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DYNAMICS OF A MODIFIED DAVEY-STEWARTSON SYSTEM IN R3

BY

JING LU (Beijing)

Abstract. We study the Cauchy problem in R® for the modified Davey-Stewartson

system ) 4 9
10iu + Au = Ar|ul v + Aebruve,, —Av = ba(Ju| )a; -

Under certain conditions on A; and A2, we provide a complete picture of the local and
global well-posedness, scattering and blow-up of the solutions in the energy space. Methods
used in the paper are based upon the perturbation theory from [Tao et al., Comm. Partial
Differential Equations 32 (2007), 1281-1343] and the convexity method from [Glassey,
J. Math. Phys. 18 (1977), 1794-1797].

1. Introduction. The Davey—Stewartson system of partial differential
equations has its origin in fluid mechanics. These are model equations in the
theory of shallow-water waves [6] for the functions u and v, related to the
amplitude and the mean velocity potential of the water wave, which satisfy
the equations

(1.1) { 10U + Uy + iy = —a|u\2u + b1uvg,

Wz + vy = b2(|u})zy,  (t,2) € R x R2

Here u = wu(t,z) is a complex-valued function, v = wv(t,z) 1is a real-
valued function, and u, v, a, b1, bs are real constants. This system provides a
canonical description of the amplitude dynamics of a weakly nonlinear two-
dimensional wave packet when a mean field is driven by a modulation (see
[6]). Electrostatic ion wave packets propagating in an arbitrary direction in a
magnetized plasma is an example of physical application of such equations.
The Davey—Stewartson system is classified as elliptic-elliptic (+, +), elliptic-
hyperbolic (—,+), hyperbolic-elliptic (+, —), hyperbolic-hyperbolic (—, —)
according to the signs of u, v.

A large amount of work has been devoted to the study of the Davey—
Stewartson system . Ghidaglia and Saut [9] studied the Cauchy problem
for and (except for the case i, v < 0) proved its solvability in H*(R?).
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In the elliptic-hyperbolic case, Tsutsumi [29] obtained the LP(R?) decay es-
timates of solutions of system for 2 < p < co. Ozawa [24] gave exact
blow-up solutions of the Cauchy problem for (I.1)). Ohta [22, 23] discussed
the existence and nonexistence of stable standing waves under certain con-
ditions. Guo and Wang |11] studied the Cauchy problem for in the case
p,v > 0. Gan and Zhang [§] used the cross-constrained variational method
to study the sharp threshold for the global existence and instability of stand-
ing waves for . The extension of the Davey—Stewartson system to high
dimensions was considered by Zakharov and Schulman [30] and Nishinari,
Abe and Satsuma [21] (see also |15} 25, 26] and the references therein).

In the present paper, we consider the following modified three-dimen-
sional Davey—Stewartson system:

{ 10w+ Au = M |u|u + douvy,, (t,x) € R x R?,

(2) ~ A = (D),

where u(t,z) and v(t,z) are complex- and real-valued functions, respec-

tively. This system is a three-dimensional extension of equations in

the elliptic-elliptic case u = v = 1. Notice first that system can be

reduced to a single equation by introducing the pseudo-differential operator

defined by

~ i)
I

Indeed, solving the second equation in (1.2) with respect to v and substi-
tuting it into the first one, we obtain the Cauchy problem

iy + Au = M |u*u + Mo B (Ju)u,
uo = u(0,z) € HY(R?).

Eif(€)

(1.3)

If the nonlinearity N(u) = A1|ul[*u+AoE1(Ju|?)u is replaced with N (u) =
Alu)tu + Aglul?u in (L.3), Tao et al. [28] and Miao et al. [?] have systemat-
ically studied this type of combined nonlinear Schrédinger equations. The
nonlinearity in our paper contains a nonlocal form Ej(|u|?)u, which causes
much trouble because it does not obey the relation

(1.4)  Re(N(u)Vu) = V(N (u)) for some real-valued function N (u)

(i.e. it is not Hamiltonian). Hence, a delicate analysis is needed to deal with
such a nonlinearity. To get over several difficulties, we take into account some
almost local estimates of F; by making use of singular integral operators and
Fourier analysis. Here, let us mention that related considerations concerning
the nonlocal nonlinearity f(u) = (Jz|=7 * |u|*)u, 0 < v < N, can be found
in 7, (16-19].
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Notice that, by a standard reasoning, every H!'-solution of the Cauchy
problem (|1.3)) conserves the following physical quantities:

Mass: M(u) = | |u(z,t)]* dz = M (uo),
R3
, _1 2 A 6
Energy: E(u) == S |Vu(z,t)|*de + — S |u(z,t)]° dz
2 g 0 2
A
+ 5 ) Erlu(e, ) |ux, 0) dr = E(u),
R3
Momentum: P(u) =Im S u(z,t)Vu(z,t) dr = P(up).
R3

In this paper, we will systematically study the local and global well-
posedness, scattering and blow-up results for the Cauchy problem un-
der certain assumptions on the parameters A1, Ao and initial data ug. The
local theory for problem is considered in Section 3. Here, standard tech-
niques involving the Banach fixed point theorem can be used to construct
local-in-time solutions. The term |u|*u is energy-critical, thus the maximal
time of existence for these local solutions depends on the profile of the initial
data, rather than on its H!-norm.

Now we state the main results.

THEOREM 1.1 (Global well-posedness). For every ug € HL and Ay > 0,
there exists a unique global-in-time solution u(t,x) to problem (1.3]). More-
over, for every compact interval I, the solution u(t, x) satisfies the space-time
bound

[ullsr(rxrsy < C(H1, luoll ),
where |I| is the length of the interval and the space S*(I x R3) is defined in

(2.1) below.

To prove this theorem, we combine an a priori estimate of the kinetic
energy ||u(t, z)| f1 together with a “good” local well-posedness result, where
the time of existence of a solution to problem depends on the H}-norm
of the initial datum only.

Next, we study long time behavior of solutions.

THEOREM 1.2 (Energy-space scattering). Let ug € HY, A\ > 0 and
u(t, ) be the unique solution to problem (1.3). There exist unique uy € H}
such that

|lu(t) — eitAuiHH% —0 ast— +oo

under the small mass condition M < c(||Vugll2) for a small number ¢ > 0
depending only on ||Vugl|2.
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In the proof of this theorem, we first obtain a bound for a finite global
Strichartz norm of a solution to problem using the small mass assump-
tion and the stability result from Lemma for the energy-critical NLS.
Then, by a standard argument, the finite global Strichartz norm implies
scattering for problem .

Finally, we will prove blow-up in a finite time using the convexity method
from [10].

THEOREM 1.3 (Blow-up of solutions). Let A < 0, ug € H(R3), zug €
L*(R3), S (ps wox - Vugda > 0, and E(ug) < 0. Then the solution u(t, )
of problem blows up in finite time; more precisely, there exists Ty > 0
such that limy, [|[Vu(t, z)| 2 = oo.

The remainder of the paper is organized as follows. We introduce nota-
tion and some well-known results in Section 2. In Section 3, we prove the
local well-posedness result and some linear estimates. Section 4 is devoted
to global well-posedness. In Section 5, we use perturbation theory and the
small mass assumption to obtain the global scattering result. Finally, we
consider the finite time blow-up in Section 6.

2. Preliminaries. First, we introduce the notation and several fun-
damental lemmas needed in this paper. The notation A < B means that

A < CB for some constant C. Likewise, if A < B < A, we say that A ~ B.
We use L% (RY) to denote the Lebesgue space of functions f : RN — C with

£l = (] 1s@rde)" <

RN
with the usual modification when r = oo. We also use the space-time
Lebesgue spaces L{L" which are equipped with the norm

/
Fllegey = (§00L, de) ™
I

for any space-time slab I x RY. When ¢ = r, we abbreviate L{L!, by L{ .
A pair (g, ) is called Schrodinger-admissible if
2 3 3
—+-== for2<gq,r <oo.
q r 2

For a spacetime slab I x R3, we define
HUHS'O(Ix]R3) ‘= sup HUHLZILQ(IxRS),
where the sup is taken over all admissible pairs (g, 7). We also use the norm

HU||5*1(1X]R3) = HVUHSO(IXW)a
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and we introduce the space
(2.1) ST x R?) = 8%(I x R®) N S1(I x R?)
with the usual norm. _
Denote by N%(I x R3) the dual space of SY(1 x R3). Moreover, we denote
NYIxR¥) = {u:Vue NI xR},
NYI xR?) = NI x R®) n N*(I x R®).
Finally, we deal with the norms
lullvay = ||U||L;gc/3(1xR3), lullwa) = HUHL}?I(MRs),
and we introduce the spaces
XO(I) = LEL2P (I x R*) NV (I) N LI°L313(1 x R?),
XN ={u:Vue XN}, XYI)=X°I)nXY).
LEMMA 2.1 (Strichartz estimates [1, |14, [27]). Let I be a compact time
interval, k € {0,1}, and u : I xR3> — C be an S*-solution to the Schridinger

equation
ug + Au=F

for a given function F. Then
lll gr (1 xmsy S Nulto)ll e sy + 1 jok (1 cmsy
for every tg € 1.

Next, we recall some known facts from [4] |5].

LEMMA 2.2. Let Ey be the singular integral operator defined in Fourier
variables by

— g,
Ef(§) = \lef(f)'

For 1 < p < oo, the operator E1 has the following properties:

(i) By € L(LP,LP), where L(LP,LP) denotes the space of bounded liner
operators from LP to LP.
(il) If¢ € H®, then E1(¢) € H, s € R.
(iii) If ¢ € W™P, then Ei(¢) € W™P and

OB (Y) = BE1(0ktp), k=1,...,N.
(iv) Ey preserves the following operations:

Translation: E1((- +y))(z) = E1(¥)(z +y), y € RY,
Dilation: E1(¢(N))(x) = E1(¢)(Az), A >0,

Conjugation: E1(y)) = E1(3)), where v is the complex conjugate
of 1.
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REMARK 2.3. Notice that, from the definition of F; and from the Par-
seval identity, we immediately obtain the following relations:

| [WPE ([P do < | [o|* da,

RN RN

2 —_—
| PR do = | S0P de >0,
RN RN

LEMMA 2.4. For all Schwartz functions ¢,

[ oz Vode= 7 | loPdr,

RN RN
J loPtor Vods = — 2§ o
RN RN
N
| Er(6)ox - Vodr = — = | |6 Ea(|6]*) da.
RN RN

Since the energy-critical NLS is well-understood, we treat equation
as its perturbation. Thus, to conclude this section, we show the following
stability result, which will be frequently used in this paper and the proof of
which can be found in [?].

LEMMA 2.5 (H} critical stability result, Tao et al. [?]). Let I be a com-
pact time interval and let w be an approrimate solution of the equation

(2.2) (10 + A)w = |w| w
on I x R? in the sense that

(2.3) (10, + A)w = |w|*w + e
for some function e. Assume that

(2.4) |@llw) < L,
(2.5) 10| poo 11 < Eo

for some constants L, Ey > 0. Let tg € I and let w(to) be close to w(ty) in
the sense that

(2.6) lw(to) — @(to)ll g1 < E'
for some E' > 0. Assume also the smallness conditions
e ~ 1/2
(2.7) (Z | Py Vel =108 (4 (24) — w(tO))||Lt10L§°/13> <e,
N
(2'8) HveHNO([XRs) <e

for some 0 < & < g9, where e9 = e2(Ey, E', L) is a small constant. Then
there exists a solution w to equation ([2.2]) on I x R3 with the initial data
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w(ty) at time t =ty satisfying

(2.9) IV (w = @)l yo 013 < e(Bo, B, L)(e +€7),
(210) ”w_wHSl(]><R3) < C(E07E,7L)(El+5+€7)a
(2.11) 1wl g1 (rgsy < e(Bo, E', L).

3. Local theory. Before we construct local-in-time solutions, we prove
two linear estimates.

LEMMA 3.1. Let I be a compact time interval, A1, Ay be nonzero real
numbers, and k € {0,1}. Then

sl 4 A By (ful)ull g gmay S Y2 l3er gyp lllion ooy
-l e 1l o sy
and

[ lul*u + Ao Br([ul?)u) = (Mfo[*o + A2 B ([o*)0) | 5o sy

Sl gy + 10050 ey 1 = 0l 007 crey

(”qul (IxR3) + ”vHXl ]XRS))HuivHXOUXRS)'

Proof. We only estimate the quantity Ao E1(|u|?)u, because the reasoning
in the case of |u*|u is similar. Using the Holder and Sobolev inequalities and
the boundedness of F7 on LP, we have

B (ul*)ull g rxmsy S V1 EL )| 77 12 gz,

S PPV IFE ()| s e g g

S 2B ) e 191 ull s + [V EL(ul)] gl 2] oo g
S ‘1‘1/2‘|‘u|2HL4L6(]><R3)H’v‘ku||L8L12/5(1xR3)

+ |I|1/2HU|V‘kUHL4L2(1xR3)HU”LSLM’ (IxR3)

1/2
< Y ”uHL8L12(I><R3)H|V| UHL§LE/5(1xR3)

< 112 V2 H|V|ku”L§L;Z/E’

L8L12/5(I><R3) (IxR3)

S 2 lulln gy ull in (1 cmay-
(IxR?)
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By a completely analogous reasoning, we obtain
A2 By (Jul*)u — )\2E1(|U\2)UHNO(1xR3)
SN (ul)u = Br(ol)oll s 1z g sy
1/2 2y, 2
S HPZNE(ul™)u = Br([vP)vll pss 1z g oy
< 1(Ju]”)(u —v t{ul” —[v]")v L3 L1/ (1xR3)
S U2 B (Jul?) (u = v) + Ei(Jul® = [o*)o]

STl sy e = o7

+ |I|1/2(HUHX1 Ixr3) T ||U||X1([XR3))”UHXI([X]R?»)||u - UHXO([XRS)
1/2 2
Sl sy + 10150 gy 18 = 0l g0 (rcmay- @

LEMMA 3.2. Let I x R? be an arbitrary spacetime slab and k € {0,1}.
Then

Bl all s sy S Nallvenlellwn 1915l
el el s 1y < Nl 19l

Proof. By the boundedness of E; on LP(R3) for every 1 < p < oo, and
by the Holder and interpolation inequalities, we have

1B ()l o rcms) S NIVIFE ()0 10/7, g

k
S (u), 52 (1xR9) V] “HL}%([XW)

+ (191 B M 222 1y Tl o, )
S HuHLix(IXR:;)H’v‘kuHL}’%S(IXR%

+ H’v‘ku|‘L§?z/3(1xR3)”uHLtl?z/?’(IxRS)Hu”L%fL(IxR3)
S HUHng(szS)||u||Lt1f)z/3(1XRs)H|V\k“HL§}’Z/3(1xR3)
S HU||V(I)||U”W(1)H|V|kUHV(1)

The estimate of H ||t

uH Nk (1xr3) CAnl be obtained similarly. m

Based on the linear estimates from Lemmas [3.1] and 3.2 we may use
the standard argument from |2, 3] to achieve the followmg proposition (see
also [12-14] for more details).

PROPOSITION 3.3 (Local well-posedness). Let ug € HX(R3) and A\, A2

be nonzero real constants. Then for every T > 0, there exists n = n(T) such
that if

A
e uoll x1 (=) < 0,
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then problem (1.3)) admits a unique strong H}-solution u defined on [T, T).
Let (—Tmin, Tmax) be the mazimal time interval on which u is defined. Then
u € SY(I x R3) for every compact time interval I C (—Tin, Tnax)- Further-
more,

o if Thax < 00, then

either  lim HUHH; =00, or ||u||Sl((0,TmaX)><R3) = o0

similarly, if Tmin < 00, then
either L |lullgy =00, or lullg (g, 0)xms) = -

e The solution u depends continuously on the initial datum ug in the
following sense: if u(()m) — ug in H and if uw™ s the mazimal so-
lution to problem (L.3|) with initial datum u[()m), then (™ — u in
LIHY([-S,T] x R3) for every ¢ < oo and every interval [—S,T] C
(_Tmina Tmax) .

LEMMA 3.4 (Blow-up criterion). Let ug € H} and let u be the unique

strong solution to problem (L.3]) on the spacetime slab [0, Ty] x R® such that
H“H)'(l([o 1)) < 00 Then there exists § = 6y, such that the solution u can be

extended to a strong H}-solution on the slab [0, Ty + 8] x R3.
The proof of the blow-up criterion is based on a standard contradiction
argument: if the time existence interval of the solution cannot be extended

beyond a time Tp, then the X'-norm must blow-up at Ty (see e.g. [1] for
more details).

LEMMA 3.5. Let k € {0,1}, I be a compact time interval, and u be a
unique solution to problem (2.2) on I x R3 obeying the bound ||lully 1) < L,
where L > 0. If tg € I and u(ty) € HE, then HuHSk(Ing) < c(L)||w(to)l| gr-

Proof. Divide the interval I into N ~ (1 + M/n)® subintervals I; =
[tj,tj+1] such that
ullw ;) <,

where 7 is a small constant to be chosen later. By the Strichartz estimate
(see Lemma , in each I, we obtain

el g 1, oy S Mt g + Mol e, o Neell ) + sl el e s
< Nl gz + lull gy wmoyn® + nllulGn ;s
Hence, choosing 7 sufficiently small, we get

lullgn s wmay < It s for all j € {0,1,2,...}.
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Indeed, in the interval Iy, we have
a0 s < Tl g gy ey < € i)
Moreover, in I, we get
el < Nl oy gy < ClluCt)lze < Cllulto)l s
Similarly, for each interval I;, we obtain
leaCt) g < C7 o) -

Summing up the above estimates over all subintervals I, we complete the
proof. m

4. Global well-posedness. In order to obtain a global well-posedness
result, we first get an a priori bound on the kinetic energy of a solution.
Then we establish a “good” local well-posedness result, which shows that
the existence time of a H!-solution depends only on the Hl-norm of the
initial datum. The above two steps combined with the conservation of mass
lead to the global-in-time solution by a standard iterative method.

PROPOSITION 4.1 (Kinetic energy control). Let ug € H. and A\; > 0.
There ezists a unique global-in-time solution u(t,x) to problem (1.3). More-
over, there exists a number C(E, M) > 0 such that

Ju(t, @)l 4, < C(E, M) fort € R.
Proof. Recall that the energy

E(u) :% | \Vu(x,t)|2dx+% | Ju(z, )| da

R3 R3
A
+ 5V Bulfu(e,t))u, ) do
R3

is conserved in time. We consider the following two cases:
(1) Let A1, A2 > 0. Then by the inequality (o5 E1(Ju(z,t)|?)|u(z, t)* do
> 0 and the conservation of energy, we have

[ut, )l g1 < E(u(t, ) = E(uo())-
(2) Let A1 > 0, A2 < 0. Hence,

A —|A
Ao g el

(4.1) > —C(Ap, \o)|ul?

for a constant C'(A1, A2) > 3A3/(32)1). Indeed, this is an easy property of
the quadratic function f(z) = (A\/6)2? — (\)\2|/4):U + C(A1, A2) with the
discriminant (—|)\2|/4) ()\1/6) ()\1, )\2) <0 for C()\l, )\2) > 3)\ /(32)\1)



DAVEY-STEWARTSON SYSTEM 79

Combining (4.1)) with the estimate
| Er(jute, 1) |u(z, ) doe < | Ju(e, )" da

R3 R3
we obtain
1
3 | IVu(z, 1)) dz
R3
A A
= Bl) - | |t do + 22§ By(lute 0P fu(e. 0 da]
R3 R3

A A
< 5w - | | lutw )l de = B2 § ate ot
6 4
R3 R3
< BE(u) + C(A\1, Ao |u> < C(E, M).
Thus, we have proved ||u(t, z)|| ;1 < C(E,M). =

From now on, we will treat the quantity AoE;(|u|?)u as a perturbation
in the energy-critical NLS.

PROPOSITION 4.2 (“Good” local well-posedness result). Let ug € H}
and Ay > 0. There exists T = T(|luolg1) > O such that problem (1.3

admits a unique strong solution u € S(I x R3) satisfying
HuHSl(IXR3) < C(EaM)a I= [_TaT]
Proof. By the local result from Proposition [3.3} it suffices to prove an
a priori X '-bound for u, namely ||uHX1(I) < C(lluoll 1) In fact, if we assume
the existence of a strong solution u to problem (/1.3]), we should prove that
the norm HuHXl(I) is finite as long as T" = T'(||uol| 1) is sufficiently small.

Let w be a unique strong global-in-time solution to the NLS equation
(2.2)) with the initial datum wy = ug at time ty = 0. By a known result, the
function w satisfies

lwll g1 rxrsy < Clluollmy)-
By Lemma [3.5, we also have
lollgonssy < Clluoll ) luoll sz < C(E, M).

By time reversal symmetry, it suffices to prove the required result forward
in time.
First, we prove

(4.2) HUHs‘l([o,T]XRS) < C(E,M).
Now we partition R™ into J = J(E,n) disjoint subintervals I; such that

HU’HXI([J.) ~ 1,
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where I; = [tj,tj41] (j =0,1,...,J —1), [; = [t;,00) and n will be chosen
later. We may assume that there exists J' < J such that for all 0 < j < j'—1,
[0, 71N I; # 0. Thus, [0,7] = U5 ([0, 7] N ).

Then by the Strichartz estimate, we have

(t—t;)A

€02 s 1y < ol sy + Tl oy

< lwllser ) + OVl prors o 1l 20, 7k
< ”wHXl(I]')+C||Vw||Lif)I/3(IjXR3 vaHLIOL?’O/lB(I xR3)
<0+ Cllwl%,) < n+Cn,

where C depends only on the Strichartz constant.

Now we use the Stability Lemma[2.5]in the time interval Iy, with the per-
turbation term e = Ao F (Ju|?)u. Note that ug = wg. Hence by the Strichartz
estimate, we have

el 51y < e u0)ll 51 70) + Clol 2 lluller + Cllull% g,
1/2
<0+ O’ + CTY2|lull%y + Cllull}a -
Assuming 7, T are sufficiently small, a standard continuity method yields
el 1y < 21
Thus,
HU’HW(I()) = HUHL%,OZ(I()XR3) S HVUHL%OLio/IS(IOXR?’) S Hu”Xl(IO) S 277
By Proposition we have
H“HLgOH;(IOXRS) < Ey=C(E,M).
By the Holder inequality, we obtain
19ell oy sy S T2l gy < T2
Choosing T sufficiently small depending only on E, M, we get
(43) HveHNO(onRg) < g,

where ¢ = ¢(E, M) will be chosen later. Hence, using the stability theory
from Lemma [2.5] we obtain the estimate

Ju— w”gl(joxR:’,) < C(E, M)e’
which implies
lu(tr) = w(ts)| ga < C(B, M)e’
”6 (t—t1)A (u(t1) — w(tl))HXl(Il) < C(E,M)E7
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Thus, by the above two inequalities,

lull 1y < M€ D2 u(tn)l 51, + T2l 1y T Cllul%
<[ R w(t1) || g,y + €A (U(tl)_w(t1)>HX1(11)
+ [T |ful,, )+ Cllull%,
<n+Cp’ +C(E M)e +CT1/2||uH +C’HuHX1

Choosing a sufficiently small ¢ > 0 (depending on E, M), by a standard
continuity method, we get

ull 5.7,y < 2.

Furthermore, inequality (4.3]) holds true when Ij is replaced by I;.
Applying Lemma on I; again, we obtain

HU — wHSl(thg) S C(E,M)g7
By induction, for every interval I; with 0 < j < J(E,n) — 1, we have
lull 1) < 20

Combining these estimates for all intervals I;, we obtain

(4.4) el go.z7) < 207 < C(E).
By estimate , Proposition and the Strichartz estimate, we obtain
(4.5) HUHSI (o1 xrs) < lluol +T1/2HUHX1(I +lul% ) < C(E, M).

Next, we will prove
(46) HUHSO([O7T]XR3) S C(E,M)
By Proposition [4.1 and the Strichartz estimate, we get
ooz < luollzz + T2l gyl gogry + el p el o
< MY2 1 C(B, M)l g 0, + Nl g gy
Hence, we decompose [0,T] into N = N(E, M, ) subintervals J; such that
HUH)'(l(Jk) ~ § for some small constant § > 0 to be chosen later. Thus
el go (s, xmsy S M2+ C(E, M) ull go( g + 8 1ull 01,

Choosing ¢ sufficiently small depending on E, M, a standard continuity
method yields

HUHSO(kaRi%) < C(E,M).
Summing up these bounds over all subintervals Jj, we get
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Finally, combining (4.5 and (4.7)), we obtain
(4.8) lull 10, xms) < C(E, M),

where T only depends on energy and mass.

If we divide the interval I into subintervals of length 7', and sum up
the corresponding S'-bounds in these subintervals, we complete the proof
of Proposition 4.2. =

5. Scattering theory. In the case A; > 0, in order to obtain the scat-
tering result, we need a small mass condition.

The first step is to show that the S'-norm of the solution to problem
is bounded on the whole line, namely

[ulls1(mxrsy < C(E, M).

Let w be a unique strong global-in-time solution to the NLS equation ([2.2))
with the initial datum wg = ug at time tg = 0. By a known result, the

function w satisfies
[wllg1 (xrs) < C(E).

By Lemma [3.5] we obtain
HwHSO(RXR3) < C(E)Ml/z-

Now, we define the following spaces:

YO(I) = V()N LIPLO/ (1 x R?),

YHI) ={u:VueY?I)}, YY) =Y°I)nY().
Thus, by Lemma we have, for k € {0, 1},
6.1)  IVFEP)) | gogr s S lallyogn lallya ey,
(5.2) N1l ) | oy < Tl g el -

For sake of simplicity, we only consider the domain R x R3. We divide the
half-line R™ into J = J(F,n) subintervals I, such that

leollgary ~

where I; = [tj,tj41] (j = 0,1,...,J — 1), Iy = [t;,00). Assuming that
M = M(E,n) is sufficiently small, we have

HwHSO(RxRii) < C(E)M1/2 <n.
Thus,

(5.3) HwHYl(Ij) ~ 1.
By relation (|5.3) and the Strichartz estimate, we obtain
ety < lwllyary + 3,y <0+ Cnd < 20,

provided 7 is sufficiently small.
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First, we consider the time interval Iy = [to, t1]. By (5.1)), (5.5) and the
Strichartz estimate,

(5-4) lully oy < 20+ Cllul3a gy + Cllull3a gy
By a standard continuity method, for sufficiently small 7,
ullyr(zy) < 4n.
Similarly, by (5.1), (5.5)) and the Strichartz estimate,
lull oy < luollzz + Cllulldo g lullgagay + lllgoga Tl
< MY2 allulldo g, + 0t lullyogy):
which implies that
HUHYO(IO) S M1/27
provided that n and M are sufficiently small.
For the perturbation term E;(|u|?)u, by . we have

o
1B ()l s sy S Nl 2 gy S 20 < M,
where §g is a small constant.
Applying Lemma we have
6
1t = wllga g sy < M,
which implies that
He (t—t1)A (u(tl) (tl))Hsl (IoxR3) < MCJO
Thus,
lully sy < 1D %) llyor,) + 1D 2wty
€A wutr) = w(tn) gy + ellullggy + Clhull
5 .
< MY? 4 M 4+ cllull3 () + Cllully -
Hence, the standard continuity method yields
lullyry < 4n, llullgogr,y < M2
Using Lemma we further obtain
9
|u— w||Sl(Il><R3) < M

for some ¢ satisfying 0 < 61 < dg.
By induction, for any time interval I; we obtain

[ullyr(r;) < 4n.
Adding all these intervals, we have
(5.5) lullyrr+) S Jn < C(E).
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Hence, by the Strichartz estimate,

(5.6) ullsr @ xrsy S llwollay + lull3gey + lelly @
SM+E+C(E)<C(E,M).
Next, we will prove that boundedness of global Strichartz norms implies
scattering.
For 0 < t < oo, define
t
up(t) = ug — i e A (M ful*u + Mo By (|uf?)u) (s) ds.
0

Since u € S*(R x R3), by the Strichartz estimate, we have u, (t) € H.. Now,
we will show that u, (t) converges in H} ast — co. For 0 < 7 < t, we obtain

e (8) =y (7)1 = Hie-f&ﬂ(A1h44u-+-A2£n<h42>u)<s>dsHH}

IN

t
isA 4
(A + Ao F d ‘
H§e (Ar]ul*u + X2 1(|u|) (s)ds Lo

< COw M) ully e lullw rap [Vl gy + Tl g 1Vl
< Nullyrap lellw @1+ IV Dullv ) + el @1+ IV Dullvirg)-
Since ||u|s1rxr3)y < 00, for every e > 0 there exists 7. > 0 such that

|us(t) —ut(T)|lg2 <e  forall 7t > T..

tA

Next, we will show that u(t) converges to e?“u, in the norm of H. as

t — 00. Indeed,

e ut) — g = || § &7 (alulu + XaBr(fuf)u) ) ds |
t €T
oo
= [ § e (- do By (uPyu) (s) ds|
t x

S v (ge,oon 1l t,00) (14 [V D@l ((,00)
+ [l (oop 11+ 1V Dully(ie,00)) -
Hence, using the boundedness of ||u|g1(rxrs), We obtain
le™Au(t) — usllgn =0 ast— oco.

This completes the proof of scattering for problem ({1.3)).

6. Blow-up. In this section, following the convexity method of Glassey
[10], we will prove the blow-up result stated in Theorem
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Consider the strong H}!-solution u(t, ) of problem (1.3 with an initial
datum uy € HL(R?) such that zug € L?(R?). By the Hardy inequality and
the conservation of mass, we have

|ul
luoll3 = | I IUIR| dr S ||lzull2][Vullz-
R3

Hence, in order to prove the blow-up result, we only need to show the exis-
tence of T' > 0 such that

6.1 li 2lu(t, x)]? dx = 0.
(6.1) tggRSSIxI lu(t,z)|” dx

Let
V() = | JePlutt,2)P de.
R3
Then a direct computation leads to the equalities

V'(t) = 4Im S ur - Vudr = —4y(t) and V"(t) = —4y/(t),

R3
where
3
y(t) = =2 | |Vul*dz — 2)\ | |u(t,2)|® do — 52 | Br(|ul?)|uf® dz.
R3 R3 R3
We only need to show that
(6.2) ' (t) > C||Vul|3 >0 for some constant C' > 0.
Indeed, if Ao > 0 and E < 0, then
1 A
Y (t) = —2 S |Vul|? do + 12{HVU||§ + ZZ S Ey(Jul)|ul? dz — E}
R3 2 R3
3A
=5V Eul)luf? de
R3
_ 2 | 3N\ 2\1,,12 2
= 4|Vull3 + =7 | Ea(juf)uf de — 12 > 4] Vul|3 > 0.
R3

Otherwise, if Ao, £ < 0, then

1 A
y(t)=-2 | |vu|2da;+6{2\|w||§+ El | |u|6d;v—E} —2X | |ulS da
R3 R3 R3
= [ Vull3 = A [|ull§ = 6E > [ Vul3 > 0.

By the assumption, y(t) > yo > 0 for all ¢ € [0, T]. Combining this fact with
the differential inequality , we see that V() is decreasing and concave,
which implies that relation is satisfied, which is impossible. Thus, we
have completed the proof.
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