂vϕi(u, v)‖Hk−3(Y ) ≤ C. (3.77)

Remark 3.7. The result remains true for k ∈ R; this can be established by commuting

the equation with an appropriate pseudo-differential operator in the Y -variables. How-

ever, this will be of no concern to us here.

3.3. Convergence of the iterative sequence. To prove convergence of the sequence,

we set

δfi+1 := fi+1 − fi.

We have the equation

(Aµ∇µ)iδfi+1 = δGi, (3.78)

with

δGi := Gi −Gi−1 − ((Aµ∇µ)i − (Aµ∇µ)i−1) fi.

The standard identity

h(x)− h(y) = (x− y)

∫ 1

0

h′(tx+ (1− t)y) dt,

applied both to Gi −Gi−1 and (Aµ∇µ)i − (Aµ∇µ)i−1, leads to the straightforward esti-

mate, for all λ and 0 ≤ a ≤ a∗,

‖e−λ(u+v)δGi‖L2([0,a]×[0,b0]×Y ) ≤ C1‖e−λ(u+v)δfi‖L2([0,a]×[0,b0]×Y ),

with a constant C1 which depends upon supi ‖fi‖W 1,∞ , and which is independent of λ

and of i. Here we reset the numbering of the constants, so that the constant C1 of this

section has nothing to do with the constant C1 of the previous section, etc.

We apply the energy inequality (2.12) with k = 0; there are then no commutator

terms in (2.20), leading to

‖e−λ(u+v)δϕi+1(u)‖L2([0,b0]×Y ) + ‖e−λ(u+v)δψi+1(v)‖L2([0,a∗]×Y )

≤ C2

{
‖e−λvδϕi+1‖L2([0,b0]×Y ) + ‖e−λuδψi+1‖L2([0,a∗]×Y )

+ (‖(Aµ∇µ)i‖L∞ − cλ)‖e−λ(u+v)δfi+1‖2L2([0,a∗]×[0,b0]×Y )

+ 2‖e−λ(u+v)δfi+1‖L2([0,a∗]×[0,b0]×Y )‖e−λ(u+v)δGi‖L2([0,a∗]×[0,b0]×Y )

}
≤ C2

{
‖e−λvδϕi+1‖L2([0,b0]×Y ) + ‖e−λuδψi+1‖L2([0,a∗]×Y )

+
(
‖(Aµ∇µ)i‖L∞ + C1 − cλ

)
‖e−λ(u+v)δfi+1‖2L2([0,a∗]×[0,b0]×Y )

}
+ C1C2‖e−λ(u+v)δfi‖2L2([0,a∗]×[0,b0]×Y ). (3.79)

Now, for the purpose of proving Theorem 3.9, the sequences (ϕi)i∈N and (ψi)i∈N are

Cauchy sequences in the spaces Hk([0, b0]×Y ) and Hk([0, a0]×Y ) respectively, and thus
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in L2([0, b0] × Y ) and L2([0, a0] × Y ). Therefore, without loss of generality they can be

replaced by subsequences, still denoted as (ϕi)i∈N and (ψi)i∈N, such that

C2‖δϕi‖L2([0,b0]×Y ) ≤
1

2i+1
and C2‖δψi‖L2([0,a0]×Y ) ≤

1

2i+1
. (3.80)

Assuming that (3.80) holds, we have

‖e−λ(u+v)δϕi+1(u)‖L2([0,b0]×Y ) + ‖e−λ(u+v)δψi+1(v)‖L2([0,a∗]×Y )

≤ 1

2i
+ C2

(
‖(Aµ∇µ)i‖L∞ + C1 − cλ

)
‖e−λ(u+v)δfi+1‖2L2([0,a∗]×[0,b0]×Y )

+ C1C2‖e−λ(u+v)δfi‖2L2([0,a∗]×[0,b0]×Y ). (3.81)

In particular, given any 0 < α < 1/2, for all λ sufficiently large and for all (u, v) in

[0, a∗]× [0, b0], we find that

‖e−λ(u+v)δϕi+1(u)‖2L2([0,b0]×Y ) ≤
1

2i
+ C1C2‖e−λ(u+v)δfi‖2L2([0,a∗]×[0,b0]×Y ), (3.82a)

‖e−λ(u+v)δψi+1(v)‖2L2([0,a∗]×Y ) ≤
1

2i
+ C1C2‖e−λ(u+v)δfi‖2L2([0,a∗]×[0,b0]×Y ), (3.82b)

‖e−λ(u+v)δfi+1‖2L2([0,a∗]×[0,b0]×Y ) ≤
1

C2 · 2i
+ α‖e−λ(u+v)δfi‖2L2([0,a∗]×[0,b0]×Y ). (3.82c)

Here λ has to be chosen so that

0 <
C1

cλ− ‖(Aµ∇µ)i‖L∞ − C1
< α <

1

2
. (3.83)

We can now make use of the elementary fact: If (Un)n∈N is a sequence of positive real

numbers satisfying Un+1 ≤ αUn + β/2n, then

Un ≤ αnU0 + 2β

(
(1/2)n − αn

1− 2α

)
. (3.84)

Equations (3.82c)–(3.84) show that∑
e−λ(u+v)δfi converges in L2([0, a∗]× [0, b0]× Y ).

This implies that fi converges in the same space to some function f . It further follows from

(3.82a) that for all 0 ≤ u ≤ a∗ the sum
∑
i e
−λ(u+v)δϕi(u) converges in L2([0, b0]× Y ),

uniformly in u; this implies uniform convergence of ϕi(u) to some function ϕ(u) in that

topology. Similarly for all v ∈ [0, b0] the sequence ψi(v) converges, uniformly in v, to some

function ψ(v) in L2([0, a∗]× Y ).

For k > (n + 7)/2 the estimates of the previous section apply and show that the se-

quence of derivatives ∇fi is uniformly bounded so that, by Arzelà–Ascoli, a subsequence

fij can be chosen which converges uniformly to some function which is Lipschitz contin-

uous in all variables on [0, a∗] × [0, b0] × Y . It follows that f has a Lipschitz continuous

representative; this representative will be chosen from now on. Similarly, fij+1 has a

subsequence, still denoted by the same symbol, uniformly converging to some Lipschitz

continuous function f ′. Since fij+1 converges to f in L2 we must have f ′ = f , thus fij+1

converges uniformly to f .
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Now, by Proposition 3.6 the sequence fij (u, v) is bounded in Hk−1(Y ), and converges

uniformly to the continuous function f(u, v). By weak compactness

f(u, v) ≡
(
ϕ(u, v), ψ(u, v)

)
≡
(
ϕ(u, v, ·), ψ(u, v, ·)

)
∈ Hk−1(Y ).

By interpolation, for every s < k − 1 we have

fij (u, v), fij+1(u, v)→ f(u, v) in Hs(Y ), (3.85)

uniformly in u and v. In particular

fij (u, v), fij+1(u, v)→ f(u, v) in C1(Y ), (3.86)

uniformly in u and v. Thus both ϕ and ψ are differentiable with respect to the xA’s.

In the notation of Section 2, (3.1) now shows that the sequence ∂uϕij+1(u, v) converges

uniformly to the Lipschitz continuous function

(∗) := (Auϕϕ)−1
[
−ABϕϕ∇Bϕ−ABϕψ∇Bψ +Gϕ

]
− γϕϕ,uϕ.

Similarly, ∂vψij+1(u, v) converges uniformly to a Lipschitz continuous function, as deter-

mined by the right-hand side of the equation involving ∂vψ. From

ϕij+1(u2, ·)︸ ︷︷ ︸
→ϕ(u2,·)

−ϕij+1(u1, ·)︸ ︷︷ ︸
→ϕ(u1,·)

=

∫ u2

u1

∂uϕij+1(s, ·)︸ ︷︷ ︸
→(∗)

ds (3.87)

one finds that ϕ is differentiable in u. Similarly ψ is differentiable in v, and (2.1) holds.

From what has been said we have

f ∈ L∞
(
[0, a∗]× [0, b0];Hk−1(Y )

)
, (3.88)

∂Af, ∂uϕ, ∂vψ ∈ L∞
(
[0, a∗]× [0, b0];Hk−2(Y )

)
, (3.89)

∂vϕ, ∂uψ ∈ L∞
(
[0, a∗]× [0, b0];Hk−3(Y )

)
. (3.90)

Thus

f ∈
⋂

0≤i≤1

W i,∞([0, a∗]× [0, b0];Hk−2−i(Y )
)
⊂ C0,1([0, a∗]× [0, b0]× Y ). (3.91)

We note that the new field

f ′ =

(
ϕ′

ψ′

)
, where ϕ′ =


ϕ

∂vϕ

∂uϕ

∂Aϕ

 and ψ′ =


ψ

∂vψ

∂uψ

∂Aψ

 , (3.92)

is defined on [0, a∗]× [0, b0]×Y and solves a system of equations satisfying our structure

conditions. By what has been said the initial data are of Hk−3 differentiability class. So

if k − 3 > (n+ 7)/2, the argument leading to (3.91) applies to f ′ and gives

f ∈ L∞
(
[0, a∗]× [0, b0];Hk−1(Y )

)
∩
⋂

0<i≤2

W i,∞([0, a∗]× [0, b0];Hk−3i(Y )
)

⊂ C1,1([0, a∗]× [0, b0]× Y ). (3.93)

This argument can be applied k1 times, where

k1 is the largest number such that k − 3k1 > (n+ 7)/2. (3.94)
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Consequently,

f ∈ L∞
(
[0, a∗]× [0, b0];Hk−1(Y )

)
∩

⋂
0<3i≤k−(n+7)/2

W i,∞([0, a∗]× [0, b0];Hk−3i(Y )
)

⊂ Ck1−1,1([0, a∗]× [0, b0]× Y ), (3.95)

where the last inclusion holds provided that k1 ≥ 1.

Remark 3.8. For k > 6 + (n+ 7)/2 the first line of (3.95) can be partly improved to

f ∈ C
(
[0, a∗]×[0, b0];Hk−1(Y )

)
∩

⋂
0<3i≤k−(n+7)/2−6

Ci
(
[0, a∗]×[0, b0];Hk−3i(Y )

)
. (3.96)

To see this, note first that the map

(u, v) 7→ ∂iu∂
j
vf(u, v, ·) ∈ Hk−3(i+j)(Y ) (3.97)

is weakly continuous, being the limit of a bounded sequence of continuous maps. Using

the equation satisfied by f and the trivial identities

∂iu∂
j
vϕ(u, v) = ∂iu∂

j
vϕ(0, v) +

∫ u

0

(
∂u∂

i
u∂

j
vϕ(s, 0) +

∫ v

0

∂u∂v∂
i
u∂

j
vϕ(s, t) dt

)
ds,

∂iu∂
j
vψ(u, v) = ∂iu∂

j
vψ(u, 0) +

∫ v

0

(
∂v∂

i
u∂

j
vψ(0, t) +

∫ u

0

∂u∂v∂
i
u∂

j
vψ(s, t) ds

)
dt,

one sees that the function

(u, v) 7→ ‖∂iu∂jvf(u, v, ·)‖Hk−3(i+j)(Y )

is continuous. This, together with standard arguments, implies that (3.97) is continuous,

and (3.96) easily follows.

3.4. Existence and uniqueness. In order to complete the proof of the existence of

a solution for the system (2.1), we need to initialize the iteration and make sure that

condition (3.76) is fulfilled. Recall that in the current setting

N− = {0} × [0, b0]× Y, N+ = [0, a0]× {0} × Y.

We have the following:

Theorem 3.9. Let Y be an (n− 1)-dimensional compact manifold without boundary, let

a0 and b0 two positive real numbers and set

Ω0 = [0, a0]× [0, b0]× Y.

Consider the symmetric hyperbolic system (2.1) on Ω0 with the splitting (2.7) and assume

that (2.8) holds. Let ϕ and ψ be defined respectively on N− and N+, providing Cauchy

data for (2.1): {
ϕ = ϕ on N−,

ψ = ψ on N+.
(3.98)

Let ` ∈ N, ` > (n+ 9)/2, and suppose that

ϕ ∈
⋂

0≤j≤`

Cj([0, b0];H`−j(Y )) and ψ ∈
⋂

0≤j≤`

Cj([0, a0];H`−j(Y )). (3.99)
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Assume that the transport equations

Aµϕϕ|v=0∂µϕ|v=0 = (−Aµϕψ∂µψ +Gϕ)|v=0, (3.100)

Aµψψ|u=0∂µψ|u=0 = (−Aµψϕ∂µϕ+Gψ)|u=0, (3.101)

with initial data

ϕ|u=v=0 = ϕ|v=0 and ψ|u=v=0 = ψ|u=0,

have a global solution on ([0, a0]× Y ) ∪ ([0, b0]× Y ). Then there exists an `-independent

constant a∗ ∈ (0, a0] such that the Cauchy problem (2.1), (3.98) has a solution f defined

on [0, a∗]× [0, b0]×Y satisfying (3.88)–(3.90) with k = `−1. If ` > (n+ 12)/2 we further

have

f ∈ L∞
(
[0, a∗]× [0, b0];H`−2(Y )

)
∩

⋂
0<3i≤`−(n+9)/2

W i,∞([0, a∗]× [0, b0];H`−1−3i(Y )
)

⊂ C`1−1,1([0, a∗]× [0, b0]× Y ), (3.102)

where `1 is the largest number such that ` − 3`1 > (n+ 9)/2. The solution f is unique

within the class of C1 solutions, and is smooth if ϕ and ψ are.

Remark 3.10. Some remarks about the hypothesis that Y is compact without boundary

are in order. First, our analysis applies to compact manifolds with boundary without fur-

ther due when suitable boundary conditions are imposed on the boundary. For instance,

in the case of systems obtained by rewriting the wave equation as in Section 4, Dirichlet,

Neumann or maximally dissipative boundary conditions at ∂Y are suitable. Next, again

for systems of wave equations, the case of noncompact Y ’s can be reduced to the compact

one as follows: Let p ∈ Y ; we replace Y by a small conditionally compact neighborhood

of p with smooth boundary. We solve the equation on the new Y imposing e.g. Dirichlet

conditions on [0, a0] × [0, b0] × ∂Y . Arguments based on uniqueness in domains of de-

pendence show that there is a one-sided space-time neighborhood of the generators of

N± through p on which the solution is independent of the boundary conditions imposed.

This provides the desired solution on the neighborhood. Returning to the original Y , the

union of such neighborhoods with the corresponding solutions yields the desired solution.

Proof of Theorem 3.9. Let (ϕi)i∈N and (ψi)i∈N be any two sequences of smooth initial

data which converge towards ϕ and ψ respectively in the spaces⋂
0≤j≤`

Cj([0, b0];H`−j(Y )) and
⋂

0≤j≤`

Cj([0, a0];H`−j(Y )).

Set f−1 ≡ 0, and for i ∈ N define f i = (ϕi, ψi). Given fi, we let fi+1 be the solution of

the linear system (3.1) with Cauchy data{
ϕi+1 = ϕi+1 on N−,
ψi+1 = ψi+1 on N+.

We wish to apply Proposition 3.6 with k = ` − 1. For this we need to show that the

constant C of (3.76) is finite. We start by noting that the sequence (ψi)i∈N has been

chosen to converge in the space
⋂

0≤j≤2 C
j([0, a0];H`−j(Y )), and since ` > (n+ 7)/2 the



34 3. The iterative scheme

continuous embedding⋂
0≤j≤2

Cj([0, a0];H`−j(Y )) ↪→
⋂

0≤j≤2

Cj([0, a0];W 1,∞(Y ))

ensures that this convergence also holds in
⋂

0≤j≤2 C
j([0, a0];W 1,∞(Y )). Since convergent

sequences are bounded, we obtain

sup
i∈N, u∈[0,a0]

(
‖ψi(u)‖W 1,∞(Y ) + ‖∂uψi(u)‖W 1,∞(Y ) + ‖∂2

uψi(u)‖W 1,∞(Y )

)
<∞. (3.103)

Similarly,

sup
i∈N, v∈[0,b0]

(
‖ϕi(v)‖W 1,∞(Y ) + ‖∂vϕi(v)‖W 1,∞(Y ) + ‖∂2

vϕi(v)‖W 1,∞(Y )

)
<∞. (3.104)

By hypothesis, the transport equations with the initial data (ϕ,ψ) have global solu-

tions on N±. Continuous dependence of solutions of symmetric hyperbolic systems upon

data implies that the transport equations with (ϕi, ψi) will also have global solutions on

N± for all i large enough, bounded in C1(N ) uniformly in i. We can thus use (3.23) at

u = 0 to obtain, for all i ∈ N and all λ sufficiently large,

e−λv‖ψi(0, v)‖2H`−1(Y ) ≤ C7(Y, `, C0, Cdiv)

{
‖ψi(0, 0)‖2H`−1(Y )

+ 2Ĉ(0, b) +

∫ v

0

e−λsM`(0, s) ds+ 2δC̃ψ(0, b0) + E`,λ[ϕi, 0]

}
.

The right-hand side is bounded uniformly in i and v ∈ [0, b0]. Thus there exists a constant,

which we denote again by C, such that

∀i ∈ N ∀v ∈ [0, b0], ‖ψi(0, v)‖2H`−1(Y ) ≤ C.

We can repeat this process using the transport equation satisfied by ∂uψi+1(0, v),

which is obtained by u-differentiating the equation satisfied by ψi+1. This leads to the

inequality (3.42) at u = 0 for every i ∈ N with k − 3 replaced by ` − 2; the gain of one

derivative here, as compared to (3.42), is due to the fact that ϕ|u=0 is directly given

in terms of initial data, and hence is controlled in H`(Y ), while in (3.42) we only had

uniform control in Hk−1(Y ). That is, for all i ∈ N,

‖∂uψi(0, v)‖2H`−2(Y )

≤ 2eλv
[
C9

{
sup
i∈N

sup
u∈[0,a0]

‖∂uψi(0)‖2H`−2(Y ) +

∫ b0

0

e−λs
(
M̂`(0, s) + C2

10

)
ds

}
+ 1

]
.

An identical argument using (3.70) gives the desired control of ϕ(u, 0) and ∂vϕ(u, 0). This

proves that the left-hand side of (3.76) is finite.

We can now appeal to Section 3.3 to conclude that the sequence (fi)i∈N converges

towards a solution f of the Cauchy problem (2.1), (3.98) in a space as stated in the

theorem. This requires choosing the sequences (ϕi)i∈N and (ψi)i∈N more carefully (see

(3.80)), which is possible because the constant C2 appearing in (3.80) is the same for all

suitably bounded sequences, possibly after taking i ≥ i0 for some i0 large enough.
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Note that the neighborhood of N− on which the solution has been constructed is

independent of the Sobolev differentiability class of the data. This implies that smooth

initial data lead to smooth solutions.

We continue with uniqueness of solutions. Let f`, ` = 1, 2, be two solutions of (2.1)

with identical initial data (3.98). Setting δf = f1 − f2 leads to the equation

(Aµ∇µ)1δf = (G)1 − (G)2 −
(
(Aµ∇µ)1 − (Aµ∇µ)2

)
f2, (3.105)

with δf vanishing on N . The calculation is now similar to that of Section 3.3. Equation

(3.105) can be rewritten as (3.78) with δfi+1, and δfi there replaced by δf, Aµ(fi)∇µ(fi)

replaced by Aµ(f1)∇µ(f1), and δGi replaced by

δG := (G)1 − (G)2 −
(
(Aµ∇µ)1 − (Aµ∇µ)2

)
f2.

The current equivalent of (3.79) with δϕ = δψ ≡ 0 reads

‖e−λ(u+v)δϕ(u)‖L2([0,b0]×Y ) + ‖e−λ(u+b)δψ(b)‖L2([0,a∗]×Y )

≤ (‖(Aµ(f1)∇µ(f1))‖L∞ − cλ)‖e−λ(u+v)δf‖2L2([0,a∗]×[0,b0]×Y )

+ C1‖e−λ(u+v)δf‖2L2([0,a∗]×[0,b0]×Y ). (3.106)

It then follows (compare with (3.82c)) that there exists α ∈ (0, 1) such that

‖e−λ(u+v)δf‖2L2([0,a]×[0,b0]×Y ) ≤ α‖e
−λ(u+v)δf‖2L2([0,a]×[0,b0]×Y ).

This means that f1 = f2 almost everywhere on [0, a] × [0, b0] × Y , and since f1 and f2

are continuous, equality holds everywhere.

The symmetry of the problem under the interchange of u and v shows that our

construction also provides a solution in a neighborhood of N+:

Corollary 3.11. Under the hypotheses of Theorem 3.9, there exist constants 0 < a∗ ≤ a0

and 0 < b∗ ≤ b0 and a unique solution f of the Cauchy problem (2.1), (3.98) defined on

the neighborhood (
[0, a∗]× [0, b0]× Y

)
∪
(
[0, a0]× [0, b∗]× Y

)
of N = N+ ∪N− such that

f ∈ L∞
(
[0, a∗]× [0, b0];H`−2(Y )

)
∩

⋂
0<3i≤`−(n+9)/2

W i,∞([0, a∗]× [0, b0];H`−1−3i(Y )
)
,

and similarly on [0, a0]× [0, b∗].

Remark 3.12. Theorem 3.9 can be used to obtain a solution of (2.1), (3.98) when the

transport equations can be solved globally on the hypersurfaces N̂− = {0} × [0,∞)× Y
and N̂+ = [0,∞)×{0}× Y as follows: Let a0 and b0 be arbitrary positive real numbers.

Corollary 3.11 shows that there exist constants 0 < a∗ ≤ a0 and 0 < b∗ ≤ b0 and a unique

continuous solution f of the Cauchy problem (2.1), (3.98) defined on

Ua0,b0 :=
(
[0, a∗]× [0, b0]× Y

)
∪
(
[0, a0]× [0, b∗]× Y

)
.

Here a∗ and b∗ might depend upon a0 and b0. Uniqueness of solutions on each Ua0,b0
shows that solutions defined on two such overlapping regions coincide on the overlap.
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This allows one to define a solution on

U =
⋃

a0,b0∈R+

Ua0,b0

in an obvious way. We thus obtain a neighborhood of the entire initial data hypersur-

face N̂ = N̂− ∪ N̂+. Note that the thickness of the neighborhood might shrink to zero

when receding to infinity along N̂ .

3.5. Continuous dependence upon data. The aim of this section is to prove that the

solutions obtained in Theorem 3.9 are stable under small perturbations of the Cauchy

data. More precisely:

Theorem 3.13. Let f be a solution of (2.1) on [0, a0]× [0, b0]× Y , and let (fi)i∈N be a

sequence of solutions on [0, a0]× [0, b0]×Y such that the sequence of the associated initial

data (f i)i∈N converges to f in the topology determined by (3.99) with ` ≥ (n+ 15)/2.

Then:

(1) There exists 0 < a∗ ≤ a0 such that

the sequence fi is bounded in C1,1([0, a∗]× [0, b0]× Y ).

(2) Suppose that 0 < a ≤ a0 is such that (fi)i∈N is bounded in C1,1([0, a] × [0, b] × Y ).

Then for any 0 < s < `−(n+9)/2 the sequence (fi)i∈N converges to f in the topology

of

L∞
(
[0, a∗]× [0, b0];H`−2(Y )

)
∩

⋂
0<3i≤s

W i,∞([0, a∗]× [0, b0];H`−1−3i(Y )
)
. (3.107)

Remark 3.14. The sequence (fi)i∈N in (2) converges also in C1([0, a]× [0, b0]× Y ).

Proof of Theorem 3.13. Let us denote by ‖f‖` the norm associated to (3.99), and by

|||f |||s the norm in the space (3.107). Let (f i,j)j∈N be a sequence of smooth initial data

such that

‖f i,j − f i‖` ≤ 1/2j .

Let fi,j be the (smooth) solution of (2.1) with initial data f i,j . By the estimates of

Section 3.2 for all i, j large enough we can find 0 ≤ a∗ ≤ a0 such that all the fi,j ’s are

defined on a common set [0, a∗] × [0, b0] × Y , with a common bound in C1,1([0, a∗] ×
[0, b0]× Y ).

By Arzelà–Ascoli, when j tends to infinity the fi,j ’s converge to a solution of (2.1),

say gi, with initial data f i. By uniqueness gi = fi. This proves point (1).

Since f i,j converges to f i and f i converges to f , there exists a sequence f i,j(i) which

converges to f as i tends to infinity. By the argument just given, the associated solutions

fi,j(i) of (2.1) converge, as i tends to infinity, to a solution g of (2.1). By uniqueness,

g = f . Hence the fi,j(i)’s converge to f .

Thus, for every ε > 0 there exists iε such that for i ≥ iε and j ≥ j0(i) we have

|||fi,j − f |||s ≤ 1
2ε.

But for j large enough |||fi,j − fi|||s ≤ 1
2ε, which implies the claim.
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3.6. A continuation criterion. What has been said so far easily leads to the following

continuation criterion for solutions with smooth initial data:

Theorem 3.15. Suppose that (ϕ,ψ) is a C1 solution on [0, a)×[0, b0]×Y of the equations

considered so far, for some a < a0, with smooth initial data on N . If (ϕ,ψ) is bounded

in the C1 norm on [0, a] × [0, b0] × Y , then there exists ε > 0 such that the solution can

be extended to a smooth solution defined on [0, a+ ε]× [0, b0]× Y .

Indeed, for smooth data, if an a priori control of the C1 norm of the fields is known,

for any k one obtains the estimate for the kth order energy directly from (2.12), (2.31)

and Gronwall’s inequality, with no need to introduce the iterative scheme of Section 3.

We emphasize that in the current case the constant Ĉ1 of equation (2.30) is controlled

directly.

One would like to have a similar continuation criterion for solutions of finite differen-

tiability class. However, due to the losses of differentiability occurring in our argument it

is not clear whether such a result can be established. We have not attempted to investigate

this issue any further.



4. Application to semilinear wave equations

4.1. Double-null coordinate systems. Let (M, g) be a smooth (n + 1)-dimensional

space-time, and let N̂± be two null hypersurfaces in M emanating from a spacelike

manifold Y of codimension two. We will denote by N± the intersection of N̂± with the

causal future of Y .

In order to apply our results above to semilinear wave equations with initial data

on N± we need to construct local coordinate systems (u, v, xA), where the xA’s are local

coordinates on Y , near

N := N+ ∪N−

so that

N− := {u = 0}, N+ := {v = 0}. (4.1)

We will further need

g(∇u,∇u) = 0 = g(∇v,∇v), (4.2)

wherever defined. Such coordinates can be constructed in a standard way, but we give

the details as specific parameterizations will be needed in the problem at hand.

Let `Y and ωY be any smooth null future pointing vector fields defined along Y and

normal to Y such that `Y is tangent to N+ and ωY is tangent to N−. Then both N̂+

and N+ are threaded by the null geodesics issued from Y with initial tangent `Y at Y .

These geodesics will be referred to as the generators of N̂+, respectively of N+. The

associated field of tangents, normalized in any convenient way, will be denoted by `+. Let

r+ denote the corresponding parameter along the integral curves of `+, with r+ = 0 at Y .

We emphasize that the normalization of `+ is arbitrary at this stage, so that r+ could

e.g. be required to be affine, but we do not impose this condition. Similarly N̂− and N−
are threaded by their null geodesic generators issued from Y , tangent to ωY at Y , with

field of tangents ω− and parameter r−.

Let xAY be any local coordinates on an open subset O of Y . They can be propagated

to functions xA± on N± by requiring the xA±’s to be equal to xAY along the corresponding

null geodesic generators of N±. Then (r±, x
A
±) define local coordinates on N± near each

of the relevant generators.

On N̂+ we let ω+ be any smooth field of null vectors transverse to N̂+ and normal to

the level-sets of r+ such that ω+|Y = ωY . The function u is defined by the requirement

that u is constant along the null geodesics issued from N̂+ with initial tangent ω+, equal

to r+ at N̂+. We denote by ω the field of tangents to those geodesics, normalized in any

suitable way. Thus

ω(u) = 0, u|N− = 0. (4.3)

[38]
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We claim that the level sets of u, say N−u , are null hypersurfaces. To see this, consider

a one-parameter family λ 7→ x(λ, s) of generators within N−u . Then X := ∂λx is tangent

to N−u and solves the Jacobi equation along each of the generators s 7→ x(λ, s). Further,

every vector tangent to N−u belongs to such a family of vectors. We have

d(g(X,ω))

ds
= g

(
DX

ds
, ω

)
= g

(
D

∂s

∂x

∂λ
,
∂x

∂s

)
= g

(
D

∂λ

∂x

∂s
,
∂x

∂s

)
=

1

2
∂λ(g(ω, ω)) = 0.

(4.4)

Now, on N−u ∩ N+ the vector X can be decomposed as X = X‖ + αω, where X‖ is

tangent to N−u ∩N+ and α ∈ R. Both X‖ and ω are orthogonal to ω, hence g(X,ω) = 0

at the intersection. Equation (4.4) gives g(X,ω) ≡ 0. This shows that all vectors tangent

to N−u are orthogonal to ω, and since ω is also tangent to N−u we conclude that TN−u is

null. Consequently, ∇u is proportional to the null vector ω, and thus

g(∇u,∇u) = 0.

Similarly, on N− we let `− be any smooth field of null vectors transverse to N−
and normal to the level-sets of r− such that `−|Y = `Y . The function v is defined by

the requirement that v is constant along the null geodesics issued from N− with initial

tangent `−, and with initial value r− at N−. We denote by ` the field of tangents to

those geodesics, normalized in any convenient way. Then

`(v) = 0, v|N+ = 0, g(∇v,∇v) = 0. (4.5)

By construction we have

`|N± = `±, ω|N± = ω±. (4.6)

So far the construction was completely symmetric; this symmetry will be broken now

by defining the functions xA through the requirement that the xA’s be constant along

the null geodesics starting from N− with initial tangent `−, and taking the values xA− at

the intersection point.

The construction just given breaks down when the geodesics start intersecting. How-

ever, it always provides the desired coordinates in a neighborhood of N . In particular,

given two generators of N± emanating from the same point on Y , there exists a neigh-

borhood of those generators on which (u, v, xA) form a coordinate system. We emphasize

that

g(ω, ω) = g(`, `) = 0, (4.7)

and that we also have

`v = 0 = `A ⇔ ` = `u∂u, ωu = 0 ⇔ ω = ωv∂v + ωA∂A. (4.8)

The first group of equations in (4.8) follows from the fact that both xA and v are constant

along the integral curves of `, while the second is a consequence of the fact that u is

constant along the integral curves of ω.

Finally, once the coordinates u and v have been constructed, for some purposes it

might be convenient to rescale `, or ω, or both, so that

g(ω, `) = −1/2. (4.9)
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Such rescalings do not affect (4.7)–(4.8), which are the key properties of ` and ω for

us. Equation (4.9) determines ` and ω up to one multiplicative strictly positive factor,

` 7→ α`, ω 7→ α−1ω.

4.1.1. R-parameterizations. Let us finish this section by providing a construction in

which the functions u and v run from zero to infinity on all generators of N+ and N−.

Let U+ ⊂ N̂+ ×R be the maximal domain of definition of the map, which we denote

by

Ψ+(p, s) : U+ →M, p ∈ N̂+, s ∈ R,

defined by following a null geodesic from p ∈ N̂+ with an affine parameter s ∈ R in the

direction `+ at p. Let V+ ⊂ U+ be the domain of injectivity of Ψ+. Then Ψ+(V+) is an

open subset of M containing N̂−.

Let the set U− ⊂ N̂− × R, the map Ψ−, and the set V− ⊂ U− be the corresponding

constructs on N̂−, using the integral curves of ω. Then Ψ−(V−) is an open subset of M
containing N+.

Set

O := Ψ+(V+) ∩Ψ−(V−) ⊃ N+ ∪N−.

Let h be any complete smooth Riemannian metric on O. Rescale ` and ω to new vector

fields on O, still denoted by ` and ω, so that h(`, `) = 1 = h(ω, ω). Then the integral

curves of ` and ω are complete in O. The corresponding parameters r± on N̂± run over R
for all generators of N̂±, as desired.

It should be pointed out that the above normalization of ` and ω has only been

imposed for the sake of constructing u and v. Once we have the functions u and v on

O we can revert to any other normalization of the fields ` and ω, in particular we can

assume that (4.9) holds. It might then not be true anymore that `(u) = 1 on N− and/or

ω(v) = 1 on N+, but these conditions are irrelevant for our purposes in this section. In

fact condition (4.9) plays no essential role in what follows.

4.1.2. Regularity. Now, it is well known that coordinate systems obtained by shooting

geodesics lead to a loss of differentiability of the metric. The aim of this section is to

show that, in our context, the optical functions u, v are of the same differentiability

class as the metric (1). As a result, after passing to a doubly-null coordinate system

one loses one derivative of the metric. While unfortunate, this is not a serious problem

for semilinear equations, as considered in this section. On the other hand, this leads to

difficulties when attempting to apply our techniques to the harmonically reduced Einstein

equations. This is why we will restrict ourselves to dimension four when analyzing the

Einstein equations, as then a doubly-null formulation of Einstein equations is directly

available, without having to pass to harmonic coordinates.

First, to avoid a conflict of notation, we will use the symbol x for the coordinate

u of Section 3, and y for the coordinate v used there, without assuming that x or y

solve the eikonal equation. Thus, we let (x, y, xA) be any coordinate system such that

(1) The argument here has been suggested to us by Hans Lindblad. We are grateful to Hans
for useful discussions concerning this point.
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N− = {x = 0} and N+ = {y = 0}. We assume that these hypersurfaces are characteris-

tic for the metric g. We have just seen how to construct solutions u and v to the eikonal

equation, and we wish to analyze their differentiability properties.

To obtain the desired estimates, we start by differentiating the eikonal equation:

gµν∂µv∂νv = 0 ⇒ gµν∂νv∂µ∂αv = − 1
2∂α(gµν)∂µv ∂νv. (4.10)

Setting f ≡ ϕ ≡ (ϕα) := (∂αv), we obtain a symmetric-hyperbolic evolution system

gµνϕµ∂νϕα = − 1
2∂α(gµν)ϕµϕν ⇔ Aµ∂µϕ = G, (4.11)

with

Aµ = (Aµα
β) = (−gµνϕνδβα), G = (Gα) =

(
1
2∂α(gµν)ϕµϕν

)
(4.12)

(the negative sign above is related to our convention (− + · · ·+) for the signature of

the metric, together with the requirement that ∇u and ∇v are both past pointing). The

function v is required to vanish on N+.

An obvious corresponding equation can be derived for the second null coordinate u,

which is required to vanish on N−.

We have:

Theorem 4.1. Let (M, g) be a smooth space-time with a metric g with components

gµν ∈
⋂

0≤j≤`

Cj([0, a0]× [0, b0];H`−j(Y ))

in the coordinate system above, with some ` ∈ N satisfying ` > (n+ 6)/2. Let u, v be

continuous functions on N , with u ≡ 0 on N−, differentiable on N+ and ∂xu strictly

positive there, and v ≡ 0 on N+, differentiable on N− and ∂yv strictly positive there,

with

u|N+ ∈
⋂

0≤j≤`

Cj([0, a0];H`−j(Y )), v|N− ∈
⋂

0≤j≤`

Cj([0, b0];H`−j(Y )). (4.13)

There exist `-independent constants µ∗ > 0 and a∗ ∈ (0, a0], with b0 − µ∗a∗ > 0, such

that the eikonal equations g(∇u,∇u) = 0 = g(∇v,∇v) have unique solutions u and v,

realising the initial data u and v, defined on

Ω∗ := {x ∈ [0, a∗], 0 ≤ y ≤ b0 − µ∗x} × Y (4.14)

(see Figure 4.1), of differentiability class C3(Ω∗), with ∇u and ∇v without zeros and

linearly independent there, and satisfying

u ∈ L∞([0, b0 − µ∗a∗];H`([0, a∗]× Y ))

∩
⋂

1≤j≤`−1

Cj([0, b0 − µ∗a∗];H`−j([0, a∗]× Y )), (4.15)

v ∈ L∞([0, a∗];H
`([0, b0 − µ∗a∗]× Y ))

∩
⋂

1≤j≤`−1

Cj([0, a∗];H
`−j([0, b0 − µ∗a∗]× Y )). (4.16)

The solutions u and v are smooth if the metric and the initial data u and v are.
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Fig. 4.1. The set Ω∗

Remark 4.2. The constant µ∗ is only needed for the function v, and can be set to

zero if u only is considered. The functions u and v have differentiability properties

similar to those in (4.15)–(4.16) on that part of Ω∗ which is not covered by (4.15)–

(4.16); we did not exhibit this because the result is somewhat cumbersome to write

formally.

Proof of Theorem 4.1. Since the metric is C2, existence follows from the arguments above,

and we only need to justify the regularity properties. The result is established through

a simplified version of the arguments from Section 3. Special care has to be taken in the

proof to make sure that there are no unwanted contributions to the energy from some

boundaries.

Let us start with the initial data for the function u. On N+ the inverse metric takes

the form, for any function χ,

g(∇χ,∇χ)|N+ = gxx(∂xχ)2 + 2gxy∂xχ∂yχ+ 2gxA∂xχ∂Aχ+ gAB∂Aχ∂Aχ (4.17)

(see e.g. [7, Appendix A]). Since neither gxy nor ∂xu has zeros, it follows from (4.17) that

the equation

g(∇u,∇u)|N+ = 0

allows us to calculate

∂yu ∈
⋂

0≤j≤`−1

Cj([0, a0];H`−j−1(Y ))

on N+ in terms of g and the tangential derivatives of u, leading to

ψ|N+ ≡ (∂µu)|N+ ∈
⋂

0≤j≤`−1

Cj([0, a0];H`−j−1(Y )).

Next, we will need to control ∇u on N−. This proceeds as follows: On N− we have,

for any function u,

g(∇u,∇u) = gyy(∂yu)2 + 2gxy∂yu ∂xu+ 2gyA∂yu ∂Au+ gAB∂Au ∂Au. (4.18)

Since u ≡ 0 in our case, the equation g(∇u,∇u) = 0 holds identically. We further have

∇u|N− = gxy∂xu∂y, (4.19)
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and we need an equation for ∂xu|x=0. For this we can use the u-equivalent of (4.10),

gµν∂νu ∂µ∂xu = − 1
2∂x(gµν)∂µu ∂νu, (4.20)

which on N− becomes

gxy∂xu ∂y(∂xu) = − 1
2∂xg

xx|N−(∂xu)2 (4.21)

(note that gxx vanishes on N−, but there is a priori no reason why ∂xg
xx|N− should

vanish as well). From this it is straightforward to obtain

∂xu|N− ∈
⋂

0≤j≤`−1

Cj([0, b0];H`−j−1(Y )). (4.22)

Summarising:

ψ|N+ ≡ (∂µu)|N+ ∈
⋂

0≤j≤`−1

Cj([0, a0];H`−j−1(Y )),

ψ|N− ∈
⋂

0≤j≤`−1

Cj([0, b0];H`−j−1(Y )).

We continue with the energy inequality. Let h = hαβdx
αdxβ be any smooth Riemannian

metric on Ωa0,b0 ×Y . The L2-energy-density vector associated with (4.11) can be defined

as

Eµ := h(ψ,Aµψ) = −ψµh(ψ,ψ) = −hαβ∂αu∂βu∇µu. (4.23)

Similarly to Section 2, the energy inequality with k = 0 is obtained by integrating the

divergence of e−λyEµ over a suitable set, say Ωa,b,σ, with 0 ≤ a ≤ a0, 0 ≤ b ≤ b0, where

Ωa,b,σ := {0 ≤ y ≤ b, 0 ≤ x̄ ≤ a− σy}, (4.24)

with x̄ to be defined shortly, and where 0 < σ < a0/2b0 is a small constant which will

also be determined shortly.

Indeed, for further purposes we will need to have good control of the causal character

of the level sets of x. This is achieved by modifying x so that, after suitable redefinitions,

∂xg
xx|N− = 0. For this, let us pass to a new coordinate system

x̄ = χ(x, y, xA)x, ȳ = y, x̄A = xA ⇒ ∂x = ∂x(xχ)∂x̄,

with a function χ which is determined as follows: We have

gx̄x̄ = gµν
(
x
∂χ

∂xµ
+

∂x

∂xµ
χ

)(
x
∂χ

∂xν
+

∂x

∂xν
χ

)
= x2gµν

∂χ

∂xµ
∂χ

∂xν
+ 2xgµx

∂χ

∂xµ
χ+ gxxχ2,

leading to

∂x̄g
x̄x̄
∣∣
x=0

=
1

χ
∂xg

x̄x̄
∣∣
x=0

= 2gyx
∣∣
x̄=0

∂yχ+ ∂xg
xx
∣∣
x=0

χ.

This will vanish if we set

χ(0, y, xA) = exp

(
−1

2

∫ y

0

∂xg
xx

gxy

∣∣∣∣
x=0

(s, xA) dx

)
× ∂u

∂x
(0, 0, xA)

∈
⋂

0≤j≤`−1

Cj([0, b0];H`−j−1(Y )). (4.25)
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We let χ(x, y, xA) be any extension of χ(0, y, xA) which is smooth in all its arguments

for x > 0; the existence of such extensions is standard. We pass to the new coordinate

system, and change the notation (x̄, ȳ, x̄A) back to (x, y, xA) for the new coordinates.

The factor ∂u
∂x (0, 0, xA) in (4.25) has been chosen to obtain

∂xu(x = 0, y = 0, xA) = 1. (4.26)

In the new coordinates, from (4.21) we find

∂xu(x = 0, y, xA) = 1. (4.27)

Now, ∂Ωa,b,σ takes the form

∂Ωa,b,σ = N− ∪N+ ∪
(
{y ∈ [0, b], x = a− σy} × Y

)︸ ︷︷ ︸
=:IIσ

∪
(
{y = b, 0 ≤ x ≤ a− σb} × Y

)︸ ︷︷ ︸
=:Iσ

(4.28)

(see Figure 4.2). Before analyzing the boundary terms arising, recall that we wish to

Fig. 4.2. The set Ωa0,b0,σ

obtain estimates on various norms of the field. This will be achieved by repeating the

inductive scheme of Section 3, but now using Sobolev spaces associated with the level

sets of y instead of Hk(Y ). For this we let ui be a sequence of smooth functions on N+

converging to u, with ui = 0 on N−, each ui solving a linear equation as done in Section 3

with coefficients determined by ui−1. Let c1 and C1 be any positive constants such that

sup
i∈N

sup
N

(
|∂ui|+ |∂x∂ui|+ |∂2

x∂ui|
)
≤ C1, inf

i∈N
inf
N
∂xui ≥ c1 > 0. (4.29)

Note that a pair of such constants can be determined purely in terms of the initial data

for u on N .

To the definition of the sequence 0 < ai, given just before (3.10), we add the require-

ment that ai ≤ 1, and that

inf
Ωai,b0,σi

∂xui ≥ 1
2c1, (4.30)

sup
Ωai,b0,σi

(
|∂ui|+ |∂x∂ui|+ |∂2

x∂ui|
)
≤ C1 + 1. (4.31)
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Consider the L2-energy identity on Ωai,b0,σi associated with the equation satisfied

by ui, ∫
∂Ωai,b0,σ

e−λyEµnµ =

∫
Ωai,b0,σ

∇µ(e−λyEµ), (4.32)

with Eµ given by

Eµ := h(ψi, A
µ(ψi−1)ψi) = −ψµi−1h(ψi, ψi) = −hαβ∂αui ∂βui∇µui−1. (4.33)

On N− = {x = 0} the conormal nµdx
µ satisfies ny = nA = 0, so by (4.19) the boundary

integrand vanishes:

h(ψi, ψi)nµ∇µui−1 = h(ψi, ψi)nx∇xui−1︸ ︷︷ ︸
=0

= 0 on N−.

On N+ the conormal nµdx
µ satisfies nx = nA = 0, so by (4.19) the boundary inte-

grand satisfies

h(ψi, ψi)∇µui−1 nµ|N+ = h(ψi, ψi)∇yui−1 ny|N+ = h(ψi, ψi)g
xy∂xui−1 ny|N+

∼ h(ψi, ψi),

where “f ∼ g” means that the functions f and g are bounded by positive constant

multiples of each other.

On IIσ the conormal n = nµdx
µ is proportional to dx + σdy. Differentiability of the

metric implies that there exists a constant C2 such that, for x > 0,

|gµν(x, ·)− gµν(0, ·)| ≤ C2x.

By definition of ai, on Ωai,b0,0 we have

|∂2
x∂ui| ≤ 1 + C1. (4.34)

Since ui vanishes on N−, so do ∂yui and ∂Aui. Further, from (4.27), ∂x∂yui and ∂x∂Aui
vanish on N− as well and we obtain

|∂Aui|+ |∂yui| ≤ (1 + C1)x2. (4.35)

If we write the conormal nµ to the level sets of IIσi as nµdx
µ = nx(dx+σidy), the above

gives, with nx ≥ δ > 0 and 0 < σi < 1, for any i,

gµνnν∂µui = nx(gµx + σig
µy)∂µui

= nx︸︷︷︸
≥δ

(
( gxx︸︷︷︸
O(x2)≥−CC3x2

+σi g
xy︸︷︷︸
≥c

) ∂xui︸︷︷︸
1+O(x)≥1−(1+C1)x≥1/2

+ (gyx + σig
yy)∂yui + (gAx + σig

Ay)∂Aui︸ ︷︷ ︸
≥−C(1+C1)x2

)
≥ δ

2

(
cσi − CC3x

2︸ ︷︷ ︸
≤CC3aix︸ ︷︷ ︸

≥cσi/2

− 2C(1 + C1)x2︸ ︷︷ ︸
≤2C(1+C1)xai

)
≥ 0 (4.36)

for

x ≤ min

(
1

2(1 + C1)
,

c

2CC3
× σi
ai
,

c

4C(1 + C1)
× σi
ai

)
, (4.37)
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where C1 is as in (4.34) and

C3 = sup |∂2
xg
µν |. (4.38)

Choosing

σi =
ai
2b0

(4.39)

leads to an i-independent bound in (4.37).

The IIσi boundary integral now gives a contribution to the energy identity which we

simply discard, replacing equality by an inequality.

Note that with this choice we have[
0, 1

2ai
]
× [0, b0]× Y ⊂ Ωai,b0,σi ⊂ [0, ai]× [0, b0]× Y. (4.40)

On Iσi the conormal nµdx
µ takes the form nydy, and from (4.18) the boundary

integrand takes the form

e−λb0h(ψi, ψi)∇µui−1 nµ|Iσi = e−λb0h(ψi, ψi)
(
gxy∂xui−1 ny +O(x)

)
|y=b0 ∼ h(ψi, ψi).

As a result we obtain

∀0 ≤ b ≤ b0 E0,λ[ψi, b] ≤ CE0,λ[ψi, 0] +

∫
Ωai,b,σi

∇µ(e−λyEµ), (4.41)

and similarly for higher-order energy inequalities, with

Ek,λ[ψi, b] = e−λb
∑

0≤j+`≤k

∫
[0,ai−σib]×Y

|∇̊qr1 . . . ∇̊qrj ∂
`
xψi|2 dx dµY

= e−λb
∑

0≤`≤k

∫ ai−σib

0

‖∂`xψ(x, b)‖2Hk−`(Y ) dx. (4.42)

A simpler version of the arguments of Section 3 gives the result.

The estimates for v are essentially standard, as we only need to solve for a short-time

in the evolving direction. Should one want to use an iterative argument as in Section 3, we

note that given µ∗ > 0 as in the statement of the theorem we can impose an i-independent

upper bound on the ai’s so that the boundary

{x ∈ [0, a∗], 0 ≤ y ≤ b0 − µ∗x} × Y

gives a nonnegative contribution to the energy identity, and hence is harmless when

considering energy estimates.

4.2. The wave equation in doubly-null coordinates. We are now ready to pass to

the PDE problem. Let W be a vector bundle over M. We will be seeking a section h

of W , defined on a neighborhood of N− and of differentiability class at least C2 there,

such that the following hold:

�gh = H(h,∇h, ·) on I+(N+ ∪N−), (4.43a)

h = h+ on N+, (4.43b)

h = h− on N−, (4.43c)
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with the prescribed fields h±, for some map H, allowed to depend upon the coordinates.

For simplicity we assume H to be smooth in all its arguments, though the results here

apply to maps of finite, sufficiently large, order of differentiability in h and ∇h, and of

Sobolev differentiability in the coordinates: the resulting thresholds can easily be read off

from the conditions set forth in Section 2.

Let (u, v, xA) be a coordinate system as in Section 4.1, and let ω and ` be the vector

fields defined there, with

g(ω, ω) = g(`, `) = 0, g(ω, `) = −2. (4.44)

As already pointed out, ` and ω are determined up to one multiplicative strictly positive

factor,

` 7→ α`, ω 7→ α−1ω, α = α(u, v, xA) > 0. (4.45)

Now, every vector orthogonal to ` is tangent to the level sets of v. Similarly, a vector

orthogonal to ω is tangent to the level sets of u. Hence vectors orthogonal to both have no

u- and v-components in the coordinate system above. We can thus write (Vect{ω, `})⊥ =

Vect{eB : B = 1, . . . , n− 1}, where the eB ’s form an ON-basis of TY . Thus

g(eA, eB) = δAB , and eA = eA
B∂B ⇔ eA

u = 0 = eA
v.

For further purposes, we note that the eA’s are determined up to an O(n−1) rotation:

eA 7→ ωA
BeB , ωA

B = ωA
B(u, v, xC) ∈ O(n− 1) ; (4.46)

this freedom can be used to impose constraints on the projection on Vect{eB : B =

1, . . . , n− 1} of ∇`eA or ∇ωeA.

The inverse metric in terms of this frame reads

g] = − 1
2 (`⊗ ω + ω ⊗ `) +

∑
B

eB ⊗ eB ,

so that the wave operator takes the form

− 1
2∇ω∇` −

1
2∇`∇ω +

∑
C

∇eC∇eC + · · · ,

where “· · · ” denotes first- and zero-derivative terms arising from the precise nature of

the field h. This can be rewritten as

−∇ω∇` +
∑
C

∇eC∇eC − 1
2 [∇`,∇ω] + · · · ,

or

−∇`∇ω +
∑
C

∇eC∇eC − 1
2 [∇ω,∇`] + · · ·

(where the commutator terms can be absorbed in “· · · ” in any case). Setting

ϕ0 = ψ0 = h, ϕA = ψA = eA(h), ϕ+ = ω(h), ψ− = `(h) (4.47)
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leads to the following set of equations:

`(ϕ0) = ψ0,

`(ϕ+)−
∑
C

eC(ψC) = Hϕ+
, (4.48)

`(ϕC)− eC(ψ−) = HϕC ,

ω(ψ−)−
∑
C

eC(ϕC) = Hψ− , (4.49)

ω(ψC)− eC(ϕ+) = HψC ,

ω(ψ0) = ϕ0, (4.50)

where Hϕ+ etc. contain H and all remaining terms that do not involve second derivatives

of h.

This is a first-order system of PDEs in the unknown

f =

(
ϕ

ψ

)
with ϕ =

ϕ0

ϕ+

ϕA

 and ψ =

ψ0

ψ−
ψA

 .

Let us check that it is symmetric hyperbolic, of the form considered in Section 2. We

have

Aµ∇µf = G(f),

or equivalently (
Aµϕϕ Aµϕψ
Aµψϕ Aµψψ

)
∇µ
(
ϕ

ψ

)
=

(
Gϕ
Gψ

)
, (4.51)

with

Auϕϕ = `u · Id, Auϕψ = Auψϕ = Auψψ = 0, (4.52)

Avψψ = ωv · Id, Avϕψ = Avψϕ = Avϕϕ = 0, (4.53)

ABϕψ = ABψϕ = −


0 0 0 . . . 0

0 0 δB1 . . . δBn−1

0 δB1 0 . . . 0
...

...
...

...

0 δBn−1 0 . . . 0

 , (4.54)

ABϕϕ = 0, ABψψ = ωB · Id, (4.55)

Gϕ(ϕ,ψ) =

 ψ0

Hϕ+

HϕC

 , Gψ(ϕ,ψ) =

Hψ−

HψC

ϕ0

 . (4.56)

4.3. The existence theorem. We denote by φ
−

the restriction of a map φ to N− and

by φ
+

to N+.

In order to apply the results of the previous sections to the Cauchy problem (4.43)

we need to show, given smooth data h+ on N+ and h− on N−, how to determine the
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initial data for f on a suitable subset of N+ ∩N−, and that these fields are in the right

spaces. We recall that

TN+ = Vect{`, e1, . . . , en−1} and TN− = Vect{ω, e1, . . . , en−1},

which implies

ω(h)
−

= ω(h−), `(h)
+

= `(h+), eB(h)
±

= eB(h±).

The remaining restrictions `(h)
−

and ω(h)
+

will be determined using the wave equation:

Indeed, considering the restriction of (4.48) to N+ and the restriction of (4.49) to N−

leads to the following, in general nonlinear, transport equations for `(h)
−

and ω(h)
+

:

−ω(`(h)
−

) + gBC
−
∇eB∇eCh− = Hψ−(h−, ∂h−, `(h)

−
, ·),

`(h)
−
|N+∩N− = `(h+)|N+∩N− ,

(4.57)

and

−`(ω(h)
+

) + gBC
−
∇eB∇eCh+ = Hϕ+(h+, ∂h+, ω(h)

+
, ·),

ω(h)
+
|N+∩N− = ω(h−)|N+∩N− .

(4.58)

These are ODEs along the integral curves of the vector fields ω and `.

For every generator, say Γ, of N− let Γ0 be the maximal interval of existence of the

solution of the transport equation (4.58). Thus the set

N−0 =
⋃
Γ

Γ0 ⊂ N−

is the largest subset of N− on which the solution of the transport equation, with the

required data on N− ∩ N+, exists. By lower semicontinuity of the existence time of

solutions of ODEs the set N−0 is an open subset of N−.

The set N+
0 is defined analogously.

Applying the construction of Section 4.1.1 to N−0 ∪ N
+
0 instead of N− ∪ N+, we

obtain a double-null coordinate system (u, v, xA) near N+
0 ∪N

−
0 in which the function v

runs from 0 to ∞ along all generators of N−0 , and the function u runs from 0 to ∞ along

all generators of N+
0 . Theorem 3.9 and Remark 3.12 apply, leading to:

Theorem 4.3. Let ` ≥ (n+ 11)/2. Consider the Cauchy problem (4.43) for a semilinear

system of wave equations, with H = H(h,∇h, ·) of C` differentiability class in all argu-

ments. Without loss of generality we can parameterize N± by [0,∞)× Y , with the level

sets of the first coordinate transverse to the generators of N±. Given the initial data

h± ∈
⋂̀
j=0

Cj([0,∞);H`−j(Y )) (4.59)

denote by

N0 = N+
0 ∪N

−
0 ⊂ N+ ∪N−

the maximal domain of existence on N− ∪ N+ of the transport equations (4.57)–(4.58).

There exists a neighborhood V of N0 and a unique solution h defined there with the

following properties: Reparameterizing the generators of N±0 if necessary, we can obtain



50 4. Application to semilinear wave equations

N±0 ≈ [0,∞) × Y . Then for every i ∈ N there exist ai, bi > 0 such that the set (see

Figure 4.3)

Vi :=
( (

[0, ai]× [0, i]
)
∪
(
[0, i]× [0, bi]

)︸ ︷︷ ︸
=:Ui

)
× Y

is included in V, and we have

h ∈ L∞
(
Ui;H`−2(Y )

)
∩W 1,∞(Ui;H`−3(Y )

)
∩

⋂
0<3j≤`−(n+11)/2

W j+1,∞(Ui;H`−2−3j(Y )
)
⊂ C`1−1,1(Ui × Y ), (4.60)

with the last inclusion holding provided that ` > (n+ 17)/2, with `1 ≥ 1 being the largest

integer such that ` − 3`1 > (n+ 11)/2. The solution depends continuously on the initial

data, and is smooth if the initial data are.

Fig. 4.3. The neighborhood V of N

Remark 4.4. Condition (4.59) will hold for h± ∈ C`([0,∞)× Y ).

Remark 4.5. An obvious analogue of Remark 3.8 concerning further regularity of h

applies.
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In this section we will show that our existence theorems above can be used (in a somewhat

indirect manner) to establish neighborhood theorems for both the Einstein equations with

suitable sources and the Friedrich conformal vacuum Einstein equations.

One could try to analyse whether the harmonic coordinate reduction of Einstein

equations leads to equations with a nonlinearity structure to which Theorem 3.9 applies.

Here a problem arises, because our iteration scheme requires a doubly-null decomposition

of the principal symbol of the wave equation, which is the wave operator. This in turn

requires going to harmonic coordinates, but those lead to a loss of derivative of the

coefficients. It is conceivable that this can be overcome, but it appears simpler to work

directly in a formalism where the doubly-null decomposition of the equation is built-

in from the outset, namely the Newman–Penrose–Friedrich–Christodoulou–Klainerman–

Nicolò equations. We will show that this decomposition fits indeed in our set-up.

We use the conventions and notation of [11]. For the convenience of the reader we

include in Appendix A.1 a shortened version of a section in [11] which introduces the

relevant formalism.

5.1. The Einstein vacuum equations. We start with the vacuum Einstein equations,

which we write as a set of equations for a tetrad eq = eq
µ∂µ, for the related connection

coefficients defined as

∇iej = Γi
k
jek, (5.1)

and for the tetrad components dijk` of the Weyl tensor. We assume that the scalar

products gij := g(ei, ej) are point-independent, with the matrix gij having Lorentzian

signature. We require that ∇ is g-compatible, which is equivalent to

Γijk = −Γikj , where Γijk := gj`Γi
`
k. (5.2)

Consider the set of equations due to Friedrich (see [26] and references therein)

[ep, eq] = (Γp
l
q − Γq

l
p) el, (5.3a)

ep(Γq
i
j)− eq(Γp i j)− 2 Γk

i
j Γ[p

k
q] + 2 Γ[p

i
|k|Γq]

k
j

= di jpq + δi[pRq]j − gj[pRq]
i +

R

3
gj[pδ

i
q], (5.3b)

Did
i
jkl = Jjkl. (5.3c)

Equation (5.3a) says that Γ has no torsion. Recall that we have assumed that the Γijk’s

are anti-symmetric in the last two indices; together with (5.3a) this implies that Γ is the

Levi-Civita connection of g. We will assume that dijkl has the symmetries of the Weyl

[51]



52 5. Einstein equations

tensor; then the left-hand side of (5.3b) is simply the definition of the curvature tensor

of the connection Γ, with dijkl being the Weyl tensor, Rij being the Ricci tensor and R

the Ricci scalar.

In vacuum (Rij ≡ λgij for some constant λ), (5.3c) with Jjkl ≡ 0 follows from the

Bianchi identities for the curvature tensor.

As shown by Friedrich [21, Theorem 1] (compare [35]), every solution of (5.3) with

Jjkl ≡ 0 satisfying suitable constraint equations on the initial data surface is a solution

of the vacuum Einstein equations.

In Section 5.2 below we will consider a class of nonvacuum Einstein equations, in

which case we will complement the above with equations for further fields satisfying

wave equations, and then Rij and Jjkl in (5.3) will be viewed as prescribed functions of

the remaining fields, their first derivatives, the tetrad, the Christoffel coefficients, and the

dijkl’s, as determined from the energy-momentum tensor of the matter fields.

We would like to apply Theorem 3.9 to the problem at hand. The first step is to show

that we can bring a subset of (5.3) to the form needed there. This will be done using the

frame formalism of Christodoulou and Klainerman, as described in Appendix A.1.

Before pursuing, we will need to reduce the gauge freedom available. For this we need

to understand what conditions can be imposed on coordinates and frames without losing

generality.

Given a metric g, we have seen in Section 4 how to construct a coordinate system

(u, v, xA) and vector fields ei, i = 1, . . . , 4, with e3 proportional to the vector field `

constructed there, and e4 proportional to ω there, so that the metric takes the form

(A.1) below, with

e3 = ∂u, e4 = e4
v∂v + e4

A∂A. (5.4)

With this choice of tetrads ei = ei
µ∂µ, (5.3a) becomes an evolution equation for the

tetrad coefficients ei
µ:

[e3, ei] = ∂uei
µ∂µ = (Γ3

l
i − Γi

l
3) el. (5.5)

By construction, the ∂uea’s have no u and v components, which gives the identities

0 = Γ3
3
a − Γa

3
3 = Γ3

4
a − Γa

4
3︸ ︷︷ ︸

=0

. (5.6)

Equivalently, in the notation of Appendix A.1,

ηa = ζa, ξ
a

= 0. (5.7)

Similarly, ∂ue4 has no u component, which implies

0 = Γ3
3

4︸ ︷︷ ︸
=0

−Γ4
3

3 ⇔ υ = 0. (5.8)

Next, the vector fields ea, a = 1, 2, are determined up to rotations in the planes

Vect{e1, e2}, and we can get rid of this freedom by imposing

Γ3
a
b = 0. (5.9)

By construction, the integral curves of the vector fields e3 and e4 are null geodesics,

though not necessarily affinely parameterized:

∇e3e3 ∼ e3, ∇e4e4 ∼ e4. (5.10)
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In this gauge, using the notation of Appendix A.1 (see (A.8f)), we have

Γ3
a

3 = 0 = Γ4
a

4 ⇔ ξa = 0 = ξa. (5.11)

The vanishing of the rotation coefficients just listed allows us to get rid of the second

term in some of the combinations

e3(Γq
i
j)− eq(Γ3

i
j)

appearing in (5.3b). In this way, we can algebraically determine

∂uΓq
a

3 and ∂uΓq
a
b

in terms of the remaining fields appearing in (5.3b). Similarly,

e4(Γq
a

4)− eq(Γ4
a

4) = e4(Γq
a

4), e4(Γq
3

3)− eq(Γ4
3

3) = e4(Γq
3

3),

which gives equations for e4(Γq
a

4) and e4(Γq
3

3).

In view of (5.7) and the symmetries of the Γi
j
k’s, all the nonvanishing connection

coefficients satisfy ODEs along the integral curves of e3 = ∂u or of e4.

The analysis of the divergence equation (5.3c) in Appendix A.1 leads in vacuum to

the following two collections of fields:

ϕ = (ei,Γi
a
b,Γi

a
3, α, β̊, ρ, σ, β̊), (5.12)

ψ = (Γi
a

4,Γi
3
3, β, σ̊, ρ̊, β, α), (5.13)

with the gauge conditions just given,

e3
u = 1, 0 = e3

v = e3
A = e4

u = ea
u = ea

v,

Γ3
3
a = Γa

3
3, 0 = Γ3

a
3 = Γ4

i
4 = Γ3

a
b, (5.14)

to which Theorem 3.9 and Remark 3.12 apply. This will be used to establish our main re-

sult for the vacuum Einstein equations. However, before stating the theorem, an overview

of some initial value problems for the vacuum Einstein equations is in order.

As discussed in detail in [12], the characteristic initial data for the vacuum Einstein

equations on each of the hypersurfaces N± consist of a symmetric tensor field g̃ with sig-

nature (0,+, . . . ,+), so that the integral curves of the kernel of g̃ describe the generators

of N±. To the tensor field g̃ one needs to add a connection κ on the bundle of tangents

to the generators. In a coordinate system (r, xA) on N such that ∂r is tangent to the

generators we have ∇∂r∂r = κ∂r. The fields g̃ and κ are not arbitrary, but are subject to

a constraint, the Raychaudhuri equation. If we write

g̃ = gAB(r, xC)dxAdxB (5.15)

and, in dimension n+ 1, we set

τ = 1
2g
AB∂rgAB , σAB = 1

2∂rgAB −
1
2τgAB , (5.16)

then, in vacuum, the Raychaudhuri constraint equation reads

∂rτ − κτ + |σ|2 +
τ2

n− 1
= 0. (5.17)

Here it is appropriate to mention the alternative approach of Rendall [38], where one

prescribes the conformal class of g̃ and one solves (5.17) for the conformal factor, after

adding the requirement that κ vanishes identically. Thus, in Rendall’s scheme the starting
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point is an initial data symmetric tensor field γ = γAB(r, xC)dxAdxB which is assumed

to form a one-parameter family of Riemannian metrics r 7→ γ(r, xA) on the level sets

of r, all assumed to be diffeomorphic to a fixed (n − 1)-dimensional manifold Y . The

conformal factor Ω relating g̃ and the initial data γ, gAB = Ω2γAB can be written as

Ω = ϕ

(
det s

det γ

)1/(2n−2)

, (5.18)

where s = sAB(xC)dxAdxB is any r-independent convenient auxiliary metric on the

surfaces r = const. Note that the field σAB defined in (5.16) is independent of ϕ, thus is

defined uniquely by the representative γ of the conformal class of g̃. One has

τ = (n− 1)∂r logϕ, (5.19)

which allows one to rewrite (5.17) as a second-order linear ODE:

∂2
rϕ− κ∂rϕ+

|σ|2

n− 1
ϕ = 0. (5.20)

In this case, after solving (5.20), one has to replace the initial hypersurface by its subset

on which ϕ > 0.

Recall next that, again in the approach of Rendall (compare [7]), the remaining metric

functions on N are obtained by solving linear ODEs along the generators of N . One

could then worry that the requirement that the resulting tensor has Lorentzian signature

might lead to the need of passing to a further subset of N . This is indeed the case in

the original formulation of [38], but the problem disappears when handled appropriately,

as it can be reformulated in such a way that the remaining metric functions are freely

prescribable [12].

We finally note that the characteristic data on each of N± have to be complemented

by certain data on N+∩N−, the precise description of which is irrelevant here; the reader

is referred to [7, 12,38] for details.

To continue, it is useful to summarize some known results about Cauchy problems for

the Einstein equations:

Theorem 5.1 (Rendall). Given smooth characteristic vacuum initial data on N =

N+ ∪ N−, complemented by suitable data on Y := N+ ∩ N−, there exists a unique,

up to isometry, vacuum metric defined in a future neighborhood of N+ ∩ N−, as shown

in Figure 5.1.

Fig. 5.1. The guaranteed domain of existence of the solution in Rendall’s theorem
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The following result is standard:

Theorem 5.2. Given smooth vacuum initial data on a spacelike hypersurface Σ with

nonempty boundary ∂Σ there exists a unique, up to isometry, vacuum metric defined in

a future neighborhood of Σ, bounded near ∂Σ by smooth null “ingoing” hypersurfaces

orthogonal to ∂Σ, as shown in Figure 5.2.

Fig. 5.2. The guaranteed future domain of existence of the solution with initial data on a hy-
persurface with boundary

One has of course a similar domain of existence to the past of Σ, but this is irrelevant

for our purposes.

From Theorems 5.1 and 5.2 one easily obtains existence of solutions of the mixed

Cauchy problems illustrated in Figures 5.3 and 5.4.

Fig. 5.3. The guaranteed domain of existence of solutions of a mixed Cauchy problem with
a “left” boundary and a characteristic initial data hypersurface emanating normally from the
“right” boundary

Fig. 5.4. The guaranteed domain of existence of solutions of a mixed Cauchy problem with
characteristic initial data hypersurfaces emanating normally from the boundaries of a spacelike
hypersurface

We are now ready to turn to our main result, which for simplicity we state for smooth

metrics. The interested reader can chase the losses of differentiability which arise at

various steps of the proof to obtain the corresponding theorem with initial data of finite

Sobolev differentiability (cf. [33]):

Theorem 5.3. For any set of smooth characteristic initial data for the vacuum Einstein

equations on two transversely intersecting null hypersurfaces N := N+ ∪N− there exists
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a smooth vacuum metric defined in a future neighborhood U of N . The solution is unique

up to diffeomorphism when U is appropriately chosen and when appropriate initial data

on N+ ∩N− are given.

Proof. As shown in Section 4.1.1, without loss of generality we can parameterize each of

N± as [0,∞)× Y . Symmetry under interchange of u and v, together with the argument

presented in Remark 3.12, shows that it suffices to establish that given b0 > 0 there

exists a∗ > 0 and a solution of the vacuum Einstein equations defined in a doubly-null

coordinate system covering the set [0, a∗]× [0, b0]× Y .

Theorem 3.9 shows indeed that there exists such a constant a∗ and a set of fields

(5.12)–(5.13) solving the equations described above with the initial data determined

from the general relativistic initial data by a standard procedure. The theorem would

immediately follow if one knew that every resulting set of fields (5.12)–(5.13) provides a

solution of the Einstein equations. While we believe that this is the case, such a direct

proof would require a considerable amount of work. Fortunately one can proceed in a less

work-intensive manner, adapting the idea of Luk [33] to use the function u+ v as a tool

to “build up” the solution:

Let U be any maximal domain of existence of a solution of the vacuum Einstein

equations assuming the given initial data. (Note that the question whether a unique such

maximal domain exists is irrelevant for our purposes.) As explained in Section 4.1, there

exists a neighborhood V0 of N in U on which we can introduce a coordinate system

(u, v, xA) comprising a pair of null coordinates u and v. On V0 define

t := u+ v; (5.21)

then ∇t is timelike, and hence the level sets of t are spacelike.

Define

t∗ := sup
{
t : the coordinates u and v cover the set

([0, a∗]× [0, b0]) ∩ {u+ v < t}
}
. (5.22)

It follows from Theorem 5.1 that t∗ > 0.

On the set (
([0, a∗]× [0, b0]) ∩ {u+ v < t∗}

)
× Y (5.23)

we have a solution of the vacuum Einstein equations, and therefore corresponding fields

(ϕ,ψ) as in (5.12)–(5.13) calculated from the vacuum metric, with β̊ = β, β̊ = β, σ̊ = σ,

and ρ̊ = ρ. Let us denote those fields by (ϕE , ψE). But on this set we also have a smooth

solution (ϕ,ψ) of the equations described in Appendix A.1, with initial data calculated

from the solution of the Einstein equation. Since both fields satisfy the same system of

equations and have identical initial data, uniqueness gives

(ϕ,ψ) = (ϕE , ψE).

Suppose that t∗ < a∗, as shown in Figure 5.5. Since (ϕ,ψ) extend smoothly to the

boundary t = t∗, so do (ϕE , ψE). The pair (ϕE , ψE) at t = t∗ can be used to determine

smooth Cauchy data for the vacuum Einstein equations for a Cauchy problem as shown in

Figure 5.4. The solution of this Cauchy problem allows us to extend the solution beyond

t = t∗, contradicting the fact that t∗ was maximal.
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Fig. 5.5. The case a∗ > t∗

The hypothesis that a∗ ≤ t∗ ≤ b0 leads to a contradiction by an identical argument,

using instead the Cauchy problem illustrated in Figure 5.3; see Figures 5.6 and 5.7.

Fig. 5.6. The case a∗ = t∗

Fig. 5.7. The case a∗ < t∗ < b0

The hypothesis that b0 ≤ t∗ < a∗ + b0 (see Figure 5.8) leads to a contradiction by an

identical argument, using Theorem 5.2; compare Figure 5.2.

Hence t∗ = a∗ + b0, and the result is established.
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Fig. 5.8. The case a∗ < t∗ = b0

5.2. Einstein equations with sources satisfying wave equations. The analysis

of the previous section generalizes immediately to Einstein equations with matter fields

satisfying wave equations, such as the Einstein-scalar field system or the Einstein–Yang–

Mills–Higgs equations. More generally, consider a system of equations of the form

Rµν −
R

2
gµν = Tµν , Tµν = Tµν(Φ, ∂Φ, g, ∂g), (5.24)

with ∇µTµν = 0 whenever the matter fields Φ satisfy a set of wave equations of the form

�gΦ = F (Φ, ∂Φ, g, ∂g). (5.25)

As explained in Section 4.1, one can obtain a doubly-null system of equations from (5.25).

The Einstein equations (5.24) are treated as in the vacuum case, with nonzero source

terms Jijk in the Bianchi equations determined by the matter fields. This leads to an

obvious equivalent of Theorem 5.3; the reader should have no difficulties formulating a

precise statement.

5.3. Friedrich’s conformal equations. Let g̃ be the physical space-time metric (not

to be confused with the initial data tensor field of (5.15)), let Ω be a function and let g =

Ω2g̃ be the unphysical conformally rescaled counterpart of g̃. (To make easier reference

to [21, 22, 24, 25], throughout this section the symbol g denotes the unphysical metric.)

Consider any frame field ek = eµ k ∂xµ such that the g(ei, ek) ≡ gik’s are constants, with

i, k, etc. running from 0 to 3. Using the Einstein vacuum field equations, Friedrich [21,22]

has derived a set of equations for the fields

eµ k, Γi
j
k, di jkl = Ω−1 Ci jkl, Lij = 1

2 Rij −
1
12 Rgij ,

Ω, s = 1
4∇i∇

iΩ + 1
24 RΩ,

where Γi
j
k denotes the Levi-Civita connection coefficients in the frame ek, ∇iek =

Γi
j
kej , while Ci jkl, Rij , and R stand respectively for the Weyl tensor, the Ricci tensor,
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and the Ricci scalar of g. Friedrich’s “conformal field equations” read

[ep, eq] = (Γp
l
q − Γq

l
p) el, (5.26a)

ep(Γq
i
j)− eq(Γp i j)− 2 Γk

i
j Γ[p

k
q] + 2 Γ[p

i
|k|Γq]

k
j

= 2 gi [p Lq]j − 2 gik gj[p Lq]k + Ω di jpq, (5.26b)

∇idi jkl = 0, (5.26c)

∇iLjk −∇jLik = ∇lΩ dl kij , (5.26d)

∇i∇jΩ = −ΩLij + sgij , (5.26e)

∇is = −Lij∇jΩ, (5.26f)

6Ωs− 3∇jΩ∇jΩ = 0. (5.26g)

The first equation expresses the fact that the Levi-Civita connection is torsion-free; the

second is the definition of the Riemann tensor; the third is the Bianchi identity assuming

that g̃ is Ricci flat. The remaining equations are obtained by algebraic manipulations

from the vacuum Einstein equations, using the conformal transformation laws for the

various objects at hand. In regions where Ω > 0 the system is equivalent to the vacuum

Einstein equations [21,22].

We have seen in Section 5.1 how to bring (5.26a)–(5.26c) to a form to which Theo-

rem 3.9 applies. It remains to provide equations for the fields Lij , s and Ω. For this we

can use a subset of the wave equations derived in [35]:

�gLij = 4LikLj
k − gij |L|2 − 2Ωdimj

`L`
m + 1

6∇i∇jR, (5.27)

�gs = Ω|L|2 − 1
6∇kR∇

kΩ− 1
6sR, (5.28)

�gΩ = 4s− 1
6ΩR, (5.29)

with the conformal gauge R = 0. In order to control the first derivatives of the Christoffel

symbols that appear in �gLij we add to the above set of equations the set of equations

obtained by differentiating (5.26a)–(5.26c) with respect to all coordinates. This collection

of fields will be referred to as Friedrich’s fields.

The wave equations (5.27)–(5.29) are rewritten as a doubly-null system as in Section 4,

upon noting that the inverse metric gµν = gijeµie
ν
j is directly in a doubly-null form by

construction. This leads to a system of equations to which Theorem 3.9 applies provided

that the initial data have the properties required there.

For this, we will assume that the characteristic initial data on two transversely inter-

secting null hypersurfaces N := N+ ∪ N− are smoothly conformally extendable across

a boundary at infinity. The reader is referred to [14,36] for a detailed description of this

class of initial data.

Given such initial data, we can use Theorem 5.1 to solve the Einstein equations to

the future of N . The solution can be used to provide the initial data for Friedrich’s

collection of fields just described on N . We can then extend the resulting initial data to

a hypersurface which extends beyond the conformal boundary at infinity. Theorem 3.9

guarantees the existence of a uniform neighborhood of the extended hypersurface and

a smooth solution of the Friedrich fields there. An argument identical to the one in the
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proof of Theorem 5.1 shows that the solution of the Einstein equations exists on a uniform

neighborhood of N in the region where Ω > 0. This leads to:

Theorem 5.4. For any set of characteristic initial data for the vacuum Einstein equa-

tions on two transversely intersecting null hypersurfaces N := N+ ∪ N− which are

smoothly conformally extendable across a boundary at infinity, there exists a smooth vac-

uum metric defined in a future neighborhood U of N such that the resulting space-time

has a smooth nonempty conformal boundary at null infinity. The solution is unique up

to diffeomorphism when U is appropriately chosen and when appropriate initial data on

N+ ∩N− are given.

An identical theorem applies to initial data given on a null cone. When the initial

data are sufficiently near to the Minkowskian ones, all causal geodesics will be future

complete in the resulting vacuum space-time, with the null geodesics acquiring an end

point on a conformal boundary at null infinity.



Appendix
Doubly-null decompositions of the vacuum Einstein equations

The material in this appendix follows closely the presentation in [11].

A.1. Connection coefficients in a doubly-null frame. Consider any field of vec-

tors ei, i = 1, . . . , 4, such that

(gij) := (g(ei, ej)) =

δab 0 0

0 0 −2

0 −2 0

 , (A.1)

where indices i, j etc. run from 1 to 4, while indices a, b etc. run from 1 to 2. One therefore

has

(gij) := g(θi, θj) =

δab 0 0

0 0 −1/2

0 −1/2 0

 ,

where θi is a basis of T ∗M dual to ei. If αi, i = 1, . . . , 4, is a usual Lorentzian orthonormal

basis of TM,

g(αi, αj) = ηij = diag(+1,+1,+1,−1),

then a basis ei as above can be constructed by setting

ea = αa, e3 = α3 + α4, e4 = α4 − α3.

Let Volg be the Lorentzian volume element of g, with the associated completely anti-

symmetric tensor εijkl:

Volg = β1 ∧ β2 ∧ β3 ∧ β4 =
1

4!
εijkl β

i ∧ βj ∧ βk ∧ βl,

where βi is a dual basis to αj . We have θ3 = (β3 +β4)/2, θ4 = (β4−β3)/2, β3 = θ3− θ4,

β4 = θ3 + θ4, hence

Volg = 2θ1 ∧ θ2 ∧ θ3 ∧ θ4 =
1

4!
εijkl θ

i ∧ θj ∧ θk ∧ θl.

It follows that in the basis ei the entries of the ε tensor are zeros, twos, and their negatives:

ε1234 = 2. (A.2)

We let

S = Vect({e1, e2}),

where Vect(X) denotes the vector space spanned by the elements of the set X.

[61]
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For any connection D we define the connection coefficients Γi
j
k by

Γi
j
k := θj(Deiek),

so that

Deiek = Γi
j
kej .

The connection D has no torsion if and only if

Deiek −Dekei = [ei, ek],

and it is metric compatible if and only if

Digjk ≡ (Deig)(ej , ek) = −Γijk − Γikj = 0. (A.3)

Here and elsewhere,

Γijk := gjmΓi
m
k.

The null second fundamental forms of a codimension two submanifold S are the two

symmetric tensors on S defined as (1)

χ(X,Y ) = g(DXe4, Y ), χ(X,Y ) = g(DXe3, Y ), (A.4)

where D is the Levi-Civita connection of (M, g), while X,Y are tangent to S. The torsion

of S is a 1-form on S, defined for vector fields X tangent to S by

ζ(X) = − 1
2g(DXe3, e4) = 1

2g(DXe4, e3). (A.5)

In the definitions above it is also assumed that e3 and e4 are normal to S, so that S
coincides, over S, with the distribution TS of the planes tangent to S. (Throughout, the

indices are raised and lowered with the metric g.)

Following (2) Klainerman and Nicolò, we use the following labeling of the remaining

Newman–Penrose coefficients associated with the frame fields ei:

ξa = 1
2g(D̂e4e4, ea), (A.6a)

ξ
a

= 1
2g(D̂e3e3, ea), (A.6b)

ηa = − 1
2g(D̂e3ea, e4) = 1

2g(D̂e3e4, ea), (A.6c)

η
a

= − 1
2g(D̂e4ea, e3) = 1

2g(D̂e4e3, ea), (A.6d)

2ω = − 1
2g(D̂e4e3, e4), (A.6e)

2ω = − 1
2g(D̂e3e4, e3), (A.6f)

2υ = − 1
2g(D̂e3e3, e4), (A.6g)

2υ = − 1
2g(D̂e4e4, e3). (A.6h)

(1) Those objects are only defined up to an overall multiplicative function, related to the
possibility of rescaling the null vector fields e3 and e4; some definite choices of this scale will be
made later.

(2) We are grateful to S. Klainerman and F. Nicolò for making their TEX files available to us.
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(The principle that determines which symbols are underlined, and which are not, should

be clear from equations (A.8) below: all the terms on the right-hand sides of those equa-

tions have a coefficient of e4 which is underlined.) The above definitions, together with

the properties of the connection coefficients Γijk, imply the following:

χab = Γab4 = −Γa4b = 2Γa
3
b = −2Γab

3, (A.7a)

χ
ab

= Γab3 = −Γa3b = 2Γa
4
b = −2Γab

4, (A.7b)

ζa = Γa
3
3 = − 1

2Γa43 = Γa4
4, (A.7c)

ζ
a

= Γa
4
4 = − 1

2Γa34 = −Γa3
3, (A.7d)

ξa = Γ4
3
a = −Γ4a

3 = 1
2Γ4a4 = − 1

2Γ44a, (A.7e)

ξ
a

= Γ3
4
a = −Γ3a

4 = 1
2Γ3a3 = − 1

2Γ33a, (A.7f)

ηa = Γ3
3
a = − 1

2Γ34a = 1
2Γ3a4 = −Γ3a

3, (A.7g)

η
a

= Γ4
4
a = − 1

2Γ43a = 1
2Γ4a3 = −Γ4a

4, (A.7h)

2ω = Γ4
3
3 = − 1

2Γ443 = Γ44
4, (A.7i)

2ω = Γ3
4
4 = − 1

2Γ334 = Γ33
3, (A.7j)

2υ = Γ3
3
3 = − 1

2Γ343 = Γ34
4, (A.7k)

2υ = Γ4
4
4 = − 1

2Γ434 = Γ43
3. (A.7l)

This leads to

Daeb = ∇/aeb + 1
2χabe3 + 1

2χabe4, (A.8a)

D3ea = ∇/3ea + ηae3 + ξ
a
e4, (A.8b)

D4ea = ∇/4ea + η
a
e4 + ξae3, (A.8c)

Dae3 = χa
beb + ζae3, (A.8d)

Dae4 = χa
beb + ζ

a
e4, (A.8e)

D3e3 = 2ξaea + 2υe3, (A.8f)

D4e4 = 2ξaea + 2υe4, (A.8g)

D4e3 = 2ηbeb + 2ωe3, (A.8h)

D3e4 = 2ηbeb + 2ωe4. (A.8i)

Here and elsewhere, ∇/aeb, ∇/3ea and ∇/4ea are defined as the orthogonal projection of

the left-hand side of the corresponding equation to S. We stress that no simplifying

assumptions have been made concerning the nature of the vector fields ea, except for the

orthonormality relations (A.1).

A.2. The double-null decomposition of Weyl-type tensors. Let dijkl be any tensor

field with the symmetries of the Weyl tensor,

dijkl = dklij , dijkl = −djikl, gjkdijkl = 0, di[jkl] = 0. (A.9)
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We decompose dijkl into its null components, relative to the null pair {e3, e4}, as follows:

α(d)(X,Y ) = d(X, e3, Y, e3), α(d)(X,Y ) = d(X, e4, Y, e4), (A.10a)

β(d)(X) = 1
2d(X, e3, e3, e4), β(d)(X) = 1

2d(X, e4, e3, e4), (A.10b)

ρ(d) = 1
4d(e3, e4, e3, e4), σ(d) := ρ(?gd) = 1

4
?gd(e3, e4, e3, e4), (A.10c)

where X,Y are arbitrary vector fields orthogonal to e3 and e4, while ?g denotes the

space-time Hodge dual with respect to the first two indices of dijkl:

?gdijkl = 1
2εij

mndmnkl. (A.11)

The fields α and α are symmetric and traceless. From equations (A.10) one finds

da3b3 = αab, da4b4 = αab, (A.12a)

da334 = 2β
a
, da434 = 2βa, (A.12b)

d3434 = 4ρ, dab34 = 2σεab, (A.12c)

dabc3 = εab
?β

c
, dabc4 = −εab ?βc, (A.12d)

da3b4 = −ρδab + σεab, dabcd = −ρεabεcd, (A.12e)

where

ε12 = −ε21 = 1, ε11 = ε22 = 0. (A.13)

Further, ? denotes the Hodge dual on S with respect to the metric induced by g on S:

?βa = εa
bβb. (A.14)

A.3. The double-null decomposition of the Bianchi equations. Recall the second

Bianchi identity for the Levi-Civita connection D,

DiRjk`m +DjRki`m +DkRij`m = 0. (A.15)

Contracting i with m one obtains

DiRjk`
i +DjRk` −DkRj` = 0. (A.16)

Inserting into this equation the expression for the Riemann tensor in terms of the Weyl

and Ricci tensors,

Rjk`
i[g] = Wjk`

i + 2(g`[jLk]
i − δi[jLk]`), (A.17)

where

Lij := 1
2Rij −

1
12Rgij , (A.18)

we obtain

DiW
i
jk` = Jjk`, (A.19)

where

Jjkl = D[jRk]` − 1
6g`[kDj]R. (A.20)

Here and elsewhere, square brackets around a set of ` indices denote antisymmetrization

with a multiplicative factor 1/`!.
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Recall that the dual ?gW i
jk` of W i

jk` is defined as

?gWijk` := 1
2εijmnW

mn
k`.

The well-known identity

εijmnW
mn

k` = εk`mnW
mn

ij ,

together with (A.19), leads to

Di
?gW i

jk` = ?gJjk`, (A.21)

where
?gJjmn := 1

2εmn
k`Jjk` = 1

2εmn
k`(D[jRk]` − 1

6g`[kDj]R). (A.22)

Equations (A.19) and (A.21) are often referred to as the Bianchi equations.

We use, as in Section A.2, the symbol dijkl for the Weyl tensor Wijkl. In vacuum,

(A.19) becomes

Di(g
imdmjkl) = gimDidmjkl = 0. (A.23)

Equation (A.23) with k = 3 and k = 4 implies

D3d43kl = 2habDadb3kl − 2J3kl, (A.24a)

D4d34kl = 2habDadb4kl − 2J4kl, (A.24b)

which will give equations for β, β, σ and ρ; we use the symbol h to denote the metric

induced on S by g: for all X,Y ∈ TM,

h(X,Y ) = g(X,Y ) + 1
2g(e3, X)g(e4, Y ) + 1

2g(e4, X)g(e3, Y ). (A.25)

The equations for αab and αab can be obtained from

Did
i
ab4 = Jab4. (A.26)

For any tensor field Tab we denote by Tab the symmetric traceless part of Tab, and by

trT its trace. As already pointed out, we set

∇/3βa := e3(βa)− Γ3
b
aβb, (A.27)

∇/3αab := e3(αab)− Γ3
c
aαcb − Γ3

c
bαac. (A.28)

Following Christodoulou and Klainerman [8], we use the notation η ⊗s β for twice the

trace-free symmetric tensor product of vectors,

(X ⊗s Y )ab = XaY b +XbY a − gabXcY
c, (A.29)

and similarly for covectors. We let ∇/ be the orthogonal projection on S of the relevant

covariant derivatives in directions tangent to S, e.g.

∇/aeb = Γa
c
bec. (A.30)

Tedious but otherwise straightforward calculations allow one to obtain the equations

satisfied by the tensor field d, listed out as (A.34) below. A useful symmetry principle,
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which allows one to reduce the number of calculations by half, is to note that under

the interchange of e3 with e4 the underlined rotation coefficients in (A.7) are exchanged

with the nonunderlined ones. On the other hand, the null components of the tensor d

transform as follows:

α↔ α, ρ↔ ρ, β ↔ −β, σ ↔ −σ. (A.31)

A convenient identity in the relevant manipulations is

∇/cεab = −2fcεab = −(ζc + ζ
c
)εab, (A.32)

as well as

∇/cεab = 0. (A.33)

The dynamical equations obtained by the doubly-null decomposition of equation

(A.19) read (3):

∇/4α = − 1
2 trχα−∇/ ⊗s β + (2ω − 2υ)α

− 3(χρ− ?χσ)− (4η − ζ)⊗s β + 2J(·, ·, e3), (A.34a)

∇/3β = −2 trχβ − div/ α+ 2υβ − α · (η − 2ζ) + 3(−ξρ+ ?ξσ)

− J(e3, ·, e3), (A.34b)

∇/4β = − trχβ −∇/ ρ+ ?∇/ σ + 2χ · β + 2ωβ + 3(−ηρ+ ?ησ)

+ (ζ + ζ)ρ− (?ζ + ?ζ)σ − ξ · α+ J(e4, e3, ·), (A.34c)

D̂3ρ = − 3
2 trχρ− div/ β − 1

2χ · α+ (2ζ + ζ − 2η) · β
+ 2ξ · β + 4(υ + ω)ρ+ 1

2J334, (A.34d)

D̂4ρ = − 3
2 trχρ+ div/ β − 1

2χ · α− (2ζ + ζ − 2η) · β
− 2ξ · β + 4(υ + ω)ρ+ 1

2J443, (A.34e)

D̂3σ = − 3
2 trχσ − div/ ?β + 2(ω + υ)σ − 1

2
tχ · ?α− 2ξ · ?β

+ (ζ + 2ζ − 2η) · ?β − 1
2a(J(e3, ·, ·)), (A.34f)

D̂4σ = − 3
2 trχσ − div/ ?β + 2(ω + υ)σ + 1

2
tχ · ?α− 2ξ · ?β

+ (ζ + 2ζ − 2η) · ?β − 1
2ε
abJ4ab, (A.34g)

∇/3β = − trχβ +∇/ ρ+ ?∇/ σ + 2χ · β + 2ωβ + 3(ηρ+ ?ησ)

− (ζ + ζ)ρ− (?ζ + ?ζ)σ + ξ · α− J(e3, e4, ·), (A.34h)

∇/4β = −2 trχβ + div/ α+ 2υβ + α · (η − 2ζ) + 3(ξρ+ ?ξσ)

− J(e4, ·, e4), (A.34i)

∇/3α = − 1
2 trχα+∇/ ⊗s β + (2ω − 2υ)α

− 3(χρ+ ?χσ) + (4η − ζ)⊗s β + 2J(·, ·, e4). (A.34j)

(3) Equations (A.34) are essentially a subset of the Newman–Penrose equations written out in
a tensor formalism. The equations in [8] or in [31] can be obtained from (A.34) by specialization
and straightforward changes of notation. We have corrected some inessential misprints in the
equations of [31].
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For the convenience of the reader we give a summary of the notation used: The operators

∇/4 and ∇/3 are defined as the orthogonal projections on S of the D-covariant derivatives

along the null directions e3 and e4, e.g.

∇/3ea = Γ3
b
aeb, ∇/4ea = Γ4

b
aeb.

In particular

∇/3ρ = D̂3ρ = e3(ρ), ∇/3σ = D̂3σ = e3(σ),

etc., with ∇/3β and ∇/3αab written out explicitly in equations (A.27) and (A.28). Next,

the ∇/a’s are differential operators in directions tangent to S defined as the orthogonal

projection on S of the relevant covariant derivatives in directions tangent to S (cf. (A.30)).

We use the symbol div/ to denote the “S-divergence” operator: if X = Xaea and Y =

Y abea ⊗ eb then

div/ X = ∇/aXa, div/ Y = (∇/aY ab)eb.

We have also set
tχab = χba.

Next, a bar over a valence-two tensor denotes its symmetric traceless part, e.g.

χ
ab

= 1
2{χab + χba − gcdχcdgab},

while, for any two-index tensor χab,

a(χ) = εabχab.

To avoid ambiguities, we emphasize that in equations (A.34) the free slot in J , whenever

occurring, refers to vectors in S, in particular

a(J(e4, ·, ·)) := εabJ4ab, a(J(e3, ·, ·)) := εabJ3ab.

Finally the symbol ⊗s has been defined in (A.29).

A.4. Bianchi equations and symmetric hyperbolic systems. Let us now turn to a

specific null reformulation of the equations at hand. Let α, β, etc. be the null components

of d, and for reasons which will become apparent below introduce

β̊ := β, β̊ := β, (A.35a)

σ̊ := σ, ρ̊ := ρ. (A.35b)

A convenient doubly-null form of equations (A.34) is obtained, in vacuum, by rewriting

(A.34) using (A.35) as follows (4):

∇/4α+ 1
2 trχα = −∇/ ⊗s β + (2ω − 2υ)α− 3(χρ− ?χσ)

− (4η − ζ)⊗s β + 2J(·, ·, e3), (A.36a)

∇/3β + 2 trχβ = −div/ α+ 2υβ − α · (η − 2ζ) + 3(−ξρ+ ?ξσ)

− J(e3, ·, e3), (A.36b)

(4) There is a certain amount of freedom which undifferentiated terms on the right should
be decorated with “◦”’s, which is irrelevant for our purposes in this work.
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∇/4β̊ + trχβ̊ = −∇/ ρ̊+ ?∇/ σ̊ + 2χ · β + 2ωβ̊ + 3(−ηρ̊+ ?ησ̊)

+ (ζ + ζ)ρ̊− (?ζ + ?ζ )̊σ − ξ · α+ J(e4, e3, ·), (A.37a)

D3σ̊ + 3
2 trχσ̊ = −div/ ?β̊ + 2(ω + υ)̊σ − 1

2
tχ · ?α− 2ξ · ?β

+ (ζ + 2ζ − 2η) · ?β̊ − 1
2a(J(e3, ·, ·)), (A.37b)

D3ρ̊+ 3
2 trχρ̊ = −div/ β̊ − 1

2χ · α+ (2ζ + ζ − 2η) · β̊
+ 2ξ · β + 4(υ + ω)ρ̊+ 1

2J334, (A.37c)

D4ρ+ 3
2 trχρ = div/ β − 1

2χ · α− (2ζ + ζ − 2η) · β
− 2ξ · β + 4(υ + ω)ρ+ 1

2J443, (A.38a)

D4σ + 3
2 trχσ = −div/ ?β + 2(ω + υ)σ + 1

2
tχ · ?α− 2ξ · ?β

+ (ζ + 2ζ − 2η) · ?β − 1
2ε
abJ4ab, (A.38b)

∇/3β + trχβ = ∇/ ρ+ ?∇/ σ + 2χ · β + 2ωβ + 3(ηρ+ ?ησ)

− (ζ + ζ)ρ− (?ζ + ?ζ)σ + ξ · α− J(e3, e4, ·), (A.38c)

∇/4β̊ + 2 trχβ̊ = div/ α+ 2υβ̊ + α · (η − 2ζ) + 3(ξρ+ ?ξσ)

− J(e4, ·, e4), (A.39a)

∇/3α+ 1
2 trχα = ∇/ ⊗s β̊ + (2ω − 2υ)α− 3(χρ+ ?χσ)

+ (4η − ζ)⊗s β + 2J(·, ·, e4). (A.39b)

We have kept the source terms J for future reference; however, in vacuum, which is of

interest here, we have J ≡ 0.

Let us show that the principal part of each of the systems (A.36)–(A.39) is symmet-

ric hyperbolic, and of the form required in our analysis, when the scalar products are

appropriately chosen.

1. The (α, β) equations (A.36). We have α12 = α21 and α11 = −α22, hence the pair

(α, β) can be parameterized by f = (α11, α12, β1
, β

2
). Equations (A.36) can be rewritten

as

Aµ∂µf +Af = F (A.40)

with

Aµ∂µ =


e4 0 e1 −e2

0 e4 e2 e1

e1 e2 e3 0

−e2 e1 0 e3

 , (A.41)

which is obviously symmetric with respect to the scalar product

〈f, f〉 = α2
11 + α2

12 + β2

1
+ β2

2
(A.42a)

= 1
2h

achbdαabαcd + habβ
a
β
b
. (A.42b)

2. The (β̊, (̊σ, ρ̊)) equations (A.37). The analysis is obtained by obvious renamings

and permutations from that of (A.38), leading to a system with identical principal part.
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3. The ((ρ, σ), β) equations (A.38). We set f = ((ρ, σ), β) = (ρ, σ, β1, β2). Equation

(A.38) can be rewritten in the form (A.40) with

Aµ∂µ =


e4 0 −e1 −e2

0 e4 −e2 e1

−e1 −e2 e3 0

−e2 e1 0 e3

 , (A.43)

which is obviously symmetric with respect to the scalar product

〈f, f〉 = ρ2 + σ2 + β2
1 + β2

2

= ρ2 + σ2 + habβaβb.

4. The (β̊, α) equations (A.39). The analysis here is obtained by obvious renamings

and permutations from that of (A.36), done above.
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[11] P. T. Chruściel and O. Lengard, Solutions of Einstein equations polyhomogeneous at Scri,

in preparation.
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H. Friedrich (eds.), Birkhäuser, Basel, 2004, 121–203; arXiv:gr-qc/0304003.

[27] H. Friedrich, The Taylor expansion at past time-like infinity, Comm. Math. Phys. 324

(2013), 263–300; arXiv:1306.5626 [gr-qc].

[28] S. A. Hayward, The general solution to the Einstein equations on a null surface, Classical

Quantum Gravity 10 (1993), 773–778.
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