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SEMILINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA
AND QUASI-REGULAR DIRICHLET FORMS

BY

TOMASZ KLIMSIAK and ANDRZEJ ROZKOSZ (Toruń)

Abstract. We are mainly concerned with equations of the form −Lu = f(x, u) + µ,
where L is an operator associated with a quasi-regular possibly nonsymmetric Dirichlet
form, f satisfies the monotonicity condition and mild integrability conditions, and µ is a
bounded smooth measure. We prove general results on existence, uniqueness and regularity
of probabilistic solutions, which are expressed in terms of solutions to backward stochastic
differential equations. Applications include equations with nonsymmetric divergence form
operators, with gradient perturbations of some pseudodifferential operators and equations
with Ornstein–Uhlenbeck type operators in Hilbert spaces. We also briefly discuss the
existence and uniqueness of probabilistic solutions in the case where L corresponds to a
lower bounded semi-Dirichlet form.

1. Introduction. Let E be a metrizable Lusin space, m be a posi-
tive σ-finite measure on B(E) and let (E , D(E)) be a quasi-regular possibly
nonsymmetric Dirichlet form on L2(E;m). In the present paper we study
existence, uniqueness and regularity of solutions of semilinear equations of
the form

(1.1) −Lu = f(x, u) + µ.

Here f : E×R→ R is a measurable function, µ is a smooth signed measure
on B(E) with respect to the capacity determined by E , and L is the operator
associated with the form E , i.e.

(1.2) (−Lu, v) = E(u, v), u ∈ D(L), v ∈ D(E),

where D(L) = {u ∈ D(E) : v 7→ E(u, v) is continuous with respect to
(·, ·)1/2 on D(E)}. We assume that f satisfies the monotonicity condition and
mild integrability conditions (even weaker than the integrability conditions
considered earlier in [1]). As for µ we assume that it belongs to the class

(1.3) R = {µ : |µ| is smooth and Ĝφ · µ ∈M0,b

for some φ ∈ L1(E;m) such that φ > 0, m-a.e.},
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where |µ| denotes the variation of µ, M0,b is the space of all finite smooth

signed measures and Ĝ is the co-potential operator associated with E . In the
important case where E is transient the class R includes M0,b, but it may
happen thatR also includes some Radon measures of infinite total variation.

The paper continues research begun in our work [14] in which equations
of the form (1.1) with L associated with a symmetric regular Dirichlet form
are studied. The main motivation is to extend results of [14] to encompass
equations with nonsymmetric operators and equations in infinite dimensions.

As in [14], by a solution of (1.1) we mean a quasi-continuous function
u : E → R satisfying for quasi-every x ∈ E the nonlinear Feynman–Kac
formula

(1.4) u(x) = Ex

(ζ�
0

f(Xt, u(Xt)) dt+

ζ�

0

dAµt

)
,

where X = (X,Px) is a Markov process with life-time ζ associated with the
form E , Ex is the expectation with respect to Px, and Aµ is the additive
functional of X corresponding to µ in the Revuz sense. We show that in
the case where E is transient the solution may be defined in purely analytic
terms resembling Stampacchia’s definition of solutions by duality. Namely,
a solution of (1.1) can be defined equivalently as a quasi-continuous function

u such that |〈ν, u〉| = |
	
E u dν| < ∞ for every ν in the set Ŝ

(0)
00 of smooth

measures of 0-order energy integral such that ‖Ûν‖∞ <∞ and

〈ν, u〉 = (f(·, u), Ûν) + 〈µ, ˜̂Uν〉, ν ∈ Ŝ(0)
00 ,

where (·, ·) is the usual scalar product in L2(E;m), Ûν is the 0-order co-

potential of ν and
˜̂
Uν denotes its quasi-continuous version. We work ex-

clusively with the probabilistic definition (1.4) because in our opinion it is
simpler and more natural than the definition by duality, and what is even
more important, it allows us to use directly powerful methods of the theory
of Dirichlet forms and Markov processes.

The paper is organized as follows. In Section 2 we provide basic defini-
tions and prove some auxiliary but important results on smooth measures
and their associated additive functionals.

In Section 3 we prove the existence and uniqueness of probabilistic solu-
tions of (1.1), and then in Section 4 we study additional regularity proper-
ties of the solutions. Our main result says that under mild assumptions
on f , we have f(·, u) ∈ L1(E;m), and for every k > 0 the truncation
Tku := (−k)∨u∧k belongs to the extended Dirichlet space Fe of E . Moreover,

(1.5) E(Tku, Tku) ≤ k(‖f(·, 0)‖L1(E;m) + 2‖µ‖TV),

where ‖µ‖TV stands for the total variation norm of µ.
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We are mainly concerned with equations (1.1) with L corresponding to a
Dirichlet form. It appears, however, that a slight modification of the proof of
the main existence result from Section 3 yields the existence of a probabilistic
solution of (1.1) in the case where L corresponds to a lower-bounded semi-
Dirichlet form. Although for such forms general regularity results similar
to those of Section 4 seem to be impossible, we find it interesting that one
can still define probabilistic solutions and investigate them by probabilistic
methods. Our results for semi-Dirichlet forms are given in Section 5. For
corresponding results for parabolic equations we defer the reader to the
recent paper [13].

In Section 6 some applications of general results of Sections 2–5 are in-
dicated. In the case of Dirichlet forms we decided to describe in some detail
four quite different examples. In the first one we consider equation (1.1) with
L being a nonsymmetric divergence form operator, that is, an operator as-
sociated with a local nonsymmetric regular form. In the second example L is
a “divergent free” gradient perturbation of a symmetric nonlocal operator
on Rd whose model example is the α-laplacian. In that case L corresponds
to a nonsymmetric nonlocal regular form. Then we consider a symmetric
nonlocal operator on some finely open subset D ⊂ Rd, which is associated
with a symmetric but in general nonregular form. In the last example we
consider the Ornstein–Uhlenbeck operator in Hilbert space, that is, an op-
erator associated with a local nonregular form. In each case we formulate
a specific theorem on existence, uniqueness and regularity of solutions. To
our knowledge all these results are new. We also briefly discuss the possi-
bility of other applications of our general results of Sections 2–4. Finally,
to illustrate the results of Section 5, we consider two examples of equations
with operators corresponding to semi-Dirichlet forms. In the first example L
is a diffusion operator with drift term, while in the second it is the fractional
laplacian with variable exponent.

2. Preliminaries. In Sections 2–4 we assume that E is a metrizable
Lusin space, i.e. a metrizable space which is the image of a Polish space
under a continuous bijective mapping. We adjoin an extra point ∂ to E
as an isolated point. We define the Borel σ-algebra on E∂ := E ∪ {∂} by
B(E∂) = B(E) ∪ {B ∪ {∂} : B ∈ B(E)}. We make the convention that any

function f : E → R̄ is extended to E∂ by setting f(∂) = 0. Throughout the
paper, m is a σ-finite positive measure on B(E). We extend it to B(E∂) by
setting m({∂}) = 0.

2.1. Quasi-regular Dirichlet forms and Markov processes. We
assume throughout that (E , D(E)) is a quasi-regular Dirichlet form on
L2(E;m) (see [18, 19] for the definitions).
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We also assume that (E , D(E)) is a semi-Dirichlet form on L2(E;m),

i.e. (Ẽ , D(E)), where Ẽ(u, v) = 1
2(E(u, v) + E(v, u)) for u, v ∈ D(E), is a

symmetric closed form, (E , D(E)) satisfies the weak sector condition and
has the following contraction property: for every u ∈ D(E), u+ ∧ 1 ∈ D(E)
and E(u+u+∧1, u−u+∧1)) ≥ 0. If, in addition, E(u−u+∧1, u+u+∧1)) ≥ 0,
then (E , D(E)) is called a Dirichlet form. Recall that (E , D(E)) satisfies the
weak sector condition if there is K > 0 such that

|E1(u, v)| ≤ KE1(u, u)1/2E1(v, v)1/2, u, v ∈ D(E),

where as usual, for α ≥ 0 we set Eα(u, v) = E(u, v) +α(u, v) for u, v ∈ D(E)
((·, ·) stands for the usual inner product in L2(E;m)). Occasionally we will
assume that (E , D(E)) satisfies the strong sector condition, i.e. there isK > 0
such that

(2.1) |E(u, v)| ≤ KE(u, u)1/2E(v, v)1/2, u, v ∈ D(E).

We will denote by (Gα)α>0 (resp. (Ĝα)α>0) the strongly continuous con-
traction resolvent (resp. coresolvent) on L2(E;m) determined by (E , D(E))

(see [19, Theorem I.2.8]), and by (Tt)t>0 (resp. (T̂t)t>0) the strongly contin-
uous contraction semigroup on L2(E;m) corresponding to (Gα)α>0 (resp.
(Ĝα)α>0). Note that Tt, Gα and T̂t, Ĝα can be extended to a semigroup and
resolvent on L1(E;m) (see [20, Section 1.1]).

We denote by (L,D(L)) the generator of (Gα)α>0 (and (Tt)t>0). By
[19, Proposition I.2.16] it can be characterized as the unique operator on
L2(E;m) such that (1.2) is satisfied.

For a closed subset F ⊂ E we set D(E)F = {u ∈ D(E) : u = 0 m-a.e. on
E\F}. Let us recall that an increasing sequence {Fk}k≥1 of closed subsets of

E is called an E-nest if
⋃∞
k=1D(E)Fk is Ẽ1/2-dense in D(E). A subset N ⊂ E

is called E-exceptional if N ⊂
⋂∞
k=1 F

c
k for some E-nest {Fk}k∈N. We say that

a property of points in E holds E-quasi-everywhere (E-q.e. for short) if it
holds outside some E-exceptional set. An E-q.e. defined function u is called
E-quasi-continuous if there exists a nest {Fk}k∈N such that f ∈ C({Fk}),
where

C({Fk}) =
{
f : A→ R :

∞⋃
k=1

Fk ⊂ A ⊂ E, f|Fk is continuous for k ∈ N
}
.

The notions of E-nest and E-exceptional set can be characterized by
certain capacities relative to (E , D(E)). To formulate this characterization,
fix ϕ ∈ L2(E;m) such that 0 < ϕ ≤ 1 m-a.e., and for open U ⊂ E set

Capϕ(U) = inf{E1(u, u) : u ∈ D(E), u ≥ G̃1ϕ m-a.e. on U},

where {G̃α} is the resolvent associated with (Ẽ , D(E)). For arbitrary A ⊂ E
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set

(2.2) Capϕ(A) = inf{Capϕ(U) : A ⊂ U ⊂ E, U open}.

Then by [19, Theorem III.2.11] an increasing sequence {Fk}k≥1 of closed
subsets of E is an E-nest iff limk→∞Capϕ(E \Fk) = 0, and secondly, N ⊂ E
is E-exceptional iff Capϕ(N) = 0. Notice that from the above it follows in

particular that the capacities Capϕ defined for different ϕ ∈ L2(E;m) such
that 0 < ϕ ≤ 1 m-a.e. are equivalent to each other.

A Dirichlet form (E , D(E)) is called transient if there is an m-a.e. strictly
positive and bounded g ∈ L1(E;m) such that

(2.3)
�

E

|u|g dm ≤ E(u, u)1/2, u ∈ D(E).

Notice that transience of a Dirichlet form depends only on its symmetric
part. It is known (see [11, Corollary 3.5.34]) that (E , D(E)) is transient iff
the corresponding sub-Markovian semigroup (Tt)t≥0 is transient, i.e. for all
u ∈ L1(E;m) such that u ≥ 0 m-a.e.,

lim
N→∞

N�

0

Ttu dt <∞ m-a.e.

Let (E , D(E)) be a Dirichlet form. The extended Dirichlet space Fe associ-
ated with the symmetric Dirichlet form (Ẽ , D(E)) is the family of measurable
functions u : E → R such that |u| <∞ m-a.e. and there exists an Ẽ-Cauchy
sequence {un} ⊂ D(E) such that un → u m-a.e. The sequence {un} is called
an approximating sequence for u ∈ Fe.

For a given Dirichlet form (E , D(E)) and u ∈ Fe we set E(u, u) =
limn→∞ E(un, un), where {un} is an approximating sequence for u (see [7,
Theorem 1.5.2]). If moreover E satisfies the strong sector condition then we
may extend E to Fe by setting E(u, v) = limn→∞ E(un, vn) with approxi-
mating sequences {un} and {vn} for u ∈ Fe and v ∈ Fe, respectively (it is
easily seen that E(u, v) is independent of the choice of the approximating
sequences). Observe that this extension satisfies the strong sector condition,
i.e. (2.1) holds true for all u, v ∈ Fe.

If (E , D(E)) is transient then by [7, Lemma 1.5.5], (Fe, Ẽ) is a Hilbert
space. Also note that if (E , D(E)) is a quasi-regular Dirichlet form (see
[18, 19] for the definition) then by [19, Proposition IV.3.3] each u ∈ D(E)
admits a quasi-continuous m-version denoted by ũ, and that ũ is E-q.e.
unique for every u ∈ D(E). If moreover (E , D(E)) is transient then the last
statement holds true for D(E) replaced by Fe (see [15, Remark 2.2]).

In the remainder of this section we assume that (E , D(E)) is a quasi-
regular Dirichlet form on L2(E;m).
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By [19, Theorem IV.3.5] there exists an m-tight special standard Markov
process X = (Ω, (Ft)t≥0, (Xt)t≥0, ζ, (Px)x∈E∪{∂}) with state space E, life-
time ζ and cemetery state ∂ (see, e.g., [18] or [19, Section IV.1] for precise
definitions) which is properly associated with (E , D(E)). Let (pt)t≥0 be the
transition semigroup of X defined by

ptf(x) = Exf(Xt), x ∈ E, t ≥ 0, f ∈ B+(E).

The statement that X is properly associated with (E , D(E)) means that ptf is
a quasi-continuous m-version of Ttf for every t > 0 and f ∈ Bb ∩ L2(E;m)
(and hence for every t > 0 and f ∈ L2(E;m) by [19, Exercise IV.2.9]).
Equivalently, by [19, Proposition IV.2.8], the proper association means that
Rαf is an E-quasi-continuous m-version of Gαf for every α > 0 and f in
Bb ∩ L2(E;m), where (Rα)α>0 is the resolvent of X, i.e.

Rαf(x) = Ex

∞�

0

e−αtf(Xt) dt, x ∈ E, α > 0, f ∈ B+(E).

By [19, Theorem IV.6.4] the process X is uniquely determined by (E , D(E)) in
the sense that if X′ is another process with state space E properly associated
with (E , D(E)) then X and X′ are m-equivalent , i.e. there is S ∈ B(E) such
that m(E \ S) = 0, S is both X-invariant and X′-invariant, and ptf(x) =
p′tf(x) for all x ∈ S, f ∈ Bb(E) and t > 0, where (p′t)t>0 is the transition
semigroup of X′.

2.2. Smooth measures. Recall that a positive measure µ on B(E) is
said to be E-smooth (we write µ ∈ S) if µ(B) = 0 for all E-exceptional sets
B ∈ B(E) and there exists an E-nest {Fk}k∈N of compact sets such that
µ(Fk) <∞ for k ∈ N. A measure µ ∈ S is said to be of finite energy integral
(written µ ∈ S0) if there is c > 0 such that

(2.4)
�

E

|ṽ(x)|µ(dx) ≤ cE1(v, v)1/2, v ∈ D(E).

If additionally (E , D(E)) is transient then µ ∈ S is said to be of finite

0-order energy integral (written µ ∈ S(0)
0 ) if there is c > 0 such that

�

E

|ṽ(x)|µ(dx) ≤ cE(v, v)1/2, v ∈ Fe.

If (E , D(E)) is regular and E is a locally compact separable metric space
then the notion of smooth measures defined above coincides with that in [7].
Moreover, if µ is a positive Radon measure on E such that (2.4) is satis-
fied for all v ∈ C0(E) ∩ D(E) then µ charges no E-exceptional set (see
[17, Remark A.2]) and hence µ ∈ S0.
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By [18, Proposition 2.18(ii)] (or [19, Proposition III.3.6]) the reference
measure m is E-smooth. Therefore if f ∈ L1(E;m) then µ = f ·m is bounded
and smooth. A general result on the structure of bounded smooth measures
is found in [15].

Let µ ∈ S0 and α > 0. Then from the Lax–Milgram theorem (see, e.g.,
[10, Theorem 2.7.41]) it follows that there exist unique Uαµ, Ûαµ ∈ D(E)
such that

Eα(Uαµ, v) =
�

E

ṽ(x)µ(dx) = Eα(v, Ûαµ), v ∈ D(E).

Similarly, if (E , D(E)) satisfies the strong sector condition and µ ∈ S(0)
0 then

from the Lax–Milgram theorem applied to the Hilbert space (Fe, Ẽ), the
form E and the operator J : Fe → R defined by J(v) =

	
E ṽ(x)µ(dx) it

follows that there exist unique Uµ, Ûµ ∈ Fe such that

E(Uµ, v) =
�

E

ṽ(x)µ(dx) = E(v, Ûµ), v ∈ Fe .

Let M0,b denote the subset of S consisting of all measures µ such that
‖µ‖TV < ∞, where ‖µ‖TV denotes the total variation of µ, and let M+

0,b
denote the subset of M0,b consisting of all positive measures.

The lemma below follows from the 0-order version of [7, Theorem 2.2.4]
by the so-called transfer method.

Lemma 2.1. Assume that (E , D(E)) is transient. If µ ∈ S then there

exists a nest {Fn} such that 1Fn · µ ∈ S
(0)
0 for each n ∈ N.

Proof. See [15, Lemma 2.1].

Lemma 2.2. Assume that (E , D(E)) is transient and satisfies the strong

sector condition. If µ ∈ S(0)
0 then {Uαµ} is weakly E-convergent to Uµ as

α ↓ 0.

Proof. Let v ∈ Fe and let {vk} ⊂ D(E) be an approximating sequence
for v. We have

E(Uµ− Uαµ, vk) = α(Uαµ, vk), E(G0Uαµ, vk) = (Uαµ, vk).

Hence E(Uµ − Uαµ, vk) = E(αG0Uαµ, vk). Letting k → ∞ we deduce
E(Uµ − Uαµ, v) = E(αG0Uαµ, v). Consequently, Uµ − Uαµ = αG0Uαµ. In
the same manner we can see that Ûµ− Ûαµ = αĜ0Ûαµ. Hence,

E(Uµ− Uαµ, Ûµ− Ûαµ) = α2E(G0Uαµ, Ĝ0Ûαµ)

= α2(G0Uαµ, Ûαµ) ≥ 0.
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On the other hand,

E(Uµ− Uαµ, Ûµ− Ûαµ) = E(Uµ, Ûµ− Ûαµ)− E(Uαµ, Ûµ)

+ Eα(Uαµ, Ûαµ)− α(Uαµ, Ûαµ)

= E(Uµ, Ûµ− Ûαµ)− α(Uαµ, Ûαµ)

≤ E(Uµ, Ûµ− Ûαµ) = 〈µ, Ũµ〉 − 〈µ, ˜̂Uαµ〉.
Since 〈µ, ˜̂Uαµ〉 = Eα(Uαµ, Ûαµ) = 〈µ, Ũαµ〉, it follows from the above that

E(Uαµ,Uαµ) + α(Uαµ,Uαµ) = Eα(Uαµ,Uαµ) = 〈µ, Ũαµ〉 ≤ 〈µ, Ũµ〉
for α > 0. Hence {Uαµ}α>0 is Ẽ-bounded and for each k ∈ N, α(Uαµ, vk)→ 0
as α ↓ 0. Suppose that {Uαµ} converges Ẽ-weakly to some f ∈ Fe as α ↓ 0.
Since

E(Uαµ, vk) = 〈µ, ṽk〉 − α(Uαµ, vk),

letting α ↓ 0 shows that E(f, vk) = 〈µ, ṽ〉 = E(Uµ, vk). Letting k → ∞ we
get E(f, v) = E(Uµ, v) for v ∈ Fe. Thus f = Uµ.

2.3. Smooth measures and additive functionals. Let X be the
Markov process properly associated with (E , D(E)). In what follows for a
Borel measure ν on E we set Pν(·) =

	
E Px(·) ν(dx), and we denote by Eν

the expectation with respect to Pν .
By [19, Theorem VI.2.4] there is a one-to-one correspondence between

E-smooth measures µ on B(E) and positive continuous additive functionals
(PCAFs) A of X. It is given by the relation

(2.5) lim
t↓0

1

t
Em

t�

0

f(Xs) dAs =
�

E

f dµ, f ∈ B+(E).

The additive functional corresponding to µ in the sense of (2.5) will be
denoted by Aµ. In the important case where µ = f ·m for some f ∈ L1(E;m)
the additive functional Aµ is given by

Aµt =

t�

0

f(Xs) ds, t ≥ 0.

The following lemma generalizes [14, Lemma 4.3].

Lemma 2.3. If A is a PCAF of X such that ExAζ < ∞ for m-a.e.
x ∈ E then u : E → R̄ defined as

u(x) = ExAζ , x ∈ E,
is E-quasi-continuous. In particular, u is E-q.e. finite.

Proof. Let (E#, D(E#)) denote the regular extension of (E , D(E)) spec-
ified by [19, Theorem VI.1.2]. By [19, Theorem VI.1.6], X can be trivially
extended to a Hunt process X# defined on Ω ∪ (E# \ E) with state space
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E# properly associated with the form (E#, D(E#)). Let us extend A to a
PCAF of X# by setting

(2.6) A#
t (ω) =At(ω), t ≥ 0, ω ∈ Ω, A#

t (ω) = 0, t ≥ 0, ω ∈ E#\E.

By the assumption and sincem#(E#\E) = 0, we have E#
x A

#
ζ#
<∞ m#-a.e.

Therefore, by [14, Lemma 4.3], the function u#(x) = E#
x A

#
ζ#

is E#-quasi-

continuous on E#. By [19, Corollary VI.1.4], u#|E is E-quasi-continuous on E,

which proves the first part of the lemma since u#|E(x) = ExAζ , x ∈ E. The

second part is immediate from the definition of quasi-continuity.

Lemma 2.4. Assume that (E , D(E)) is transient and satisfies the strong

sector condition. If µ ∈ S(0)
0 then u defined by

u(x) = ExA
µ
ζ , x ∈ E,

is a quasi-continuous version of Uµ.

Proof. By [17, Proposition A.7], for every α > 0 the function Rαµ de-
fined by Rαµ(x) = Ex

	∞
0 e−αt dAµt , x ∈ E, is a quasi-continuous version

of Uαµ. Therefore, by Lemma 2.2 and the Banach–Saks theorem, there
exist sequences αn ↓ 0 and {nk} such that the Cesàro mean sequence
{wn = (1/n)

∑n
k=1 unk}, where un = Rαnµ, is Ẽ-convergent to Uµ. On the

other hand, by the monotone convergence theorem, un(x)→ u(x) for x ∈ E,
and hence wn(x)→ u(x) for x ∈ E. Consequently, {wn} is an approximating
sequence for u. Therefore u ∈ Fe and

Ẽ(u− Uµ, u− Uµ)1/2

≤ lim
n→∞

(
Ẽ(u− wn, u− wn)1/2 + Ẽ(Uµ− wn, Uµ− wn)1/2

)
= 0.

Since (Ẽ ,Fe) is a Hilbert space, it follows that u is an m-version of Uµ. To
show that u is quasi-continuous, first note that by [19, Proposition III.3.3]
there is an E-nest {Fk} such that {un} ⊂ C({Fk}). Since E is quasi-regular,
there exists an E-nest {Ek} consisting of compact sets. Write F ′k = Fk ∩Ek.
Then {F ′k} is an E-nest consisting of compact sets and {un} ⊂ C({F ′k}).
Since un|F ′k ↗ u|F ′k as n → ∞ for each k ∈ N, Dini’s theorem shows that u

is in C({F ′k}), which is our claim.

Let S
(0)
00 (resp. Ŝ

(0)
00 ) denote the subset of S

(0)
0 consisting of all measures

ν such that ν(E) <∞ and ‖Uν‖∞ <∞ (resp. ‖Ûν‖∞ <∞).

Lemma 2.5. Assume that (E , D(E)) is transient and satisfies the strong

sector condition. If µ ∈ S and ν ∈ Ŝ
(0)
00 then for any nonnegative Borel

function f ,

(2.7) Eν

ζ�

0

f(Xt) dA
µ
t = 〈f · µ, ˜̂Uν〉.
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Proof. By Lemma 2.1 there exists a nest {Fn} with 1Fn |f | · |µ| ∈ S
(0)
0 .

By [17, Theorem A.8], for α > 0 the function x 7→ Ex
	ζ
0 e
−αt1Fnf(Xt) dA

µ
t

is a quasi-continuous version of Uα(1Fnf · µ). Hence,

(2.8) Eν

ζ�

0

e−αt1Fnf(Xt) dA
µ
t = 〈 ˜Uα(1Fnf · µ), ν〉 = 〈1Fnf · µ,

˜̂
Uαν〉.

Letting α ↓ 0 and applying the monotone convergence theorem to the left-
hand side of (2.8) and Lemma 2.2 to the right-hand side of (2.8), we obtain

(2.9) Eν

ζ�

0

1Fnf(Xt) dA
µ
t = 〈1Fnf · µ,

˜̂
Uν〉.

Letting n → ∞ in (2.9) yields (2.9) with Fn replaced by
⋃∞
n=1 Fn, which

implies (2.7) because (
⋃∞
n=1 Fn)c is an exceptional set.

Lemma 2.6. Assume that (E , D(E)) is transient, µ1 ∈ S, µ2 ∈M+
0,b. If

Ex

ζ�

0

dAµ1t ≤ Ex
ζ�

0

dAµ2t

for m-a.e. x ∈ E then ‖µ1‖TV ≤ ‖µ2‖TV.

Proof. Let (E#, D(E#)), µ# be defined as in the proof of Lemma 2.3,
and let (Aµ)# be defined by (2.6) with A replaced by Aµ. It is an elementary

check that (Aµ)# = Aµ
#

. By the assumptions and since m#(E# \ E) = 0,

E#
x

ζ#�

0

dA
µ#1
t ≤ E#

x

ζ#�

0

dA
µ#2
t

for m-a.e. x ∈ E#. Clearly µ#2 ∈ M0,b(E
#). Therefore ‖µ#1 ‖TV ≤ ‖µ#2 ‖TV

by [14, Lemma 5.4], and hence ‖µ1‖TV ≤ ‖µ2‖TV.

The following lemma is probably known, but we do not have a reference.

Lemma 2.7. Assume that (E , D(E)) is transient and satisfies the strong

sector condition. Let B ∈ B(E). If ν(B) = 0 for every ν ∈ S(0)
00 then B is

E-exceptional.

Proof. Let (E#, D(E#)) be the regular extension of (Ẽ , D(E)) specified
in [19, Theorem VI.1.2]. Let ν# be a smooth measure on B(E#) and let
ν = ν#|B(E). If A ∈ B(E) is E-exceptional then by [19, Corollary VI.1.4],

A is E#-exceptional, and hence ν(A) = ν#(A) = 0. Moreover, if {Fk}
is a nest in E# such that ν#(Fk) < ∞ for k ∈ N and {Ek} is a nest
in E as in [19, Theorem VI.1.2], then {Fk ∩ Ek} is an E-nest of com-
pact sets in E such that ν(Fk ∩ Ek) < ∞, k ∈ N. Thus ν is a smooth
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measure on B(E). If moreover ν# ∈ S
(0)
00 (E#) then ν(E) < ∞ and, for

η ∈ D(E),

〈ν, η̃〉 = 〈ν#, η̃〉 ≤ cE#(η, η)1/2 = cE(η, η)1/2.

From this in the same manner as in the proof of Lemma 2.1 one can

deduce that 〈ν, η̃〉 ≤ cE(η, η)1/2 for η ∈ Fe, i.e. that ν ∈ S
(0)
0 . From

Lemma 2.4 and the fact that Aν
#

= (Aν)# it follows now that Uν#|E

is an m-version of Uν. Therefore ‖Uν‖∞ <∞, which proves that ν ∈ S(0)
00 .

Hence ν(B) = 0, and consequently ν#(B) = ν(B) = 0 for every ν# in

S
(0)
00 (E#). Therefore from the 0-order version of [7, Theorem 2.2.3] (see re-

mark following [7, Corollary 2.2.2]) we conclude that Cap#
1,1(B) = 0, where

Cap#
1,1 denotes the capacity relative to (E#, D(E#)) defined in [19, Defini-

tion III.2.4] (see also [19, Exercise III.2.10]). Hence Cap#
ϕ (B) = 0 by [19,

Proposition VI.1.5], and consequently Capϕ(B) = 0 by [19, Corollary VI.1.4]
(Capϕis defined by (2.2)). By a remark following (2.2) this implies that B is
E-exceptional.

3. Probabilistic solutions. In this section we assume that (E , D(E))
is a quasi-regular Dirichlet form on L2(E;m). We will need the following
assumptions on f from the right-hand side of (1.1):

(A1) f : E × R → R is measurable and y 7→ f(x, y) is continuous for
every x ∈ E,

(A2) (f(x, y1)− f(x, y2))(y1 − y2) ≤ 0 for all y1, y2 ∈ R and x ∈ E,
(A3) f(·, y) ∈ L1(E;m) for every y ∈ R,
(A4) µ ∈M0,b,

and

(A3∗) for every y ∈ R the function f(·, y) is quasi-L1 with respect to the
form (E , D(E)), i.e. t 7→ f(Xt, y) belongs to L1

loc(R+) Px-a.s. for
q.e. x ∈ E,

(A4∗) Ex
	ζ
0 |f(Xt, 0)| dt <∞ and Ex

	ζ
0 d|A

µ|t <∞ for q.e. x ∈ E.

Note that in our previous paper [14] devoted to equations of the form
(1.1) we followed [1] in assuming that f satisfies (A1), (A2), (A4) and
the following condition: for every r > 0, Fr ∈ L1(E;m), where Fr(x) =
sup|y|≤r |f(x, y)|. Obviously (A3) is weaker than the last condition. Like-

wise, (A3∗) is weaker than the corresponding condition (A3′) in [14] saying
that for every r > 0 the function t 7→ Fr(Xt, y) belongs to L1

loc(R+) Px-a.s.
for q.e. x ∈ E. Observe, however, that (A3) together with (A1), (A2) im-
ply that Fr ∈ L1(E;m). Likewise, (A3∗) together with (A1), (A2) imply
condition (A3′) from [14].
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Define the co-potential operator as

Ĝφ = lim
n→∞

Ĝ1/nφ, φ ∈ L1(E;m), φ ≥ 0,

and for µ ∈ S set

Rµ(x) = Ex

ζ�

0

dAµt , x ∈ E.

Lemma 3.1. If (E , D(E)) is transient then for any µ ∈ S and φ ∈
L1(E;m) such that φ ≥ 0 we have

(3.1) (Rµ, φ) = 〈µ, ˜̂Gφ〉.
Proof. By Lemma 2.1 there is a nest {Fn} such that 1Fn · µ ∈ S

(0)
0 for

each n ∈ N. Let

Rα(1Fn · µ)(x) = Ex

ζ�

0

e−αt1Fn(Xt) dA
µ
t , α > 0, x ∈ E.

Since Rα(1Fn · µ) is an m-version of Uα(1Fn · µ), for any nonnegative φ in
L1(E;m) ∩ L2(E;m) we have

〈1Fn · µ,
˜̂
Gαφ〉 = Eα(Uα(1Fn · µ), Ûαφ) = Eα(Rα(1Fn · µ), Ûαφ).

Hence,

(3.2) 〈1Fn · µ,
˜̂
Gαφ〉 = (Rα(1Fn · µ), φ).

In fact, approximating φ ∈ L1(E;m) by a sequence {φk} ⊂ L1(E;m)
∩ L2(E;m) such that 0 ≤ φk ↗ φ yields (3.2) for any φ ∈ L1(E;m) such
that φ ≥ 0. Finally, letting α ↓ 0 and then n→∞ in (3.2) gives (3.1).

Let R be defined by (1.3). If µ is smooth and R|µ| <∞ m-a.e. then from
(3.1) and the fact that m is σ-finite it follows that µ ∈ R. Furthermore, if
µ ∈ R then by (3.1), R|µ| <∞m-a.e. Thus R can be equivalently defined as

R = {µ : µ is smooth, R|µ| <∞, m-a.e.}.
It follows in particular that (A4∗) is satisfied iff f(·, 0) ·m ∈ R and µ ∈ R.

Proposition 3.2. If (E , D(E)) is transient then M0,b ⊂ R.

Proof. Apply [20, Corollary 1.3.6] to the dual form (Ê , D(E)).

In general the inclusion in Proposition 3.2 is strict. To see this let us
consider the classical form

(3.3) D(u, v) =
1

2

�

D

〈∇u,∇v〉Rd dx, u, v ∈ H1
0 (D),

on L2(D; dx), where D is a bounded open subset of Rd. If d ≥ 3 and D has
smooth boundary then R1 is a continuous strictly positive function such
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that R1(x) ≈ δ(x) for x ∈ D, where δ(x) = dist(x, ∂D) (for the last prop-
erty see [16, Proposition 4.9]). Since R1 is an m-version of G1 = Ĝ1, it
follows that L1(D; δ(x)dx) ∈ R, so R contains positive Radon measures of
infinite total variation. Elliptic and parabolic equations with right-hand side
in Lq(D; δ(x)dx) (q ≥ 1) are studied for instance in [5].

Remark 3.3. Assume that (E , D(E)) is transient. Then by Lemma 2.3
and Proposition 3.2, (A3) implies (A3∗) and (A4) implies (A4∗).

3.1. BSDEs. Let (Ω, (Ft)t≥0, P ) be a filtered probability space. We will
need the following classes of processes defined on Ω.
D is the space of all (Ft)-progressively measurable càdlàg processes,

and Dq, q > 0, is the subspace of D consisting of all processes Y such
that E supt≥0 |Yt|q <∞.
M (resp. Mloc) is the space of all càdlàg ((Ft), P )-martingales (resp.

local martingales) M such that M0 = 0, and M2 is the subspace of M
consisting of martingales such that E[M ]∞ <∞.

We say that a càdlàg (Ft)-adapted process Y is of Doob’s class (D)
if the collection {Yτ : τ ∈ T }, where T is the set of finite-valued (Ft)-
stopping times, is uniformly integrable. For a process Y of class (D) we set
‖Y ‖1 = sup{E|Yτ | : τ ∈ T }.

In the present subsection ξ is an FT -measurable random variable, ζ is an
(Ft)-stoping time, V is a continuous (Ft)-adapted finite variation process
such that V0 = 0 and f : [0,∞)×Ω ×R→ R is a measurable function such
that f(·, y) is a (Ft)-progressively measurable process for every y ∈ R (for
brevity in notation we omit the dependence of f on ω).

Definition. We say that a pair (Y,M) of processes is a solution of the
backward stochastic differential equation on [0, T ] with terminal condition ξ
and coefficient f + dV (BSDE(ξ, f + dV ) for short) if

(a) Y ∈ D, Y is of class (D) and M ∈Mloc,
(b) the mapping [0, T ] 3 t 7→ f(t, Yt) belongs to L1(0, T ) P -a.s. and

Yt = ξ +

T�

t

f(r, Yr) dr +

T�

t

dVr −
T�

t

dMr, t ∈ [0, T ], P -a.s.

Definition. We say that a pair (Y,M) is a solution of the backward
stochastic differential equation with terminal condition 0 at terminal time ζ
and coefficient f + dV (BSDEζ(f + dV ) for short) if

(a) Y ∈ D, Yt∧ζ → 0 P -a.s. as t→∞, Y is of class (D) and M ∈Mloc,
(b) for every T > 0, [0, T ] 3 t 7→ f(t, Yt) belongs to L1(0, T ) P -a.s. and

Yt = YT∧ζ +

T∧ζ�

t∧ζ
f(r, Yr) dr +

T∧ζ�

t∧ζ
dVr −

T∧ζ�

t∧ζ
dMr, t ∈ [0, T ], P -a.s.
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Let us consider the following hypotheses:

(H1) For every t ∈ [0, T ] the function R 3 y 7→ f(t, y) is continuous
P -a.s.

(H2) For every t ∈ [0, T ] the function R 3 y 7→ f(t, y) is P -a.s. nonde-
creasing.

(H3) For every y ∈ R the function [0, T ] 3 t 7→ f(t, y) belongs to L1(0, T )
P -a.s.

Remark 3.4. The following Theorems 3.6 and 3.7 were stated in [14]
(see Theorems 2.7 and 3.4 there). Unfortunately, there are some gaps in the
proofs of these results in [14]. Namely, in the proof of [14, Theorem 2.7]
we applied [14, Lemma 2.6], which is true, but its proof is correct under
the additional assumption that the coefficient f is bounded from below by
some linear function of y (otherwise the function fn appearing in the proof
is not well defined). Secondly, in the proof of [14, Theorem 3.4] we applied
[14, Lemma 2.5], which is correct only for p ≥ 2 or under the additional
assumption that the solution (Y,M) is continuous (the reason is that in the
proof of [14, Lemma 2.5] we used the Burkholder–Davis–Gundy inequality
with exponent p/2). Here we give the proofs of [14, Theorems 2.7 and 3.4]
in full generality.

In what follows we denote by Tc, c ≥ 0, the truncation operator , i.e.

(3.4) Tc(x) = (−c) ∨ x ∧ c, x ∈ E.
Lemma 3.5. Assume that (H1)–(H3) are satisfied and there exists c > 0

such that
T · sup

0≤t≤T
|f(t, 0)|+ |V |T + |ξ| ≤ c.

Then there exists a unique solution (Y,M) ∈ D2⊗M2 of BSDE(ξ, f +dV ).

Proof. Let fc(t, y) = f(t, Tc(y)). Then |infy∈R fc(t, y)| < ∞ and the
proof of [14, Lemma 2.6] shows (see Remark 3.4) that there exists a unique
solution (Y,M) ∈ D2⊗M2 of BSDE(ξ, fc+dV ). But by the Tanaka–Meyer
formula and the assumptions,

|Yt| ≤ E
(
|ξ|+

T�

t

sgn(Yr)fc(r, Yr) dr +

T�

t

sgn(Yr) dVr

∣∣∣ Ft)
≤ E

(
|ξ|+

T�

0

|f(r, 0)| dr +

T�

0

d|V |r
∣∣∣ Ft) ≤ c,

so in fact (Y,M) is a solution of BSDE(ξ, f + dV ).

Theorem 3.6. Assume that (H1)–(H3) are satisfied and

E
(
|ξ|+

T�

0

|f(t, 0)| dt+

T�

0

d|V |t
)
<∞.
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Then there exists a solution (Y,M) of BSDE(ξ, f + dV ) such that Y ∈ Dq
for every q ∈ (0, 1) and M is a uniformly integrable martingale.

Proof. Set ξn = Tn(ξ) and

fn(t, y) = f(t, y)− f(t, 0) + Tn(f(t, 0)), V n
t =

t�

0

1{|V |r≤n} dVr.

By Lemma 3.5, for n≥ 1 there is a solution (Y n,Mn) of BSDE(ξn, fn+dV n).
As in the proof of [14, Theorem 2.7] we show that there exists a process Y
of class (D) such that Y ∈ Dq for q ∈ (0, 1) and

(3.5) E sup
0≤t≤T

|Y n
t − Yt|q → 0

for every q ∈ (0, 1). By the Tanaka–Meyer formula and (H2),

|Y n
t | ≤ E

(
|ξ|+

T�

0

|f(r, 0)| dr +

T�

0

d|V |r
∣∣∣ Ft), t ∈ [0, T ].

Let R denote a càdlàg process such that for every t ∈ [0, T ], Rt is equal to
the right-hand side of the above inequality. Then

|Y n
t | ≤ Rt, t ∈ [0, T ], n ≥ 1.

For k,N ∈ N set

(3.6) τk,N = inf
{
t ≥ 0 : Rt ≥ k or

t�

0

(|f(r,−k)|+ |f(r, k)|) dr ≥ N
}
∧ T.

By the definition of a solution of BSDE(ξn, fn + dV n),

Y n
t∧τk,N = E

(
Y n
τk,N

+

τk,N�

t∧τk,N

fn(r, Y n
r ) dr +

τk,N�

t∧τk,N

dV n
r

∣∣∣ Ft).(3.7)

From the definition of τk,N it follows that∣∣∣ τk,N�
t∧τk,N

fn(r, Y n
r ) dr

∣∣∣ ≤ τk,N�

0

|f(r, Y n
r )| dr ≤ N.

From this, (H1) and (3.5) we conclude that

E

τk,N�

0

|fn(t, Y n
t )− f(t, Yt)| dt→ 0

as n → ∞. Therefore letting n → ∞ in (3.7) and using (3.5) and Doob’s
maximal inequality (for details see the argument following (3.15)) we obtain

(3.8) Yt∧τk,N = E
(
Yτk,N +

τk,N�

t∧τk,N

f(r, Yr) dr +

τk,N�

t∧τk,N

dVr

∣∣∣ Ft).
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By [14, Lemma 2.3],

E

T�

0

|fn(t, Y n
t )| dt ≤ E

(
|ξ|+

T�

0

|f(t, 0)| dt+

T�

0

d|V |t
)
, n ≥ 1,

so applying Fatou’s lemma and (3.5) gives

(3.9) E

T�

0

|f(t, Yt)| dt <∞.

By (H3), τk,N → τk P -a.s. as N →∞, where

(3.10) τk = inf{t ≥ 0 : Rt ≥ k} ∧ T.
Therefore letting N →∞ in (3.8) and using (3.9) and the fact that Y is of
class (D) we get

(3.11) Yt∧τk = E
(
Yτk +

τk�

t∧τk

f(r, Yr) dr +

τk�

t∧τk

dVr

∣∣∣ Ft).
Since R is a càdlàg process, τk → T P -a.s. as k → ∞. Therefore letting
k → ∞ in (3.11) and using once again (3.9) and the fact that Y is of
class (D) gives

Yt = E
(
ξ +

T�

t

f(r, Yr) dr +

T�

t

dVr

∣∣∣ Ft).
It follows that the pair (Y,M), where M is a càdlàg process such that

Mt = E
(
ξ +

T�

0

f(r, Yr) dr +

T�

0

dVr

∣∣∣ Ft)− Y0, t ∈ [0, T ],

is a solution of BSDE(ξ, f + dV ).

Theorem 3.7. Assume that (H1)–(H3) are satisfied for every T > 0,
and that

E
( ζ�

0

|f(t, 0)| dt+

ζ�

0

d|V |t
)
<∞.

Then there exists a unique solution (Y,M) of BSDEζ(f + dV ). Moreover,
Y ∈ Dq for q ∈ (0, 1), M is a uniformly integrable (Ft)-martingale and

(3.12) E

ζ�

0

|f(t, Yt)| dt ≤ E
( ζ�

0

|f(t, 0)| dt+

ζ�

0

d|V |t
)
.

Proof. The uniqueness part is a direct consequence of [14, Corollary 3.2].
To prove the existence we slightly modify the proof of [14, Theorem 3.4].
By Theorem 3.6, for each n ∈ N there exists a unique solution (Y n,Mn) of
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BSDE(0,1[0,ζ]f + dV·∧ζ) on [0, n] such that Y n ∈ Dq for q ∈ (0, 1) and Mn

is a uniformly integrable (Ft)-martingale. By the definition of a solution,

(3.13) Y n
t =

n�

t

1[0,ζ](r)f(r, Y n
r ) dr +

n�

t

dVr∧ζ −
n�

t

dMn
r , t ∈ [0, n].

Set (Y n
t ,M

n
t ) = (0,Mn

n ) for t ≥ n. Then as in the proof of [14, Theorem 3.4]
we show (see the proof of [14, (3.11)] and the inequality following it) that
for every m > n and q ∈ (0, 1),

E sup
t≥0
|Y m
t − Y n

t |q ≤
1

1− q

(
E

ζ�

n∧ζ
|f(r, 0)| dr +

ζ�

n∧ζ
d|V |r

)q
,

‖Y m − Y n‖1 ≤
1

1− q

(
E

ζ�

n∧ζ
|f(r, 0)| dr +

ζ�

n∧ζ
d|V |r

)q
.

Therefore there exists Y such that Y ∈ Dq for q ∈ (0, 1), Y is of class (D)
and Y n → Y in the norm ‖ · ‖1 and in Dq for q ∈ (0, 1). Since Y n

ζ = 0 P -a.s.
for n ∈ N, from the latter convergence it follows in particular that Yt∧ζ → 0
as t→∞. In much the same way as in the proof of [14, (3.5)] we show that

|Y n
t | ≤ E

( n∧ζ�
t∧ζ

sgn(Y n
r−)(f(r, Y n

r ) dr + dVr)
∣∣∣ Ft).

From this and (H2) we get

|Y n
t | ≤ E

( ζ�

t∧ζ
(|f(r, 0)| dr + d|V |r)

∣∣∣ Ft)(3.14)

≤ E
( ζ�

0

(|f(r, 0)| dr + d|V |r)
∣∣∣ Ft) =: Rt, t ≥ 0.

Let τk,N be defined by (3.6) but with Rt from (3.14). By (3.13), for T < n
we have

(3.15)

Y n
t∧τk,N = E

(
Y n
ζ∧τk,N +

ζ∧τk,N�

t∧ζ∧τk,N

(f(r, Y n
r ) dr + dVr)

∣∣∣ Ft), t ∈ [0, T ], P -a.s.

By Doob’s maximal inequality, for every ε > 0,

lim
n→∞

P
(

sup
t≤T
|E(Y n

ζ∧τk,N − Yζ∧τk,N |Ft)| > ε
)

≤ ε−1 lim
n→∞

E|Y n
ζ∧τk,N − Yζ∧τk,N | = 0.
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Since supt≥0 |Y n
t −Yt| → 0 in probability P , it follows from the definition of

τk,N that

lim
n→∞

E

ζ∧τk,N�

0

|f(r, Y n
r )− f(r, Yr)| dr

= lim
n→∞

E

ζ∧τk,N−�

0

|f(r, Y n
r )− f(r, Yr)| dr = 0.

Applying Doob’s maximal inequality we conclude from the above that

lim
n→∞

P
(

sup
t≤T

E
( ζ∧τk,N�

t

|f(r, Y n
r )− f(r, Yr)| dr

∣∣∣ Ft) > ε
)

= 0

for ε > 0. Therefore letting n → ∞ in (3.15) we can assert that P -a.s. we
have

(3.16) Yt∧τk,N = E
(
Yζ∧τk,N +

ζ∧τk,N�

t∧ζ∧τk,N

(f(r, Yr) dr+dVr)
∣∣∣ Ft), t ∈ [0, T ].

By (H3), τk,N → τk P -a.s. as N → ∞, where τk is defined by (3.10) but
with Rt defined by (3.14). Hence Yζ∧τk,N → Yζ∧τk P -a.s. as N → ∞, and
consequently E|Yζ∧τk,N−Yζ∧τk | → 0 since Y is of class (D). Therefore letting
N →∞ in (3.16) we obtain

(3.17) Yt∧τk = E
(
Yζ∧τk +

ζ∧τk�

t∧ζ∧τk

(f(r, Yr) dr + dVr)
∣∣∣ Ft), t ∈ [0, T ].

Since we may assume that R is a càdlàg process, τk → T , P -a.s. as k →∞.
Hence Yζ∧τk → YT∧ζ P -a.s. as k → ∞, and consequently E|Yζ∧τk − YT∧ζ |
→ 0 since Y is of class (D). Also, E|YT∧ζ | → 0 as T → ∞ since we know
that YT∧ζ → 0 P -a.s. By [14, Lemma 2.3], for every n ≥ 1,

E

n∧ζ�

0

|f(r, Y n
r )| dr ≤ E

(
|Y n
n∧ζ |+

n∧ζ�

0

|f(r, 0)| dr +

n∧ζ�

0

d|V |r
)
.

Letting n→∞ in the above inequality and applying Fatou’s lemma and the
first inequality in (3.14) we get (3.12). Therefore letting k → ∞ in (3.17)
and then letting T →∞ and using Doob’s maximal inequality we obtain

Yt = E
( ζ�

t∧ζ
(f(r, Yr) dr + dVr)

∣∣∣ Ft), t ≥ 0, P -a.s.

From this, one can easily deduce that the pair (Y,M), where

Mt = E
( ζ�

0

f(r, Yr) dr +

ζ�

0

dVr

∣∣∣ Ft)− Y0, t ≥ 0,
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is a solution of BSDEζ(f + dV ). Finally, since the martingale M is closed,
it is uniformly integrable.

3.2. Existence and uniqueness of probabilistic solutions. Let
(L,D(L)) be the operator defined by (1.2).

Definition. Let µ ∈ R. We say that an E-quasi-continuous function
u : E → R is a probabilistic solution of the equation

(3.18) −Lu = fu + µ,

where fu(x) = f(x, u(x)) for x ∈ E, if Ex
	ζ
0 |fu(Xt)| dt <∞ and

(3.19) u(x) = Ex

( ζ�
0

fu(Xt) dt+

ζ�

0

dAµt

)
for q.e. x ∈ E.

In what follows we say that a function u : E → R is of class (FD) if
the process t 7→ u(Xt) is of class (D) under the measure Px for q.e. x ∈ E.
Similarly, we write u ∈ FDq if the process t 7→ u(Xt) belongs to Dq under
Px for q.e. x ∈ E. The notation BSDEx means that the backward stochastic
differential equation under consideration is defined on the filtered probability
space (Ω, (Ft)t≥0, Px).

Theorem 3.8. Assume that (A1), (A2), (A3∗), (A4∗) are satisfied. Then
there exists a unique probabilistic solution u of (3.18). Actually, u is of class
(FD) and u ∈ FDq for q ∈ (0, 1). Moreover, for q.e. x ∈ E there exists a

unique solution (Y x,Mx) of BSDEζx(f + dAµ). In fact,

u(Xt) = Y x
t , t ≥ 0, Px-a.s.

Proof. From Lemma 2.3 it follows that under (A4∗) the assumptions of
Theorem 3.7 are satisfied under the measurePx with coefficient f(·, X·) + dAµ

and terminal time ζ for q.e. x ∈ E. To prove the theorem it now suffices to
use Theorem 3.7 and repeat step by step arguments from the proof of [14,
Theorem 4.7].

Let us note that from Theorem 3.7 it follows that under the assumptions
of Theorem 3.8,

(3.20) Ex

ζ�

0

|fu(Xt)| dt ≤ Ex
( ζ�

0

|f(Xt, 0)| dt+

ζ�

0

d|Aµ|t
)

for m-a.e. x ∈ E, where u is a probabilistic solution of (3.18).

3.3. Probabilistic solutions vs. solutions in the sense of duality.
Assume that (E , D(E)) is transient and satisfies the strong sector condition.
Let A denote the space of all E-quasi-continuous functions u : E → R such
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that u ∈ L1(E; ν) for every ν ∈ Ŝ(0)
00 . Following [14] we adopt the following

definition.

Definition. Let µ ∈M0,b. We say u : E → R is a solution of (3.18) in
the sense of duality if u ∈ A, fu ∈ L1(E;m) and

(3.21) 〈ν, u〉 = (fu, Ûν) + 〈µ, ˜̂Uν〉, ν ∈ Ŝ(0)
00 .

Note that by the very definition of S
(0)
0 , if ν ∈ S

(0)
0 and u ∈ Fe then

ũ ∈ L1(E; ν). As a consequence, if u ∈ Fe then ũ ∈ A.

Proposition 3.9. Assume that (E , D(E)) is transient, satisfies the strong
sector condition and that µ ∈ M0,b. If u is E-quasi-continuous and fu is
in L1(E;m), then u is a probabilistic solution of (3.18) iff it is a solution
of (3.18) in the sense of duality.

Proof. Let u be a solution of (3.18) in the sense of duality. Denote by
w(x) the right-hand side of (3.19) if it is finite, and set w(x) = 0 otherwise.
By Proposition 3.2, w is finite m-a.e., and hence, by Lemma 2.3, w is quasi-
continuous. By Lemma 2.5, w ∈ A and 〈ν, w〉 is equal to the right-hand

side of (3.21). Thus 〈ν, u〉 = 〈ν, w〉 for ν ∈ Ŝ
(0)
00 . Lemma 2.7 applied to

the form Ê now shows that u = w E-q.e. since u, v are E-quasi-continuous.
Conversely, assume that u is a probabilistic solution of (3.18). Then, again
by Lemma 2.5, u ∈ A and u satisfies (3.21).

Proposition 3.10. Assume that (E , D(E)) is transient and (A4) is sat-
isfied.

(i) If u is a probabilistic solution of (3.18) then fu ∈ L1(E;m) and

(3.22) ‖fu‖L1(E;m) ≤ ‖f(·, 0)‖L1(E;m) + ‖µ‖TV.

(ii) If moreover (E , D(E)) satisfies the strong sector condition then u is
a probabilistic solution of (3.18) iff it is a solution of (3.18) in the
sense of duality.

Proof. Assertion (i) follows from (3.20) and Lemma 2.6, whereas (ii)
follows from (i) and Proposition 3.9.

4. Regularity of probabilistic solutions. Below, Tk denotes the
truncation operator defined by (3.4).

Lemma 4.1. Assume that (E , D(E)) is a Dirichlet form. Then for every
k > 0,

(4.1) E(Tku, Tku) ≤ E(u, Tku)

for all u ∈ D(E). If moreover (E , D(E)) satisfies the strong sector condition
then (4.1) holds for all u ∈ Fe.
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Proof. Let u ∈ D(E). Since Gα is Markov,

α(Tk(u)− αGαTk(u), u− Tk(u)) ≥ 0

for all k, α > 0. Therefore the first assertion of the lemma follows from
[19, Theorem I.2.13]. Now assume that E satisfies (2.1) and u ∈ Fe. Let
{un} ⊂ D(E) be an approximating sequence for u. By [7, Theorem 1.5.3],

Tkun ∈ Fe and Ẽ(Tkun, Tkun) ≤ Ẽ(un, un) for each n ∈ N. Since {un} is

Ẽ-convergent, supn≥1 Ẽ(Tkun, Tkun) < ∞. Since (Fe, Ẽ) is a Hilbert space,

applying the Banach–Saks theorem we can find a subsequence {nl} such

that the Cesàro mean sequence {wN = (1/N)
∑N

l=1 Tk(unl)} is Ẽ-convergent

to some w ∈ Fe. Since Ẽ is transient, there is an m-a.e. strictly positive and
bounded g ∈ L1(E;m) such that�

E

|wN − v|g dm ≤ E(wN − w,wN − w)1/2 → 0.

On the other hand, since un → u m-a.e., applying the Lebesgue dominated
convergence theorems shows that

	
E |wN − Tku|g dm → 0. Consequently,

w = Tku and {Tkun} converges Ẽ-weakly to Tku. From this and the first
part of the proof it follows that

(4.2) E(Tku, Tku) ≤ lim inf
n→∞

E(Tkun, Tkun) ≤ lim inf
n→∞

E(un, Tkun).

Moreover, using (2.1) and the facts that {un} is Ẽ-convergent to u and
{Tkun} is Ẽ-weakly convergent to Tku we conclude that the last limit in (4.2)
equals E(u, Tku), which completes the proof of the second assertion of the
lemma.

Theorem 4.2. Assume that (E, D(E)) is a quasi-regular transient Dirich-
let form and µ ∈M0,b. If u is a solution of (3.18) and fu ∈ L1(E;m) then
Tku ∈ Fe for every k > 0. Moreover, for every k > 0,

(4.3) E(Tku, Tku) ≤ k(‖fu‖L1(E;m) + ‖µ‖TV).

Proof. By Lemma 2.1 there exists a nest {Fn} with 1Fn |fu| ·m+1Fn · |µ|
∈ S(0)

0 . For α > 0 set

uαn(x) = Ex

ζ�

0

e−αt1Fnfu(Xt) dt+ Ex

ζ�

0

e−αt1Fn(Xt) dA
µ
t , x ∈ E,

and µn = 1Fnfu ·m+ 1Fn · µ. By [17, Theorem A.8],

uαn(x) = Ũαµn(x)

for q.e. x ∈ E. Hence uαn ∈ D(E) and Tku
α
n ∈ D(E) since every normal

contraction operates on (Ẽ , D(E)). Therefore,

Eα(uαn, Tku
α
n) = Eα(Uαµn, Tku

α
n) =

�

E

T̃kuαn dµn ≤ k(‖fu‖L1(E;m) + ‖µ‖TV).
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By Lemma 4.1 applied to the form Eα,

(4.4) Eα(Tku
α
n, Tku

α
n) ≤ Eα(uαn, Tku

α
n).

Consequently,

E(Tku
α
n, Tku

α
n) ≤ k(‖fu‖L1(E;m) + ‖µ‖TV).

By the Banach–Saks theorem we can choose a sequence {αl} such that αl ↓ 0

as l → ∞, and the sequence {wN = (1/N)
∑N

l=1 Tku
αl
n } is Ẽ-convergent.

Moreover, from Lemma 2.4 one can deduce that uαn(x)→ un(x) as α ↓ 0 for
q.e. x ∈ E. Hence Tku

α
n → Tkun m-a.e., and consequently wN → Tkun m-a.e.

Thus {wN} is an approximating sequence for Tkun. By (4.4), E(wN , wN ) ≤
k(‖fu‖L1(E;m) + ‖µ‖TV) for every N ∈ N. Hence,

E(Tkun, Tkun) = lim
N→∞

E(wN , wN ) ≤ k(‖fu‖L1(E;m) + ‖µ‖TV).

Since un → u q.e. we now apply the above arguments again, with Tku
α
n

replaced by Tkun, to obtain (4.3).

Corollary 4.3. If (E , D(E)) is a quasi-regular transient Dirichlet form
and f, µ satisfy (A1), (A2), (A3*), (A4) then there exists a unique solu-
tion u of (3.18). Moreover, u is of class (FD), u ∈ FDq for q ∈ (0, 1)
and (3.22), (4.3) are satisfied.

Proof. Follows immediately from Theorem 3.8, Proposition 3.10 and
Theorem 4.2.

Remark 4.4. Assume that (E , D(E)) is transient, satisfies the strong

sector condition, and that µ ∈ S
(0)
0 . If u is a solution of (3.18) such that

fu ·m ∈ S(0)
0 then u is a weak solution of (3.18), i.e. for every v ∈ Fe,

(4.5) E(u, v) = (fu, v) + 〈µ, ṽ〉.

Indeed, by Lemma 2.1, if µ, fu ·m ∈ S(0)
0 then u satisfying (3.19) is a quasi-

continuous version of U(fu · m + µ), which implies (4.5). Note that the

condition fu ·m ∈ S(0)
0 is satisfied if fu ∈ L2(E;m) and there is c > 0 such

that (u, u) ≤ cE(u, u) for u ∈ D(E). Indeed, the last inequality implies that

S0 = S
(0)
0 , and from the fact that fu ∈ L2(E;m) it follows that fu ·m ∈ S0.

Remark 4.5. (i) Example 5.7 in [14] shows that in general under
(A1)–(A4) the solution u of (3.18) may not be locally integrable.

(ii) Assume that (A1), (A2), (A3∗) and (A4∗) hold, and let u be a prob-
abilistic solution of (3.18) as in Theorem 3.8. Then from (3.19) and (3.20)
it follows that |u(x)| ≤ R(|f(·, 0)| ·m+ 2|µ|). Therefore the condition

(4.6) (|f(·, 0)|, Ĝ1) + 〈|µ|, ˜̂G1〉 <∞
is sufficient to guarantee integrability of u. One interesting situation in which
(4.6) holds true is given at the end of Section 6.
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5. The case of semi-Dirichlet forms. In the present section, E is a
locally compact separable metric space, m is an everywhere dense positive
Radon measure on B(E), and (E , D(E)) is a transient lower-bounded semi-
Dirichlet form on L2(E;m) in the sense of [20, Section 1.1]. We also assume
that (E , D(E)) is regular (see [20, Section 1.2]). By X we denote a Hunt
process associated with (E , D(E)) (see [20, Theorem 3.3.4]). We fix γ > α0,
where α0 is the constant from conditions (E .1), (E .2) in [20, Section 1.1],
and we set Cap = Cap(γ), where Cap(γ) is the capacity defined in [20,
Section 2.1]. For B ⊂ E we define σB = inf{t > 0 : Xt ∈ B}, and for
ψ ∈ L1(E;m) we set Pψ·m(·) =

	
E Px(·)ψ(x)m(dx).

Lemma 5.1. Let ψ ∈ L1(E;m) be strictly positive and let {An} be a de-
creasing sequence of subsets of E with Cap(A1) < ∞. If Pψ·m(σAn < ∞)
→ 0 as n→∞ then Cap(An)→ 0.

Proof. For a Borel subset B of E, denote by eγB (resp. êγB) the γ-equilib-
rium potential (resp. γ-coequilibrium potential) of B (see [20, Section 2.1]
for the definitions). By [20, Theorem 2.2.7],

Cap(An) = Eγ(eγAn , ê
γ
An

) ≤ Eγ(eγAn , ê
γ
A1

) =
�

E

eγAn dµ̂
γ
A1
,

where we have used [20, Lemma 2.1.1] and the fact that eγAn is excessive. By

the assumption, Hγ
An

(x) := Exe
−γσAn ↘ 0 m-a.e. Hence eγAn ↘ 0 m-a.e. by

[20, Theorem 3.4.8], and consequently eγAn ↘ 0 q.e. by [20, Lemma 3.4.6].

This combined with the fact that µ̂γA1
is smooth gives the desired result.

Lemma 5.2. Let A be a PCAF of X such that ExAζ < ∞ for m-a.e.
x ∈ E. Then the assertion of Lemma 2.3 holds true.

Proof. By a standard argument, u is finite q.e. Let µ be a smooth mea-
sure such that A = Aµ and let {Fn} be a nest such that 1Fn · µ ∈ S0 (see
[20, Lemma 4.1.14]). By [20, Lemma 4.1.11], for all α > 0 and n ≥ 1 the
function un,α defined as

un,α(x) = Ex

ζ�

0

e−αr1Fn(Xr) dA
µ
r

is quasi-continuous. Let ψ ∈ L1(E;m) be a strictly positive function such
that ‖ψ‖L1 = 1. Then by [2, Lemma 6.1], for q ∈ (0, 1),

Eψ·m sup
t≥0
|un,α(Xt)− u(Xt)|q ≤

1

1− q

(
Eψ·m

ζ�

0

(1− e−αr1Fn(Xr)) dA
µ
r

)q
.

Set Aεn,α = {x ∈ E : |un,α(x)− u(x)| > ε}. Then the above inequality yields

Pψ·m(σAεn,α <∞) = Pψ·m

(
sup
t≥0
|un,α(Xt)− u(Xt)| > ε

)
→ 0
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as α ↓ 0 and n → ∞. Hence, by Lemma 5.1, Cap(Aεn,α) → 0. Because of
arbitrariness of ε > 0, un,α → u quasi-uniformly as α ↓ 0 and n→∞, which
implies that u is quasi-continuous.

Lemma 5.3. For every φ ∈ L1(E;m) ∩ B+(E) and µ ∈ S,

(Rµ, φ) = 〈µ, ˜̂Gφ〉.
Proof. Follows from [20, Lemma 4.1.5].

Theorem 5.4. Assume that (A1), (A2), (A3∗), (A4∗) are satisfied. Then
all the assertions of Theorem 3.8 hold true.

Proof. It is enough to repeat the proof of Theorem 3.8 with the only
exception that we now use Lemma 5.2 instead of Lemma 2.3.

We close this section with some remarks on the class R. Proposition 3.2
says that M0,b ⊂ R in case E is a transient Dirichlet form. We shall show
that for semi-Dirichlet forms the same inclusion holds under the following
duality condition considered in [13]:

(∆) there exists a nest {Fn} such that for every n ∈ N there is a non-
negative ηn ∈ L2(E;m) such that ηn > 0 m-a.e. on Fn and Ĝηn is
bounded.

One can observe that under (∆),

R = {µ ∈ S : Rµ <∞ m-a.e.}.

Proposition 5.5. Assume that E satisfies the duality condition (∆).
Then M0,b ⊂ R.

Proof. Let µ ∈M0,b and let ηn be the functions of the definition of (∆).
Then

(Rµ, ηn) = 〈µ, ˜̂Gηn〉 ≤ ‖µ‖TV · ‖Ĝηn‖∞ <∞
for every n ∈ N. Hence Rµ < ∞ m-a.e., and consequently µ ∈ R by the
remark preceding the lemma.

Remark 5.6. If E satisfies (∆) then by Lemma 5.2 and Proposition 5.5,
(A3) implies (A3∗) and (A4) implies (A4∗).

6. Applications. In this section we show by examples how our general
results work in practice. Propositions 6.2–6.4 below concerning nonlocal
operators and operators in Hilbert spaces are new even in the linear case, i.e.
if f ≡ 0. To our knowledge Proposition 6.1 concerning nonsymmetric local
form is also new. Note that in all the examples below concerning Dirichlet
forms one can explicitly describe the structure of bounded smooth measures
(see [15]). In the last subsection we consider semi-Dirichlet forms.
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6.1. Classical nonsymmetric local regular forms. We start with
nonsymmetric forms associated with divergence form operators. Let D be
a bounded open subset of Rd, d ≥ 3, and let m be the Lebesgue measure
on D. Assume that a : D → Rd ⊗ Rd, b, d : D → Rd and c : D → R are
measurable functions such that

(a) c −
∑d

i=1
∂bi
∂xi
≥ 0 and c −

∑d
i=1

∂di
∂xi
≥ 0 in the sense of Schwartz

distributions,
(b) there exist λ > 0, M > 0 such that

∑d
i,j=1 ãijξiξj ≥ λ|ξ|2 for all

ξ ∈ Rd and |ǎij | ≤M for i, j = 1, . . . , d, where ãij = 1
2(aij +aji) and

ǎij = 1
2(aij − aji),

(c) c ∈ Ld/2loc (D; dx), bi, di ∈ Ldloc(D; dx), bi−di ∈ Ld(D; dx)∪L∞(D; dx)
for i = 1, . . . , d.

Then by [19, Proposition II.2.11], the form (E , C∞0 (D)), where

E(u, v) =
�

D

〈a∇u,∇v〉Rd dx(6.1)

+
�

D

(〈b,∇u〉Rd v + 〈d,∇v〉Rd u) dx+
�

D

cuv dx,

is closable and its closure (E , D(E)) is a regular Dirichlet form on L2(D; dx).
By (a) and (b),

E(u, u) ≥
�

D

〈a∇u,∇u〉Rd dx =
�

D

〈ã∇u,∇u〉Rd dx(6.2)

≥ λ
�

D

〈∇u,∇u〉Rd dx

for u ∈ H1
0 (D), and hence, by Poincaré’s inequality, there is C1 > 0 such

that

(6.3) E(u, u) ≥ C1(u, u)

for u ∈ H1
0 (D). Consequently, (E , D(E)) satisfies the strong sector condition.

From the calculations in [19, pp. 50–51] it follows that there exists C2 > 0
depending on λ and the coefficients a, b, c, d such that

(6.4) E(u, u) ≤ C2D1(u, u),

where D1(u, u) = D(u, u)+
	
D u

2 dx and D is defined by (3.3). By (6.2)–(6.4),
D(E) = H1

0 (D). From this, (6.2) and the fact that (D, H1
0 (D)) is transient

it follows that (E , D(E)) is transient as well.
The operator corresponding to (E , D(E)) in the sense of (1.2) has the

form

(6.5) Lu =
d∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
−

d∑
i=1

bi
∂u

∂xi
+

d∑
i=1

∂

∂xi
(diu)− cu.
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From the above considerations and Corollary 4.3 we obtain the following
proposition.

Proposition 6.1. Let D ⊂ Rd, d ≥ 3, be a bounded domain and let
a, b, c, d satisfy (a)–(c). If f, µ satisfy (A1)–(A4) then there exists a unique
probabilistic solution of the problem

−Lu = fu + µ on D, u|∂D = 0.

Moreover, fu ∈ L1(D; dx), Tku ∈ H1
0 (D) for every k > 0, and (3.22), (4.3)

hold true.

6.2. Gradient perturbations of nonlocal symmetric regular forms
on Rd. The following example of a nonlocal nonsymmetric regular Dirichlet
form is borrowed from [10].

Let ψ : Rd → R be a continuous negative definite function, i.e. ψ(0) ≥ 0
and ξ 7→ e−tψ(ξ) is positive definite for t ≥ 0, and for s ∈ R let Hψ,s denote
the Hilbert space

Hψ,s = {u ∈ L2(Rd; dx) : ‖u‖ψ,s <∞},
where

‖u‖2ψ,s =
�

Rd
(1 + ψ(ξ))s|û(ξ)|2 dξ

and û(ξ) = (2π)−d/2
	
Rd e

−iξ·xu(x) dx, ξ ∈ Rd. If ψ(ξ) = |ξ|2 then Hψ,s

coincides with the usual fractional Sobolev space Hs. The basic properties
of the spaces Hψ,s are found in [10, Section 3.10].

Given ψ as above and b = (b1, . . . , bd) : Rd → Rd such that bi ∈ C1
b (Rd)

for i = 1, . . . , d define forms Ψ and B by

Ψ(u, v) =
�

Rd
ψ(ξ)û(ξ)v̂(ξ) dξ, u, v ∈ Hψ,1,

B(u, v) =
�

Rd
〈b,∇u〉Rdv dx, u, v ∈ C∞0 (Rd).(6.6)

Consider the following assumptions on ψ, b:

(a) 1/ψ is locally integrable on Rd,
(b) there exist α ∈ (1, 2] and κ,R > 0 such that ψ(ξ) ≥ κ|ξ|α if |ξ| > R,
(c) bi ∈ C1

b(Rd) for i = 1, . . . , d and div b = 0.

It is known (see, e.g., [7, Example 1.4.1]) that (Ψ,Hψ,1) is a symmetric
regular Dirichlet form on L2(Rd; dx). By [7, Example 1.5.2] it is transient
iff condition (a) is satisfied. By [10, Corollary 4.7.35] there exists c > 0
(depending on b) such that |B(u, v)| ≤ c‖u‖H1/2‖v‖H1/2 . Hence, if (b) is
satisfied then Hψ,1 ⊂ H1/2 and

(6.7) |B(u, v)| ≤ C‖u‖ψ,1‖v‖ψ,1
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for some C > 0. Since C∞0 (Rd) is dense in Hψ,1 (see [10, Theorem 3.10.3]),
it follows that under (b) we may extend (6.6) to a continuous bilinear form
(B, Hψ,1). If moreover (c) is satisfied, then by integration by parts,

(6.8) B(u, u) = −1

2

�

Rd
u2div b dx = 0

for u ∈ C∞0 (Rd) and hence for all u ∈ Hψ,1. Using integration by parts one
can also check (see [10, Example 4.7.36]) that if div b = 0 then (B, Hψ,1) has
the contraction properties required in the definition of a Dirichlet form and
hence is a Dirichlet form. Finally, let us consider the form

(6.9) E(u, v) = Ψ(u, v) + B(u, v), u, v ∈ Hψ,1.

From the properties of Ψ,B mentioned above it follows that if (a)–(c) are
satisfied then (E , Hψ,1) is a regular transient Dirichlet form on L2(Rd; dx),
and the extended Dirichlet space for E coincides with the extended Dirichlet
space for Ψ , which we denote here by Hψ,1

e . The space Hψ,1
e can be char-

acterized for ψ of the form ψ(ξ) = c|ξ|α for some α ∈ (0, 2], c > 0 (see
[7, Example 1.5.2] or [11, Example 3.5.55]). That characterization shows

that if ψ satisfies (b) and α < d (i.e. (a) is satisfied) then Hψ,1
e ↪→ Lp(Rd)

with p = 2d/(d − α) and ‖u‖Lp(Rd;dx) ≤ CΨ(u, u)1/2 for u ∈ Hψ,1
e (see [11,

Corollary 3.5.60]).

The operator associated with Ψ is a pseudodifferential operator ψ(∇)
which for u ∈ C∞0 (Rd) has the form

ψ(∇)u(x) = (2π)−d/2
�

Rd
ei(x,ξ)ψ(ξ)û(ξ) dξ, x ∈ Rd.

Proposition 6.2. Assume that (A1)–(A4) and (a)–(c) hold. Then there
exists a unique probabilistic solution of the equation

−ψ(∇)u− (b,∇u) = fu + µ.

Moreover, fu ∈ L1(Rd; dx), Tku ∈ Hψ,1
e for every k > 0, and (3.22), (4.3)

are satisfied.

Proposition 6.2 holds for operators corresponding to (6.9) with Ψ re-
placed by an arbitrary symmetric regular Dirichlet form with domain Hψ,1.
For examples of such forms see [10, Examples 4.7.30 and 4.7.31] and
[11, Remark 2.6.8 and Theorem 2.6.10].

6.3. Nonlocal symmetric forms on D ⊂ Rd. Let ψ be a continuous
negative definite function satisfying conditions (a) and (b) of Subsection 6.2,
and let D ⊂ Rd be a nearly Borel measurable set finely open with respect to
the process associated with the form Ψ . Set L2

D(Rd; dx) = {u ∈ L2(Rd; dx) :
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u = 0 a.e. on Dc} and

Hψ,1
D = {u ∈ Hψ,1 : ũ = 0 q.e. on Dc}.

Then by [3, Theorem 3.3.8], (Ψ,Hψ,1
D ) is a quasi-regular Dirichlet form on

L2
D(Rd; dx). If α < d then it is transient by [7, Theorem 4.4.4]. In case

Ψ is transient, we denote its extended Dirichlet space by Hψ,1
D,e. The above

remarks and Corollary 4.3 lead to the following proposition.

Proposition 6.3. Let the assumptions of Proposition 6.2 hold and let
D be a nearly Borel finely open subset of Rd with d > α. Then there exists
a unique probabilistic solution of the problem

(6.10) −ψ(∇)u = fu + µ in D, u = 0 in Dc.

Moreover, fu ∈ L1(D; dx), Tku ∈ Hψ,1
D,e for every k > 0, and (3.22), (4.3)

hold true.

Let us remark that if D is bounded then Hψ,1
D,e = Hψ,1

D , because Hψ,1
D ↪→

L2
D(Rd; dx) in that case. If D is open and has smooth boundary then as in

[12] we may define the space Hψ,1
0 (D) as follows. Given u ∈ C∞0 (D) we ex-

tend it to Rd by setting u = 0 on Dc. We then obtain a function u ∈ C∞0 (Rd)
with support in D. Consequently, we may regard C∞0 (D) as a subspace

of Hψ,1 and therefore define Hψ,1
0 (D) as the closure of C∞0 (D) in Hψ,1.

By [7, Theorem 4.4.3], C∞0 (D) is a special standard core of (Ψ,Hψ,1
D ), and

hence, by [7, Lemma 2.3.4], Hψ,1
D = Hψ,1

0 (D).
Assume that d ≥ 3 and D ⊂ Rd is a bounded open set with a C1,1 bound-

ary. Consider the form (Ψ,Hψ,1
D ) with ψ(ξ) = c|ξ|α for some c > 0, α ∈ (0, 2].

By [16, Proposition 4.9] there exist constants 0 < c1 < c2 depending only
on d, α,D such that

c1δ
α/2(x) ≤ R1(x) ≤ c2δα/2(x), x ∈ D,

where δ(x) = dist(x, ∂D). From this, Theorem 3.8 and Remark 4.5 it fol-
lows that if f satisfies (A1), (A2), (A3∗) and f(·, 0) ∈ L1(D; δα/2(x) dx),	
D δ

α/2(x) |µ|(dx) <∞ then the probabilistic solution u of (3.18) belongs to

L1(D; dx).

6.4. Dirichlet forms on infinite-dimensional state space. Let H
be a separable real Hilbert space and let A,Q be linear operators on H.
Assume that

(a) A : D(A) ⊂ H → H generates a strongly continuous semigroup
{etA} in H such that ‖etA‖ ≤Me−ωt, t ≥ 0, for some M,ω > 0,

(b) Q is bounded, Q = Q∗ > 0 and supt>0 Tr Qt < ∞, where Qt =	t
0 e

sAQesA
∗
ds,

(c) Q∞(H) ⊂ D(A), where Q∞ =
	∞
0 etAQetA

∗
dt.
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A simple and important example of A,Q satisfying (a)–(c) is Q = I

and a self-adjoint operator A such that 〈Ax, x〉H ≤ −ω|x|2H , x ∈ D(A), for
some ω > 0 and A−1 is of trace class. In this example Q∞ = −1

2A
−1. Other

examples are found for instance in [6].

By (a) the operators Qt, Q∞ are well defined, and by (b), Q∞ is of trace
class. Let γ denote the Gaussian measure on H with mean 0 and covariance
operator Q∞. We consider the form

(6.11) E(u, v) = −
�

H

〈∇u,AQ∞∇v〉H dγ, u, v ∈ FC∞b .

Here FC∞b is the space of finitely based smooth bounded functions, i.e.

FC∞b = {u : H → R : u(x) = f(〈x, e1〉, . . . , 〈x, em〉), m ∈ N, f ∈ C∞b (Rm)}

for some orthonormal basis {ek} of H consisting of eigenvectors of Q∞,
and ∇ is the H-gradient defined for u ∈ FC∞b as the unique element

of H such that 〈∇u(x), h〉H = ∂u
∂h(x) for x ∈ H (the last derivative is

the Gateaux derivative in the direction h, i.e. ∂u
∂h(x) = d

dsu(x + sh)|s=0).
Under (a)–(c) the form (E ,FC∞b ) is closable and its closure, which will be

denoted by (E ,W 1,2
Q (H)), is a coercive closed form on L2(H; γ) (see [6, The-

orem 2.2, Remark 2.3 and Lemma 3.3]). Using the product rule for ∇ on
FC∞b one can check in the same way as in [19, Section II.2(d)] (see also
[19, Section II.3(e)]) that it has the Dirichlet property. Finally, by results of
[19, Section IV.4], it is quasi-regular.

By [6, Theorem 3.6] the semigroup {Pt} on L2(H; γ) associated with

(E ,W 1,2
Q (H)) is the Ornstein–Uhlenbeck semigroup of the form

Ptf(x) =
�

H

f(y)N (etAx,Qt) (dy), x ∈ H,

where N (etAx,Qt) is the gaussian measure in H with mean etAx and covari-
ance operator Qt. Note that {Pt} is analytic. Actually, analyticity of {Pt} is
equivalent to the fact that it corresponds to some nonsymmetric Dirichlet
form (see [8] and also [9] for related results in a more general setting). The
generator of {Pt} has the form

Lu(x) = 1
2 Tr(Q∆u(x)) + 〈x,A∗∇u(x)〉H , x ∈ H.

Since for every λ > 0 the form (Eλ,W 1,2
Q (D)) is transient, from the above

remarks and Corollary 4.3 we obtain the following proposition.

Proposition 6.4. Assume that (A1)–(A4) and (a)–(c) hold. Then for
every λ > 0 there exists a unique probabilistic solution to the equation

−Lu+ λu = fu + µ.
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Moreover, fu ∈ L1(H; γ), Tku ∈W 1,2
Q (D) for every k > 0, and (3.22), (4.3)

hold true.

For generalizations of forms (6.11) to operators Q depending on x or
more general measures on topological vector spaces than gaussian measures
on Hilbert spaces we refer the reader to [19, Section II.3], [8], [22] and the
references therein).

6.5. Additional remarks on Dirichlet forms. In this subsection we
briefly outline how general results on transformation of Dirichlet forms can
by applied to obtain other interesting examples of quasi-regular forms.

(i) Perturbation of Dirichlet forms. Let (E , D(E)) be a quasi-Dirichlet
form and let ν ∈ S. Set

Eν(u, v) = E(u, v) +
�

E

ũṽ dν, u, v ∈ D(Eν),

where D(Eν) = D(E) ∩ L2(E; ν). By [23, Proposition 2.3], (Eν , D(Eν)) is
a quasi-regular Dirichlet form on L2(E;m). In our context an important
example of ν is ν(dx) = V (x)m(dx) for some nonnegative V ∈ L1(E;m) ∩
L∞(E;m). In this case D(EV ) ≡ D(Eν) = D(E). Moreover, (EV , D(EV ))
satisfies the strong sector condition if (E , D(E)) does, and from (2.3) it fol-
lows immediately that (EV , D(EV )) is transient if (E , D(E)) is transient or
V is m-a.e. strictly positive. Therefore Propositions 6.1 and 6.4 hold true
for operators L replaced by L−V (in Proposition 6.4 we can take λ ≥ 0 if V
is m ≡ µ-a.e. strictly positive), and Proposition 6.3 holds for ψ(∇) replaced
by ψ(∇)−V . Note that the perturbed regular form may become nonregular.
For instance, in [19, Section II.2(e)] one can find an example of V such that
the classical form (D, H1(Rd)) (see (3.3)) perturbed by V is not regular.

(ii) Superposition of closed forms. For k = 1, 2 let (E(k), D(k)) be a clos-
able symmetric bilinear form on L2(E;m). Set

E(u, v) = E(1)(u, v) + E(2)(u, v), u, v ∈ D,
where D = {u ∈ D(1) ∩D(2) : E(1)(u, u) + E(2)(u, u) <∞}. By [19, Proposi-
tion I.3.7] the form (E , D) is closable on L2(E;m). We may use this property
and examples considered in Sections 6.1–6.4 to construct new quasi-regular
Dirichlet forms. To illustrate how this works in practice, following [19, Re-
mark II.3.16] we consider the form (E ,FC∞b ) of Section 6.1 and a symmetric
finite positive measure on (H ×H,B(H)⊗ B(H)) such that the form

J(u, v) =
�

H

�

H

(u(x)− u(y))(v(x)− v(y)) J(dx dy), u, v ∈ FC∞b ,

is closable. Then the form (E +J,FC∞b ) is closable and its closure is a sym-
metric quasi-regular Dirichlet form. Thus we have constructed an infinite-
dimensional (and so nonregular) Dirichlet form which is nonlocal. For the op-
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erator corresponding to that form one can formulate an analogue of Propo-
sition 6.4.

General results on superposition of closed forms are found in [7, Sec-
tion 3.1] and [19, Proposition I.3.7].

(iii) Parts of forms. Let (E , D(E)) be a symmetric regular Dirichlet form
on L2(E;m), and D ⊂ E be a nearly Borel measurable finely open set
with respect to the process X associated with (E , D(E)). Set L2

D(E;m) =
{u ∈ L2(E;m) : u = 0 m-a.e. on Dc} and FD = {u ∈ D(E) : ũ = 0 q.e.
on Dc}. By [3, Theorem 3.3.8] the form (E ,FD) on L2

D(E;m), called the
part of (E , D(E)) on D, is a quasi-regular Dirichlet form (if D is open then
it is regular). We can use this result to get solutions of Dirichlet problems
of the form (6.10) with ψ(∇) replaced by an arbitrary operator associated
with a symmetric regular Dirichlet form.

6.6. Semi-Dirichlet forms

(I) Diffusion operator with drift. Let D ⊂ Rd, d ≥ 3, be a bounded
domain and let aij , bi : D → R be measurable functions such that bi is
bounded, aij = aji and

λ−1|ξ|2 ≤
d∑

i,j=1

aijξiξj ≤ λ|ξ|2, ξ = (ξ1, . . . , ξd) ∈ Rd,

for some λ ≥ 1. Consider the form (E , C∞0 (D)) defined by (6.1) with c = 0,
d = 0. By [20, Theorems 1.5.2 and 1.5.3] its smallest closed extension
(E , H1

0 (D)) is a regular lower-bounded semi-Dirichlet form on L2(D; dx).
Therefore, if (A1), (A2), (A3∗), (A4∗) are satisfied, then there exists a unique
probabilistic solution of (1.1) with L defined by (6.5) with c, d = 0.

Let GD denote the Green function for L on D, and let ĜD denote the
Green function on D for the adjoint operator to L, i.e. the operator as-
sociated with the form (Ê , H1

0 (D)). It is known that GD(x, y) = ĜD(y, x)

and GD(x, y) ≤ c|x − y|−(d−2) for x, y ∈ D such that x 6= y (see, e.g., [21,
Section 4.2]). Therefore,

Ĝ1(x) =
�

D

ĜD(x, y) dy =
�

D

GD(y, x) dy ≤ c
�

D

|x− y|−d+2 dy,

and hence

Ĝ1(x) ≤ c
�

B(x,diam(D))

|x− y|−d+2 dy = c1(diam(D))2.

Accordingly, E satisfies condition (∆) with ηn = 1 and Fn = D. From this
and Remark 5.6 it follows that (A3) implies (A3∗) and (A4) implies (A4∗).

(II) Fractional laplacian with variable exponent. Let α : Rd → R be a
measurable function such that α1 ≤ α(x) ≤ α2, x ∈ Rd, for some constants
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0 < α1 ≤ α2 < 2. Let Lt = L = ∆α(x), i.e. L is a pseudodifferential operator
such that

(6.12) Lu(x) = (2π)−d/2
�

Rd
eixξ|ξ|α(x)û(ξ) dξ, u ∈ C∞c (Rd).

If
	1
0(β(r)|log r|)2r−(1+α2) dr < ∞, where β(r) = sup|x−y|≤r |α(x) − α(y)|,

then L is associated with some regular semi-Dirichlet form E on L2(Rd; dx)
(see [13, Example 5.13] for details). Therefore under the above assumptions
on α and (A1), (A2), (A3∗), (A4∗) there exists a unique probabilistic solution
of (1.1) with L defined by (6.12).
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