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Summary. We give an effective formula for the improper isolated multiplicity of a poly-
nomial mapping. Using this formula we construct, for a given deformation of a holomorphic
mapping with an isolated zero at zero, a stratification of the space of parameters such that
the Łojasiewicz exponent is constant on each stratum.

Introduction. Let f : (Cn, 0) → (Cm, 0) be a germ of a holomorphic
map with an isolated zero. Then a lot of numerical invariants can be associ-
ated with this map. In this note we are interested in two of them: multiplicity
and Łojasiewicz exponent.

The multiplicity of f may be defined in several ways. Probably the best
known is the notion of Hilbert–Samuel multiplicity (see [5]). Let I be the
ideal generated by the components of f in the local ring (On,mn) of germs
of holomorphic functions (Cn, 0)→ C. Then the Hilbert–Samuel multiplicity
of I is the normalized leading coefficient of the Hilbert–Samuel polynomial
of I; in our case it is given by the formula

e(I) = lim
k→∞

n!

kn
dimOn/Ik.

If f is a system of parameters (i.e. m = n), then
e(I) = dimOn/I.

Moreover, in this case e(I) has a well known geometric description: e(I) =
i0(f) where i0(f) is the number of points in the generic fiber of f . Using
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results of R. Achilles, P. Tworzewski and T. Winiarski [1], it is possible
to extend the geometric definition of i0(f) to the case m > n. Namely,
let i0(f) be the improper intersection multiplicity of the graph of f and
Cn × {0} ⊂ Cn × Cm at the point (0, 0) ∈ Cn × Cm. In the case m = n
this notion was defined by R. Draper [2] (see also [12], [15]). In fact, with
this generalization the multiplicity i0(f) is still equal to e(I). Indeed, let
L : Cm → Cn be a generic linear map. By [11] we have i0(f) = i0(L ◦ f)
(see Theorem 1 below). On the other hand, the ideal generated by L ◦ f in
On is a reduction of I, hence has the same Hilbert–Samuel multiplicity [5,
Theorems 14.13, 14.14]. In what follows, we will denote the multiplicity of f
by i0(f).

Let us now proceed to the second invariant. Since f is analytic, there
exist C > 0 and ν ≥ 1 such that

|f(z)| ≥ C|z|ν

in some neighbourhood of the origin in Cn. By definition, the Łojasiewicz
exponent of f , denoted by L0(f), is the infimum of the exponents ν in the
above inequality. In [3] it was proved that L0(f) is a rational number and
the infimum is in fact a minimum. Moreover, in [3] an algebraic formula for
the Łojasiewicz exponent was given:

L0(f) = inf

{
p

q
: mp

n ⊂ Iq
}
,

where for any ideal J in On, J denotes the integral closure of J in On.
Now, let h : (Cn, 0)→ (C, 0) be a germ of a holomorphic function defining

an isolated singularity at 0 ∈ Cn (i.e. the gradient ∇h of h has an isolated
zero). Then µ := i0(∇h) is the Milnor number of h. In [13], B. Teissier proved
that if s 7→ hs is an analytic family of functions with isolated singularities
with constant Milnor number, then the function s 7→ L0(∇hs) is lower semi-
continuous. Moreover, he showed that if we do not assume that this family
is µ-constant then L0(∇h) is neither upper nor lower semicontinuous [14].
The above result was generalized by A. Płoski [7] in the following way: If
s 7→ fs is an analytic family of holomorphic maps (Cn, 0)→ (Cn, 0) with an
isolated zero and of constant multiplicity, then the function s 7→ L0(fs) is
lower semicontinuous.

One may consider a further generalization of this result. Since the mul-
tiplicity i0 is well defined for ideals which are not generated by a system of
parameters, it is reasonable to ask if this assumption in the above result of
Płoski is necessary. It was proved in [8] that it is enough to assume that
the fs are maps (Cn, 0) → (Cm, 0) with m possibly greater than n, with
isolated zero of constant multiplicity. Under these assumptions the function
s 7→ L0(fs) is lower semicontinuous.
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In the paper we prove that for a given finite complex stratification {Γ iν}
of the space of parameters such that fs is multiplicity-constant on each stra-
tum Γ iν , the function s 7→ L0(fs) is lower semicontinous on this stratum and
there exists a refinement {Σj

µ} of {Γ iν} such that the function s 7→ L0(fs)
is constant on each stratum Σj

µ (Theorem 7). The proof is based on an al-
gorithm which allows us to effectively compute the multiplicity i0(f) (The-
orem 4, cf. [10]). As a corollary we get the above-mentioned semicontinuity
theorem (Corollary 11).

1. A formula for multiplicity. Let f : (Cn, 0) → (Cm, 0) be a holo-
morphic mapping with an isolated zero. Denote by L(m,n) the set of all
linear mappings Cm → Cn.

The basis for our further considerations is

Theorem 1 ([11, Theorem 1.1]). For any L ∈ L(m,n) such that the
mapping L ◦ f : (Cn, 0)→ (Cn, 0) has an isolated zero we have

(1) i0(f) ≤ i0(L ◦ f).
Moreover, for generic L ∈ L(m,n), the mapping L ◦ f has an isolated zero
and

(2) i0(f) = i0(L ◦ f).
The next proposition will be used to pass from holomorphic to polynomial

germs of mappings.

Proposition 2 ([6, 11]). We have

L0(f) ≤ i0(f).
Moreover, if g : (Cn, 0) → (Cm, 0) is a holomorphic mapping such that
ord(f − g) > L0(f) then g has an isolated zero and

L0(g) = L0(f) and i0(g) = i0(f).

From now on we will assume that f = (f1, . . . , fm) : Cn → Cm is a
polynomial mapping such that 0 ∈ Cn is an isolated point of f−1(0).

Proposition 3 ([6, 11]). Let dj = deg fj, j = 1, . . . ,m. Assume that
d1 ≥ · · · ≥ dm. Then

L0(f) ≤ d1 · · · dn.
The algorithm which computes i0(f) is given in the following construc-

tion.
Let d = max{deg f1, . . . ,deg fm}. Define a mapping HL : Cn → Cn by

(3) HL(z) = L(f(z)) + (zd
n+1

1 , . . . , zd
n+1
n ),

where L ∈ L(m,n). Set
M(m,n) = L(m,n)× L(n, 1)× Cn
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and let
Φ : M(m,n)→M(m,n)× C

be given by
Φ(L,N, z) = (L,N,HL(z), N(z)).

The mapping Φ is proper and consequently Φ(M(m,n)) is an algebraic
set of pure dimension mn + 2n. So, there exists an irreducible polynomial
P ∈ C[L,N, y, t], where y = (y1, . . . , yn) and y1, . . . , yn, t are independent
variables, of the form

(4) P (L,N, y, t) =

p∑
j=0

Pj(L,N, y)t
j

such that Pp 6= 0 and Φ(M(m,n)) = P−1(0). Since P vanishes exactly on the
image of the polynomial map Φ, it could be computed by means of Gröbner
bases.

Theorem 4. We have

i0(f) = min{j ∈ Z : ordy Pj = 0}.
The right hand side above is well defined in view of the following propo-

sition, which is a special case of [9, Theorem 7].

Proposition 5. There exists r ∈ Z with 0 ≤ r < p such that

(5) ordy Pj > 0 for j = 0, . . . , r and ordy Pr+1 = 0.

Set
∆(P ) =

r
min
j=0

ordy Pj
r + 1− j

.

Then
(6) L0(f) =

1

∆(P )
< dn + 1.

We will also use this proposition in the proof of the main result in the
next section.

Proof of Theorem 4. Let r be the integer given in Proposition 5. We must
prove that i0(f) = r+1. Observe that there exists a Zariski open, nonempty
set U ⊂ L(m,n)× L(n, 1) such that if (L,N) ∈ U then:

• L ◦ f has an isolated zero at the origin,
• condition (5) is satisfied,
• N |H−1

L (y) is injective for generic y ∈ Cn,
• H−1L (0) ∩ kerN = {0}.

Fix (L,N) ∈ U . Then
(7) i0(HL) = r + 1.

Indeed, by (5) the polynomial PL,N (y, t) is a t-regular function of order r+1.
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Using the Weierstrass preparation theorem we may write

PL,N (y, t) = QL,N (y, t)P̃L,N (y, t),

where QL,N is an invertible power series in (y, t). By the properties of U the
image of the local map (HL, N) : (Cn, 0) → (Cn+1, 0) is equal to the germ
of the zero set of P̃L,N . Since PL,N is irreducible, so is P̃L,N . On the other
hand, with any y in a sufficiently small neighbourhood of the origin in Cn we
may associate two sets: all roots {(y, t1), . . . , (y, tr+1)} of P̃L,N (since P̃L,N
is a polynomial of degree r + 1 in t) and the fiber H−1L (y) = {z1, . . . , zu}
(where HL is treated as a local map (Cn, 0) → (Cn, 0)). If additionally y is
generic then:

• #{(y, t1), . . . , (y, tr+1)} = r + 1,
• u = i0(HL),
• (HL, N) restricted to {z1, . . . , zu} is a bijection onto {(y, t1), . . . ,
(y, tr+1)}.

As a result we get (7).
By Proposition 3 we have ord(L ◦ f −HL) > L0(L ◦ f). Thus i0(HL) =

i0(L ◦ f) by Proposition 2. By (7) and Theorem 1, this ends the proof.

Corollary 6. Let Q ∈ C{L,N, y, t} be a series of the form

(8) Q(L,N, y, t) =

∞∑
j=0

Qj(L,N, y)t
j .

If Q is irreducible in Omn+2n+1 and Q ◦ Φ = 0 at the level of germs, then

(9) i0(f) = min{j ∈ Z : ordy Qj = 0}.
Proof. Since P and Q are irreducible in Omn+2n+1 and the germs of the

sets P−1(0) and Q−1(0) are equal, P and Q differ by an invertible factor in
Omn+2n+1. Hence Theorem 4 yields the assertion.

2. Semicontinuity of the Łojasiewicz exponent. Let f : (Cn, 0) →
(Cm, 0) be a holomorphic mapping. We say that F = Fs(z) = F (z, s) :
(Cn × Ck, 0) → (Cm, 0) is a deformation of f if F is holomorphic, F0 = f
and Fs(0) = 0 for s in some neighbourhood of the origin in Ck.

In what follows we will use the notion of a complex stratification (or
briefly stratification) after [4].

The main result of this section is

Theorem 7. Let f : (Cn, 0)→ (Cm, 0) be a germ of a holomorphic map-
ping with an isolated zero and let F : (Cn×Ck, 0)→ (Cm, 0) be its deforma-
tion. Let U =

⋃
Γ iν be a finite stratification of some sufficiently small neigh-

bourhood U ⊂ Ck of the origin such that for each stratum Γ iν the function
Γ iν 3 s 7→ i0(Fs) ∈ Z is constant. Then the function Γ iν 3 s 7→ L0(Fs) ∈ Q is
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lower semicontinuous and there exists a finite stratification {Σj
µ}, which is a

refinement of {Γ iν}, such that the function Σj
µ 3 s 7→ L0(Fs) ∈ Q is constant

for any stratum Σj
µ.

In the proof we will need the following
Lemma 8 ([9, Lemma 1]). If P,Q,R ∈ C{y, t} are series such that

P (y, t) =
∞∑
j=0

Pj(y)t
j , Q(y, t) =

∞∑
j=0

Qj(y)t
j ,

ordR(y, t) = 0 and Q = PR, and for some r ≥ 0 we have ordPj , ordQj > 0,
j = 0, . . . , r, then

r
min
j=0

ordPj
r + 1− j

=
r

min
j=0

ordQj
r + 1− j

.

Proof of Theorem 7. Since the multiplicity and the Łojasiewicz expo-
nent of a local map do not change after perturbation in monomials of orders
greater than the multiplicity of the map, we may assume that Fs is a poly-
nomial map for any s. Let d = max{degFs : s ∈ U}.

Define a mapping HL,s : Cn → Cn by
(10) HL,s(z) = L(Fs(z)) + (zd

n+1
1 , . . . , zd

n+1
n ),

where L ∈ L(m,n), s ∈ U . Set
W = M(m,n)× U

and let
Φ : W→W× C

be given by
(11) Φ(L,N, z, s) = (L,N,HL,s(z), s,N(z)).

Define Φs : M(m,n)→M(m,n)× C for s ∈ U by
(12) Φs(L,N, z) = (L,N,HL,s(z), N(z)).

Decreasing U if necessary, we achieve that the mapping Φ is proper, and
consequently, by Remmert’s Proper Mapping Theorem, Φ(W) is an analytic
set of pure dimension mn + 2n + k = dimW. So, for some neighbourhoods
W ⊂W andD ⊂W×C of the origins and a holomorphic functionQ : D → C
with an irreducible germ at zero we have Φ(W ) = {(w, t) ∈ D : Q(w, t) = 0}.

Suppose that the function Q is of the form

(13) Q(L,N, y, s, t) =
∞∑
j=0

Qj(L,N, y, s)t
j ,

and denote Qs(L,N, y, t) = Q(L,N, y, s, t), Qj,s(L,N, y) = Qj(L,N, y, s).
It is easy to see that Qs is irreducible for s sufficiently close to the origin
of Ck. Set Ws = {u ∈ M(m,n) : (u, s) ∈ W}, Ds = {(u, t) ∈ M(m,n) × C :
(u, s, t) ∈ D}. Then Φs(Ws) = {(u, t) ∈ Ds : Qs(u, t) = 0}. Denote by
riν +1 the multiplicity of Fs on Γ iν . From Corollary 6 we have ordy Qs,j > 0,
j = 0, . . . , riν , and ordy Qs,riν+1 = 0.
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Set

∆(Qs) =
riν
min
j=0

ordy Qj,s
riν + 1− j

, s ∈ Γ iν .

Observe that the mapping Γ iν 3 s 7→ ∆(Qs) ∈ Q is upper semicontinuous
and determines a stratification of Γ iν . Thus, there exists a finite stratifi-
cation {Σj

µ}, which is a refinement of {Γ iν}, such that the function Σj
µ 3

s 7→ ∆(Qs) ∈ Q is constant for any stratum Σj
µ. On the other hand, by

Lemma 8 and Proposition 5 we have L0(Fs) = 1/∆(Qs) for s ∈ U . This ends
the proof.

Remark 9. It is well known that the stratification {Γ iν} from Theorem 7
always exists. For example, from Theorem 4 we see that the polynomial Qs
used in the proof of Theorem 7 determines such a stratification.

Example 10. Let F : (C2 × C2, 0)→ (C2, 0) be given by the formula
Fs1,s2(x1, x2) := (s1x1 + x22, s2x2 + x21).

For the stratification
Γ 2
1 := {(s1, s2) : s1s2 6= 0},
Γ 1
1 ∪ Γ 1

2 := {(s1, s2) : s2 = 0} ∪ {(s1, s2) : s1 = 0}
we have

i0(Fs1,s2) =

{
1, (s1, s2) ∈ Γ 2

1 ,
4, (s1, s2) ∈ Γ 1

1 ∪ Γ 1
2 .

If we set Σ2
1 := Γ 2

1 , Σ1
1 := Γ 1

1 \ {(0, 0)}, Σ1
2 := Γ 1

2 \ {(0, 0)}, Σ0
1 := {(0, 0)},

then

L0(Fs1,s2) =


1, (s1, s2) ∈ Σ2

1 ,
4, (s1, s2) ∈ Σ1

1 ∪Σ1
2 ,

2, (s1, s2) ∈ Σ0
1 .

Observe that in this case Fs is already a proper polynomial mapping. Using
CAS the polynomial Qs is given by

Qs(N, y, t) = t4 + (−3s1s2a1a2 − 2y2a
2
1 − 2y1a

2
2)t

2

+ (s1s
2
2a

3
1 + s21s2a

3
2 + 4s2y1a

2
1a2 + 4s1y2a1a

2
2)t

− s22y1a41 − s1s2y2a31a2 − s1s2y1a1a32 − s21y2a42 + y22a
4
1 − 2y1y2a

2
1a

2
2 + y21a

4
2,

where N(x) = a1x1 + a2x2, y = (y1, y2), s = (s1, s2).

The deformation Fs is called multiplicity-constant if the map s 7→ i0(Fs)
has constant finite value.

Corollary 11. If f has an isolated zero and F : (Cn×Ck, 0)→ (Cm, 0)
is a multiplicity-constant deformation of f , then there exists ε > 0 such that

L0(f) ≤ L0(Fs) for |s| ≤ ε.
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