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A NOTE ON GROUPS WITH
FEW ISOMORPHISM CLASSES OF SUBGROUPS

BY

FRANCESCO DE GIOVANNI (Napoli) and ALESSIO RUSSO (Caserta)

Abstract. The structure of infinite groups in which any two (proper) subgroups of the
same cardinality are isomorphic is described within the universe of locally graded groups.
The corresponding problem for finite groups was considered by R. Armstrong (1958).

1. Introduction. A group G is said to have the C-property (or to be a
C-group) if any two subgroups of G of the same cardinality are isomorphic,
while G is called a C0-group if all proper subgroups of G of the same cardinal-
ity lie in the same isomorphism class. The properties C and C0 are obviously
equivalent within the universe of finite groups, and the structure of finite
soluble C-groups was investigated by R. Armstrong in her doctoral thesis,
written under the supervision of P. Hall (see [1]). Among other results, she
proved that finite soluble groups with the C-property have derived length
at most 4 and Fitting length at most 3, and that these bounds are best
possible. A complete description of finite unsoluble C-groups has been given
more recently by J. Zhang [10], who showed in particular that they must
contain a subgroup which is isomorphic either to SL(2, 5) or to SL(2, 2n) for
some n ≥ 2. Moreover, Ya. G. Berkovich [2] studied finite unsoluble groups
in which soluble subgroups of the same order are isomorphic.

The aim of this short paper is to study infinite groups in the classes C
and C0. Although there exist finite simple non-abelian C-groups, like for
instance the alternating group of degree 5, it turns out that infinite locally
finite groups with the C0-property are close to be abelian, and actually
they are at least metabelian; this phenomenon essentially depends on the
famous theorem of Hall–Kulatilaka and Kargapolov on the existence of infi-
nite abelian subgroups in any infinite locally finite group. On the other hand,
Tarski groups (i.e. infinite simple groups whose proper non-trivial subgroups
have the same prime order) obviously have the C-property. In order to avoid
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Tarski groups and other similar pathologies, our main results will be proved
in the case of locally graded groups; here, a group G is said to be locally
graded if every finitely generated non-trivial subgroup of G contains a proper
subgroup of finite index. Locally graded groups form a large class of gener-
alized soluble groups, containing in particular all locally (soluble-by-finite)
groups.

Most of our notation is standard and can be found in [8].

2. Statements and proofs. Recall that a group G is said to have
finite rank r if every finitely generated subgroup of G can be generated by
at most r elements, and r is the least positive integer with this property. In
particular, a group has rank 1 if and only if it is a locally cyclic non-trivial
group.

Our first result gives a strong restriction on the structure of groups with
the C0-property containing elements of infinite order.

Lemma 2.1. Let G be a non-periodic C0-group. Then G is a 2-generator
group whose infinite proper subgroups are cyclic.

Proof. Let a be an element of infinite order of G, and assume for a con-
tradiction that G cannot be generated by two elements. If x is any element
of G, then 〈a, x〉 is a proper countable subgroup of G, so that 〈a, x〉 ' 〈a〉
is cyclic; in particular, x has infinite order and a belongs to the centre
of G. Then G is a torsion-free abelian group. Moreover, G/〈a〉 is periodic,
so that G has rank 1 and hence it is isomorphic to a subgroup of the ad-
ditve group of rational numbers. As all proper non-trivial subgroups of G
are isomorphic, it follows that G is cyclic. This contradiction proves that G
is a 2-generator group. In particular, G is countable and so all its infinite
proper subgroups are isomorphic to 〈a〉.

As finitely generated groups are countable, Lemma 2.1 has the following
obvious consequence.

Corollary 2.2. Let G be a non-periodic C-group. Then G is infinite
cyclic.

Observe that A. Yu. Ol’shanskĭı [7] constructed a simple group G whose
proper non-trivial subgroups are infinite cyclic, and of course G is a torsion-
free C0-group. Moreover, it follows from a result of V. N. Obraztsov [6] that
if p is a sufficiently large prime number (for instance p > 1075), there exists a
non-periodic simple group in which every proper subgroup either is infinite
cyclic or has order p, and also this group has the C0-property. On the other
hand, within the universe of locally graded groups, the above statement can
be extended to groups with the C0-property.
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Corollary 2.3. Let G be a locally graded non-periodic C0-group. Then
G is infinite cyclic.

Proof. It follows from Lemma 2.1 that G is a 2-generator group whose
infinite proper subgroups are cyclic. As G is locally graded, it contains a
proper normal subgroup H of finite index, and the factor group G/CG(H)
has order at most 2. If |G : CG(H)| = 2, the centralizer CG(H) is likewise
infinite cyclic, and so G is infinite dihedral, which is clearly a contradiction.
Then H lies in the centre Z(G), and it follows from a celebrated theorem
of Schur that the commutator subgroup G′ of G is finite (see [8, Part 1,
Theorem 4.12]). If a is an element of infinite order of G, the subgroup 〈a2, G′〉
is properly contained in G, and hence it is cyclic. Therefore G′ = {1}, and
so the finitely generated abelian group G is infinite cyclic.

It is easy to prove that there are only few infinite abelian groups enjoying
one of the properties C and C0.

Corollary 2.4. An infinite abelian group G has the C0-property if and
only if it satisfies one of the following conditions:

(a) G is infinite cyclic;
(b) G is of prime exponent;
(c) G is of type p∞ for some prime number p;
(d) G = P × E, where P is a group of type p∞ for some prime number

p and E has prime order q 6= p.

Moreover, the group in (d) is the unique abelian C0-group for which the
C-property does not hold.

Proof. Clearly, all groups described in (a), (b) and (c) have the C-pro-
perty, while the group in (d) has the C0-property but it is not a C-group.

Suppose that G is an infinite abelian C0-group. By Corollary 2.3, it can
be assumed that G is periodic, so that it follows from the C0-property that G
has only finitely many non-trivial primary components. Then there exists
a unique prime number p such that the p-component P of G is infinite.
Moreover, we have G = P × E, where the p′-component E of G either is
trivial or has prime order q 6= p. Suppose first that E = {1}, i.e. G is a
p-group. Then either G has exponent p or it is a group of type p∞. Finally,
if E 6= {1}, the subgroup P cannot contain infinite proper subgroups, and
so P is a group of type p∞.

The structure of infinite non-abelian groups with the C-property is de-
scribed by the following result.

Theorem 2.5. Let G be an infinite non-abelian C-group. Then G is a
2-generator group satisfying the maximal condition, and it has no proper
subgroups of finite index.
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Proof. The group G is periodic by Corollary 2.2. Suppose first that
G is locally finite, so that it contains a countably infinite abelian sub-
group A by the well-known theorem of Hall–Kulatilaka and Kargapolov
(see [8, Part 1, Theorem 3.43]). If x and y are arbitrary elements of G, the
subgroup 〈x, y,A〉 is likewise countable, so that 〈x, y,A〉 ' A is abelian and
hence xy = yx. This contradiction shows that G cannot be locally finite,
therefore it contains a finitely generated infinite subgroup E. Application
of the C-property yields that all countable subgroups of G are isomorphic
to E, and so they are finitely generated. It follows that the group G satisfies
the maximal condition on subgroups; in particular, G is countable and hence
it is isomorphic to all its infinite subgroups. Then G has no infinite abelian
subgroups, and it follows from a result of Strunkov [9] that there exists in G
an infinite 2-generator subgroup U . Therefore G ' U is a 2-generator group.

Let N be any normal subgroup of finite index of G, and let X be a
subgroup of G containing N . Obviously X is infinite, so that X ' G can be
generated by two elements. Thus every finite homomorphic image of G has
rank at most 2. If J is the finite residual of G, it follows from a result of Mann
and Segal [5] that G/J contains a soluble subgroup of finite index. But G is
a finitely generated periodic group, so that G/J is finite and hence G ' J
has no proper subgroups of finite index.

Corollary 2.6. Let G be an infinite locally graded C-group. Then G
is abelian.

Although the consideration of Tarski groups shows that the above state-
ment does not hold for an arbitrary group with the C-property, some more
information can be obtained in the case of groups with involutions.

Corollary 2.7. Let G be an infinite C-group containing an involution.
Then G has non-trivial centre.

Proof. The group G can be assumed to be periodic by Corollary 2.2.
Then it follows from a result of Shunkov that G contains an infinite subgroup
H with non-trivial centre (see [8, Part 1, Theorem 3.42]). As G is countable
by Theorem 2.5, it is isomorphic to H, and so Z(G) 6= {1}.

A result of Held shows that every infinite 2-group contains an infinite
abelian subgroup (see [8, Part 1, Theorem 3.41]), and hence it also follows
from Theorem 2.5 that all infinite 2-groups with the C-property are abelian.

Our next result completes the description of the structure of infinite
locally graded groups with the C0-property.

Theorem 2.8. Let G be an infinite locally graded C0-group. Then either
G is abelian or G = 〈x〉 n P , where P is a group of type p∞ for some odd
prime number p, and x has prime order q dividing p− 1.
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Proof. Assume first that G is uncountable. Then G cannot be finitely
generated, and hence it contains a countable subgroup which is not finitely
generated. It follows from the C0-property that every finitely generated sub-
group of G is finite, i.e. the group G is locally finite, and so G contains an
abelian countably infinite subgroup A. If x and y are arbitrary elements of G,
the subgroup 〈x, y,A〉 is likewise countable, so that it is abelian and xy = yx.
Therefore G is abelian in this case.

Suppose now that G is not abelian, so that it must be countable. More-
over, G is periodic by Corollary 2.3, and it follows from Corollary 2.6 that all
infinite proper subgroups of G are isomorphic and abelian. Observe that G
cannot be finitely generated, because otherwise G would have a proper sub-
group of finite index and hence it would be finite. It follows that G is locally
finite.

Assume for a contradiction that G is not a Chernikov group. Then all
non-abelian subgroups of G are normal (see [4, Corollary 3.3]), and hence the
commutator subgroup G′ of G is finite (see for instance [3, Theorem 2.2.6]).
In particular, G/G′ is a periodic abelian group which is not Chernikov, and
so there exists an infinite subgroup H of G such that G′ ≤ H and G/H is
infinite. If a and b are arbitrary elements of G, then 〈a, b,H〉 is an infinite
proper subgroup of G, so that it is abelian and ab = ba. This contradiction
shows that G is a Chernikov group.

Since all infinite proper subgroups of G are isomorphic, it follows that
the finite residual P of G is a group of type p∞ for some prime number p.
Moreover, P must be a maximal subgroup of G, and so the index |G : P |
is a prime number q. Clearly, the C0-property does not hold for the locally
dihedral 2-group, and hence q is a divisor of p− 1. Therefore G = 〈x〉n P ,
where x is any element of order q of G.

As we mentioned in the introduction, Armstrong [1] obtained the best
possible bounds for the derived length and the Fitting length of finite soluble
C-groups. In the general case, our Theorem 2.8 shows in particular that
every infinite locally graded C0-group is metabelian, and so we can state
the following result.

Corollary 2.9. Let G be a locally soluble C0-group. Then G has de-
rived length at most 4 and Fitting length at most 3.

The structure of finite C-groups of prime-power order was studied by
Armstrong [1, Lemmas 2.1 and 2.2] and Zhang [10, Lemmas 2]. Our last
result provides a more elementary proof of their descriptions, and also char-
acterizes the C-property for finite primary groups in terms of their Frattini
properties.

Theorem 2.10. Let G be a finite p-group (where p is a prime number).
Then the following statements are equivalent:
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(a) G has the C-property.
(b) If X and Y are subgroups of G and |X|= |Y |, then |Φ(X)|= |Φ(Y )|.
(c) G is one of the following:

(c1) a cyclic group;
(c2) an abelian group of exponent p;
(c3) the quaternion group Q8;
(c4) a non-abelian group of order p3 and exponent p.

Proof. Clearly, every C-group satisfies condition (b), and all groups de-
scribed in (c) have the C-property. Assume that the finite p-group G has the
Frattini property (b). If G is abelian of exponent larger than p, we observe
that G contains a cyclic subgroup of order p2, and so it has no subgroups
of exponent p and order p2. In particular, the socle of G has order p, and
hence G is cyclic.

Suppose now that G is not abelian, and assume first that G contains
a maximal subgroup M which is abelian. It follows from the first part of
the proof that M either is cyclic or has exponent p, so that all maximal
subgroups of G are isomorphic to M . If M is cyclic, we deduce that all
proper subgroups of G are cyclic, and hence G is isomorphic to Q8. Suppose
now that M has exponent p. Then G has exponent p, and all its proper
subgroups are abelian. In particular, the Frattini subgroup Φ(G) is contained
in Z(G), and G is a 2-generator group, so that G/Φ(G) has order p2. Then
G′ has order p, and hence G has order p3.

Assume finally for a contradiction that all maximal subgroups of G are
non-abelian. It follows from the above argument that G contains a sub-
group H of order p4 in which every maximal subgroup is non-abelian. Let A
be a normal subgroup of H of order p2. Then CH(A) = A, and so H/A is
isomorphic to a subgroup of the full automorphism group Aut(A) of A. This
is of course impossible, as the order of Aut(A) is not divisble by p2, and this
contradiction completes the proof of the theorem.

Corollary 2.11. Let p be a prime number. A finite p-group G has
the C-property if and only if X/Φ(X) ' Y/Φ(Y ) whenever X and Y are
subgroups of G of the same order.
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Università di Napoli “Federico II”
80126 Napoli, Italy
E-mail: degiovan@unina.it

Alessio Russo
Dipartimento di Matematica e Fisica

Seconda Università di Napoli
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