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Abstract

Consider a Hidden Markov Model (HMM) such that both the state space and the observation
space are complete, separable, metric spaces and for which both the transition probability func-
tion (tr.pr.f.) determining the hidden Markov chain of the HMM and the tr.pr.f. determining
the observation sequence of the HMM have densities. Such HMMs are called fully dominated.
In this paper we consider a subclass of fully dominated HMMs which we call regular.

A fully dominated, regular HMM induces a tr.pr.f. on the set of probability density functions
on the state space which we call the filter kernel induced by the HMM and which can be
interpreted as the Markov kernel associated to the sequence of conditional state distributions.

We show that if the underlying hidden Markov chain of the fully dominated, regular HMM is
strongly ergodic and a certain coupling condition is fulfilled, then, in the limit, the distribution
of the conditional distribution becomes independent of the initial distribution of the hidden
Markov chain and, if also the hidden Markov chain is uniformly ergodic, then the distributions
tend towards a limit distribution.

In the last part of the paper, we present some more explicit conditions, implying that the
coupling condition mentioned above is satisfied.

Acknowledgements. I want to thank Sten Kaijser, Fuzhou Gong, Lucáš Malý and Svante Janson
for valuable discussions and support. I also thank the referee for valuable comments.

2010 Mathematics Subject Classification: Primary 60J05; Secondary 60F05.
Key words and phrases: hidden Markov models, filtering processes, Markov chains on nonlocally

compact spaces, Kantorovich distance, barycenter.
Received 4 February 2015; revised 24 September 2015.
Published online 21 March 2016.

[5]



1. Introduction

1.1. The aim of the paper. Let S = {1, . . . , d} be a finite set and P a transition
probability matrix (tr.pr.m.) on S. Let A = {1, . . . , k} be another finite set and let R
be a tr.pr.m. from S to A. The set {S, P,A,R} is often called a Hidden Markov Model
(HMM ); later we shall also refer to such a set as a “classical HMM”. We call S the
state space, P the state transition probability matrix, A the observation space and R the
observation matrix.

Associated to a classical HMM and an initial distribution p0 on S there are two
stochastic processes: the hidden Markov chain and the observation sequence. A simple
way to obtain these is as follows: First define a tr.pr.m. M on the product space S × A
simply by

(M)(i,a),(j,b) = (P )i,j(R)j,b, i, j ∈ S, a, b ∈ A.

Remark 1.1. Here and throughout, ifM is a matrix, we let (M)i,j denote its i, jth entry.
Similarly, if x is a vector, we let (x)i denote the ith component.

Next, let q0 denote an arbitrary probability vector on A, let p̃0 = p0 ⊗ q0 be the
product measure of p0 and q0, and let {(Xn, Yn), n = 0, 1, 2, . . .} denote the bivariate
Markov chain generated by the initial distribution p̃0 and the tr.pr.m. M . It is easily
seen that the sequence {Xn, n = 0, 1, 2, . . .} is a Markov chain itself with tr.pr.m. P
and initial distribution p0. It is usually called the hidden Markov chain. The sequence
{Yn, n = 1, 2, . . .} is usually called the observation sequence.

Associated to a classical HMM there is a third important stochastic process defined
as follows. For each i ∈ S and every integer n ≥ 1 define

Zn,i = Pr[Xn = i |Y1, . . . , Yn], (1.1)

Zn = (Zn,i, 1 ≤ i ≤ d). (1.2)

Clearly Zn is a random probability vector on the finite set S. The sequence {Zn, n =

1, 2, . . .} is often called either the sequence of conditional state distributions or the filtering
process.

It is well-known that {Zn, n = 1, 2, . . .} is also a Markov chain. Let P denote the
transition probability function (tr.pr.f.) for this chain. We shall call P the filter kernel
induced by the HMM {S, P,A,R}.

A natural question is under which conditions the Markov chain generated by P is
ergodic, in the sense that it is an aperiodic Markov chain such that its distributions tend
to a unique limit distribution, which is independent of the initial distribution p0. One
might conjecture that if the tr.pr.f. P of the hidden Markov chain is both irreducible and

[6]



On fully dominated Hidden Markov Model 7

aperiodic, then the answer to the above question is affirmative, but this is not true; some
extra condition is needed.

Next we introduce some notation. For x ∈ Rd, let ‖x‖ denote the l1-norm, let K =

{x = (x1, . . . , xd) : xi ≥ 0, ‖x‖ = 1}, for x, y ∈ K define δ(x, y) = ‖x− y‖, let O denote
the topology on K induced by δ, let E denote the σ-algebra on K induced by δ, let C[K]

denote the set of continuous functions on K with respect to O, and let P(K, E) denote
the set of probability measures on (K, E).

To each a ∈ A we now associate a d× d matrix M(a) by

(M(a))i,j = (P )i,j(R)j,a. (1.3)

Following [30], we call M(a) the stepping matrix determined by a ∈ A.
It is now easy to describe the tr.pr.f. P : K ×E → [0, 1] associated to the sequence of

conditional state distributions. We have

P(x,E) =
∑

a∈A(x,E)

‖xM(a)‖, x ∈ K, E ∈ E , (1.4)

where
A(x,E) = {a : ‖xM(a)‖ > 0, xM(a)/‖xM(a)‖ ∈ E}. (1.5)

Next, let K be the set of matrices defined by

K = {cM(a1) · · ·M(an) : n = 1, 2, . . . , a1, a2, . . . ∈ A, c ∈ R, c > 0}.

The following condition, which we shall call Condition KR or the rank one condition, was
introduced in [30]:

The closure of K contains a rank one matrix. (1.6)

The following result from 2006 is due to F. Kochman and J. Reeds [30].

Theorem 1.2. Let H = {S, P,A,R} be a classical HMM, let p0 be a probability on S,
let {Xn, n = 0, 1, 2, . . .} and {Yn, n = 1, 2, . . .} denote the hidden Markov chain and the
observation sequence induced by H and p0, let {Zn, n = 1, 2, . . .} denote the sequence
of conditional state distributions and, for n = 1, 2, . . . , let µn denote the probability
distribution of Zn. Then, if the state tr.pr.m. P is an irreducible, aperiodic tr.pr.m. and
Condition KR is satisfied, there exists a probability measure µ ∈ P(K, E), independent of
the initial distribution p0, such that

lim
n→∞

∫
K

u(x)µn(dx) =

∫
u(x)µ(dx), ∀u ∈ C[K].

In the paper [26] by Kaijser from 2011, Theorem 1.2 was generalised to the case when
both the sets S and A are denumerable.

The main aim of this paper is to generalise the result of Kochman and Reeds one
step further, namely to the case when the HMM under consideration is such that both
the state space and the observation space are complete, separable, metric spaces and the
HMM is a so-called fully dominated HMM (see [7, Section 2.2]), which loosely speaking
means that the tr.pr.fs involved in the definition of the HMM have densities.
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1.2. Some earlier results. Let {Xn, n = 0, 1, 2, . . .} be a stationary, aperiodic, irre-
ducible Markov chain with finite state space S = {1, . . . , d}, tr.pr.m. P and stationary
distribution p0. Let g : S → A be a surjective mapping from S to another space A, and
for n = 0, 1, 2, . . . define Yn = g(Xn). (The function g is sometimes called a lumping
function.) Let ‖ · ‖, K, E and P(K, E) be defined as above. If we define the tr.pr.m. R
from S to A by

(R)i,a = 1 if g(i) = a, (1.7)

(R)i,a = 0 if g(i) 6= a, (1.8)

then H = {S, P,A,R} constitutes a HMM. We call a HMM {S, P,A,R} for which R is
defined by (1.7) and (1.8) a HMM determined by the lumping function g, and say that
the observation matrix R is determined by the function g.

In the classical paper [5] from 1957, D. Blackwell showed that the entropy rate HR(Y )

for the stationary sequence {Yn, n = 0, 1, 2, . . .} can be expressed as

HR(Y ) =
−1

ln 2

∑
a∈A

∫
K

‖xM(a)‖ ln(‖xM(a)‖)µ(dx), (1.9)

where M(a), a ∈ A, denotes the stepping matrix determined by a, which in this case is
defined by

(M(a))i,j = (P )i,j if g(j) = a and (M(a))i,j = 0 otherwise,

and where µ is an invariant measure (a so-called Blackwell measure) for the tr.pr.f.
P : K × E → [0, 1] defined by (1.4) and (1.5).

In [5] Blackwell raised the question whether the tr.pr.f. P defined by (1.4) and (1.5)
has a unique invariant probability measure; he proved the uniqueness if the tr.pr.m. P
has “rows which are nearly identical and no element which is very small”. Blackwell also
made the conjecture that there is a unique invariant measure if P is indecomposable.

In the paper [21] from 1975 the following condition was introduced for the special case
when the HMM is determined by a lumping function.

Condition A. There exists a finite sequence a1, . . . , aN of elements in A such that if we
set

M = M(a1) · · ·M(aN ),

where M(ai), i = 1, . . . , N , are defined by (1.3), then M is a nonzero matrix, and if
(M)i1,j1 , (M)i2,j2 > 0 then also (M)i1,j2 , (M)i2,j1 > 0.

In [21, Theorem A] it was proved that if Condition A is satisfied, then the tr.pr.f. P has
a unique invariant probability measure µ (say), and furthermore if {Zn,p, n = 1, 2, . . .}
denotes the Markov chain generated by the tr.pr.f. P and the initial distribution p, and
µn,p, n = 1, 2, . . . , denotes the distribution of Zn,p, then {µn,p, n = 1, 2, . . .} converges
in distribution towards the unique invariant measure µ for all initial distributions p.

In [21] a simple counterexample to Blackwell’s conjecture was also presented.
Condition A was originally formulated for HMMs determined by a lumping function,

and Theorem A of [21] was formulated for such a HMM. This may at first seem to be a
severe restriction but, as was pointed out in [21], it is not so because of an observation
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due to L. Baum and T. Petrie [3]. For, let H = {S, P,A,R} be an arbitrary (classical)
HMM. We can then define another enlarged HMM as follows. Set S′ = S×A and A′ = A,
define the tr.pr.m. P ′ on S′ by

(P ′)(i,a),(j,b) = (P )i,j(R)j,b,

define g′ : S′ → A′ by g′(i, a) = a, let R′ denote the observation matrix determined
by g′ and set H′ = {S′, P ′, A′, R′}. It is then easy to see that if Condition A holds for
the HMM H, then it also holds for H′. Furthermore, if µ′ is a unique invariant measure
for the filter kernel P′ induced by the HMM {S′, P ′, A′, R′}, and we let µ denote the
marginal distribution of µ′ on S, then µ is a unique invariant measure for the filter kernel
P induced by {S, P,A,R}.

In the paper [15] from 1996, A. Goldsmith and P. Varaiya used Theorem A of [21] in
order to obtain limit formulas for the capacity and the mutual information for finite-state
Markov channels.

In the paper [30] from 2006, F. Kochman and J. Reeds showed that Condition A
of [21] implies that their “rank one condition” holds and they gave a simplified proof
of the conclusions of Theorem A in [21]. A few years later, in the paper [8] from 2010,
P. Chigansky and R. van Handel proved that the “rank one condition” of Kochman and
Reeds is also a necessary condition in order for a classical HMM to have a unique invariant
probability measure for its filter kernel.

2. The main theorem

In this chapter we formulate the main theorem of the present paper. We begin by intro-
ducing some further notation and concepts, most of them standard and well-known. We
then state the main theorem, and we end the chapter by giving an outline of the contents
of the rest of the paper (see Section 2.9).

2.1. Basic notation. If (X,X ) is a given measurable set and φ is a metric on X, then
we always assume implicitly that there is a topology on X which is determined by the
metric φ, and that the σ-algebra X is the Borel field induced by this topology. We call
such a space a metric space, and denote it (X,X , φ) or simply (X,X ).

Next, let (X,X ) be a given measurable space. We let P(X,X ) denote the set of
probabilities on (X,X ), we let Q(X,X ) denote the set of finite, nonnegative measures
on (X,X ) and let Q∞(X,X ) denote the set of σ-finite, positive measures on (X,X ). If
µ, ν ∈ Q(X,X ), we let δTV (µ, ν) denote the total variation between µ and ν defined by

δTV (µ, ν) = sup{µ(F )− ν(F ) : F ∈ X}+ sup{ν(F )− µ(F ) : F ∈ X}.
We shall also often use the notation ‖µ − ν‖ instead of δTV (µ, ν). If ν ∈ Q(X,X ), we
write ‖ν‖ = ν(X). We always assume implicitly that the topology on Q(X,X ) is the
topology generated by the total variation metric δTV .

We let Bu[X] denote the set of real, X -measurable functions on X, and B[X] the set
of real, bounded, X -measurable functions on X. We may write B[X,X ] instead of B[X].
If u ∈ B[X], we set ‖u‖ = sup{|u(x)| : x ∈ X}, osc(u) = sup{u(x) − u(y) : x, y ∈ X},
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and if u ∈ B[X] and A ⊂ X, we set oscA(u) = sup{u(x)− u(y) : x, y ∈ A}. If u ∈ Bu[X]

and ν ∈ P(X,X ) then, when convenient, we write
∫
X
u(x) ν(dx) = 〈u, ν〉 if the integral

exists. If λ ∈ Q∞(X,X ), ν ∈ Q(X,X ) and there exists f ∈ Bu[X] such that

ν(F ) =

∫
F

f(x)λ(dx), ∀F ∈ X ,

then we write ν ∈ Qλ(X,X ) and call f a representative of ν. If also ‖ν‖ = 1, we write
ν ∈ Pλ(X,X ).

If µ, ν ∈ Qλ(X,X ), f is a representative of µ, and g is a representative of ν, we
define µ ∧ ν by µ ∧ ν(F ) =

∫
F

min{f(x), g(x)}λ(dx), F ∈ X , and we define µ ∨ ν by
µ ∨ ν(F ) =

∫
F

max{f(x), g(x)}λ(dx), F ∈ X .
If µ, ν ∈ P(X,X ) and u ∈ B[X], it is well-known that∣∣∣∣∫ u(x)µ(dx)−

∫
u(x) ν(dx)

∣∣∣∣ ≤ osc(u)‖µ− ν‖/2. (2.1)

Next, if Q : X ×X → [0,∞) is such that Q(x, ·) ∈ Q(X,X ) for all x ∈ X and Q(·, F )

is X -measurable for all F ∈ X , we call Q a transition kernel. If Q(x,X) = 1 for all x ∈ K,
then clearly Q : X × X → [0, 1] is a tr.pr.f. If Q : X × X → [0, 1] is a tr.pr.f. on (X,X ),
then we define Qn : X ×X → [0, 1] recursively by Q1 = Q and

Qn+1(x, F ) =

∫
X

Q(x, dx′)Qn(x′, F ), n = 2, 3, . . . .

We call the mapping T : B[X]→ B[X] defined by Tu(x) =
∫
X
u(y)Q(x, dy) the transition

operator associated to the tr.pr.f. Q. The tr.pr.f. Q also induces a map Q̆ : P(X,X ) →
P(X,X ) by Q̆(µ)(F ) =

∫
X
Q(x, F )µ(dx). We usually write Q̆(µ) = µQ. As is well-known

(see [37, Section 1.2]),
〈u, µQ〉 = 〈Tu, µ〉. (2.2)

If Q : X × X → [0, 1] is a tr.pr.f. on (X,X ), λ ∈ Q∞(X,X ) and q : X ×X → [0,∞)

is a measurable function such that

Q(x, F ) =

∫
F

q(x, y)λ(dy), ∀x ∈ X, ∀F ∈ F ,

then we call q : X ×X → [0,∞) a probability density kernel on {(X,X ), λ}.
Next, let (X,X , φ) be a metric space. We let C[X] denote the set of real, bounded,

continuous functions on X. If u ∈ C[X], we define

γ(u) = sup

{
u(x1)− u(x2)

φ(x1, x2)
: x1 6= x2

}
,

Lip[X] = {u ∈ C[X] : γ(u) <∞}, Lip1[X] = {u ∈ Lip[X] : γ(u) ≤ 1}.

If T denotes the transition operator associated to the tr.pr.f. Q and if

u ∈ C[X] ⇒ Tu ∈ C[K],

then Q is called Feller continuous; if there exists a constant C such that

u ∈ Lip[X] ⇒ γ(Tu) ≤ Cγ(u),
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then we call Q Lipschitz continuous and call the constant C a bounding constant ; if
furthermore there exists a constant C such that

γ(Tnu) ≤ Cγ(u), n = 1, 2, . . . , ∀u ∈ Lip[K], (2.3)

then we call Q Lipschitz equicontinuous and again call C a bounding constant.
Let again (X,X ) be a measurable set and let Q : X × X → [0, 1] be a tr.pr.f. on

(X,X ). If there exists a probability measure π ∈ P(X,X ) such that

lim
n→∞

δTV (Qn(x, ·), π) = 0, ∀x ∈ X,

then we call the tr.pr.f. Q strongly ergodic, and we call π the limit measure; if furthermore

lim
n→∞

sup
x∈X

δTV (Qn(x, ·), π) = 0,

then we call the tr.pr.f. Q uniformly ergodic. If (X,X , φ) is a metric space and

lim
n→∞

sup{〈u,Qn(x, ·)〉 − 〈u,Qn(y, ·)〉 : u ∈ Lip1[K] } = 0, ∀x, y ∈ X, (2.4)

then we call the tr.pr.f. Q weakly contracting ; if furthermore there exists a probability
measure π such that

lim
n→∞

∫
X

u(y)Qn(x, dy) =

∫
X

u(y)π(dy), ∀x ∈ X, ∀u ∈ C[X],

then we call Q weakly ergodic.
If (X1,X1, φ1) and (X2,X2, φ2) are metric spaces, then (X1×X2,X1⊗X2) is a metric

space with metric given by φ3((x1, x2), (y1, y2)) = φ1(x1, y1) + φ2(x2, y2). Furthermore,
if µ1 ∈ Q(X1,X1) and µ2 ∈ Q(X2,X2) then µ1 ⊗ µ2 denotes the product measure on
(X1 ×X2,X1 ⊗X2).

If µ̃ is a probability measure on the product space (X1×X2,X1⊗X2) of two measurable
spaces (X1,X1) and (X2,X2), recall that the measure µ̃ is determined if it is defined for
all sets in X1 ⊗ X2 of the form E1 × E2, where E1 ∈ X1 and E2 ∈ X2 (the so-called
rectangular sets).

If (X,X ) is a measurable space, Q1 : X × X → [0,∞) and Q2 : X × X → [0,∞)

are transition functions such that both sup{Q1(x,X) : x ∈ X} <∞ and sup{Q2(x,X) :

x ∈ X} <∞, then we define Q1Q2 : X ×X → [0,∞) by

Q1Q2(x, F ) =

∫
X

Q1(x, dx′)Q2(x′, F ), F ∈ X .

If (X,X ) is a measurable space and (Xn,Xn) = (X,X ), n = 2, 3, . . . , we set X2 =

X×X, X 2 = X⊗X and define Xn and Xn recursively for n = 2, 3, . . . by Xn+1 = Xn×X
and Xn ⊗X . We denote a generic element in Xn by xn or (x1, . . . , xn).

If (X,X ) is a measurable space and µ ∈ Q∞(X,X ), we let µn ∈ Q∞(Xn,Xn) denote
the nth product measure on (Xn,Xn) defined recursively by µ2 = µ ⊗ µ and µn+1 =

µn ⊗ µ.
Next, we shall recall the concept of coupling. Let µ be a probability measure on the

measurable space (X1,X1) and let ν be a probability measure on the measurable space
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(X2,X2). If µ̃ is a probability measure on the product space (X1×X2,X1⊗X2) such that

µ̃(F ×X2) = µ(F ), ∀F ∈ X1,

µ̃(X1 × F ) = ν(F ), ∀F ∈ X2,

then we call µ̃ a coupling of µ and ν. We denote the set of all couplings of µ and ν by
P̃(µ, ν,X1 ×X2).

We end this section with a simple and useful inequality for differences between nor-
malised vectors in a normed vector space. The lemma follows easily by first adding and
subtracting the term y/‖x‖ on the left hand side and then using the triangle inequality.

Lemma 2.1. Let x and y belong to a normed vector space and suppose that ‖x‖, ‖y‖ > 0.
Then ∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ 2‖x− y‖
‖x‖

.

2.2. Hidden Markov models on general state spaces. Let (S,F) and (A,A) be
measurable spaces and let (S×A,F ⊗A) be the product space. Let ξ ∈ P(S×A,F ⊗A)

and let Λ : S × A × F ⊗ A → [0, 1] be a tr.pr.f. on (S × A,F ⊗ A). The Markov chain
generated by the tr.pr.f. Λ and the initial distribution ξ is called a bivariate Markov chain.
We denote a bivariate Markov chain {(Xn,ξ, Yn,ξ), n = 0, 1, 2, . . .}.

A Hidden Markov Model (HMM), as described in the classical paper [36], consists
of a finite state space S, a finite observation space A, a tr.pr.m. P on S, a tr.pr.m. R
from S to A, and an initial distribution p0. In the more modern literature (see e.g. [7])
one allows both the state space S and the observation space A to be measurable spaces,
(S,F) and (A,A) say, and then the tr.pr.ms P and R must be replaced by tr.pr.fs.

Our definition of a HMM is slightly more general than the one given in [7, Section 2.2],
and will be based on a tr.pr.f. from the state space to the product of the state space and
the observation space.

Definition 2.2. Let (S,F) and (A,A) be measurable spaces, M : S × (F ⊗A)→ [0, 1]

be a tr.pr.f. from (S,F) to (S × A,F ⊗A), and define the tr.pr.f. P : S × F → [0, 1] by
P (s, F ) = M(s, F ×A). Then we call

H = {(S,F), P, (A,A),M} (2.5)

a Hidden Markov Model (HMM ). We call (S,F) the state space, (A,A) the observation
space, M the Hidden Markov Model kernel of H (the HMM-kernel), and P the Markov
kernel of H.

In case the tr.pr.f. M : S × (F ⊗ A) → [0, 1] is determined by composing a tr.pr.f.
P : S × F → [0, 1] on (S,F) with a tr.pr.f. R : S × A → [0, 1] from (S,F) to (A,A) in
such a way that

M(s, F ×B) =

∫
F

P (s, dt)R(t, B),

then we call H an ordinary HMM and write {(S,F), P, (A,A), R} instead of {(S,F), P,

(A,A),M}.
Remark 2.3. Since the tr.pr.f. P is determined by M , we could have excluded P in the
expression of the right hand side of (2.5). We have included it for the sake of clarity.
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Associated to a HMM there are two stochastic processes defined as follows.

Definition 2.4. Let H = {(S,F), P, (A,A),M} be a HMM, and define Λ : S × A ×
(F ⊗A)→ [0, 1]) by

Λ(s, a, F ×B) = M(s, F ×B), ∀s ∈ S, ∀a ∈ A, ∀F ∈ F , ∀B ∈ A.

Let x ∈ P(S,F), α ∈ P(A,A), ξ = x ⊗ α, and let {(Xn,ξ, Yn,ξ), n = 0, 1, 2, . . .} denote
the bivariate Markov chain generated by Λ and ξ.

We call {Xn,ξ, n = 0, 1, 2, . . .} the hidden Markov chain generated by H, and write
{Xn,x, n = 0, 1, 2, . . .} instead of {Xn,ξ, n = 0, 1, 2, . . .} since the first component is
independent of the initial distribution α ∈ P(A,A); we call {Yn,ξ, n = 1, 2, . . .} the
observation sequence generated by H and write {Yn,x, n = 1, 2, . . .} instead of {Yn,ξ, n =

1, 2, . . .} since also the second component is independent of the initial distribution α if
n ≥ 1.

Remark 2.5. Our way to define the hidden Markov chain and the observation sequence
of a HMM is similar to the way these sequences are defined in [7].

Remark 2.6. It is for the sake of convenience that we start the observation sequence
with n = 1 instead of n = 0.

2.3. Fully dominated hidden Markov models. Let H = {(S,F), P, (A,A),M} be
a HMM. Now suppose that

(1) the state space (S,F) is a complete, separable, metric space (S,F , δ0},
(2) there exists a positive σ-finite measure λ on (S,F),
(3) the observation space (A,A) is a complete, separable, metric space (A,A, %),
(4) there is a σ-finite positive measure τ on (A,A), and
(5) m : S × S ×A→ [0,∞) is an F ⊗ F ⊗A-measurable function such that

M(s, F ×B) =

∫
F

∫
B

m(s, t, a)λ(dt) τ(da), ∀s ∈ S, ∀F ∈ F , ∀B ∈ A.

Then, following [7], we call H a fully dominated HMM. We denote a fully dominated
HMM by

{(S,F , δ0), (p, λ), (A,A, %), (m, τ)} (2.6)

where p : S × S → [0,∞) is defined by

p(s, t) =

∫
A

m(s, t, a) τ(da).

We call λ and τ base measures, m the probability density kernel of H, the tr.pr.f. P :

S × F → [0, 1], defined by P (s, F ) =
∫
F
p(s, t)λ(dt), the Markov kernel determined by

(p, λ), and M : S × (F ⊗A)→ [0, 1] the HMM-kernel determined by (m,λ, τ).
In case there exists a measurable function r : S×A→ [0,∞) such that the probability

density kernel m : S × S ×A→ [0,∞) can be factorised as

m(s, t, a) = p(s, t)r(t, a),

we callH an ordinary, fully dominated HMM and write {(S,F , δ0), (p, λ), (A,A, %), (r, τ)}
instead of {(S,F , δ0), (p, λ), (A,A, %), (m, τ)}.
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If S is denumerable, we always assume that the associated σ-algebra F is the power set
of S, δ0 is the discrete metric and λ is the counting measure. Similarly, if A is denumerable,
we always assume that the σ-algebra A is the power set of A, % is the discrete metric and
τ is the counting measure. Therefore, if both the state space and the observation space
are denumerable, we will denote such a HMM by {S, P,A,M}.

Furthermore, if the Markov kernel P of H is strongly ergodic [uniformly ergodic] with
limit measure π we call H a strongly ergodic [uniformly ergodic], fully dominated HMM
with limit measure π.

Next, set K = Pλ(S,F), let the metric δ : K ×K → [0, 2] be defined by

δ(x, y) = δTV (x, y) =

∫
|f(s)− g(s)|λ(ds),

where, in the last expression, f and g are representatives of x and y respectively; further
let E denote the σ-algebra on K generated by the metric δ.

We shall now introduce a subset of the set of fully dominated HMMs as follows. Let
H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ))} be a fully dominated HMM and let P be the
tr.pr.f. determined by (p, λ). For each a ∈ A we define Ma : Qλ(S,F)→ Qλ(S,F) by

Ma(x)(F ) =

∫
s∈S

∫
t∈F

m(s, t, a)x(ds)λ(dt). (2.7)

We call Ma : Qλ(S,F)→ Qλ(S,F) the stepping function determined by a ∈ A. We shall
usually write xMa instead of Ma(x).

Further let M : Qλ(S,F)×A→ Qλ(S,F) be defined by

M(x, a) = xMa. (2.8)

We call M : Qλ(S,F)×A→ Qλ(S,F) the stepping kernel of H.

Definition 2.7. If M : Qλ(S,F)×A→ Qλ(S,F) defined by (2.7) and (2.8) is continu-
ous, then we call H a fully dominated, regular HMM.

A trivial, but yet important, example of a fully dominated, regular HMM is a HMM
H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} for which the observation space A is denumer-
able, the metric % is the discrete metric and the measure τ is the counting measure, since
in this case, if we let f and g be representatives of x and y in Qλ(S,F), then for all a ∈ A
we have

‖xMa − yMa‖ ≤
∫
S

∫
S

|f(s)− g(s)|m(s, t, a)λ(ds)λ(dt)

≤
∫
S

∫
S

|f(s)− g(s)|p(s, t)λ(ds)λ(dt) ≤
∫
S

∫
S

|f(s)− g(s)|λ(ds) = ‖x− y‖.

For a less trivial example see Example 9.6 in Chapter 9.

2.4. The filter kernel. Now consider a fully dominated, regular HMM {(S,F , δ0),

(p, λ), (A,A, %), (m, τ)}. Let Ma : Qλ(S,F) → Qλ(S,F) and M : Qλ(S,F) × A →
Qλ(S,F) be defined by (2.7) and (2.8) respectively. Further, for each x ∈ K and E ∈ E ,
set

A+
x = {a : ‖xMa‖ > 0}, (2.9)
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and let
A(x,E) = {a : ‖xMa‖ > 0, xMa/‖xMa‖ ∈ E}. (2.10)

We now define P : K × E → [0, 1] as follows:

P(x,E) =

∫
A(x,E)

‖xMa‖ τ(da). (2.11)

That P : K × E → [0, 1] is a tr.pr.f. is easily proved. First we note that if E =
⋃∞
i=1Ei

where Ei ∩ Ej = ∅, i 6= j, then

A(x,E) =

∞⋃
i=1

A(x,Ei),

from which it easily follows that P(x, ·) is a probability measure on (K, E) for each
x ∈ K. That P(·, E) is an E-measurable function for each open set E follows easily from
Lemma 2.1 and the continuity of M : Qλ(S,F) × A → Qλ(S,F), and since it is easily
proved that G = {E ∈ K : P(·, E) is measurable} is a σ-algebra and therefore E ⊂ G, it
follows that P(·, E) is a E -measurable function for each E ∈ E . Hence P : K×E → [0, 1],
defined by (2.11) and (2.10), is a tr.pr.f. on (K, E). We call P the filter kernel induced by
{(S,F , δ0), (p, λ), (A,A, %), (m, τ)}.

Remark 2.8. The main reason that we introduce the set of fully dominated and regular
HMMs is that we need this extra property in order to be able to prove that P(·, E) :

K → K, where P is defined by (2.11) and (2.10), is a measurable function for all
E ∈ E . Since it seems to us that in most concrete examples of fully dominated HMMs the
regularity condition is satisfied, we do not consider this extra assumption to be a severe
restriction. A nice and useful property is that the set of fully dominated and regular
HMMs is closed under an operation we call composition (see Section 3.1).

Remark 2.9. Note that if S and A are finite sets, δ0 and % are the discrete measures,
and λ and τ are the counting measures, then the definition of P, as given by (2.11) and
(2.10), agrees with the definition given by (1.4) and (1.5).

Remark 2.10. Whenever we consider a fully dominated and regular HMM

H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)}

we always implicitly let K denote the set Pλ(S,F), E the σ-algebra on K generated by
the total variation metric on K, and P : K ×E → [0, 1] the filter kernel defined by (2.11)
and (2.10).

We shall end this section by writing down the expression for the transition operator
T : B[K]→ B[K] associated to the filter kernel P. We have

Tu(x) =

∫
A+

x

u

(
xMa

‖xMa‖

)
‖xMa‖ τ(da), (2.12)

where A+
x is defined by (2.9).

2.5. Condition E. In this section we shall formulate a condition which in Theorem 2.13
below will replace the rank one condition (Condition KR) of Theorem 1.2.
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We first recall the well-known concept of barycenter (for some basic facts about this
notion see e.g. the book [9] by G. Choquet).

Let (S,F , δ0) be a metric space, let λ ∈ Q∞(S,F), set K = Pλ(S,F), let E be the
σ-algebra on K determined by the total variation metric on K and let µ ∈ P(K, E). The
barycenter of µ, which we denote by b(µ), is a probability measure in K defined by

b(µ)(F ) =

∫
K

∫
F

x(ds)µ(dx), F ∈ F .

That b(µ) : F → [0, 1] is a probability in K is easily verified. Furthermore, if u ∈ B[S]

and µ ∈ P(K, E) has barycenter π, it follows easily from the definition that∫
K

〈u, x〉µ(dx) = 〈u, b(µ)〉 = 〈u, π〉. (2.13)

If x ∈ K, we let P(K|x) denote the set of probability measures in P(K, E) with barycen-
ter x.

We now introduce Condition E.

Definition 2.11. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a strongly ergodic,
fully dominated, regular HMM with invariant measure π, and let P be the induced
Markov kernel. We define Condition E as follows: For every ρ > 0, there exist an integer
N and a number α such that, for any measures µ and ν in P(K|π), there exists a coupling
µ̃N of µPN and νPN such that if we set Dρ = {(x, y) ∈ K ×K : δTV (x, y) < ρ}, then

µ̃N (Dρ) ≥ α.

Remark 2.12. The important point of Condition E is that the number α does not depend
on the choice of µ and ν in P(K|π).

2.6. The main theorem. We are now ready to formulate the main theorem of this
paper.

Theorem 2.13. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, reg-
ular, strongly ergodic HMM with limit measure π such that both (S,F) and (A,A) are
complete, separable, metric spaces, and let P be the induced filter kernel. Suppose also
that H fulfills Condition E. Then

(A) The filter kernel P is weakly contracting.

If furthermore, either

(B) there exists a measure µ ∈ P(K, E) which is invariant with respect to P, or
(C) there exists x0 ∈ K such that {Pn(x0, ·), n = 1, 2, . . .} is tight, or
(D) H is also uniformly ergodic,

then the filter kernel P is weakly ergodic.

Remark 2.14. It was proved in [26] that if the state space of a strongly ergodic HMM
with limit measure π is denumerable, then {Pn(π, ·), n = 1, 2, . . .} is a tight sequence.
We believe the same is true if the state space is a complete, separable, metric space.
Therefore, we believe that the second part of the theorem could be omitted, and the
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conclusion in the first part of the theorem ought to be that the filter kernel P is weakly
ergodic instead of just weakly contracting.

2.7. Some simple examples. To illustrate the consequences of Theorem 2.13 we
present some simple examples.

Example 2.15. We define a regular, fully dominated, ordinary HMM

H1 = {(S,F , δ0), (p, λ), (A,A, %), (r, τ)}

as follows. Let S = [−1, 1], let δ0 be the Euclidean metric on S, let F be the σ-algebra
induced by δ0, let λ be the Lebesgue–Borel measure on (S,F) and let p : S×S → [0,∞)

be a probability density kernel on {(S,F), λ} such that

inf{p(x, y) : (x, y) ∈ S × S} > 0.

We further let the observation space consist of just two points a and b, thus A = {a, b},
we let % denote the discrete metric and let A be the power set of A. Finally, we let τ be
the counting measure on (A,A) and we define r : S ×A simply by

r(t, a) =

{
1 if −1 ≤ t < 0,

0 if 0 ≤ t ≤ 1.

Since A = {a, b} we have r(t, a) + r(t, b) = 1 for all t ∈ S, and hence r(·, b) is determined
implicitly.

That the HMM H1 defined in this way is a fully dominated, regular and ordinary
HMM is easily seen, and that the tr.pr.f. determined by (p, λ) is uniformly ergodic is
easily proved and well-known. Furthermore, as we will prove in Chapter 9, the HMM H1

satisfies Condition E and therefore, by Theorem 2.13, the filter kernel induced by H1 is
weakly ergodic.

A nice consequence of this result is the following. Let g : [−1, 1]→ A be defined by

g(t) =

{
a if t ∈ [−1, 0),
b if t ∈ [0, 1].

Let x0 be a probability measure in Pλ(S,F), let P : S × F → [0, 1] be the tr.pr.f.
determined by (p, λ) and let {Xn, n = 0, 1, 2, . . .} be the Markov chain generated by
the initial distribution x0 and the tr.pr.f. P . For n = 0, 1, 2, . . . define Yn = g(Xn). Let
HR(Yn) denote the entropy rate of the sequence {Yn, n = 0, 1, 2, . . .} at time n. Then

lim
n→∞

HR(Yn) = −
∫
K

‖yMa‖ log(‖yMa‖)µ(dy)/log(2)

−
∫
K

‖yMb‖ log(‖yMb‖)µ(dy)/log(2), (2.14)

where Ma and Mb denote the stepping functions determined by a and b respectively,
and µ is the unique invariant measure of the filter kernel induced by the HMM H1 (see
Corollary 9.4).

Example 2.16. Again we shall determine a fully dominated, regular and ordinary HMM.
Let (S,F , δ0) and (p, λ) be as in Example 2.15. Let (A,A, %) = (S,F , δ0) and τ = λ. It
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remains to define r : S ×A→ [0,∞):

r(t, a) =


5 if −9/10 ≤ t ≤ 9/10 and |t− a| < 1/10,

1

1/10 + |t− a|
if 9/10 < |t| ≤ 1 and |t− a| < 1/10,

0 elsewhere.

We set H2 = {(S,F , δ0), (p, λ), (A,A, %), (r, τ)}.

Clearly,H2 is fully dominated andH2 is regular. In Chapter 9 we verify that Condition
E is satisfied, and hence by Theorem 2.13 the filter kernel induced byH2 is weakly ergodic.

Our next two examples show that Condition E need not always hold.

Example 2.17. The fully dominated, regular and ordinary HMM

H3 = {(S,F , δ0), (p, λ), (A,A, %), (r, τ)}

in this example has the state space (S,F , δ0), the observation space (A,A, %), the function
r : S×A→∞, the measure τ and the measure λ the same as in Example 2.15. The only
difference is that we define the probability density kernel p : S × S → [0,∞) in a more
complicated way:

p(s, t) = 1 if (s, t) ∈ S0, p(s, t) = 0 elsewhere,

where (s, t) ∈ S0 if one of the conditions (a)–(d) below is satisfied:

(a) −1 < s ≤ −1/2, and −1 ≤ t ≤ −1/2 or 0 ≤ t ≤ 1/2,

(b) −1/2 ≤ s ≤ 0, and −1/2 ≤ t ≤ 0 or 1/2 ≤ t ≤ 1,
(c) 0 ≤ s ≤ 1/2, and −1 ≤ t ≤ −1/2 or 1/2 ≤ t ≤ 1,
(d) 1/2 ≤ s ≤ 1, and −1/2 ≤ t ≤ 1/2.

That H3 defined in this way is a fully dominated HMM is obvious, and since the
observation space is finite, it follows that H3 is regular. That H3 is an ordinary HMM is
also obvious from the definition.

It is also easily proved that the tr.pr.f. P : S × F → [0, 1] determined by (p, λ) is
uniformly ergodic and has the uniform distribution on [−1, 1] as limit measure. It is also
not difficult to prove that the filter kernel induced by H3 does not have a unique invariant
measure. (Compare with the example in [21, Section 10].)

Example 2.18. In our last example, we define an ordinary HMM H4 = {(S,F , δ0),

(p, λ), (A,A, %), (r, τ)} in such a way that (S,F , δ0), (A,A, %), λ and (r, τ) are as in
Example 2.17. The probability density kernel p : S × S → [0,∞) is defined in a slightly
more complicated way:

p(s, t) = 2 if (s, t) ∈ S1, p(s, t) = 0 elsewhere,

where (s, t) ∈ S1 if one of conditions (a)–(h) below is satisfied:

(a) −1 < s ≤ −3/4, and −1 ≤ t ≤ −3/4 or 0 ≤ t ≤ 1/4,

(b) −3/4 ≤ s ≤ −1/2, and −3/4 ≤ t ≤ −1/2 or 1/4 ≤ t ≤ 1/2,
(c) −1/2 ≤ s ≤ −3/4, and −3/4 ≤ t ≤ 0 or 3/4 ≤ t ≤ 1,
(d) −3/4 ≤ s ≤ 0, and −1/2 ≤ t ≤ −1/4 or 1/2 ≤ t ≤ 3/4,



On fully dominated Hidden Markov Model 19

(e) 0 < s ≤ 1/4, and −1 ≤ t ≤ −3/4 or 3/4 ≤ t ≤ 1,

(f) 1/4 ≤ s ≤ 1/2, and −3/4 ≤ t ≤ −1/2 or 1/2 ≤ t ≤ 3/4,
(g) 1/2 ≤ s ≤ 3/4 and −1/4 ≤ t ≤ 1/4,

(h) 3/4 ≤ s ≤ 1, and −1/2 ≤ t ≤ −1/4 or 1/4 ≤ t ≤ 1/2.

It is again easily proved that H4 is a fully dominated, regular HMM such that the
tr.pr.f. P : S×F → [0, 1] is uniformly ergodic with the limit measure equal to the uniform
distribution on [−1, 1]. This time the filter kernel induced by H4 turns out to be periodic,
which is easily verified. (Compare with [26, Example 11].)

2.8. Related results. Theorem 2.13 can be regarded as a result of filtering theory for
filtering processes taking values in a nondenumerable state space.

In the classical paper [31] from 1971, H. Kunita considered filtering processes on a
compact Hausdorff space, showed that the filtering process itself is a Markov process, and
stated a condition under which the filter kernel of the filtering process is weakly ergodic.
Kunita considered a continuous time process and assumed that the observation process
was generated by a Wiener process.

The topology which determines the Borel field on the set of probability measures on
the state space, which Kunita chose, was the weak topology.

In the paper [39] from 1989, Ł. Stettner generalised the work by Kunita to complete,
separable, metric spaces. Stettner considered filtering processes in both continuous and
discrete time.

Unfortunately there is a gap in one of the proofs in [31] and this gap also affects the
results in [39] (see [4] for a discussion regarding this gap).

The fact that in this paper, as topology on the set of probabilities on the state space,
we use the topology which is determined by the total variation metric implies that our
notion of weak ergodicity is somewhat stronger than when weak ergodicity is defined by
using the set of continuous functions determined by the weak topology.

Other papers considering the problem of finding conditions which guarantee weak
ergodicity for the Markov kernel of the filtering process are e.g. by G. B. Di Masi and
Ł. Stettner [11] and by R. van Handel [41]. In these papers and, as far as the author
knows, in all other papers dealing with the existence of the limit distribution of the
filtering process of a HMM—in contrast to our work—the σ-algebra used when defining
the measurable space associated to the set of probabilities on the state space has been
the Borel field induced by the weak topology.

Another assumption which is often made in papers on general HMM is that the
probability density kernel r : S × A → [0,∞) determining the observations shall have
r(s, a) > 0 for all s ∈ S and all a ∈ A, a property which is not necessary in our set-up.
Yet another assumption often made is that the tr.pr.f. that governs the hidden Markov
chain shall be Feller continuous. We do not need this either.

2.9. The plan of the rest of the paper. In the next chapter we define compositions
of HMMs, and we prove a universal inequality for fully dominated, regular HMMs. In
Chapter 4 we show that for every fully dominated, regular HMM, there exists a random
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system with complete connections (RSCC) such that the filter kernel induced by the
HMM is equal to the Markov kernel associated to this RSCC. The connection between
RSCC and the conditional state distribution was already observed by D. Blackwell [5].

In Chapter 5 we prove some auxiliary theorems for Markov chains on bounded, com-
plete, separable, metric spaces, not necessarily locally compact. In Chapter 6 we present
some simple facts regarding the barycenters of the Markov chain generated by the filter
kernel. In Chapter 7 we first prove an inequality for the Kantorovich distance between
measures based on their barycenters, and then we finish the proof of the main theorem
by verifying the hypotheses of the auxiliary theorems presented in Chapter 5.

The purpose of Chapter 8 is to find more explicit conditions that imply Condition E.
In order to do this we shall need an estimate for iterations of integral kernels, which we
prove using a classical result due to E. Hopf (see [17]). We then introduce Condition P,
which can be regarded as a generalisation of Condition A mentioned in the introduction
(see Section 1.2); then, by using (1) an estimate for iterations of integral kernels, (2)
the connection to RSCCs and (3) the Vasershtein coupling of RSCCs, we prove that
Condition P implies Condition E.

In Chapter 9 we present two examples satisfying Condition P. We also give an entropy
formula for the observation sequence when the observation space is finite. Finally in
Chapter 10 we raise a few questions and make a few comments.

3. On compositions of HMMs and a universal inequality

3.1. Compositions of HMMs. LetH1 = {(S,F), P1, (A1,A1),M1} andH2 = {(S,F),

P2, (A2,A2),M2} be HMMs with the same state space (S,F). Define A1,2 = A1 × A2

and A1,2 = A1 ⊗A2, define M (1,2) : S ×F ×A1,2 → [0, 1] by

M (1,2)(s, F ×B1 ×B2) =

∫
S

M1(s, dt, B1)M2(t, F,B2),

define P (1,2) : S ×F → [0, 1] by

P (1,2)(s, F ) = M (1,2)(s, F ×A1 ×A2),

and set
H1,2 = {(S,F), P (1,2), (A1,2,A1,2),M (1,2)}.

Obviously, H1,2 is also a HMM; we call H1,2 the composition of H1 and H2. For simplicity
we write

H1,2 = H1 ∗ H2 .

By Fubini’s theorem it follows that if H1, H2 and H3 are HMMs with the same state
space, then

(H1 ∗ H2) ∗ H3 = H1 ∗ (H2 ∗ H3).

If H is a HMM and Hn = H, n = 1, . . . , N , where N ≥ 2, we set

HN = H1 ∗ · · · ∗ HN .
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We call HN the Nth iterate of H. Loosely speaking, the Nth iterate HN of a HMM H is
the HMM obtained from H when one collects the observations in groups of N instead of
collecting them one by one.

3.2. On compositions of fully dominated HMMs. Let H1 = {(S,F , δ0), (p1, λ),

(A1,A1, %1), (m1, τ1)} and H2 = {(S,F , δ0), (p2, λ), (A2,A2, %2), (m2, τ2)} be fully domi-
nated HMMs with the same state space and with the same base measure λ ∈ Q∞(S,F).
We define m(1,2) : S × S ×A1 ×A2 → [0,∞) by

m(1,2)(s, t, a1, a2) =

∫
S

m1(s, s′, a1)m2(s′, t, a2)λ(ds′).

Again by Fubini’s theorem, H1 ∗H2 is also a fully dominated HMM such that the HMM-
kernel M (1,2) : S ×F ⊗A1 ⊗A2 → [0, 1] satisfies

M (1,2)(s, F ×B1 ×B2) =

∫
F

∫
B1

∫
B2

m(1,2)(s, t, a1, a2)λ(dt) τ1(da1) τ2(da2).

Furthermore, if both H1 and H2 are regular, then it is elementary to prove that also
H1 ∗ H2 is regular.

If a1 ∈ A1, a2 ∈ A2 and M1
a1 , M

2
a2 , M

(1,2)
(a1,a2) are stepping functions determined by

a1 ∈ A1, a2 ∈ A2 and (a1, a2) ∈ A(1,2) (see (2.7) for the definition of a stepping function),
then clearly

M1
a1M

2
a2 = M

(1,2)
(a1,a2). (3.1)

Next, let a1 ∈ A1 and a2 ∈ A2, and consider the stepping functionsM1
a1 ,M

2
a2 ,M

(1,2)
(a1,a2).

The following scaling property holds by (3.1):

xM
(1,2)
(a1,a2)

‖xM (1,2)
(a1,a2)‖

=
(xM1

a1/‖xM
1
a1‖)M

2
a2

‖(xM1
a1/‖xM1

a1‖)M2
a2‖

if ‖xM (1,2)
(a1,a2)‖ > 0. (3.2)

Furthermore, if (1) H1 and H2 are fully dominated, regular HMMs, (2) P1 and P2 denote
the filter kernels induced by H1 and H2, (3) T1 and T2 denote the associated transition
operators, (4) P(1,2) denotes the filter kernel induced by H1 ∗H2, and (5) T(1,2) denotes
the transition operator associated to the kernel P(1,2), then, by using the scaling property
(3.2), it is not difficult to prove that

T1T2 = T(1,2), (3.3)

P1P2 = P(1,2). (3.4)

Since these relations are of importance for our proof of the main theorem (Theorem 2.13),
we now prove them.

First, (3.4) follows from (3.3) by using (2.2). To prove (3.3), let u ∈ B[K], set
u2 = T2u, for x ∈ K set A1(x) = {a : ‖xM1

a1‖ > 0}, and for x ∈ K and a1 ∈ A1(x),
set x(a1) = xM1

a1/‖xM
1
a1‖ and A2(x, a1) = {a2 ∈ A2 : ‖x(a1)M2

a2‖ > 0}. From (2.12) we
find that

u2(x) =

∫
A2(x,a1)

u

(
xM2

a2

‖xM2
a2‖

)
‖xM2

a2‖ τ2(da2).
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Hence

T1T2u(x)

=

∫
A1(x)

u2

(
xM1

a1

‖xM1
a1‖

)
‖xM1

a1‖ τ1(da1)

=

∫
A1(x)

∫
A2(x,a1)

u

(
(xM1

a1/‖xM
1
a1‖)M

2
a2

‖(xMa1/‖xM1
a1‖)M2

a2‖

)∥∥∥∥ xM1
a1

‖xM1
a1‖

M2
a2

∥∥∥∥ τ2(da2) ‖xM1
a1‖ τ1(da1)

=

∫
A1(x)

∫
A2(x,a1)

u

(
xM1

a1M
2
a2

‖xM1
a1M

2
a2‖

)
‖xM1

a1M
2
a2‖ τ2(da2) τ1(da1).

It is easily checked that the set

B(x) = {(a1, a2) ∈ A1 ×A2 : ‖xM1
a1M

2
a2‖ > 0}

satisfies
B(x) = {(a1, a2)} ∈ A1 ×A2 : a1 ∈ A1(x) and a2 ∈ A2(x, a1)}.

Hence

T1T2u(x) =

∫
B(x)

u

(
xM1

a1M
2
a2

‖M1
a1M

2
a2‖

)
‖xM1

a1M
2
a2‖ τ

2(da1, da2) = T(1,2)u(x)

and thus (3.3) holds.
Next, let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, regular HMM.

For n = 1, 2, . . . define pn : S × S → [0,∞) recursively by p1(s, t) = p(s, t) and

pn+1(s, t) =

∫
S

pn(s, σ)p(σ, t)λ(dσ),

define mn : S × S ×An → [0,∞) recursively by m1(s, t, a) = m(s, t, a) and

mn+1(s, t, an+1) =

∫
S

mn(s, σ, an)m(σ, t, an+1)λ(dσ),

define %(n) : An ×An → [0,∞) by

%(n)(an, bn) =

n∑
i=1

%((an)i, (b
n)i),

and define τn ∈ Q∞(An,An) by

τn(B1 × · · · ×Bn) =

n∏
i=1

τ(Bi), Bi ∈ A, i = 1, . . . , n.

It is easy to prove that for n = 1, 2, . . . we have

Hn = {(S,F , δ0), (pn, λ), (An,An, %(n)), (mn, τn)},

and so by induction Hn is a fully dominated regular HMM.
Furthermore, if we let P(N) denote the filter kernel induced by HN and let T(N)

denote the transition operator associated to P(N), then (3.4) and (3.3) imply that

PN = P(N) and TN = T(N). (3.5)
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The second of these equalities is used in order to prove that the filter kernel of a regular
HMM is Lipschitz equicontinuous and not only Lipschitz continuous, a fact which is
crucial to us when proving the main theorem.

From (3.5) and (2.11) it also follows that if P denotes the filter kernel induced by
the fully dominated, regular HMM H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)}, then for
n = 2, 3, . . . ,

Pn(x,E) =

∫
An(x,E)

‖xMa1 · · ·Man‖ τn(dan), (3.6)

where

An(x,E) =

{
(a1, . . . , an) ∈ An : ‖xMa1 · · ·Man‖ > 0,

xMa1 · · ·Man

‖xMa1 · · ·Man‖
∈ E

}
.

3.3. A universal inequality

Theorem 3.1. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, regular
HMM. Let P : K × E → [0, 1] be the filter kernel induced by H. Then P is Lipschitz
equicontinuous with bounding constant 3.

We first prove the following lemma, which was first proved in [21] under the assump-
tion that the HMM under consideration is a classical HMM determined by a lumping
function.

Lemma 3.2. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, regular
HMM. Let P denote the filter kernel. Then P is Lipschitz continuous with bounding
constant 3.

Proof. Recall that the transition operator T : B[K]→ [B[K] is defined by

Tu(x) =

∫
A+

x

u

(
xMa

‖xMa‖

)
‖xMa‖ τ(da),

where Ma denotes the stepping function determined by a ∈ A (see (2.7)).
We shall first show that for all x, y ∈ K and all u ∈ Lip[K],

|Tu(x)−Tu(y)| ≤ (‖u‖+ 2γ(u))‖x− y‖. (3.7)

Recall that for x ∈ K, the set A+
x is defined as A+

x = {a : ‖xMa‖ > 0}. Next note that if
x, y ∈ K and a ∈ A, then

|(‖xMa‖ − ‖yMa‖)| ≤ ‖xMa − yMa‖ = ‖(x− y)Ma‖. (3.8)

Furthermore, if x and y in K, and f and g in Bu[S] are representatives of x and y

respectively, we find that∫
A

‖(x− y)Ma‖ τ(da) ≤
∫
A

∫
S

|f(s)− g(s)|
∫
S

m(s, t, a)λ(dt)λ(ds) τ(da)

=

∫
S

|f(s)− g(s)|λ(ds) = ‖x− y‖. (3.9)

Next define B ⊂ A by B = {a ∈ A : ‖xMa‖, ‖yMa‖ > 0}. Clearly B is an open
set, since we have assumed that H is regular. Define B1 = A+

x \ B and B2 = A+
y \ B.
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Obviously B,B1, B2 are disjoint, measurable sets. For u ∈ Lip[K] we now find that

|Tu(x)−Tu(y)|

=

∣∣∣∣∫
B∪B1

u

(
xMa

‖xMa‖

)
‖xMa‖ τ(da)−

∫
B∪B2

u

(
yMa

‖yMa‖

)
‖yMa‖ τ(da)

∣∣∣∣
≤
∫
B

(∣∣∣∣u(
xMa

‖xMa‖

)
− u
(

yMa

‖yMa‖

∣∣∣∣)‖xMa‖ τ(da)|+ ‖u‖
∫
B

∣∣‖xMa‖ − ‖yMa‖
∣∣ τ(da)

+ ‖u‖
∫
B1

‖xMa‖ τ(da) + ‖u‖
∫
B2

‖yMa‖ τ(da)

≤ γ(u)

∫
B

∥∥∥∥ xMa

‖xMa‖
− yMa

‖yMa‖

∥∥∥∥‖xMa‖ τ(da) + ‖u‖
∫
A

∣∣‖xMa‖ − ‖yMa‖
∣∣ τ(da),

and by Lemma 2.1, (3.8) and (3.9),

|Tu(x)−Tu(y)| ≤ 2γ(u)

∫
B

‖xMa − yMa‖ τ(da) + ‖u‖
∫
A

‖xMa − yMa‖ τ(da)

≤ (2γ(u) + ‖u‖)‖x− y‖,

proving (3.7).
From (3.7) it immediately follows that γ(Tu) ≤ 2γ(u) + ‖u‖ for all u in Lip[K],

therefore
γ(Tu) ≤ 3, ∀u ∈ Lip1[K], (3.10)

since sup{‖x− y‖ : x, y ∈ K} = 2, and then from (3.10) we get

γ(Tu) ≤ 3γ(u), ∀u ∈ Lip[K]. (3.11)

That γ(Tnu) ≤ 3γ(u) also holds for n ≥ 2 and all u ∈ Lip[K] is an immediate
consequence of (3.5) and the fact that (3.10) holds for all fully dominated, regular HMMs.
Hence the filter kernel P is Lipschitz equicontinuous with bounding constant 3.

Remark 3.3. It is easy to construct an example which shows that a number strictly less
than 2 cannot be a bounding constant (see [25]). We believe though that 2 is a bounding
constant for any filter kernel P.

4. On the relationship between HMMs and random systems
with complete connections

The purpose of this section is to show that the filter kernel induced by a fully dominated
regular HMM can be considered as the Markov kernel of the state sequence associated
to a random system with complete connections.

4.1. On random systems with complete connections. We begin with the formal
definition of the concept of random systems with complete connections as defined e.g. in
[18, Section 1.1].

Definition 4.1. Let (K, E) and (A,A) be measurable sets. Let h : K × A → K be a
measurable function, and let Q : K ×A → [0, 1]) be a tr.pr.f. from (K, E) to (A,A). We
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call the 4-tuple
R = {(K, E), (A,A), h,Q}

a random system with complete connections (abbreviated RSCC ). We call h the response
function, Q the index probability function, (K, E) the state space, and (A,A) the index
space.

Associated to a RSCC R = {(K, E), (A,A), h,Q} and an initial distribution µ ∈
P(K, E) there are two stochastic sequences, which we call the state sequence and the
index sequence. A simple way to define these stochastic sequences is to first define the
HMM associated to a RSCC.

Definition 4.2. Let R = {(K, E), (A,A), h,Q} be a RSCC. For x ∈ K and E ∈ E , we
define h−1(x,E) ∈ A by {a ∈ A : h(x, a) ∈ E}. We call the tr.pr.f.M : K×E⊗A → [0, 1]

defined by
M(x,E ×B) = Q(x, h−1(x,E) ∩B) (4.1)

the HMM-kernel associated to the RSCC R, we call the tr.pr.f. P : K×E → [0, 1] defined
by

P (x,E) = Q(x, h−1(x,E)) (= M(x,E ×A)) (4.2)

the Markov kernel associated to the RSCC R, and we call the Hidden Markov Model

HR = {(K, E), P, (A,A),M},

where P and M are defined by (4.2) and (4.1) respectively, the HMM associated to the
RSCC R.

Furthermore, if {Xn,µ, n = 0, 1, 2, . . .} and {Yn,µ, n = 1, 2, . . .} denote the hidden
Markov chain and the observation sequence generated by the HMM HR and the initial
distribution µ ∈ P(K, E), we call {Xn,µ, n = 0, 1, 2, . . .} the state sequence and {Yn,µ,
n = 1, 2, . . .} the index sequence generated by the RSCC R and the initial distribution
µ ∈ P(K, E). If µ is the Dirac measure δx at x ∈ K, we usually write Xn(x) instead
of Xn,δx , and Yn(x) instead of Yn,δx .

Remark 4.3. That both M : K ×E ⊗A → [0, 1] defined by (4.1) and P : K ×E → [0, 1]

defined by (4.2) are tr.pr.fs is well-known and follows for example from [27, Lemma 1.41].

If a RSCC R = {(K, E), (A,A), h,Q} is such that Q has a density, that is, if there
exist a σ-finite measure τ on (A,A) and a measurable function q : K ×A→ [0,∞) such
that

Q(x,B) =

∫
B

q(x, a) τ(da),

we usually denote the RSCC byR = {(K, E), (A,A), h, (q, τ)}, and call q : K×A→ [0,∞)

the index probability density function.

Remark 4.4. The classical name for the 4-tuple {(K, E), (A,A), h,Q} is random system
with complete connections (see e.g. the book [19] by M. Iosifescu and R. Theodorescu, or
the book [18] by M. Iosefescu and S. Grigorescu). Another classical name is learning model
(see e.g. the book [35] by F. Norman). A later terminology, introduced by M. Barnsley and
coworkers, is iterated function system with place-dependent probabilities (see e.g. [2]). In
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the much cited paper by P. Diaconis and D. Freedman [10], the authors consider RSCCs
for which the index probability function is independent of the state, and they call such a
RSCC simply a random function. In learning model theory the index space is called the
event space and the index sequence {Yn,µ, n = 1, 2, . . .} is called the event sequence (see
e.g. [35]).

The motivation for introducing the concept of RSCC in this paper is that there is
a strong connection between the theory of filtering processes and the theory of RSCCs,
which we shall describe in the next section.

The study of RSCCs has a long history (see e.g. [19], [35], [23], [18]); here we shall
just present a few basic facts. Thus let R = {(K, E), (A,A), h,Q} be a given RSCC, let
P : K × E → [0, 1] be the Markov kernel associated to R, and let T : B[K, E ]→ B[K, E ]

be the transition operator associated to the Markov kernel P . Let us first note that

Tu(x) =

∫
S

u(y)P (x, dy) =

∫
A

u(h(x, a))Q(x, da).

We shall next introduce a notion which we call the nth iterate of a RSCC. Thus,
let again {(K, E), (A,A), h,Q} be a given RSCC. For n = 1, 2, . . . , we let An = A and
An = A. We define hn : K × An → K, n = 1, 2, . . . , iteratively by first defining h1 = h,
and then setting

hn+1(x, an+1) = h(hn(x, an), an+1), n = 1, 2, . . . ,

and we define Qn : K ×An → [0, 1] iteratively by Q1 = Q and

Qn+1(x,B′ ×Bn+1) =

∫
B′

∫
Bn+1

Qn(x, dan)Q(hn(x, an), dan+1), n = 1, 2, . . . ,

where B′ ∈ An and Bn+1 ∈ An+1. It is well-known (see [18]) that hn is measurable for
each positive integer n and that Qn : K×An → [0, 1] is a tr.pr.f. for each n. This implies
that the set Rn = {(K, E), (An,An), hn, Qn} is also a RSCC for each n. For n = 2, 3, . . .

we callRn the nth iterate ofR, we call hn : K×An → K the nth iterate of h : K×A→ K

and we call Qn : K ×An → [0, 1] the nth iterate of Q : K ×A → [0, 1].
Now, if P : K × E → [0, 1] is the Markov kernel associated to the RSCC R =

{(K, E), (A,A), h,Q} and P (n) denotes the Markov kernel associated to the nth iterate
Rn = {(K,F), (An,An), hn, Qn} of R, then it is easily proved that

Pn = P (n), n = 2, 3, . . . .

Furthermore, if u ∈ B[K, E ], x ∈ K, {Xn(x), n = 0, 1, 2, . . .} is the state sequence
generated by R and x, and {Yn(x), n = 1, 2, . . .} is the index sequence generated by R
and x, then for n = 1, 2, . . . ,

Tnu(x) =

∫
K

u(z)Pn(x, dz) = E[u(Xn(x))] = E[u(hn(x, Y n(x))]

=

∫
An

u(hn(x, an))Qn(x, dan) =

∫
K

u(z)P (n)(x, dz)

where of course Y n(x) = (Y1(x), . . . , Yn(x)). We also have, for n = 1, 2, . . . ,

Xn(x) = hn(x, Y n(x)), x ∈ K,
a fact which we have already used in the previous string of equalities.
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Next suppose that the index probability function Q : K × A → [0, 1] has a density
q with respect to a σ-finite measure τ on (A,A). We then define qn : K × An → [0,∞)

iteratively by q1 = q and

qn+1(x, an+1) = qn(x, an)q(hn(x, an), an+1), n = 1, 2, . . . ,

where an+1 = (an, an+1) = (a1, . . . , an+1), and then we can express Qn : K×An → [0, 1],
n = 1, 2, . . . , by

Qn(x,B) =

∫
B

qn(x, an) τn(dan).

We call qn : K × An → [0,∞) the nth iterate of q : K × A→ [0,∞) and denote the nth
iterate of R by {(K, E), (An,An), hn, (qn, τn)}.

4.2. The RSCC induced by a fully dominated, regular HMM. LetH={(S,F , δ0),

(p, λ), (A,A, %), (m, τ)} be a fully dominated, regular HMM. As above, let K = Pλ(S,F)

and let E denote the Borel field onK induced by the total variation distance. Furthermore,
let Ma denote the stepping function determined by a ∈ A (see (2.7)).

Now we define g : K ×A→ [0,∞) by

g(x, a) = ‖xMa‖, (4.3)

G : K ×A → [0, 1] by

G(x,B) =

∫
B

g(x, a) τ(da), (4.4)

and h : K ×A→ K by

h(x, a) = xMa/‖xMa‖ if ‖xMa‖ > 0, (4.5)

h(x, a) = x if ‖xMa‖ = 0. (4.6)

Since H is assumed to be fully dominated and regular, it follows immediately that g
is continuous. That G is a tr.pr.f. follows from the integral definition of G and the fact
that ∫

A

‖xMa‖ τ(da) = 1, ∀x ∈ K.

That h is continuous on {(x, a) : ‖xMa‖ > 0} follows as a simple consequence of
Lemma 2.1. Furthermore, since M(x, a) is a continuous function, it follows that the set
{(x, a) : ‖xMa‖ = 0} is closed, and it is then easily proved, by using Lemma 2.1 again,
that {(x, a) : h(x, a) ∈ B} ∈ K ⊗ A is a measurable set if B is an open set in E , from
which it follows that h : K × A → K is a measurable function. Therefore the 4-tuple
{(K, E), (A,A), h, (g, τ)} constitutes a RSCC.

Definition 4.5. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a regular HMM, and let
g : K × A → [0,∞), G : K × A → [0, 1] and h : K × A → K be defined by (4.3), (4.4)
and (4.5)–(4.6) respectively. We call the 4-tuple

RH = {(K, E), (A,A), h, (g, τ)}

the RSCC induced by H and call G the tr.pr.f. determined by (g, τ).
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Next let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, regular HMM,
let P : K × E → [0, 1] denote the filter kernel induced by H, let RH = {(K, E), (A,A),

h, (g, τ)} be the RSCC induced by H, and let Q : K × E → [0, 1] denote the Markov
kernel associated to the RSCC RH.

Observation 4.6.
Q(x,E) = P(x,E), ∀x ∈ K, ∀E ∈ E .

Proof. Let G : K ×A → [0, 1] be the tr.pr.f. determined by (g, τ). We have

Q(x,E) = G(x, h−1(x,E)) =

∫
h−1(x,E)

‖xMa‖ τ(da)

=

∫
{a:h(x,a)∈E}

‖xMa‖ τ(da) =

∫
A(x,E)

‖xMa‖ τ(da) = P(x,E),

where A(x,E) is defined by (2.10).

As a trivial consequence of the preceding observation we have the following corollary.

Corollary 4.7. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, regu-
lar, strongly ergodic HMM and let RH = {(K, E), (A,A), h, (g, τ)} be the induced RSCC.
Let Q : K × E → [0, 1] be the Markov kernel associated to RH.

In order to prove part (A) of Theorem 2.13 it suffices to prove that Q is weakly
contracting, and to prove (B)–(D) it suffices to prove that Q is weakly ergodic.

4.3. Some previous results connecting RSCCs and HMMs. Already in 1957,
Blackwell proved the following theorem which he applied to the filtering process he was
considering.

Theorem 4.8 (see [5, Theorem 2]). Let R = {(K, E), (A,A), h, (q, τ)} be a RSCC such
that (K, E) is a bounded, metric space with metric φ, A is a finite set, and τ is the counting
measure on A. Further, let the index probability density function q : K×A→ [0,∞) satisfy

inf{q(x, a) : x ∈ K, a ∈ A} > 0 (4.7)

and
q(·, a) ∈ Lip[K], ∀a ∈ A, (4.8)

and finally, suppose that there exists a number ρ < 1 such that

φ(h(x, a), h(y, a)) ≤ ρφ(x, y)), ∀x, y ∈ K, ∀a ∈ A. (4.9)

Then there exists at most one invariant measure for the Markov kernel associated to R.

In Section 2.3.3.1 of the book [19] from 1969 the connection between partially observed
Markov chains (HMMs) and random systems with complete connections is described, and
also in [18] this connection is mentioned in several places.

In the paper [20] from 1973, a HMM with finite state space is considered, and it is
proved that if the tr.pr.m. of the hidden Markov chain has strictly positive elements, then
the induced RSCC is a so-called distance diminishing model as defined by Norman [35,
Chapter 2], and from this fact it follows that the filtering process converges in distribution
with geometric convergence rate. In the paper [1] from 2012 by C. Anton Popescu, the
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author considers a HMM with finite state space and general observation space, and gives
conditions which imply that the induced RSCC is a distance diminishing model, and
again it follows that the convergence to the limit measure has geometric rate.

The connection between filtering processes and random systems with complete con-
nections is also utilized in [21].

5. Two auxiliary theorems

In this rather long chapter we shall state and prove two auxiliary theorems for Markov
chains taking values in a bounded, complete, separable, metric space. We shall use the
first of these to prove part (D) of Theorem 2.13 and the second to prove parts (A)–(C).

LetQ : K×E → [0, 1] be a tr.pr.f. on a measurable space (K, E), and T : B[K]→ B[K]

denote the transition operator associated to Q. We define T 0u(x) = u(x). Recall from
the general theory of Markov chains that

osc(Tn+1u) ≤ osc(Tnu), n = 0, 1, 2, . . . , u ∈ B[K], (5.1)

since T is an “averaging” operator.
Before stating our theorems we shall first introduce two properties which we call the

shrinking property and the strong shrinking property.

Definition 5.1. Let Q be a tr.pr.f. on a metric space (K, E , δ), and let T be the asso-
ciated transition operator. If for every ρ > 0 there exists a number 0 < α < 1 and an
integer N such that if n ≥ N then for all u ∈ Lip[K],

osc(Tnu) ≤ αργ(u) + (1− α) osc(Tn−Nu), (5.2)

then we say that Q has the strong shrinking property.

Definition 5.2. Let Q be a tr.pr.f. on a metric space (K, E , δ), and let T be the associ-
ated transition operator. If for every ρ > 0 there exists a number 0 < α < 1, such that
for every nonempty, compact set E ⊂ K and any η, κ > 0, there exist an integer N and
another nonempty, compact set F ⊂ K such that if n ≥ N then for all u ∈ Lip[K] we
have

oscE(Tnu) ≤ ηγ(u) + κ osc(u) + αργ(u) + (1− α) oscF (Tn−Nu), (5.3)

then we say that Q has the shrinking property.

Remark 5.3. We call the constant α occurring in (5.2) and (5.3) a shrinking number
associated to ρ.

5.1. A simple auxiliary theorem. Our first auxiliary theorem is based on the strong
shrinking property.

Theorem 5.4. Let (K, E) be a bounded, complete, separable, metric space with metric δ,
and let Q be a tr.pr.f. on (K, E). If Q has the strong shrinking property then Q is weakly
ergodic.



30 T. Kaijser

Proof. We shall first prove that

lim
n→∞

sup{osc(Tnu) : u ∈ Lip1[K]} = 0. (5.4)

We define δ(K) = sup{δ(x, y) : x, y ∈ K}. Let ε > 0. From the strong shrinking property,
we can find α > 0 and an integer N such that if u ∈ Lip1[K] and n > N , then

osc(Tnu) ≤ εα+ (1− α) osc(Tn−Nu). (5.5)

Now define M = min{m : (1− α)m < ε/δ(K)}. Then, if n > NM , it follows from (5.5),
(5.1) and osc(u) ≤ δ(K) that if u ∈ Lip1[K], then

osc(Tnu) ≤ εα+ (1− α) osc(Tn−Nu)

≤ εα+ (1− α)
(
εα+ (1− α) osc(Tn−2Nu)

)
≤ · · · < εα

1

1− (1− α)
+ δ(K)(1− α)M < 2ε,

and since ε is arbitrarily chosen, (5.4) follows.
To complete the proof we shall use the Kantorovich distance on P(K, E) defined by

dK(µ, ν) = inf

{∫
K×K

δ(x, y) µ̃(dxdy) : µ̃ ∈ P̃(µ, ν,K ×K)

}
, (5.6)

which is well-defined since K is bounded (see Section 2.1 for the definition of P̃(µ, ν,

K ×K)}).
It is well-known that the Kantorovich distance is a metric and that it is equal to, and

sometimes defined by, the following supremum:

dK(µ, ν) = sup

{∫
K

u(x)µ(dx)−
∫
K

u(y) ν(dy) : u ∈ Lip1[K]

}
. (5.7)

Another well-known fact is that the topology induced by the Kantorovich distance is
equivalent to the weak topology (see e.g. [12, Chapter 11]).

Next, let G denote the Borel field on P(K, E) generated by the Kantorovich distance.
To complete the proof, we shall also use the fact that the measurable space (P(K, E),G)

is a complete, separable, metric space, since (K, E) is assumed to be a complete, separable
space (see e.g. [12, Corollary 11.5.5 and Theorem 11.8.2]).

Next, let x0 ∈ K. We shall now prove that for every ε > 0 we can find an integer N
such that, for every integer m ≥ 1 and every integer n ≥ N ,

sup

{∣∣∣∣∫
K

u(y)Qn(x0, dy)−
∫
K

u(y)Qn+m(x0, dy)

∣∣∣∣ : u ∈ Lip1[K]

}
< ε. (5.8)

Thus, let ε > 0 and the integer m ≥ 1 be given. Set νx0
= δx0

Qm. Then, if u ∈ Lip1[K],
we find, for n = 1, 2, . . . , that∣∣∣∣∫

K

u(y)Qn(x0, dy)−
∫
K

u(y)Qn+m(x0, dy)

∣∣∣∣ ≤ ∫
K

|Tnu(x0)− Tnu(y)| νx0(dy).

From the limit relation (5.4) it follows that we can find an integer N , independent of m,
such that for any u ∈ Lip1[K] and all y ∈ K we have |Tnu(x0)− Tnu(y)| < ε if n ≥ N ,
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which implies that (5.8) holds for all n ≥ N . Now (5.8) and (5.7) yield

dK(Qn(x0, ·), Qm(x0, ·)) < ε

if n,m ≥ N . This shows that {Qn(x0, ·), n = 1, 2, . . .} is a Cauchy sequence.
Since (P(K, E),G, dK) is a complete, separable, metric space, there exists a probability

measure µ, say, in P(K, E), such that

lim
n→∞

dK(Qn(x0, ·), µ) = 0.

But since limn→∞ sup{osc(Tnu) : u ∈ Lip1[K]} = 0 by (5.4), we also have

lim
n→∞

dK(Qn(x, ·), µ) = 0, ∀x ∈ K,

which implies that for all u ∈ Lip1[K],

lim
n→∞

∫
K

u(y)Qn(x, dy)−
∫
K

u(y)µ(dy) = 0, ∀x ∈ K. (5.9)

But if (5.9) holds for all u ∈ Lip1[K], it also holds for all u ∈ Lip[K]. Therefore by [6,
proof of Theorem 2.1], we conclude that lim supn→∞Qn(x, F ) ≤ µ(F ) for all closed sets
F ∈ E , and then [6, Theorem 2.1] shows that (5.9) holds for all u ∈ C[K] and all x ∈ K.
Hence Q is weakly ergodic with limit measure µ. Thus Theorem 5.4 is proved.

Next, we shall introduce a condition which together with Lipschitz equicontinuity
implies the strong shrinking property.

Definition 5.5. Let (K, E) be a complete, separable, metric space with metric δ, and
let Q be a tr.pr.f. on (K, E). If for every ε > 0 there exists an integer N and a number
α > 0 such that for any two elements x and y in K there exists a coupling µ̃N,x,y of
QN (x, ·) and QN (y, ·) such that

µ̃N,x,y(Dε) ≥ α (5.10)

where
Dε = {z1, z2 ∈ K : δ(z1, z2) < ε},

then we say that Condition C1 is satisfied.

Remark 5.6. For an early version of Condition C1 see e.g. [22].

Proposition 5.7. Let (K, E) be a complete, separable, metric space with metric δ, and
Q be a tr.pr.f. on (K, E). Suppose Q is Lipschitz equicontinuous and Condition C1 is
satisfied. Then Q has the strong shrinking property.

Proof. Let ρ > 0. We want to determine an integer N and an number α such that
(5.2) holds. Let T denote the transition operator associated to Q. Since Q is Lipschitz
equicontinuous, there exists a constant C ≥ 1 such that for all u ∈ Lip[K],

γ(Tnu) ≤ Cγ(u), n = 1, 2, . . . . (5.11)

Define ρ1 = ρ/C. Since Condition C1 holds, we can find an integer N and a number
α such that for any pair (x, y) ∈ K ×K we can find a coupling µ̃N,x,y of QN (x, ·) and
QN (y, ·) such that

µ̃N,x,y(Dρ1) ≥ α. (5.12)
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From (5.12) it follows that if u ∈ Lip[K] then

|TNu(x)− TNu(y)| =
∣∣∣∣∫
K×K

(u(z1)− u(z2)) µ̃N,x,y(dz1, dz2)

∣∣∣∣
≤ osc(u)(1− α) + αγ(u)ρ1. (5.13)

Now let n ≥ N and set m = n−N . From (5.1) and (5.11) it follows that

|Tnu(x)− Tnu(y)| ≤ osc(Tmu)(1− α) + αγ(Tmu)ρ1

≤ osc(Tmu)(1− α) + αγ(u)ρ.

Hence
osc(Tnu) ≤ osc(Tn−Nu)(1− α) + αγ(u)ρ

which is what we wanted to prove.

Remark 5.8. A tr.pr.f. Q on a metric space which is Feller continuous and satisfies
Condition C1 need not be weakly ergodic. For two simple counterexamples see [23].

For the sake of completeness let us prove that if in Theorem 4.8 we assume that
the state space of the RSCC is a bounded, complete, separable, metric space, then the
associated filter kernel is weakly ergodic.

Theorem 5.9. Let R = {(K, E), (A,A), h, (q, τ)} be a RSCC having the same proper-
ties as the RSCC considered in Theorem 4.8. Assume also that (K, E) is complete and
separable. Let P : K × E → [0, 1] be the associated tr.pr.f. Then P is weakly ergodic.

Proof. That Condition C1 holds follows from (4.7) and (4.9) together with the fact that
the state space is bounded. That the tr.pr.f. P is Lipschitz equicontinuous with bounding
constant D + L/(1− ρ), where L = sup{

∑
a |q(x, a)− q(y, a)|/δ(x, y) : x 6= y, x, y ∈ K}

and D = sup{δ(x, y) : x, y ∈ K}, follows from (4.8) and (4.9). The conclusion then follows
from Proposition 5.7 and Theorem 5.4.

Remark 5.10. If the state space of the RSCC considered in Theorems 4.8 and 5.9 is
compact, then it follows from the general theory on RSCCs that the convergence rate is
in fact geometric (see [35, Chapter 3]).

5.2. A second auxiliary theorem. In this section we prove a slightly more complicated
auxiliary theorem.

Theorem 5.11. Let (K, E) be a complete, separable, bounded, metric space with metric δ,
and let Q be a tr.pr.f. on (K, E). Suppose that Q has the shrinking property. Then Q is
weakly contracting.

Proof. Set D = sup{δ(x, y) : x, y ∈ K}. Since K is assumed to be bounded we have
D < ∞. Since furthermore it is not difficult to prove that the shrinking property also
holds if we replace δ by 2δ/D, it is clearly no loss of generality to assume that D = 2.

In order to prove that Q is weakly contracting, we need to show that for all x, y ∈ K,

lim
n→∞

sup

{∣∣∣∣∫
K

u(z)Qn(x, dz)−
∫
K

u(z)Qn(y, dz)

∣∣∣∣ : u ∈ Lip1[K]

}
= 0. (5.14)
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Let ε > 0, x, y ∈ K and u ∈ Lip1[K]. In order to prove (5.14), we shall show that we
can find an integer N , which may depend on x and y, but which does not depend on u,
such that ∣∣∣∣∫

K

u(z)Qn(x, dz)−
∫
K

u(z)Qn(y, dz)

∣∣∣∣ < 6ε, ∀n ≥ N. (5.15)

This is not difficult to do if one uses the shrinking property. We first choose the
number ρ sufficiently small, more precisely we set ρ = ε. Next, let α be a shrinking
number associated to ρ. Since {x, y} is a compact set, it follows from the shrinking
property that if we define η = η1 = ε/2 and κ = κ1 = ε/2, then we can find an integer
N1 and a compact set E1 such that, if n ≥ N1, then

|〈u,Qn(x, ·)〉 − 〈u,Qn(y, ·)〉| = |Tnu(x)− Tnu(y)|
≤ η1 + 2κ1 + αε+ (1− α) sup

z1,z2∈E1

|Tn−N1u(z1)− Tn−N1u(z2)|,

where we have used the fact that γ(u) ≤ 1, osc(u) ≤ 2 and ρ = ε.
We now choose

M = min{m : (1− α)m < ε}.

For i = 2, . . . ,M, we define ηi = ε/2i and κi = ε/2i, and having defined the compact sets
Ei, i = 1, . . . , j − 1, and the integers Ni, i = 1, . . . , j − 1, it follows from the shrinking
property that we can find a compact set Ej and an integer Nj , such that

sup
z1,z2∈Ej−1

|Tnu(z1)− Tnu(z2)|

≤ ηj + 2κj + αρ+ (1− α) sup
z1,z2∈Ej

|Tn−Nju(z1)− Tn−Nju(z2)| (5.16)

if n ≥ Nj . By using (5.16) repeatedly it follows that if n ≥ N1 + · · ·+Nj , then

|Tnu(x)− Tnu(y)|
≤ ε/2 + 2ε/2 + αε+ (1− α) sup

z1,z2∈E1

|Tn−N1u(z1)− Tn−N1u(z2)|

≤
j∑
i=1

ε/2i + 2

j∑
i=1

ε/2i + εα
(
1 + (1− α) + (1− α)2 + · · ·+ (1− α)j−1

)
+ (1− α)j sup

z1,z2∈Ej

|Tn−(N1+···+Nj)u(z1)− Tn−(N1+···+Nj)u(z2)|.

In particular, if j = M and n ≥ N1 + · · ·+NM , then

|Tnu(x)− Tnu(y)|

≤
M∑
i=1

ε/2i + 2

M∑
i=1

ε/2i + εα
(
1 + (1− α) + (1− α)2 + · · ·+ (1− α)M−1

)
+ (1− α)M sup

z1,z2∈EM

|Tn−Nu(z1)− Tn−Nu(z2)|,

where N = N1 + · · ·+NM , and by using osc(Tu) ≤ osc(u), osc(u) ≤ 2 and the fact that

εα
(
1 + (1− α) + (1− α)2 + · · ·+ (1− α)M

)
< ε,



34 T. Kaijser

we find that if n ≥ N , then

|Tnu(x)− Tnu(y)| < ε+ 2ε+ ε+ 2(1− α)M ≤ 4ε+ 2(1− α)M ,

and since (1− α)M < ε, it follows that

|Tnu(x)− Tnu(y)| =
∣∣∣∣∫
K

u(z)Qn(x, dz)−
∫
K

u(z)Qn(y, dz)

∣∣∣∣ < 6ε

if n ≥ N . Thus (5.15) holds, so (5.14) is satisfied. Hence Q is weakly contracting.

Remark 5.12. The arguments used above are similar to arguments found in the paper
by A. Lasota and J. Yorke [32] (see in particular [32, proof of Theorem 4.1]).

A natural conjecture is that if a tr.pr.f. is weakly contracting, then it can have at most
one invariant measure. We shall prove this if also the tr.pr.f. is Lipschitz equicontinuous.
We first prove the following lemma.

Lemma 5.13. Let (K, E) be a complete, separable, bounded, metric space with metric δ,
let Q be a tr.pr.f. on (K, E) and suppose that Q is weakly contracting. Suppose also that
Q is Lipschitz equicontinuous. Then for every nonempty, compact set E ∈ E and every
ε > 0, we can find an integer N such that for any u ∈ Lip1[K],

sup
x,y∈E

∣∣∣∣∫
K

u(z)Qn(x, dz)−
∫
K

u(z)Qn(y, dz)

∣∣∣∣ ≤ ε (5.17)

for all n ≥ N .

Proof. Let E ∈ E and ε > 0, where E is a nonempty, compact set. Since we have
assumed that Q is Lipschitz equicontinuous, there exists a constant C > 1 such that for all
n ≥ 1, ∣∣∣∣∫

K

u(z)Qn(x, dz)−
∫
K

u(z)Qn(y, dz)

∣∣∣∣ ≤ Cδ(x, y)γ(u) (5.18)

for all x, y ∈ K and all u ∈ Lip[K].

Next, set ε1 = ε/(3C). Since E is compact, we can find a finite set M = {xi, i =

1, . . . ,M} such that for every x ∈ E, we have inf{δ(x, xi) : xi ∈M} < ε1. From (5.14) it
follows that we can find an integer N such that if n ≥ N , then∣∣∣∣∫

K

u(z)Qn(xi, dz)−
∫
K

u(z)Qn(xj , dz)

∣∣∣∣ < ε

3

for all u ∈ Lip1[K] and all pairs (xi, xj) ∈M×M.

Now let x, y ∈ E, choose xi ∈ M such that δ(x, xi) < ε1, and xj ∈ M such that
δ(y, xj) < ε1. Let u ∈ Lip1[K]. Using the triangle inequality, (5.18) and ε1 = ε/(3C), we
now find that if n ≥ N , then
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K

u(z)Qn(x, dz)−
∫
K

u(z)Qn(y, dz)

∣∣∣∣
≤
∣∣∣∣∫
K

u(z)Qn(x, dz)−
∫
K

u(z)Qn(xi, dz)

∣∣∣∣+

∣∣∣∣∫
K

u(z)Qn(xi, dz)−
∫
K

u(z)Qn(xj , dz)

∣∣∣∣
+

∣∣∣∣∫
K

u(z)Qn(xj , dz)−
∫
K

u(z)Qn(y, dz)

∣∣∣∣
< Cδ(x, xi) + ε/3 + Cδ(xj , y) = Cε1 + ε/3 + Cε1 = ε/3 + ε/3 + ε/3 = ε.

Hence,

sup

{∣∣∣∣ ∫
K

u(z)Qn(x, dz)−
∫
K

u(z)Qn(y, dz)

∣∣∣∣ : x, y ∈ E, u ∈ Lip1[K]

}
≤ ε

if n ≥ N , and the lemma is proved.

The following proposition will be useful when proving part (B) of Theorem 2.13.

Proposition 5.14. Let (K, E) be a complete, separable, bounded, metric space with met-
ric δ, let Q be a tr.pr.f. on (K, E) and suppose that Q is weakly contracting. Suppose also
that Q is Lipschitz equicontinuous and µ is an invariant measure associated to Q. Then
Q is weakly ergodic with limit measure µ.

Proof. Let T denote the transition operator associated to Q. We want to show that for
every x ∈ K and every u ∈ C[K],

lim
n→∞

Tnu(x) = 〈u, µ〉. (5.19)

We first prove (5.19) when u ∈ Lip1[K]. Thus, let x ∈ K, u ∈ Lip1[K] and ε > 0.
Evidently, (5.19) holds trivially if u ≡ 0. Hence we can assume that u 6≡ 0.

Next, let E be a compact set so large that x ∈ E and

µ(K \ E) < ε/osc(u).

From Lemma 5.13, we can find an integer N such that if y ∈ K then

|Tnu(x)− Tn(y)| < ε/2, n ≥ N.

Hence, if n ≥ N we find that

|Tnu(x)− 〈u, µ〉| ≤
∫
K

|Tnu(x)− Tnu(y)|µ(dy)

≤ osc(u)

∫
K\E

µ(dy) +

∫
E

|Tnu(x)− Tnu(y)|µ(dy) ≤ ε/2 + ε/2 = ε,

so (5.19) holds for all u ∈ Lip1[K] and all x ∈ K.
That (5.19) also holds for all u ∈ Lip[K] and all x ∈ K follows from the fact that

if u ∈ Lip[K] and γ(u) > 0 then v = u/γ(u) ∈ Lip1[K]. Then, by using the same
argument as used in [6] when proving that (ii)⇒(iii) in [6, Theorem 2.1], it follows that
lim supn→∞Qn(x, F ) ≤ ν(F ) for all closed sets F ∈ E . Now by [6, Theorem 2.1], we find
that (5.19) holds for all u ∈ C[K] and all x ∈ K. Hence Q is weakly ergodic with limit
measure µ.
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Corollary 5.15. Let (K, E) be a complete, separable, bounded, metric space with met-
ric δ, let Q be a tr.pr.f. on (K, E) and suppose that Q is weakly contracting. Suppose also
that Q is Lipschitz equicontinuous. Then Q has at most one invariant measure.

Proof. Follows immediately from Proposition 5.14.

Before concluding this section we prove the fairly obvious fact that tightness and
Lipschitz continuity imply the existence of an invariant measure.

Proposition 5.16. Let (K, E) be a complete, separable, bounded, metric space with met-
ric δ, and let Q be a tr.pr.f. on (K, E). Suppose also that Q is Lipschitz continuous and
there exists x∗ ∈ K such that {Qn(x∗, ·), n = 1, 2, . . .} is a tight sequence. Then Q has
an invariant probability measure.

Proof. We shall use a classical argument due to Krylov and Bogolyubov (see e.g. [34,
Section 32.2]) together with the fact that Q is Lipschitz continuous.

Let T denote the transition operator associated to Q. For n = 1, 2, . . . we define T (n) =

(1/n)
∑n
k=1 T

k and Q(n) = (1/n)
∑n
k=1Q

k. Now, since {Qn(x∗, ·), n = 1, 2, . . .} is a tight
sequence, so is {Q(n)(x∗, ·), n = 1, 2, . . .}. Therefore we can extract a subsequence nj ,
j = 1, 2, . . . , such that {Q(nj)(x∗, ·), j = 1, 2, . . .} converges weakly towards a probability
measure ν, say. Hence

lim
j→∞

T (nj)u(x∗) = 〈u, ν〉 (5.20)

for all u ∈ C[K].
Now assume that u∈Lip[K]. By considering the sequence {T (nj+1)u(x∗), j = 1, 2, . . .}

it is easily proved that on the one hand,

lim
j→∞

T (nj+1)u(x∗) = lim
j→∞

T (nj)u(x∗) = 〈u, ν〉,

and on the other hand,

lim
j→∞

T (nj+1)u(x∗) = lim
j→∞

T (nj)Tu(x∗) = 〈Tu, ν〉 = 〈u, νQ〉,

where we have used the fact that Tu ∈ Lip[K] if u ∈ Lip[K].
Hence, if u ∈ Lip[K], then

〈u, νQ〉 = 〈u, ν〉, (5.21)

and since the set of Lipschitz continuous functions is measure determining, it follows that
(5.21) also holds for u ∈ C[K], which we wanted to prove.

Corollary 5.17. Let (K, E) be a complete, separable, bounded, metric space with met-
ric δ, let Q be a tr.pr.f. on (K, E) and suppose that Q is weakly contracting. Suppose
also that Q is Lipschitz equicontinuous and there exists x∗ ∈ K such that {Qn(x∗, ·),
n = 1, 2, . . .} is a tight sequence. Then Q is weakly ergodic.

Proof. Follows immediately from Propositions 5.14 and 5.16.

Remark 5.18. We end this section by raising the following general question: Does Lip-
schitz continuity imply Feller continuity?
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5.3. Some further auxiliary results. The main purpose of this section is to introduce
another contact condition (Condition C2 below) and to show how this condition together
with Lipschitz equicontinuity implies the shrinking property.

We first define Condition E in a slightly more general setting.

Definition 5.19. Let (K, E , δ) be a complete, separable, metric space and let Q be a
tr.pr.f. on (K, E). Suppose that the nonvoid subset P0 of P(K, E) is such that for every
ρ > 0, there exist an integer N and a number α such that for any measures µ and ν

in P0, there exists a coupling µ̃N of µQN and νQN such that

µ̃N ({(x, y) ∈ K ×K : δ(x, y) < ρ}) ≥ α.

We then say that the pair (P0, Q) satisfies Condition E, or simply that P0 satisfies
Condition E.

We first prove the following lemma.

Lemma 5.20. Let (K, E , δ) be a complete, separable, bounded, metric space, let Q be
a tr.pr.f. on (K, E) which is Lipschitz equicontinuous, let T be the associated transition
operator, and suppose that the nonempty subset P0 ⊂ P(K, E) is such that (P0, Q) satisfies
Condition E. Then:

A. for every ρ > 0, there exists α > 0 and an integer N such that for any two probability
measures µ and ν in P0,

|〈u, µQn〉 − 〈u, νQn〉| ≤ αγ(u)ρ+ (1− α) osc(Tn−Nu)

if u ∈ Lip[K] and n ≥ N ;

B. for every ρ > 0, there exists α > 0 and an integer N such that for any probability
measures µ and ν in P0 and any κ > 0, there exists a compact set F such that

|〈u, µQn〉 − 〈u, νQn〉| ≤ αγ(u)ρ+ κ osc(u) + (1− α) oscF (Tn−Nu)

if u ∈ Lip[K] and n ≥ N.

Proof. Since Q is Lipschitz equicontinuous there exists C ≥ 1 such that for u ∈ Lip[K],

γ(Tnu) ≤ Cγ(u), n = 1, 2, . . . . (5.22)

Next, let ρ > 0 and set ρ1 = ρ/C. Since P0 satisfies Condition E, there exist α > 0

and an integer N such that for any two probability measures µ and ν in P0, there exists
a coupling µ̃N of µQN and νQN such that if Dρ1 = {(x, y) ∈ K2 : δ(x, y) < ρ1}, then

µ̃N (Dρ1) ≥ α.

Hence, if u ∈ Lip[K], n ≥ N and we set v = Tn−Nu, we find that

|〈u, µQn〉 − 〈u, νQn〉| =
∣∣∣∣∫
K

Tnu(z)µ(dz)−
∫
K

Tnu(z) ν(dz)

∣∣∣∣
=

∣∣∣∣∫
K

Tn−Nu(z)µQN (dz)−
∫
K

Tn−Nu(z)ν QN (dz)

∣∣∣∣
=

∣∣∣∣∫
K×K

(v(z)− v(z′)) µ̃N (dz, dz′)

∣∣∣∣. (5.23)
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Next set

B1 = {(z, z′) ∈ K2 : δ(z, z′) < ρ1} and B2 = {(z, z′) ∈ K2 : δ(z, z1) ≥ ρ1}.
Using the fact that γ(Tmu) ≤ Cγ(u) for all m ≥ 1 and that

bmin{ε,Θ}+ (1− b)Θ ≤ aε+ (1− a)Θ (5.24)
if

0 < a ≤ b ≤ 1, ε > 0 and Θ > 0,

we obtain∣∣∣∣∫
K×K

(v(z)− v(z′)) µ̃N (dz, dz′)

∣∣∣∣
≤
∣∣∣∣∫
B1

(v(z)− v(z′)) µ̃N (dz, dz′)

∣∣∣∣+

∣∣∣∣∫
B2

(v(z)− v(z′)) µ̃N (dz, dz′)

∣∣∣∣
≤ min{osc(v), γ(v)(ρ/C)}µ̃N (B1) + osc(v)(1− µ̃N (B1))

≤ γ(v)(ρ/C)α+ (1− α) osc(v) ≤ γ(u)ρα+ (1− α) osc(Tn−Nu),

which combined with (5.23) implies that

|〈u, µQn〉 − 〈u, νQn〉| ≤ αγ(u)ρ+ (1− α) osc(Tn−Nu),

and hence part A is proved.
Next, let κ > 0. Since (K, E) is a complete, separable, metric space, there exists a

compact set F ∈ E such that
µ̃((K \ F )× (K \ F )) ≤ κ. (5.25)

Further, define
B3 = {(z, z′) ∈ K ×K : δ(z, z′) < ρ1, z, z

′ ∈ F},
B4 = {(z, z′) ∈ K ×K : δ(z, z′) ≥ ρ1, z, z

′ ∈ F},
B5 = K ×K \ (B3 ∪B4).

Then∣∣∣∣∫
K×K

(v(z)− v(z′)) µ̃N (dz, dz′)

∣∣∣∣
≤
∣∣∣∣∫
B3

(v(z)− v(z′)) µ̃N (dz, dz′)

∣∣∣∣
+

∣∣∣∣∫
B4

(v(z)− v(z′)) µ̃N (dz, dz′)

∣∣∣∣+

∣∣∣∣∫
B5

(v(z)− v(z′)) µ̃N (dz, dz′)

∣∣∣∣
≤ min{oscF (v), ρ1γ(v)}µ̃(B3) + oscF (v)(1− µ̃(B3)) + osc(v)µ̃(B5),

and by using (5.23)–(5.25), γ(v) ≤ Cγ(u) and the fact that osc(Tnu) ≤ osc(u) for all
integers n ≥ 1, we find that∣∣∣∣∫

K×K
(v(z)− v(z′)) µ̃(dz, dz′)

∣∣∣∣ ≤ αγ(u)ρ+ (1− α) oscF (v) + κ osc(u)

which together with (5.23) and v = Tn−Nu implies that

|〈u, µQn〉 − 〈u, νQn〉| ≤ αγ(u)ρ+ (1− α) oscF (Tn−Nu) + κ osc(u),

hence part B is proved and the proof of Lemma 5.20 is complete.
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Before we introduce two further “contact” conditions, recall that dK : P(K, E) ×
P(K, E)→ [0, 2] denotes the Kantorovich distance on P(K, E) (see Section 5.1).

Definition 5.21. Let (K, E , δ) be a complete, separable, metric space and let Q be a
tr.pr.f. on (K, E). We say that Condition C2 is satisfied if there exists a nonvoid subset
P0 of P(K, E) satisfying Condition E and such that for every ε > 0 and every x ∈ K

there exists an integer N such that if n ≥ N then

inf{dK(Qn(x, ·), ν) : ν ∈ P0} < ε. (5.26)

If also N is independent of x ∈ K, we say that Condition C3 is satisfied.

Proposition 5.22. Let (K, E , δ) be a complete, separable, metric space, and let Q be a
tr.pr.f. on (K, E). If Q is Lipschitz equicontinuous and Condition C2 is satisfied, then
Q has the shrinking property. If also Condition C3 is satisfied, then Q has the strong
shrinking property.

Proof. We first prove thatQ has the strong shrinking property if Condition C3 is satisfied.
Let ρ > 0 and T denote the transition operator associated to Q. We want to prove

that we can find an integer N and α > 0 such that if n ≥ N , then for all u ∈ Lip[K],

osc(Tnu) ≤ αργ(u) + (1− α) osc(Tn−Nu).

Since Condition C3 is satisfied, there exists a set P0 ⊂ P(K, E) satisfying Condition
E and such that for every ε > 0 we can find an integer N such that for all x ∈ K, (5.26)
holds.

Since Q is Lipschitz equicontinuous there exists C ≥ 1 such that for u ∈ Lip[K],

γ(Tnu) ≤ Cγ(u), n = 1, 2, . . . . (5.27)

Now set ρ1 = ρ/2C. Since P0 satisfies Condition E, Lemma 5.20 yields α > 0 and an
integer N2 such that for any probability measures µ and ν in P0, we have

|〈u, µQn〉 − 〈u, νQn〉| ≤ αγ(u)ρ1 + (1− α) osc(Tn−N2u) (5.28)

if u ∈ Lip[K] and n ≥ N2.
Next, let x, y ∈ K. From Condition C3 it follows that we can find an integer N1 and

probability measures νx and νy in P0 such that if n ≥ N1 then

dK(Qn(x, ·), νx) < αρ1/2 and dK(Qn(y, ·), νy) < αρ1/2. (5.29)

Now set N = N1 + N2, let n ≥ N and set m = n − N1. From (5.27)–(5.29) and the
definition of the Kantorovich distance, it follows that

|Tnu(x)− Tnu(y)| = |〈Tmu, δxQN1〉 − 〈Tmu, δyQN1〉|
≤ |〈Tmu, νx〉 − 〈Tmu, νy〉|+ γ(Tmu)αρ1

≤ |〈u, νxQm〉 − 〈u, νyQm〉|+ Cγ(u)αρ1

≤ αγ(Tmu)ρ1 + (1− α) osc(Tm−N2u) + γ(u)αρ/2

≤ αCγ(u)ρ/2C + (1− α) osc(Tn−Nu) + γ(u)αρ/2

= αγ(u)ρ+ (1− α) osc(Tn−Nu).
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Hence
osc(Tnu) ≤ αγ(u)ρ+ (1− α) osc(Tn−Nu),

and thus the strong shrinking property holds.
We shall next prove that if only Condition C2 is satisfied, then Q has the shrinking

property.
Let ρ > 0. We want to prove that if Condition C2 is satisfied, then we can find

α > 0 such that for every nonempty, compact set E ∈ E and any η, κ > 0, we can find a
nonempty compact set F and an integer N such that

oscE(Tnu) ≤ ηγ(u) + κ osc(u) + αργ(u) + (1− α) oscF (Tn−Nu) (5.30)

for all u ∈ Lip[K].
So, let E ∈ E be a nonempty, compact set, and let η, κ > 0. Set η1 = η/(4C) where

C is the constant in (5.27).
Since E is a nonempty, compact set in a metric space, we can find a finite setM =

{xi, i = 1, . . . ,M} ⊂ K such that

sup
x∈E

min{δ(x, xi) : xi ∈M} < η1.

SinceM is finite, it follows from Condition C2 that there exists an integer N1 such that
for every xi inM there exists a measure νi ∈ P0 such that for any u ∈ Lip[K],

|〈u, δxi
QN1〉 − 〈u, νi〉| < η1γ(u). (5.31)

Next set V = {ν1, . . . , νM}. From the fact that P0 satisfies Condition E, it follows
from Lemma 5.20 that we can choose α > 0 and an integer N2 in such a way that if νi
and νj belong to V, then there exists a compact set Fi,j ∈ E such that

|〈u, νiQm〉 − 〈u, νjQm〉| < αγ(u)ρ+ κ osc(u) + (1− α) oscFi,j (Tm−N2u)

if u ∈ Lip[K] and m ≥ N2.

By defining F =
⋃

1≤i<j≤M Fi,j , it clearly follows that also

|〈u, νiQm〉 − 〈u, νjQm〉|
= |〈Tmu, νi〉 − 〈Tmu, νj〉| < αγ(u)ρ+ κ osc(u) + (1− α) oscF (Tm−N2u) (5.32)

if u ∈ Lip[K], m ≥ N2 and νi, νj ∈ V.
Now set N = N1 + N2, let n ≥ N , set m = n − N1, and let x and y be probability

measures in E. Let xi ∈ M satisfy δ(x, xi) < η1, and xj ∈ M satisfy δ(y, xj) < η1. By
the triangle inequality,

|Tnu(x)− Tnu(y)| ≤ |Tnu(xi)− Tnu(xj)|+ 2η1γ(Tnu). (5.33)

From (5.31) and the triangle inequality it follows also that

|Tnu(xi)− Tnu(xj)| ≤ |〈Tmu, νi〉 − 〈Tmu, νj〉|+ 2η1γ(Tmu). (5.34)

By combining (5.32)–(5.34) we find that

|Tnu(x)− Tnu(y)|
≤ 2η1γ(Tnu) + 2η1γ(Tmu) + αγ(u)ρ+ κ osc(u) + (1− α) oscF (Tm−N2u).
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Since x and y are arbitrarily chosen in E, and γ(Tnu) ≤ Cγ(u) for all n ≥ 1, it follows
that

oscE(Tnu) ≤ 4Cη1γ(u) + αγ(u)ρ+ κ osc(u) + (1− α) oscF (Tm−N2u),

and since η1 = η/(4C) and m−N2 = n−N , we find that

oscE(Tnu) ≤ ηγ(u) + αγ(u)ρ+ κ osc(u) + (1− α) oscF (Tn−Nu)

if u ∈ Lip[K], which we wanted to prove. Thus Proposition 5.22 is proved.

6. On the barycenter and the filter kernel

From the results proved in Chapter 5 it follows that in order to prove parts (A)–(C) of
Theorem 2.13 it now suffices to prove that Condition C2 is satisfied, and to prove (D) it
remains to prove that Condition C3 is satisfied.

In order to accomplish this we shall need two results on barycenters. The first is

Theorem 6.1. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, regular
HMM and let P be the filter kernel. Let P be the Markov kernel of H. Then for all x ∈ K,

b(Pn(x, ·)) = xPn, n = 1, 2, . . . .

Remark 6.2. The theorem is essentially due to Kunita [31].

Proof. Let F ∈ F , let IF : S → {0, 1} denote the indicator function of F , define UF :

K → R by UF (x) = 〈IF , x〉, and let T denote the transition operator associated to P as
defined by (2.12). From the definition of the barycenter we find that

b(δxP)(F ) =

∫
K

∫
F

y(ds) δxP(dy) =

∫
K

〈IF , y〉 δxP(dy) = 〈UF , δxP〉

= 〈TUF , δx〉 = TUF (x) =

∫
A+

x

UF

(
xMa

‖xMa‖

)
‖xMa‖ τ(da)

=

∫
A+

x

〈
IF ,

xMa

‖xMa‖

〉
‖xMa‖ τ(da) =

∫
A+

x

〈IF , xMa〉 τ(da)

=

∫
A+

x

∫
F

xMa(dt) τ(da) =

∫
A+

x

∫
F

∫
S

m(s, t, a)x(ds)λ(dt) τ(da)

=

∫
F

∫
S

p(s, t)x(ds)λ(dt) =

∫
F

(xP )(dt) = xP (F ),

from which it follows that b(δxP) = xP . That b(δxPn) = xPn for n ≥ 2 follows from the
relation (3.4).

The following lemma is not needed in the proof of the main theorem, but will be
needed later, when we want to verify that Condition E holds. We present it here, since
it gives some insight into sets of probability measures with equal barycenter.

Lemma 6.3. Let (S,F , δ0) be a complete, separable metric space, let λ be a positive
σ-finite measure on (S,F), let K = Pλ(S,F), let E denote the σ-algebra generated by the
total variation metric, let P(K, E) be the set of probability measures on (K, E), let π ∈ K
and let P(K|π) denote the subset of P(K, E) consisting of those probability measures that
have π as barycenter. For F ∈ F define
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E(F ) = {x ∈ K : x(F ) ≥ π(F )/2}. (6.1)

Then for all µ ∈ P(K|π) and all F ∈ F ,

µ(E(F )) ≥ π(F )/2. (6.2)

Proof. The inequality (6.2) holds trivially if π(F ) = 0. Thus assume F ∈ F is such that
π(F ) > 0. Clearly E(F ) ∈ E . Set E(F ) = E. Since µ ∈ P(K|π) we have

∫
K
〈IF , x〉µ(dx) =

π(F ). Hence

π(F ) =

∫
E

〈IF , x〉µ(dx) +

∫
K\E
〈IF , x〉µ(dx)

=

∫
E

∫
F

x(ds)µ(dx) +

∫
K\E

∫
F

x(ds)µ(dx) ≤ µ(E) + (1− µ(E))π(F )/2.

Thus µ(E)(1 − π(F )/2) ≥ π(F )/2 and hence µ(E(F )) > π(F )/2. Therefore (6.2) holds
for all µ ∈ P(K|π) and all F ∈ F .

We end this section with yet another simple observation, which we believe can be
utilized to prove the existence of an invariant measure associated to a filter kernel.

Proposition 6.4. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, reg-
ular HMM and let P be the filter kernel. Let P be the Markov kernel of H, and suppose
that π is an invariant probability measure for P . Then for all µ ∈ P(K|π),

b(µP) = π.

Proof. Let F ∈ F , let IF : S → {0, 1} denote the indicator function of F , define UF :

K → R by UF (x) = 〈IF , x〉, let T denote the transition operator associated to the filter
kernel P as defined by (2.12) and T denote the transition operator associated to the
Markov kernel P . Let µ ∈ P(K|π). From the definition of the barycenter and (2.13) we
find that

b(µP)(F ) =

∫
K

∫
F

y(ds)µP(dy) =

∫
K

〈IF , y〉µP(dy) = 〈UF , µP〉

= 〈TUF , µ〉 =

∫
K

TUF (x)µ(dx) =

∫
K

∫
A+

x

UF

(
xMa

‖xMa‖

)
‖xMa‖ τ(da)µ(dx)

=

∫
K

∫
A+

x

〈
IF ,

xMa

‖xMa‖

〉
‖xMa‖ τ(da)µ(dx) =

∫
K

∫
A+

x

〈IF , xMa〉 τ(da)µ(dx)

=

∫
K

∫
A+

x

∫
F

xMa(dt) τ(da)µ(dx)

=

∫
K

∫
A+

x

∫
F

∫
S

m(s, t, a)x(ds)λ(dt) τ(da)µ(dx)

=

∫
K

∫
F

∫
S

p(s, t)x(ds)λ(dt)µ(dx) =

∫
K

∫
F

(xP )(dt)µ(dx)

=

∫
K

〈IF , xP 〉µ(dx) =

∫
K

〈TIF , x〉µ(dx)

= 〈TIF , π〉 = 〈IF , πP 〉 = 〈IF , π〉 = π(F ).

Hence b(µP)(F ) = π(F ) for all F ∈ F , and thus b(µP) = π.
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7. Completing the proof of the main theorem

Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, regular, strongly er-
godic HMM with limit measure π and let P be the filter kernel. Let P(K|π) be the
set of probability measures having π as barycenter and suppose that P(K|π) satisfies
Condition E. From Proposition 5.22 and the definitions of Conditions C2 and C3 we can
conclude that to prove parts (A)–(C) of Theorem 2.13, it remains to show that for every
ε > 0 and every x ∈ K there exists an integer N such that

inf{dK(Qn(x, ·), ν) : ν ∈ P(K|π)} < ε, n ≥ N, (7.1)

and to prove part (D) it remains to show that if also the HMM H is uniformly ergodic
then for every ε > 0 there exists an integer N such that for all x ∈ K the inequality (7.1)
holds.

To do so, we shall show in this chapter that if µ ∈ P(K|q) and ‖q − π‖ is small, then
we can find a measure ν ∈ P(K|π) such that dK(µ, ν) is also small. Then Theorem 6.1
implies immediately that Condition C2 holds if H is strongly ergodic, and that Condition
C3 holds if H is uniformly ergodic, and then the conclusions of Theorem 2.13 follow from
the results of Chapter 5.

7.1. On the Kantorovich distance between sets with different barycenters. Let
(S,F) be a complete, separable, measurable space with metric δ0, let λ denote a σ-finite,
positive measure on (S,F) and set K = Pλ(S,F). As before, let δTV denote the metric
on K induced by the total variation and let E denote the σ-algebra generated by δTV .
Instead of writing δTV (x, y), in this section we shall usually write ‖x − y‖. Let P(K, E)

denote the set of probability measures on (K, E), let Q(K, E) denote the set of positive
and finite measures on (K, E), and for r > 0 let Qr(K, E) denote the set of positive, finite
measures on (K, E) with total mass equal to r.

Let dK : P(K, E) × P(K, E) → [0, 2] denote the Kantorovich distance on P(K, E).
Recall that the Kantorovich distance on P(K, E) has two equivalent definitions, (5.6)
and (5.7).

For the set Qr(K, E) we also define a metric, which we also denote by dK , simply by

dK(µ, ν) = rdK(µ/r, ν/r), µ, ν ∈ Qr(K, E).

Also in this case we call dK the Kantorovich distance.
As above, we let P(K|x) denote the set of probability measures on (K, E) with

barycenter x. For µ ∈ Qr(K, E) we also define the barycenter b(µ) simply by

b(µ) = rb(µ/r).

Thus, if µ ∈ Qr(K, E) then b(µ) ∈ Qλ(S,F) and ‖b(µ)‖ = r. For x ∈ K and r > 0, we
let Qr(K|x) denote the set of measures in Qr(K, E) with barycenter rx.

The purpose of this section is to prove the following result:

Theorem 7.1. Let r > 0, let x, y ∈ K and let µ ∈ Qr(K|x). Then

inf{dK(µ, ν) : ν ∈ Qr(K|y)} = r‖x− y‖.



44 T. Kaijser

Proof. First note that if x, y ∈ K, then dK(δx, δy) = ‖x − y‖, where δx and δy denote
the Dirac measures at x and y respectively. This follows from (5.6) and the fact that
P̃(δx, δy,K ×K) = {δ̃(x,y)}, where δ̃(x,y) denotes the Dirac measure at (x, y) ∈ K ×K.

The following lemma gives a lower bound for the Kantorovich distance between two
measures in Qr(K, E) in terms of their barycenters.

Lemma 7.2. Let r > 0 and µ, ν ∈ Qr(K, E). Then

dK(µ, ν) ≥ ‖b(µ)− b(ν)‖.

Proof. The conclusion is trivially true if b(µ) = b(ν). So assume that b(µ) 6= b(ν). From
the definition of the Kantorovich distance in Qr(K, E) and the definition of the barycenter
of a measure in Qr(K, E), it follows that it suffices to prove the inequality if r = 1, that
is, when µ, ν ∈ P(K, E).

Thus, let µ, ν ∈ P(K, E) and set x = b(µ) and y = b(ν). Let F1, F2 ∈ F be such that
F2 = S \ F1 and x(F ∩ F1) ≥ y(F ∩ F1) for all F ∈ F with F ⊂ F1, and x(F ∩ F2) ≤
y(F ∩ F2) for all F ∈ F with F ⊂ F2 (F1 and F2 constitute a Hahn decomposition).
Define J : S → [−1, 1] by

J(s) = IF1
(s)− IF2

(s), (7.2)

where IF1
and IF2

denote the respective indicator functions.
Next, define v ∈ B[K] by v(z) = 〈J, z〉. Since osc(J) ≤ 2, it follows from (2.1) that

|v(z1)− v(z2)| = |〈J, z1〉 − 〈J, z2〉| ≤ osc(J)‖z1 − z2‖/2 ≤ ‖z1 − z2‖,

and hence v ∈ Lip1[K]. The definition of the Kantorovich distance then yields

dK(µ, ν) ≥
∣∣∣∣∫
K

v(z)µ(dz)−
∫
K

v(z) ν(dz)

∣∣∣∣, (7.3)

and from the definition of the barycenter and (7.2),∣∣∣∣∫
K

v(z)µ(dz)−
∫
K

v(z) ν(dz)

∣∣∣∣ =

∣∣∣∣∫
K

〈J, z〉µ(dz)−
∫
K

〈J, z〉 ν(dz)

∣∣∣∣
= |〈IF1

, b(µ)〉 − 〈IS\F1
, b(µ)〉 − 〈IF1

, b(ν)〉+ 〈IS\F1
, b(ν)〉|

= |x(F1)− y(F1) + y(S \ F1)− x(S \ F1)| = ‖x− y‖ = ‖b(µ)− b(ν)‖,

which together with (7.3) implies that dK(µ, ν) ≥ ‖b(µ)− b(ν)‖.

We now continue our proof of Theorem 7.1 by proving that if µ ∈ Q(K, E) is a
weighted finite sum of Dirac measures, then for every y ∈ K we can find ν ∈ Q(K, E)

such that µ(K) = ν(K), b(ν) = yµ(K) and dK(µ, ν) = ‖b(µ)− b(ν)‖. As usual, if ξ ∈ K,
we let δξ denote the Dirac measure at ξ.

Lemma 7.3. Let N be a positive integer and let ξk, k = 1, . . . , N, be elements in K.
Let βk > 0, k = 1, . . . , N , let ϕ ∈ Q(K, E) be defined by ϕ =

∑N
k=1 βkδξk , and define

a ∈ Qλ(S,F) by a =
∑N
k=1 βkξk. Let b ∈ Qλ(S,F) satisfy ‖b‖ = ‖a‖. Then there

exist elements ζk, k = 1, . . . , N, in K such that b =
∑N
k=1 βkζk and if we define Ψ =∑N

k=1 βkδζk , then
dK(ϕ,Ψ) = ‖a− b‖.
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Proof. First observe that if ψ ∈ Q(K, E) is defined by ψ =
∑N
k=1 βkδζk , where βk, k =

1, . . . , N, is a positive number, and ζk, k = 1, . . . , N, belongs to K, then the barycenter
of ψ satisfies

b(ψ) =

N∑
k=1

βkζk. (7.4)

This follows from the fact that if µ ∈ Q(K, E) is defined by µ = δz0 and F ∈ F , then∫
K
〈IF , z〉µ(dz) = 〈IF , z0〉 = z0(F ).

Next, let ζ1, . . . , ζN ∈ K and define θ ∈ Q(K, E) by θ =
∑N
k=1 βkδζk . Clearly θ(K) =∑N

k=1 βk and hence θ(K) = ϕ(K) = ‖a‖. We now define the measure ϕ̃ on (K2, E2) by
ϕ̃({(ξk, ζk)}) = βk, k = 1, . . . , N. Then clearly ϕ̃(A×K) = ϕ(A) and ϕ̃(K ×A) = θ(A),
for all A ∈ E , from which it follows that

dK(ϕ, θ) ≤
N∑
k=1

βk‖ξk − ζk‖, (7.5)

since

dK(ϕ, θ) ≤
∫
K×K

‖x− y‖ ϕ̃(dx, dy) =

N∑
k=1

βk‖ξk − ζk‖.

By combining (7.5) and (7.4) with Lemma 7.2, it follows that to prove Lemma 7.3, it
suffices to find probability measures ζk, k = 1, . . . , N, belonging to K such that

b =

N∑
k=1

βkζk (7.6)

and also
N∑
k=1

βk‖ξk − ζk‖ = ‖a− b‖. (7.7)

That we can do this when N = 1, that is, when ϕ = β1δξ1 , is trivial: simply define
ζ1 = b/β1; then β1‖ξ1 − ζ1‖ = ‖a − b‖, as desired. The case when b = a is also trivial:
just take ζk = ξk, k = 1, . . . , N . In the remaining part of the proof we therefore assume
that a 6= b.

We now prove by induction that we can find probability measures ζk ∈ K, k =

1, . . . , N, such that (7.6) and (7.7) hold. Thus, letM ≥ 2, and assume that if N = M−1,
then if a =

∑N
k=1 βkξk where βk > 0 and ξk ∈ K, k = 1, . . . , N , and if the measure b

belongs to Qλ(S,F) and satisfies ‖b‖ = ‖a‖, then we can find ζk, k = 1, . . . , N, in K such
that (7.6) and (7.7) hold.

Now, let N = M , let βk > 0, k = 1, . . . ,M, let ξk ∈ K, k = 1, . . . ,M, set a =∑M
k=1 βkξk and suppose that b ∈ Qλ(S,F) satisfies ‖b‖ = ‖a‖. Our aim is to find ζk,

k = 1, . . . ,M, in K, such that (7.6) and (7.7) hold.
Recall that we have assumed that a 6= b and hence ‖a− b‖ 6= 0. We define

∆ = ‖a− b‖/2.

Define a1 ∈ Qλ(S,F) by a1 =
∑M−1
k=1 βkξk. Clearly ‖a1‖ = ‖a‖ − βM .
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Suppose that we can find a probability measure ζM ∈ K such that if we define

b1 = b− βMζM , (7.8)

then
b1 ∈ Qλ(S,F) (7.9)

and
‖a− b‖ = ‖a1 − b1‖+ βM‖ξM − ζM‖. (7.10)

From (7.9) and the definition of b1 it follows that ‖b1‖ = ‖b‖−βM = ‖a‖−βM = ‖a1‖ and
so, using the induction hypothesis, we can find probability measures ζk, k = 1, . . . ,M−1,

such that b1 =
∑M−1
k=1 βkζk and

M−1∑
k=1

βk‖ξk − ζk‖ = ‖a1 − b1‖; (7.11)

consequently, by (7.10) and (7.11),

‖a− b‖ =

M−1∑
k=1

βk‖ξk − ζk‖+ βM‖ξM − ζM‖ =

M∑
k=1

βk‖ξk − ζk‖,

and hence (7.6) and (7.7) hold with N = M .
To determine ζM ∈ K such that if we define b1 by (7.8), then (7.9) and (7.10) hold,

we proceed as follows.
First, let F1, F2 ∈ F be such that F2 = S \ F1 and a(F ∩ F1) ≥ b(F ∩ F1) for all

F ∈ F satisfying F ⊂ F1, and a(F ∩ F2) ≤ b(F ∩ F2) for all F ∈ F with F ⊂ F2. We
write F1 = {F ∈ F : F ⊂ F1} and F2 = {F ∈ F : F ⊂ F2}. Note that 2∆ = ‖a − b‖ =

sup{a(F )− b(F ) : F ∈ F}+ sup{b(F )− a(F ) : F ∈ F} = a(F1)− b(F1) + b(F2)− a(F2),
and since F1 ∪ F2 = S, F1 ∩ F2 = ∅ and ‖a‖ = ‖b‖, it is clear that

∆ = a(F1)− b(F1). (7.12)

Next, define a measure c ∈ Qλ(S,F) by

c(F ) = ((a− a1) ∧ (a− b))(F ∩ F1), F ∈ F , (7.13)

and set
∆0 = c(F1).

Since obviously c(F ) ≤ a(F )− b(F ) if F ∈ F1, it follows that c(F1) ≤ a(F1)− b(F1) = ∆

because of (7.12), and hence ∆0 ≤ ∆. We now define ζM as follows:

ζM (F ) = ξM (F )− c(F )/βM if F ∈ F1,

ζM (F ) = ξM (F ) + (∆0/∆)(b(F )− a(F ))/βM if F ∈ F2.

We have to verify that ζM ∈ K. We first show that ζM ∈ Qλ(S,F). For F ∈ F1 we
find from the definition of c (see (7.13)) that

ζM (F ) = ξM (F )− c(F )/βM = (a(F )− a1(F )− c(F ))/βM ≥ 0,

and if F ∈ F2, then obviously ζM (F ) ≥ 0. Hence ζM ∈ Q(S,F). Since a, b, c and ξM
belong to Qλ(S,F), it follows that also ζM ∈ Qλ(S,F).
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To prove ζM ∈ K, we need to show that ζM (S) = 1. Since

ζM (F1) = ξM (F1)−∆0/βM

and
ζM (F2) = ξM (F2) + (∆0/∆)(b(F2)− a(F2))/βM = ξM (F2) + ∆0/βM ,

we have ζM (S) = ξM (F1) + ξM (F2) = 1, and hence ζM ∈ K. We also find that

‖ξM − ζM‖ = ξM (F1)− ζM (F1) + ζM (F2)− ξM (F2)

= c(F1)/βM + c(F1)/βM = 2∆0/βM . (7.14)

Furthermore, if b1 is defined by (7.8), we find that if F ∈ F1, then

b1(F ) = b(F )− βMζM (F )

= b(F )− βMξM (F ) + c(F ) = b(F )− a(F ) + a1(F ) + c(F )

= b(F ) + a1(F ) + ((a− a1) ∧ (a− b))(F )− a(F )

= b(F ) + a1(F )− (a1 ∨ b)(F ) ≥ 0,

and if F ∈ F2, then since ∆0 ≤ ∆ we obtain

b1(F ) = b(F )− βMξM (F )− (b(F )− a(F ))∆0/∆

≥ b(F )− a(F ) + a1(F )− (b(F )− a(F )) ≥ a1(F ).

Hence (7.9) is satisfied.
It thus remains to show that (7.10) is satisfied. Since

b1(F ) = b(F ) + a1(F )− (a1 ∨ b)(F ) ≤ a1(F )

if F ∈ F1, and as we just showed b1(F ) ≥ a1(F ) if F ∈ F2, we find that

‖a1 − b1‖ = a1(F1)− b1(F1) + b1(F2)− a1(F2)

= a(F1)− βMξM (F1)− b(F1) + βMξM (F1)− c(F1)

+ b(F2)− βMξM (F2)− (∆0/∆)(b(F2)− a(F2))− a(F2) + βMξM (F2)

= a(F1)− b(F1)−∆0 + b(F2)− a(F2)−∆0 = 2∆− 2∆0,

and since ‖a− b‖ = 2∆ and βM‖ξM − ζM‖ = 2∆0 because of (7.14), the equality (7.10)
holds and thus the proof of Lemma 7.3 is complete.

Using Lemmas 7.3 and 7.2 it is now easy to conclude the proof of Theorem 7.1. Thus
let x, y ∈ K and suppose µ ∈ Qr(K|x). We want to prove that for every ε > 0 we can
find a measure ν ∈ Qr(K|y) such that

dK(µ, ν) < r‖x− y‖+ ε.

Thus, let ε > 0. From the general theory of measures we know, since (K, E) is a
complete, separable, metric space, that we can find a measure µ1 ∈ Qr(K, E) of the form
µ1 =

∑N
k=1 βkδξk such that dK(µ, µ1) < ε/2, where ξk, k = 1, . . . , N, belong to K, and

βk > 0 for k = 1, . . . , N (see e.g. [12, Chapter 9]). From Lemma 7.2 it now follows that

ε/2 > dK(µ, µ1) ≥ ‖rx− b(µ1)‖,

and from Lemma 7.3 it follows that we can find a measure ν ∈ Qr(K|y) such that

dK(µ1, ν) = ‖b(µ1)− ry‖.
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Then from the triangle inequality we have

dK(µ, ν) ≤ dK(µ, µ1) + dK(µ1, ν) < ε/2 + ‖b(µ1)− ry‖
≤ ε/2 + ‖b(µ1)− rx‖+ r‖x− y‖ ≤ ε/2 + ε/2 + r‖x− y‖.

Hence, dK(µ, ν) < r‖x− y‖+ ε and thus Theorem 7.1 is proved.

7.2. Completing the proof. By using Theorems 6.1 and 7.1 it is now easy to finish
the proof of the main theorem. We first prove the following corollary to Theorem 7.1.

Corollary 7.4. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, reg-
ular HMM and let P be the filter kernel.

(A) Suppose H is strongly ergodic with limit measure π. Then for every η > 0 we can
find an integer N such that for every x ∈ M there exists a probability νx ∈ P(K|π)

such that for every u ∈ Lip[K] and every integer n ≥ N ,

|〈u, δxPn〉 − 〈u, νx〉| < ηγ(u). (7.15)

(B) If furthermore H is uniformly ergodic, then for every η > 0 we can find an integer
N such that for every x ∈ K there exists a measure νx ∈ P(K|π) such that (7.15)

holds for every u ∈ Lip[K] and every n ≥ N .

Proof. Let x ∈ K and η > 0. Let P denote the Markov kernel determined by (p, λ). Since
H is strongly ergodic with limit measure π, we can find an integer N such that if n ≥ N ,
then

δTV (xPn, π) < η.

From Theorem 6.1 we deduce that

δTV (b(δxP
n), π) < η if n ≥ N, (7.16)

and Theorem 7.1 then yields ν ∈ P(K|π) such that dK(δxP
n, ν) < η if n ≥ N , from

which we conclude that (7.15) holds if u ∈ Lip[K]. Thus part (A) is proved.
Next suppose that H is also uniformly ergodic with limit measure π. Let η > 0. We

can then find an integer N such that if n ≥ N , then

δTV (xPn, π) < η

for all x ∈ K. Theorem 6.1 shows that

δTV (b(δxP
n), π) < η if n ≥ N (7.17)

for all x ∈ K. From Theorem 7.1 it then follows that for every x ∈ K, we can find
νx ∈ P(K|π) such that dK(δxP

n, νx) < η if n ≥ N , from which it follows that (7.15)
holds for all x ∈ K if u ∈ Lip[K]. Thus part (B) is also proved.

Corollary 7.5. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, reg-
ular, strongly ergodic HMM with limit measure π, let P be the filter kernel and suppose
that Condition E is satisfied. Then:

(A) The filter kernel P satisfies Condition C2.
(B) If furthermore H is uniformly ergodic, then P satisfies Condition C3.
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Proof. Let P0 = P(K|π). By assumption, P0 satisfies Condition E. Condition C2 then
follows from Corollary 7.4(A). If furthermore H is uniformly ergodic, it follows from
Corollary 7.4(B) that also Condition C3 holds.

Finally, the conclusions of Theorem 2.13 now follow by combining Corollary 7.5,
Proposition 5.22, Theorem 5.11, Proposition 5.14, Corollary 5.17, Theorem 5.4 and The-
orem 3.1. Thus the proof of the main theorem is complete.

Remark 7.6. Consider the following condition introduced by T. Szarek [40].

Definition 7.7. Let (K, E , δ) be a complete, separable, metric space and let P be a
tr.pr.f. on (K, E , δ). If there exists x0 ∈ K such that for every open set O containing x0

there exists x ∈ K such that

lim sup
N→∞

1

N

N∑
n=1

Pn(x,O) > 0,

then we say that Condition E holds.

Now from [40, proof of Proposition 2.1] and Theorem 3.1, it follows that if a HMM
is a fully dominated, regular, strongly ergodic HMM and Condition E holds, then there
exists x0 ∈ K such that {Pn(x0, ·), n = 1, 2, . . .} is a tight sequence, and hence hypothesis
(B) of Theorem 2.13 holds. Therefore, if we could show that the filter kernel P induced
by a fully dominated, regular HMM satisfying Condition E also satisfies Condition E , we
would be able to replace “weakly contracting” by “weakly ergodic” in part (A) of Theorem
2.13, and we could omit the rest of the theorem.

8. On Condition E

Theorem 2.13 has two evident weaknesses. The first is that the conclusion in part (A) is
only weak contraction and not weak ergodicity. This we have not been able to surmount.

The other weakness is that it is not easy to tell, by looking at the HMM under
consideration, whether Condition E is satisfied or not. We do believe that for most fully
dominated, regular HMMs Condition E does indeed hold, but as Examples 2.17 and 2.18
show, there are exceptions.

The main purpose of this chapter is to introduce more easily verifiable conditions
that imply Condition E. To this end we shall use some estimates for iterations of integral
kernels.

8.1. Estimates of iterations of integral kernels. Let (S,F , δ) be a complete, separa-
ble, metric space and let λ be a positive, σ-finite measure on (S,F). If k : S×S → [0,∞)

is a nonnegative, measurable function defined on S × S such that

sup

{∫
S

k(s, t)λ(dt) : s ∈ S
}
<∞,

then we call k a density kernel with respect to λ. We denote by Dλ[S × S] the set of all
density kernels with respect λ.
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Definition 8.1. Let k ∈ Dλ[S×S]. We say that k has rectangular support if there exist
F,G ∈ F such that λ(F ), λ(G) > 0, and if (s, t) ∈ F × G then k(s, t) > 0, while if
(s, t) 6∈ F ×G then k(s, t) = 0. We call F ×G the rectangular support of k.

Remark 8.2. In case S is a finite set, the notion of rectangular support is equivalent to
the notion of subrectangular matrix introduced in [21] and used implicitly in the definition
of Condition A presented in the introduction (Section 1.2).

The following theorem is a generalisation of [21, Lemma 6.2].

Theorem 8.3. Let (S,F , δ) be a complete, separable, metric space and let λ be a positive,
σ-finite measure on (S,F). Let km, m = 1, . . . , n, n ≥ 1, be density kernels belonging to
Dλ[S × S] having rectangular supports Fm ×Gm, m = 1, . . . , n, where λ(Fm)λ(Gm) > 0,
m = 1, . . . , n. Let Km : S ×F → [0,∞) be defined by

Km(s, E) =

∫
E

km(s, t)λ(dt),

and for m = 1, . . . , n, define Km,n : S ×F → [0,∞) recursively by Kn,n = Kn and

Km−1,n(s, E) =

∫
S

km−1(s, t)Km,n(t, E)λ(dt), m = n, n− 1, . . . , 2. (8.1)

Set Kn = K1,n, and for x ∈ P(S,F), let xKn ∈ Q(S,F) be defined by xKn(E) =∫
S
Kn(s, E)x(ds).
Now suppose that there exist κm ≥ 1 such that for 1 ≤ m ≤ n,

sup

{
km(s1, t1)km(s2, t2)

km(s2, t1)km(s1, t2)
: s1, s2 ∈ Fm, t1, t2 ∈ Gm

}
≤ κ2

m. (8.2)

Suppose also that
Kn(s, S) > 0 (8.3)

for all s ∈ F1.
If x, y ∈ Q(S,F) are such that x(F1), y(F1) > 0 and n ≥ 1, then∥∥∥∥ xKn

‖xKn‖
− yKn

‖yKn‖

∥∥∥∥ ≤ 2

n∏
m=1

κm − 1

κm + 1
. (8.4)

Proof. We first state the following lemma.

Lemma 8.4. Let n ≥ 1, and let km, Km, Km,n, m = 1, . . . , n, and Kn be as in Theo-
rem 8.3. Then

sup

{∣∣∣∣ Kn(s1, E)

Kn(s1, Gn)
− Kn(s2, E)

Kn(s2, Gn)

∣∣∣∣ : s1, s2 ∈ F1, E ∈ F
}
≤

n∏
m=1

κm − 1

κm + 1
. (8.5)

Proof. The lemma is a simple consequence of the following proposition, which is a special
version of a result due to E. Hopf from 1963 (see [17, Theorem 1]).

Proposition 8.5. Let (S,F , δ) be a complete, separable, metric space, let λ be a positive,
σ-finite measure on (S,F) and let k ∈ Dλ[S × S] be a density kernel with rectangular
support F ×G. Suppose that there exists κ ≥ 1 such that

sup

{
k(s1, t1)k(s2, t2)

k(s2, t1)k(s1, t2)
: s1, s2 ∈ F, t1, t2 ∈ G

}
≤ κ2.
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Let v ∈ B[S] be nonnegative, let u ∈ B[S] be nonnegative such that u(t) > 0 if t ∈ G, and
suppose that sup{v(t)/u(t) : t ∈ G} <∞. Define u1, v1 : S → [0,∞) by

u1(s) =

∫
S

k(s, t)u(t)λ(dt) and v1(s) =

∫
S

k(s, t)v(t)λ(dt).

Then
oscF

(
v1

u1

)
≤ κ− 1

κ+ 1
oscG

(
v

u

)
.

By Proposition 8.5, for every E ∈ F ,

oscFn−1

(
Kn(·, E)

Kn(·, Gn)

)
≤ κn − 1

κn + 1
;

using the integral representation (8.1) and Proposition 8.5, the inequality (8.5) now fol-
lows easily by induction, proving Lemma 8.4.

To conclude the proof of Theorem 8.3 we argue as follows. (The argument is inspired
by an argument in [13].)

Let x, y ∈ Q(S,F) with x(F1), y(F1) > 0. We write Kn = U . We want to prove that
if n ≥ 1, then ∥∥∥∥ xU

‖xU‖
− yU

‖yU‖

∥∥∥∥ ≤ 2

n∏
m=1

κm − 1

κm + 1
.

Let E ∈ F . Then
xU(E)

‖xU‖
=

∫
F1

U(s, E)

xU(Gn)
x(ds) =

∫
F1

U(s, E)

U(s,Gn)
α(ds),

where

α(ds) =
U(s,Gn)

xU(Gn)
x(ds).

Evidently α ∈ P(S,F).
In a similar manner we can write

yU(E)

‖yU‖
=

∫
F1

U(s, E)

U(s,Gn)
β(ds),

where β ∈ P(S,F) is defined by

β(ds) =
U(s,Gn)

yU(Gn)
y(ds).

Hence, by (2.1),∣∣∣∣xU(E)

‖xU‖
− yU(E)

‖yU‖

∣∣∣∣ =

∣∣∣∣ ∫
F1

U(s, E)

U(s,Gn)
α(ds)−

∫
F1

U(s, E)

U(s,Gn)
β(ds)

∣∣∣∣
≤ sup

{
U(s1, E)

U(s1, Gn)
− U(s2, E)

U(s2, Gn)
: s1, s2 ∈ F1

}
1

2
‖α− β‖, (8.6)

and since ‖α− β‖ ≤ 2 and (8.6) holds for all E ∈ F , Lemma 8.4 implies (8.4).

8.2. Couplings of RSCCs. As described in Chapter 4, the filter kernel induced by
a fully dominated regular HMM is equal to the Markov kernel associated to the RSCC
induced by the HMM (see Observation 4.6).
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In this section we shall define couplings of RSCCs, and in the next section we shall
define the Vasershtein coupling of a RSCC.

Let R = {(K, E), (A,A), h,Q} be a RSCC. If a RSCC

R̃ = {(K2, E2), (A2,A2), h̃, Q̃}

has (K2, E2) as state space, has (A2,A2) as index space, the response function h̃ :

K2 ×A2 → K2 satisfies

h̃((x, y), (a, b)) = (h(x, a), h(y, b)), (8.7)

and the index probability function Q̃ : K2 ×A2 → [0, 1] satisfies

Q̃((x, y), B ×A) = Q(x,B), ∀(x, y) ∈ K2, ∀B ∈ A, (8.8)

Q̃((x, y), A×B) = Q(y,B), ∀(x, y) ∈ K2, ∀B ∈ A, (8.9)

then we call R̃ a coupling of R.
If the index probability function Q̃ : K2 ×A2 → [0, 1] satisfies

Q̃((x, y), B1 ×B2) = Q(x,B1)Q(y,B2)), ∀x, y ∈ K, ∀B1, B2 ∈ A,

then we call R̃ the trivial coupling of R.
Now let P : K × E → [0, 1] be the Markov kernel (see (4.2)) associated to a RSCC

R = {(K, E), (A,A), h,Q} and let P̃ : K2 × E2 → [0, 1] be the Markov kernel associated
to any coupling R̃ of R. Then clearly for any pair (µ, ν) in P(K, E) and any n ≥ 1, if we
define µ̃ = µ⊗ ν, then µ̃P̃n is a coupling of µPn and νPn.

Since the filter kernel P induced by a fully dominated, regular HMM H is equal to
the Markov kernel associated to the RSCC induced by H, a natural approach to verify
Condition E is to find a useful coupling of the RSCC associated to the HMM under
consideration.

It turns out that the trivial coupling is a good candidate in many cases. However,
there is another coupling which is useful; we call it the Vasershtein coupling of a RSCC,
and define it in the next section. For simplicity we restrict ourselves to RSCCs for which
the index tr.pr.f. Q is determined by a continuous density function q : K × A → [0,∞)

and a base measure τ ∈ Q∞(A,A).

8.3. The Vasershtein coupling of a RSCC. Let (K, E , δ) and (A,A, %) be complete,
separable, metric spaces, let R = {(K, E), (A,A), h, (q, τ)} be a RSCC with a continuous
index probability density function q : K×A→ [0,∞) and base measure τ , letQ denote the
index tr.pr.f. determined by (q, τ), and let P denote the associated Markov kernel defined
by (4.2). Let D = {(a, b) ∈ A2 : a = b}. The set D is measurable, since (A,A, %) is a
complete, separable, metric space. For x, y ∈ K, define C1(x, y) = {a : q(x, a) ≥ q(y, a)},
C2(x, y) = A \ C1(x, y) and C2(x, y) = {(a, b) ∈ A2 : a ∈ C1(x, y), b ∈ C2(x, y)}. For
B ∈ A2, we set Π(B) = {a ∈ A : (a, a) ∈ B}. Then A1(x, y) and A2(x, y) are measurable
since q is continuous, and Π(B) ∈ A since D is measurable and so is the mapping
ϑ : A→ A2 defined by ϑ(a) = (a, a).

Next, define q̌ : K × K × A → [0,∞) by q̌(x, y, a) = min{q(x, a), q(y, a)}, and for
x, y ∈ K set ∆(x, y) =

∫
A

(q(x, a)− q̌(x, y, a)) τ(da). We define Q̃V : K2 ×A2 → [0, 1] by



On fully dominated Hidden Markov Model 53

Q̃V ((x, y), B) =

∫
Π(B)

q̌((x, y), a) τ(da)

+

∫∫
B∩C2(x,y)

(q(x, a)− q̌(x, y, a))
(
q(x, b)− q̌(x, y, b)

)
τ(da) τ(db)/∆(x, y), (8.10)

where the last term is omitted if ∆(x, y) = 0.
It is easy to verify that Q̃V is a tr.pr.f. from (K2, E2) to (A2,A2), and Q̃V ((x, y), ·) is

well-known to be a coupling of Q(x, ·) and Q(y, ·) for all x, y ∈ K (see [33, Section I.5]).
We call Q̃V : K2 ×A2 → [0, 1] the Vasershtein coupling of (q, τ) (or of Q), and call the
RSCC

R̃V = {(K2, E2), (A2,A2), h̃, Q̃V },

where h̃ : K2×A2 → K2 is defined by (8.7) and Q̃V is defined by (8.10), the Vasershtein
coupling of the RSCC R. We denote by P̃V the Markov kernel associated to R̃V .

Remark 8.6. The original paper using the Vasershtein coupling is [42]. For an early
application of the Vasershtein coupling to RSCCs see [23], where it is used in proving
convergence in distribution, the law of large numbers and the central limit theorem for
the state sequence of a RSCC. In [24, Section 7], the Vasershtein coupling is used to prove
a classical result by Karlin (see [29]), and in [24] it is also applied to convergence rate
problems for continued fraction expansions. M. Ślęczka [38] used the Vasershtein coupling
to prove that the rate of convergence of the distributions of the state sequence of a RSCC
to a unique limit distribution is geometric for RSCCs with a complete, separable, metric
state space and a finite index space, if moreover the index probability function is strictly
positive and an arithmetic mean contraction property holds.

An important property of the Vasershtein coupling Q̃V is described in the next propo-
sition, which follows immediately from the definition.

Proposition 8.7. Let (K, E , δ) and (A,A, %) be complete, separable, metric spaces, let
{(K, E), (A,A), h, (q, τ)} be a RSCC such that q : K ×A→ [0,∞) is continuous, and let

R̃V = {(K2, E2), (A2,A2), h̃, Q̃V }

be the Vasershtein coupling of R.
Suppose that there exist a measurable set K0 ⊂ K, a measurable set B ⊂ A and

positive numbers η and β such that

(1) τ(B) = β,
(2) inf{q(x, a) : (x, a) ∈ K0 ×B} = η.

Then
Q̃V ((x, y), {(a, a) : a ∈ B}) ≥ ηβ, ∀x, y ∈ K0.

Proof. Let x, y ∈ K0. From the definition (8.10) of Q̃V it follows that

Q̃V ((x, y), {(a, a) : a ∈ B}) =

∫
B

min{q(x, a), q(y, a)} τ(da) ≥ ηβ.

In order to find conditions implying Condition E of Theorem 2.13, we will use Propo-
sition 8.9 below.
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We first prove the following lemma. Recall that in Section 5.3 we gave a slightly
broader definition of Condition E (see Definition 5.19) than in Section 2.5. The definition
of the nth iterate of a RSCC was given in Section 4.1.

Lemma 8.8. Let (K, E , δ) and (A,A, %) be complete, separable, metric spaces, let R =

{(K, E), (A,A), h, (q, τ)} be a RSCC such that q : K × A → [0,∞) is continuous, and
let P : K × E → [0, 1] be the associated Markov kernel. For n = 2, 3, . . . , let Rn =

{(K, E), (An,An), hn, (qn, τn)} be the nth iterate of R and assume that qn : K × An →
[0,∞) is continuous for all n ≥ 2.

Suppose that P0 ⊂ P(K, E) is such that for every ρ > 0, there exist an integer N ,
K0 ∈ E, B ∈ AN , and positive constants ξ, β and η such that

(1) µ(K0) ≥ ξ for all µ ∈ P0,

(2) τN (B) ≥ β,
(3) if x ∈ K0 and aN ∈ B, then

qN (x, aN ) ≥ η, (8.11)

(4) if x, y ∈ K0 and aN ∈ B, then

δ(hN (x, aN ), hN (y, aN )) < ρ. (8.12)

Then (P0, P ) satisfies Condition E.

Proof. Let ρ > 0. Choose the integer N , K0 ∈ E , B ∈ AN and ξ, β, η > 0 such that
hypotheses (1)–(4) hold.

Let RN = {(K, E), (AN ,AN ), hN , (qN , τN )} be the Nth iterate of R. From the hy-
potheses of the lemma we know that qN : K ×AN → [0,∞) is continuous. Therefore we
can define the Vasershtein coupling R̃NV of RN .

Now let µ, ν ∈ P0, and let R̃NV = {(K2, E2), (A2N ,A2N ), h̃N , Q̃NV } be the Vasershtein
coupling of RN . Set

B̃ = {(aN , bN ) ∈ AN ×AN : aN = bN , aN ∈ B}.
Since τN (B) ≥ β and qN (x, aN ) ≥ η if x ∈ K0 and aN ∈ B, Proposition 8.7 shows that

Q̃NV ((x, y), B̃) ≥ ηβ
if x, y ∈ K0. Now let

Dρ = {(z1, z2) ∈ K ×K : δ(z1, z2) < ρ},

ÃN (Dρ) = {(aN , bN ) ∈ AN ×AN : (hN (x, aN ), hN (y, bN )) ∈ Dρ},

and let P̃V,N be the Markov kernel associated to the RSCC R̃NV . From the definition (4.2)
and the fact that B̃ ⊂ ÃN (Dρ), it follows that

P̃V,N ((x, y), Dρ) = Q̃NV ((x, y), ÃN (Dρ)) ≥ Q̃NV ((x, y), B̃) ≥ βη.
Hence, if we define µ̃ = µ⊗ ν and set α = ξ2βη, then

µ̃P̃NV (Dρ) ≥ ξ2βη = α,

since µ̃(K0 ×K0) ≥ ξ2. Since P (N) = PN , where P (N) denotes the Markov kernel asso-
ciated to RN , and µ̃P̃V,N is a coupling of µP (N) and νP (N), it follows that Condition E
holds.



On fully dominated Hidden Markov Model 55

The following proposition now follows almost immediately from Lemma 8.8. Recall
that the nth iterate of a fully dominated HMM was defined in Section 3.1.

Proposition 8.9. Suppose that H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} is a fully dom-
inated, regular, strongly ergodic HMM with limit measure π, and for n = 1, 2, . . . let
Hn = {(S,F , δ0), (pn, λ), (An,An, %(n)), (mn, τn)} be the nth iterate of H. Let Man :

Qλ(S,F)→ Qλ(S,F) denote the stepping function (for Hn) determined by an ∈ An.
Suppose that for every ρ > 0 there exist an integer N , K0 ∈ E, B ∈ AN and positive

constants ξ, β and η such that

(a) µ(K0) ≥ ξ for all µ ∈ P(K|π),

(b) τN (B) ≥ β,
(c) if x ∈ K0 and aN ∈ B, then

‖xMaN ‖ ≥ η, (8.13)

(d) if x, y ∈ K0 and aN ∈ B, then∥∥∥∥ xMaN

‖xMaN ‖
− xMaN

‖xMaN ‖

∥∥∥∥ < ρ. (8.14)

Then Condition E is satisfied.

Proof. For n = 1, 2, . . . , let RHn = {(K, E), (An,An), h(n), (g(n), τn)} denote the RSCC
induced by Hn. Let P : K × E → [0, 1] be the filter kernel induced by H, and let Q be
the tr.pr.f. associated to RH1 .

Since, for n ≥ 2, Hn is a fully dominated, regular HMM if so is H, it follows that
g(n) : K ×An → [0,∞) is continuous for all n ≥ 2.

Furthermore since

g(N)(x, aN ) = ‖xMaN ‖ and h(N)(x, aN ) =
xMaN

‖xMaN ‖
if ‖xMaN ‖ > 0, the hypotheses of Lemma 8.8 are satisfied with P0 replaced by P(K|π).
Hence Lemma 8.8 implies that (P(K|π),Q) satisfies Condition E. Since the filter kernel
P is equal to Q, Condition E of Theorem 2.13 is satisfied.

8.4. On HMMs with finite or denumerable state space. The purpose of this
section is to verify that both Theorem 1.2 of Section 1.1 and Theorem 1.1 of [26] are
special cases of Theorem 2.13.

Proposition 8.10. Let H = {S, P,A,R} be an ordinary HMM such that S and A are
finite sets and the tr.pr.m. P is aperiodic and irreducible. Suppose also that Condition
KR is satisfied. Then Condition E is satisfied.

Proof. As in Section 1.1, for each a ∈ A we define the stepping matrix M(a) induced by
a ∈ A as

(M(a))i,j = (P )i,j(R)i,a, ∀i, j ∈ S.

For an ∈ An we write M(an) = M(a1) · · ·M(an).
Since the hidden Markov chain is an aperiodic, irreducible Markov chain on a finite

state space, it has a unique stationary probability vector, which we denote by π. Using
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moreover Condition KR, it is not difficult to prove that for every ρ > 0 we can find an
integer N , elements b1, . . . , bN in A, an element i ∈ S and a number η1 > 0 such that

• the (i, i)th entry of the matrix M(bN ) satisfies

(M(bN ))i,i = η1,

• if x, y ∈ K are such that (x)i ≥ (π)i/2 and (y)i ≥ (π)i/2, then∥∥∥∥ xM(bN )

‖xM(bN )‖
− yM(bN )

‖yM(bN )‖

∥∥∥∥ < ρ.

(Note that (π)j > 0 for all j ∈ S since the hidden Markov chain is irreducible.)

Therefore, if {(K, E), (AN ,AN ), h(N), (g(N), τN )} denotes the RSCC associated to the
Nth iterate of H, and we define B ⊂ AN by B = {(b1, . . . , bN )}, then clearly τN (B) = 1,
since we assume that τ is the counting measure when the observation space is finite. If
we define

K0 = {x ∈ K : (x)i ≥ (π)i/2}

and set (π)i/2 = ξ, then µ(K0) ≥ ξ by Lemma 6.3. Furthermore, if we set η = η1ξ, we
find that if x ∈ K0 and aN ∈ B, then

g(N)(x, aN ) = ‖xM(aN )‖ ≥ ξη1 = η,

and if also y ∈ K0, then

‖h(N)(x, aN )− h(N)(y, aN )‖ < ρ.

Hence the hypotheses of Proposition 8.9 are fulfilled, and thus Condition E is satisfied.

In order to prove a similar result for the case when the state space is denumerable, we
need to replace Condition KR by a condition more suitable for denumerable state spaces.

One such condition is the following one, introduced in [26].

Definition 8.11. Let H = {S, P,A,M} be a HMM such that S and A are denumerable
sets and the tr.pr.m. P is irreducible, strongly ergodic with limit distribution π. We say
that H = {S, P,A,M} satisfies Condition B if the following holds:

For every ρ > 0, there exists i0 ∈ S such that for any compact set C ⊂ K satisfying

µ(C ∩ {x : (x)i0 ≥ (π)i0/2}) ≥ (π)i0/3, ∀µ ∈ P(K|π), (8.15)

there exist an integer N and a sequence b1, . . . , bN such that

• ‖δi0M(bN )‖ > 0,
• if x ∈ C ∩ {x : (x)i0 ≥ (π)i0/2} then∥∥∥∥ xM(bN )

‖xM(bN )‖
− δi0M(bN )

‖δi0M(bN )‖

∥∥∥∥ < ρ,

where as above M(bN ) = M(b1) · · ·M(bN ) and M(bn), n = 1, . . . , N, denotes the
stepping matrix associated to bn.

Remark 8.12. Since (K, E) is a complete, separable metric space when S is denumerable,
and P(K|π) is a tight set if π is finite-dimensional, it follows easily from Theorem 7.1
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that P(K|π) is also tight when π is infinite-dimensional. Lemma 6.3 then shows that we
can always find a compact set C such that (8.15) holds.

Proposition 8.13. Let H = {S, P,A,M} be a HMM such that S and A are denumerable
sets and the tr.pr.m. P is aperiodic, irreducible and strongly ergodic with limit distribu-
tion π. Suppose also that Condition B is satisfied. Then Condition E is satisfied.

Proof. Let ρ > 0. Set ρ1 = ρ/2. Choose i0 ∈ S and a compact set C ⊂ K such that
(8.15) holds. We can do this since Condition B is satisfied. Let K0 ∈ E be defined by
K0 = C ∩ {x : (x)i0 ≥ (π)i0/2}. Note that (π)i0 > 0 since the hidden Markov chain
is irreducible. From Condition B it follows that we can find an integer N and elements
b1, . . . , bN in A such that if we define M(bN ) = M(b1) · · ·M(bN ) then ‖δi0M(bN )‖ > 0,
and if x ∈ K0 then ∥∥∥∥ xM(bN )

‖xM(bN )‖
− δi0M(bN )

‖δi0M(bN )‖

∥∥∥∥ < ρ1.

Now let {(K, E), (AN ,AN ), h(N), (g(N), τN )} denote the RSCC associated to the Nth
iterate of H, and define B ⊂ AN by B = {(b1, . . . , bN )}. Then clearly τN (B) = 1, since
we assume that τ is the counting measure when the observation space is denumerable.
Moreover, if we define ξ = (π)i0/3, then

µ(K0) ≥ ξ, ∀µ ∈ P(K|π),

because of Condition B.
Therefore, if we define

η = ‖δi0M(bN )‖(π)i0/2,

we find that if aN ∈ B and x ∈ K0, then g(N)(x, aN ) = ‖xM(bN )‖ ≥ η and

‖h(N)(x, aN )− h(N)(y, aN )‖ =

∥∥∥∥ xM(bN )

‖xM(bN )‖
− yM(bN )

‖yM(bN )‖

∥∥∥∥
≤
∥∥∥∥ xM(bN )

‖xM(bN )‖
− δi0M(bN )

‖δi0M(bN )‖

∥∥∥∥+

∥∥∥∥ yM(bN )

‖yM(bN )‖
− δi0M(bN )

‖δi0M(bN )‖

∥∥∥∥ ≤ 2ρ1 = ρ.

Hence all the hypotheses of Proposition 8.9 are fulfilled, and thus Condition E is satis-
fied.

8.5. Condition P. Although the hypotheses of Proposition 8.9 are more explicit than
Condition E, in concrete situations it is not yet obvious how to verify them.

The purpose of this section is to introduce another set of conditions for fully domi-
nated, regular HMMs which imply Condition E and which in concrete situations might
be easier to check.

Definition 8.14. Let H = {(S,F , δ0}, (p, λ), (A,A, %), (m, τ)} be a fully dominated,
regular HMM with stationary measure π. If there exist F0 ∈ F and B0 ∈ A such that

(1) π(F0) > 0,

(2) τ(B0) > 0,

(3) there exist positive numbers d0, D0 and β0 such that for every a ∈ B0 there exists
F1(a) ∈ F such that
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(a) F1(a) ⊂ F0,
(b) λ(F1(a)) ≥ β0,
(c) d0 ≤ m(s, t, a) ≤ D0 for all (s, t) ∈ F0 × F1(a),
(d) m(s, t, a) = 0 for all (s, t) ∈ F0 × (F0 \ F1(a)),

then we say that H satisfies Condition P.

Remark 8.15. The idea of Condition P comes from Kochman and Reeds [30] and their
proof of the fact that Condition A of [21] (see Section 1.2) implies that their “rank one
condition” holds.

Remark 8.16. Condition P, as introduced above, is a rather straightforward generalisa-
tion of a similar condition introduced in [25, Section 9], for a HMM with denumerable
state space.

Theorem 8.17. Let H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, reg-
ular, strongly ergodic HMM with stationary measure π. For n = 1, 2, . . . , let Hn =

{(S,F , δ0), (pn, λ), (An,An, %(n)), (mn, τn)} be the nth iterate of H. Suppose there ex-
ists an integer N0 such that HN0 satisfies Condition P. Then Condition E is satisfied.

Proof. Obviously we may assume that N0 = 1. Let F0, B0, m : S × S × A → [0,∞),
d0, D0, η0 and F1(a), a ∈ B0, be such that the hypotheses of Condition P are satisfied.
For n = 1, 2, . . . , let Man : Qλ(S,F)→ Qλ(S,F) denote the stepping function (for Hn )
determined by an ∈ An.

Now let ρ > 0. In view of Proposition 8.9 we want to prove that there exist an
integer N , a set K0, a number ξ > 0, a set B ∈ AN , and numbers β, η > 0 such that

(i) µ(K0) ≥ ξ for all µ ∈ P(K|π),
(ii) τN (B) ≥ β,
(iii) for all x ∈ K0 and all aN ∈ B we have ‖xMaN ‖ ≥ η,
(iv) for all x, y ∈ K0 and aN ∈ B,∥∥∥∥ xMaN

‖xMaN ‖
− yMaN

‖yMaN ‖

∥∥∥∥ < ρ. (8.16)

The choice of K0 is simple: K0 = {x ∈ K : x(F0) ≥ π(F0)/2}, where F0 is determined
by Condition P. Since π(F0) > 0, Lemma 6.3 shows that if we set ξ = π(F0)/2, then
µ(K0) ≥ ξ if µ ∈ P(K|π), and hence hypothesis (a) of Proposition 8.9 is fulfilled.

Next, set κ = D0/d0 where d0 and D0 occur in hypothesis (c) of Condition P, and let
IF0

: S → {0, 1} denote the indicator function of F0. From the hypotheses of Condition P
it follows that if a ∈ B0 and we define ma : S×S → [0,∞) by ma(s, t) = m(s, t, a)IF0

(s),
then ma has rectangular support F0 × F1(a) and

sup

{
ma(s1, t1)ma(s2, t2)

ma(s2, t1)ma(s1, t2)
: s1, s2 ∈ F0, t1, t2 ∈ F1(a)

}
≤ κ2. (8.17)

We now simply define

N = min

{
n ≥ 1 : 2

(
κ− 1

κ+ 1

)n
< ρ

}
, (8.18)

and define the set B in AN by B = B1 × · · · ×BN , where Bi = B0, i = 1, . . . , N .
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By setting β = τ(B0)N we find that τN (B) = β > 0, and hence hypothesis (b) of
Proposition 8.9 is fulfilled.

Next, let x ∈ K0 and aN ∈ B. Then ‖xMaN ‖ =
∫
S

∫
S
mN (s, t, aN )x(ds)λ(dt). From

hypothesis (c) of Condition P it follows that if s ∈ F0, then∫
S

mN (s, t, aN )λ(dt) ≥ dN0
N∏
i=1

λ(F (ai)) ≥ dN0 βN0 .

Therefore, if we define
η = (π(F )/2)dN0 β

N
0

and use the fact that x(F ) ≥ π(F )/2 if x ∈ K0, we find that

‖xMaN ‖ ≥
∫
F

∫
S

mN (s, t, aN )x(ds)λ(dt) ≥ η.

Hence hypothesis (c) of Proposition 8.9 is fulfilled.
It remains to show that if x, y ∈ K0 and (a1, . . . , aN ) = aN ∈ B, then (8.16) holds.

But this follows immediately from Theorem 8.3 and the definition of N (see (8.18)).
Hence also hypothesis (d) of Proposition 8.9 is satisfied, and hence Condition E holds by
Proposition 8.9.

9. Examples

Our first example is obtained by making a denumerable partition of the state space.

Example 9.1. Let H1 = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated, regu-
lar, strongly ergodic HMM with limit measure π such that A is a denumerable set, % is
the discrete metric and τ is the counting measure. Suppose also that

• for each a ∈ A there exists a set Sa ∈ F such that λ(Sa) > 0,
•
⋃
a Sa = S and Sa ∩ Sb = ∅ if a 6= b,

• for each a ∈ A,
m(s, t, a) = p(s, t)ISa

(s),

where ISa : S → {0, 1} denotes the indicator function of the set Sa.

Theorem 9.2. Let H1 = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be the HMM defined in
Example 9.1, let P denote the induced filter kernel, and for n = 2, 3, . . . , let Hn1 =

{(S,F , δ0), (pn, λ), (An,An, %(n)), (mn, τn)} be the nth iterate of H1.
Suppose that there exist an integer N , a0 ∈ A, bN = (b1, . . . , bN ) ∈ AN such that

bN = a0, and positive numbers d0, D0 satisfying d0 ≤ D0, such that π(Sa0) > 0 and

d0 ≤ mN (s, t, bN ) ≤ D0, ∀(s, t) ∈ Sa0 × Sa0 .

Then the filter kernel P is weakly ergodic.

Proof. We shall first verify that HN1 fulfills the hypotheses of Condition P.
First, let F0 = Sa0 . By assumption π(Sa0) > 0, and therefore obviously π(F0) > 0.

Hence hypothesis (1) of Condition P is satisfied with this choice of F0.
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Next, set B = {bN}. Since τ is the counting measure, τN (B) = 1 > 0; hence hypoth-
esis (2) of Condition P holds.

Now define F1(a0) = F0. Evidently F1(a0) ⊂ F0. Since π(F0) > 0 and

π(F0) =

∫
F0

p(s, t)π(ds)λ(dt) ≤ D0λ(F0)π(F0),

it follows that λ(F0) > 0. Hence (3a)–(3b) of Condition P are satisfied.
Further, since m(s, t, a0) = p(s, t) if (s, t) ∈ F0 × F0, and m(s, t, a0) = 0 if (s, t) ∈

F0 × (S \ F ), it is clear that (3c)–(3d) hold. Hence Condition P is satisfied.
Theorem 8.17, Proposition 8.9 and Theorem 2.13 now imply that the filter kernel P is

weakly contracting. If furthermore the Markov chain is uniformly ergodic, then hypothesis
(D) of Theorem 2.13 is fulfilled and hence P is weakly ergodic.

In order to prove that the filter kernel is weakly ergodic without this extra assumption,
we shall use a result of [40]. We shall show that the following condition is satisfied.

Condition E1. There exists x0 ∈ K such that for every ε > 0,

lim inf
n→∞

Pn(x,B(x0, ε)) > 0, ∀x ∈ K, (9.1)

where B(x0, ε) = {y ∈ K : δTV (x0, y) < ε}.

Once we have verified Condition E1, it follows from [40, Proposition 2.1 and Theo-
rem 3.1] that {Pn(x0, ·), n = 1, 2, . . .} is a tight sequence, since obviously Condition E1
implies Condition E of [40]. (Condition E is also formulated at the end of Section 7.2.)
Then the filter kernel is weakly ergodic by Theorem 2.13(C).

To verify Condition E1 we argue as follows. Set F0 = Sa0 , define k : F0×F0 → [0,∞)

by k(s, t) = mN (s, t, bN ), define K : S × F → [0,∞) by K(s, F ) =
∫
S
k(s, t)λ(dt)

and set κ = D0/d0. Since d0 ≤ mN (s, t, bN ) ≤ D0 if (s, t) ∈ F0 × F0, there exist a
function q : F0 → (0,∞) satisfying

∫
F0
q(t)λ(dt) = 1 and a number β > 0 such that∫

F0
k(s, t)q(t)λ(dt) = βq(s) (see e.g. [17]). Moreover, if we define x0 ∈ K by

x0(F ) =

∫
F

q(t)λ(dt),

it follows from Theorem 8.3 that for any x ∈ K such that x(F0) > 0,∥∥∥∥ xKn

‖xKn‖
− x0

∥∥∥∥ ≤ 2

(
κ− 1

κ+ 1

)n
.

Now let ε > 0. Define

N0 = min

{
n ≥ 2 : 2

(
κ− 1

κ+ 1

)n−1

< ε

}
, α = dN0

0 λ(F0)N0 .

It follows that if µ ∈ P(K, E) satisfies

µ({z ∈ K : z(F0) > 0}) ≥ π(F0)/3, (9.2)

then
µPNN0(B(x0, ε)) ≥ απ(F0)/3. (9.3)
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Therefore, if for every x ∈ K we could find an integer N1, which may depend on x, such
that

Pn(x, {z : z(F0) > 0}) ≥ π(F0)/3, ∀n ≥ N1, (9.4)

then (9.1) would follow and hence Condition E1 would be satisfied.
Thus let x ∈ K. To find N1 such that (9.4) holds, we shall use Theorems 6.1 and 7.1.
From Theorem 6.1 it follows that we can find an integer N1 such that

‖b(δxPn)− π‖ < π(F0)/6, ∀n ≥ N1,

and Theorem 7.1 shows that

inf{dK(δxP
n, ν) : ν ∈ P(K|π)} < π(F0)/6, n ≥ N1. (9.5)

From Lemma 6.3 we also know that ν{z : z(F0) ≥ π(F0)/2} ≥ π(F0)/2 for all ν ∈ P(K|π),
which together with (9.5) implies that

Pn(x, {z : z(F0) ≥ π(F0)/2}) ≥ π(F0)/2− π(F0)/6 = π(F0)/3 (9.6)

for n ≥ N1. Thus (9.4) is proved and the proof of Theorem 9.2 is complete.

Remark 9.3. It is clear that the HMMs of Examples 2.15, 2.17 and 2.18 all fulfill the
hypotheses of Example 9.1, but only the HMM of Example 2.15 also fulfills the hypotheses
of Theorem 9.2.

Corollary 9.4. Suppose H1 = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} satisfies the hypothe-
ses of Theorem 9.2. Suppose also that A is finite. Set H1

1 = H1, and for n = 2, 3, . . . ,

let Hn1 = {(S,F , δ0), (pn, λ), (An,An, %(n)), (mn, τn)} denote the nth iterate of H1, and
for n = 1, 2, . . . and an ∈ An, let Man : Qλ(S,F) → Qλ(S,F) be the stepping function
determined by an ∈ An.

Let h : [0, 1]→ [0, 1/(e · ln(2))] be defined by

h(t) = −t ln(t)/ln(2) if 0 < t ≤ 1 and h(0) = 0. (9.7)

For x ∈ Pλ(S,F), let {Yn,x, n = 1, 2, . . .} denote the observation sequence generated by
the HMM H1 and the initial distribution x, and for n = 1, 2, . . . and x ∈ K, define the
entropy of Yn,x by

Hn(Y ;x) =
∑

an∈An

h(‖xMan‖),

and for n = 2, 3, . . . , define the entropy rate Hn
R(Y ;x) of Yn,x by

Hn
R(Y ;x) = Hn+1(Y ;x)−Hn(Y ;x).

Let K = Pλ(S,F), let E be the Borel field induced by the total variation distance, and let
P : K × E → [0, 1] be the filter kernel induced by H1.

Then

(a)

Hn
R(Y ;x) =

∑
a∈A

∫
K

h(‖zMa‖)Pn(x, dz), (9.8)
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(b) there exists a unique measure µ ∈ P(K, E) such that for x ∈ K,

lim
n→∞

Hn
R(Y ;x) =

∑
a∈A

∫
K

h(‖zMa‖)µ(dz).

Proof. (a) follows easily from the scaling property (3.2) and formula (3.6); and (b) fol-
lows by combining (9.8), Theorem 9.2, and the fact that for each a ∈ A the function
ha : K → [0, 1] defined by ha(y) = h(‖yMa‖) is continuous.

Remark 9.5. Since the HMM considered in Example 2.15 fulfills the hypotheses of The-
orem 9.2, it is clear that the entropy formula (2.14) holds.

Before we present our next example we recall the following notation. If A and B are
two sets we let A4B be the set consisting of those elements that belong either to A or
to B, but not to both.

Example 9.6. Let H2 = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be a fully dominated HMM
such that the probability density kernel m : S × S ×A→ [0,∞) can be written as

m(s, t, a) = p(s, t)r(t, a),

where r : S ×A→ [0,∞) is a measurable function satisfying∫
A

r(t, a) τ(da) = 1, ∀t ∈ S.

(H2 is thus an ordinary HMM (see Section 2.3).)
We assume that

sup{p(s, t) : s, t ∈ S} <∞, sup{r(t, a) : t ∈ S, a ∈ A} <∞.

For each a ∈ A, set S+(a) = {t : r(t, a) > 0}. We assume that λ(S+(a)) > 0 for all
a ∈ A. We also assume that the probability density kernel r is such that for every ε > 0

we can find an η > 0 such that if %(a, b) < η, then

λ(S+(a)4 S+(b)) < ε (9.9)

and
|r(t, a)− r(t, b)| < ε, ∀t ∈ S+(a) ∩ S+(b). (9.10)

Proposition 9.7. Let H2 be as in Example 9.6. Then H2 is regular.

Proof. We need to prove that M : Qλ(S,F) × A → Qλ(S,F) is a continuous function
where

M(x, a)(F ) =

∫
S

∫
F

p(s, t)r(t, a)λ(dt)x(ds).

That M is continuous in the first variable follows easily from the boundedness condi-
tion regarding the probability density kernel r.

That it is also continuous in the second variable follows easily from (9.9) and (9.10)
together with the hypothesis that both r : S × A → [0,∞) and p : S × S → [0,∞) are
uniformly bounded. Since the proof is elementary we omit the details.
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Theorem 9.8. Let H2 = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} be the HMM defined in
Example 9.6, set H2 = H1

2, for n = 2, 3, . . . let

Hn2 = {(S,F , δ0), (pn, λ), (An,An, %(n)), (mn, τn)}

be the nth iterate of H2, and let P denote the filter kernel induced by H2. Suppose that

(a) the HMM H2 is strongly ergodic with stationary measure π;
(b) there exists F0 ∈ F , an integer N , B0 ∈ AN , and numbers β0, c > 0 such that

(i) π(F0) > 0,

(ii) τN (B0) > 0,

(iii) S+((aN )N ) ⊂ F0 for all aN ∈ B0,
(iv) λ(S+((aN )N )) ≥ β0 for all aN ∈ B0,
(v) mN (s, t, aN ) ≥ d0 for all (s, t) ∈ F0 × S+((aN )N ) and all aN ∈ B0.

Then the filter kernel P is weakly contracting.
If furthermore H2 is uniformly ergodic, then P is weakly ergodic.

Proof. Let N be the integer mentioned in the theorem. It suffices to verify that the HMM
HN2 satisfies hypotheses (1)–(3) of Condition P.

We shall verify these hypotheses when F0, B0, β0, d0 are as in the hypotheses of The-
orem 9.8, F1(aN ) = S+((aN )N ), and

D0 = sup{(p(s, t)r(t, a))N : s, t ∈ S, a ∈ A}. (9.11)

Since π(F0), τN (B0) > 0, hypotheses (1) and (2) of Condition P are satisfied. Since
λ(F1(aN )) ≥ β0 for all aN ∈ B0 because of (iv), hypothesis (3b) of Condition P is
satisfied. From (iii) we also know that F1(aN ) ⊂ F0 if aN ∈ B, and hence (3a) of
Condition P is satisfied. Furthermore, from the definition of S+(a) we can also conclude
that if aN ∈ B and t 6∈ F1(aN ), then m(s, t, aN ) = 0 for all s ∈ S and in particular for all
s ∈ F0. Hence (3d) of Condition P is satisfied. Finally it is obvious that (3c) of Condition
P holds when d0 is as in (v) and D0 is defined by (9.11). Hence, also hypothesis (3) of
Condition P is satisfied. The conclusion of the theorem now follows from Theorems 8.17
and 2.13.

Remark 9.9. It is easy to show that the HMM considered in Example 2.16 of Section 2.7
fulfills the hypotheses of Theorem 9.8.

10. Discussion

10.1. On entropy. Consider a fully dominated, regular, strongly ergodic HMM

H = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)}

with finite state space. Let x ∈ Pλ(K, E) and let {Yn,x, n = 1, 2, . . .} denote the obser-
vation sequence generated by the HMM H and the initial distribution x. Let P denote
the induced filter kernel, let h : [0, 1] → [0, 1/(e · ln(2))] be defined by (9.7), and for
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n = 1, 2, . . . define

Hn
R(Y ;x) =

∑
a∈A

∫
h(‖zMa‖)Pn(x, dz).

Is it always true that there exists a constant h0 such that

lim
n→∞

Hn
R(Y ;x) = h0, ∀x ∈ Pλ(K, E)? (10.1)

Recall that Blackwell’s conjecture was that if a HMM has a finite state space and is
determined by a lumping function and the tr.pr.m. determining the hidden Markov chain
is indecomposable, then the filter kernel has a unique invariant measure. As pointed out
in the introduction this is not in general true, but it seems likely that the exceptional
cases are so special that the relation (10.1) still might be true.

10.2. Convergence rates. Consider again a fully dominated, regular, uniformly ergodic
HMMH = {(S,F , δ0), (p, λ), (A,A, %), (m, τ)} with limit measure π, let P : S×F → [0, 1]

be the tr.pr.f. determined by (p, λ), and let P denote the induced filter kernel. Let α > 0

and suppose that
lim
n→∞

sup{nα‖Pn(s, ·)− π‖ : s ∈ S} = 0

and H satisfies Condition P. Let µ be the unique invariant of the filter kernel P. Does it
then follow that

lim
n→∞

nβdK(Pn(x, ·), µ) = 0

if β < α ? If also
lim
n→∞

sup{enα‖Pn(s, ·)− π‖ : s ∈ S} = 0,

does it follow that there exists a β > 0 such that for all x ∈ Pλ(S,F),

lim
n→∞

enβdK(Pn(x, ·), µ) = 0?

M. Ślęczka [38] and H. Mairer [16] consider RSCCs and prove geometric convergence
of the distributions of the state sequence to the unique invariant limit distribution. The
former paper uses the Vasershtein coupling. In the latter a very interesting class of cou-
plings is introduced for RSCCs for which the index probability distribution is independent
of the state space. This class of couplings, generalised to ordinary RSCCs, might be quite
useful, both for verifying Condition E and for proving convergence rates for the distri-
butions of the Markov chain generated by the filter kernel of a fully dominated, regular
HMM.

10.3. On HMMs with finite state space and observation space. When the HMM
{S,A, P,M} under consideration is uniformly ergodic and both the state space and the
observation space are finite, then Condition KR (see Section 1.1) is both a sufficient and
necessary condition for weak ergodicity of the filter kernel. In practice though it seems
that Condition A is somewhat easier to verify.

An important related problem is to classify those ergodic, aperiodic transition prob-
ability matrices P for which there exists a partition of P such that Condition KR is not
satisfied. In [26, Section 11], some partial result on this problem was given, but a full
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classification is still lacking. Loosely speaking, it seems as if the class of uniformly ergodic
HMMs with finite state and observation space for which the filter kernel is not weakly
ergodic, is of the same size as the class of those HMMs which satisfy Condition KR but
do not satisfy Condition A.

10.4. On HMMs with denumerable state space and denumerable observation
space. To prove weak ergodicity for a given HMM, which has a denumerable and infi-
nite state space but for which the observation space is finite, seems in general a rather
complicated task, the reason being that the stepping matrices that occur have in general
infinitely many nonzero rows and columns, and therefore it seems difficult to verify Con-
dition E or B. What one would probably need is some kind of generalisation of Perron’s
theorem (see e.g. [14]) for positive, finite-dimensional matrices to nonnegative infinite-
dimensional matrices. (Perhaps some of the papers by D. Vere-Jones from the 1960s can
be useful for this problem—see e.g. [43]).

If instead the observation space is infinite, then it is more likely that a stepping
matrix has only finitely many nonzero columns, and then in concrete examples it is more
likely that for example Condition P is satisfied for some iteration of the HMM under
consideration.

10.5. More on exceptional cases. In Section 2.7 we gave two examples such that the
induced filter kernel of the given fully dominated and regular HMM is not weakly ergodic
in spite of the fact that the tr.pr.f. of the hidden Markov chain is uniformly ergodic. Is it
possible to classify all exceptional cases?
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