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DYNAMICS OF A MODIFIED DAVEY–STEWARTSON SYSTEM IN R3

BY

JING LU (Beijing)

Abstract. We study the Cauchy problem in R3 for the modified Davey–Stewartson
system

i∂tu+∆u = λ1|u|4u+ λ2b1uvx1 , −∆v = b2(|u|2)x1 .

Under certain conditions on λ1 and λ2, we provide a complete picture of the local and
global well-posedness, scattering and blow-up of the solutions in the energy space. Methods
used in the paper are based upon the perturbation theory from [Tao et al., Comm. Partial
Differential Equations 32 (2007), 1281–1343] and the convexity method from [Glassey,
J. Math. Phys. 18 (1977), 1794–1797].

1. Introduction. The Davey–Stewartson system of partial differential
equations has its origin in fluid mechanics. These are model equations in the
theory of shallow-water waves [6] for the functions u and v, related to the
amplitude and the mean velocity potential of the water wave, which satisfy
the equations

(1.1)

{
i∂tu+ uxx + µuyy = −a|u|2u+ b1uvx1 ,

νvxx + vyy = b2(|u|2)x1 , (t, x) ∈ R× R2.

Here u = u(t, x) is a complex-valued function, v = v(t, x) is a real-
valued function, and µ, ν, a, b1, b2 are real constants. This system provides a
canonical description of the amplitude dynamics of a weakly nonlinear two-
dimensional wave packet when a mean field is driven by a modulation (see
[6]). Electrostatic ion wave packets propagating in an arbitrary direction in a
magnetized plasma is an example of physical application of such equations.
The Davey–Stewartson system is classified as elliptic-elliptic (+,+), elliptic-
hyperbolic (−,+), hyperbolic-elliptic (+,−), hyperbolic-hyperbolic (−,−)
according to the signs of µ, ν.

A large amount of work has been devoted to the study of the Davey–
Stewartson system (1.1). Ghidaglia and Saut [9] studied the Cauchy problem
for (1.1) and (except for the case µ, ν < 0) proved its solvability in H1(R2).
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In the elliptic-hyperbolic case, Tsutsumi [29] obtained the Lp(R2) decay es-
timates of solutions of system (1.1) for 2 < p < ∞. Ozawa [24] gave exact
blow-up solutions of the Cauchy problem for (1.1). Ohta [22, 23] discussed
the existence and nonexistence of stable standing waves under certain con-
ditions. Guo and Wang [11] studied the Cauchy problem for (1.1) in the case
µ, ν > 0. Gan and Zhang [8] used the cross-constrained variational method
to study the sharp threshold for the global existence and instability of stand-
ing waves for (1.1). The extension of the Davey–Stewartson system to high
dimensions was considered by Zakharov and Schulman [30] and Nishinari,
Abe and Satsuma [21] (see also [15, 25, 26] and the references therein).

In the present paper, we consider the following modified three-dimen-
sional Davey–Stewartson system:

(1.2)

{
i∂tu+∆u = λ1|u|4u+ λ2uvx1 , (t, x) ∈ R× R3,

−∆v = (|u|2)x1 ,

where u(t, x) and v(t, x) are complex- and real-valued functions, respec-
tively. This system is a three-dimensional extension of equations (1.1) in
the elliptic-elliptic case µ = ν = 1. Notice first that system (1.2) can be
reduced to a single equation by introducing the pseudo-differential operator
defined by

Ê1f(ξ) =
ξ21
|ξ|2

f̂(ξ).

Indeed, solving the second equation in (1.2) with respect to v and substi-
tuting it into the first one, we obtain the Cauchy problem

(1.3)

{
iut +∆u = λ1|u|4u+ λ2E1(|u|2)u,
u0 = u(0, x) ∈ H1(R3).

If the nonlinearity N(u) = λ1|u|4u+λ2E1(|u|2)u is replaced with N(u) =
λ1|u|4u+ λ2|u|2u in (1.3), Tao et al. [28] and Miao et al. [?] have systemat-
ically studied this type of combined nonlinear Schrödinger equations. The
nonlinearity in our paper contains a nonlocal form E1(|u|2)u, which causes
much trouble because it does not obey the relation

(1.4) Re(N(u)∇ū) = ∇(N (u)) for some real-valued function N (u)

(i.e. it is not Hamiltonian). Hence, a delicate analysis is needed to deal with
such a nonlinearity. To get over several difficulties, we take into account some
almost local estimates of E1 by making use of singular integral operators and
Fourier analysis. Here, let us mention that related considerations concerning
the nonlocal nonlinearity f(u) = (|x|−γ ∗ |u|2)u, 0 < γ < N , can be found
in [7, 16–19].
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Notice that, by a standard reasoning, every H1-solution of the Cauchy
problem (1.3) conserves the following physical quantities:

Mass: M(u) =
�

R3

|u(x, t)|2 dx = M(u0),

Energy: E(u) =
1

2

�

R3

|∇u(x, t)|2 dx+
λ1
6

�

R3

|u(x, t)|6 dx

+
λ2
4

�

R3

E1(|u(x, t)|2)|u(x, t)|2 dx = E(u0),

Momentum: P (u) = Im
�

R3

ū(x, t)∇u(x, t) dx = P (u0).

In this paper, we will systematically study the local and global well-
posedness, scattering and blow-up results for the Cauchy problem (1.3) un-
der certain assumptions on the parameters λ1, λ2 and initial data u0. The
local theory for problem (1.3) is considered in Section 3. Here, standard tech-
niques involving the Banach fixed point theorem can be used to construct
local-in-time solutions. The term |u|4u is energy-critical, thus the maximal
time of existence for these local solutions depends on the profile of the initial
data, rather than on its H1

x-norm.

Now we state the main results.

Theorem 1.1 (Global well-posedness). For every u0 ∈ H1
x and λ1 > 0,

there exists a unique global-in-time solution u(t, x) to problem (1.3). More-
over, for every compact interval I, the solution u(t, x) satisfies the space-time
bound

‖u‖S1(I×R3) ≤ C(|I|, ‖u0‖H1
x
),

where |I| is the length of the interval and the space S1(I ×R3) is defined in
(2.1) below.

To prove this theorem, we combine an a priori estimate of the kinetic
energy ‖u(t, x)‖Ḣ1

x
together with a “good” local well-posedness result, where

the time of existence of a solution to problem (1.3) depends on the H1
x-norm

of the initial datum only.

Next, we study long time behavior of solutions.

Theorem 1.2 (Energy-space scattering). Let u0 ∈ H1
x, λ1 > 0 and

u(t, x) be the unique solution to problem (1.3). There exist unique u± ∈ H1
x

such that

‖u(t)− eit∆u±‖H1
x
→ 0 as t→ ±∞

under the small mass condition M ≤ c(‖∇u0‖2) for a small number c > 0
depending only on ‖∇u0‖2.
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In the proof of this theorem, we first obtain a bound for a finite global
Strichartz norm of a solution to problem (1.3) using the small mass assump-
tion and the stability result from Lemma 2.5 for the energy-critical NLS.
Then, by a standard argument, the finite global Strichartz norm implies
scattering for problem (1.3).

Finally, we will prove blow-up in a finite time using the convexity method
from [10].

Theorem 1.3 (Blow-up of solutions). Let λ1 < 0, u0 ∈ H1
x(R3), xu0 ∈

L2(R3), =
	
R3 ū0x · ∇u0 dx > 0, and E(u0) < 0. Then the solution u(t, x)

of problem (1.3) blows up in finite time; more precisely, there exists T∗ > 0
such that limt→T∗ ‖∇u(t, x)‖L2

x
=∞.

The remainder of the paper is organized as follows. We introduce nota-
tion and some well-known results in Section 2. In Section 3, we prove the
local well-posedness result and some linear estimates. Section 4 is devoted
to global well-posedness. In Section 5, we use perturbation theory and the
small mass assumption to obtain the global scattering result. Finally, we
consider the finite time blow-up in Section 6.

2. Preliminaries. First, we introduce the notation and several fun-
damental lemmas needed in this paper. The notation A . B means that
A ≤ CB for some constant C. Likewise, if A . B . A, we say that A ∼ B.
We use Lrx(RN ) to denote the Lebesgue space of functions f : RN → C with

‖f‖Lr :=
( �

RN

|f(x)|r dx
)1/r

<∞,

with the usual modification when r = ∞. We also use the space-time
Lebesgue spaces LqtL

r
x which are equipped with the norm

‖f‖Lq
tL

r
x

:=
( �
I

‖f‖qLr
x
dt
)1/q

for any space-time slab I × RN . When q = r, we abbreviate LqtL
r
x by Lqt,x.

A pair (q, r) is called Schrödinger-admissible if

2

q
+

3

r
=

3

2
for 2 ≤ q, r ≤ ∞.

For a spacetime slab I × R3, we define

‖u‖Ṡ0(I×R3) := sup ‖u‖Lq
tL

r
x(I×R3),

where the sup is taken over all admissible pairs (q, r). We also use the norm

‖u‖Ṡ1(I×R3) := ‖∇u‖Ṡ0(I×R3),
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and we introduce the space

S1(I × R3) = Ṡ0(I × R3) ∩ Ṡ1(I × R3)(2.1)

with the usual norm.

Denote by Ṅ0(I×R3) the dual space of Ṡ0(I×R3). Moreover, we denote

Ṅ1(I × R3) = {u : ∇u ∈ Ṅ0(I × R3)},
N1(I × R3) = Ṅ0(I × R3) ∩ Ṅ1(I × R3).

Finally, we deal with the norms

‖u‖V (I) = ‖u‖
L
10/3
t,x (I×R3)

, ‖u‖W (I) = ‖u‖L10
t,x(I×R3),

and we introduce the spaces

Ẋ0(I) = L8
tL

12/5
x (I × R3) ∩ V (I) ∩ L10

t L
30/13
x (I × R3),

Ẋ1(I) = {u : ∇u ∈ Ẋ0(I)}, X1(I) = Ẋ0(I) ∩ Ẋ1(I).

Lemma 2.1 (Strichartz estimates [1, 14, 27]). Let I be a compact time
interval, k ∈ {0, 1}, and u : I×R3 → C be an Ṡk-solution to the Schrödinger
equation

iut +∆u = F

for a given function F . Then

‖u‖Ṡk(I×R3) . ‖u(t0)‖Ḣk
x (R3) + ‖F‖Ṅk(I×R3)

for every t0 ∈ I.

Next, we recall some known facts from [4, 5].

Lemma 2.2. Let E1 be the singular integral operator defined in Fourier
variables by

Ê1f(ξ) =
ξ21
|ξ|2

f̂(ξ).

For 1 < p <∞, the operator E1 has the following properties:

(i) E1 ∈ L(Lp, Lp), where L(Lp, Lp) denotes the space of bounded liner
operators from Lp to Lp.

(ii) If ψ ∈ Hs, then E1(ψ) ∈ Hs, s ∈ R.
(iii) If ψ ∈Wm,p, then E1(ψ) ∈Wm,p and

∂kE1(ψ) = E1(∂kψ), k = 1, . . . , N.

(iv) E1 preserves the following operations:
Translation: E1(ψ(·+ y))(x) = E1(ψ)(x+ y), y ∈ RN ,
Dilation: E1(ψ(λ·))(x) = E1(ψ)(λx), λ > 0,

Conjugation: E1(ψ) = E1(ψ), where ψ is the complex conjugate
of ψ.
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Remark 2.3. Notice that, from the definition of E1 and from the Par-
seval identity, we immediately obtain the following relations:�

RN

|ψ|2E1(|ψ|2) dx ≤
�

RN

|ψ|4 dx,

�

RN

|ψ|2E1(|ψ|2) dx =
�

RN

ξ21
|ξ|2
∣∣(̂|ψ|2)∣∣2 dξ > 0.

Lemma 2.4. For all Schwartz functions φ,
�

RN

φx · ∇φdx = − N

2

�

RN

|φ|2 dx,

�

RN

|φ|p−1φx · ∇φdx = − N

p+ 1

�

RN

|φ|p+1 dx,

�

RN

E1(|φ|2)φx · ∇φdx = − N

4

�

RN

|φ|2E1(|φ|2) dx.

Since the energy-critical NLS is well-understood, we treat equation (1.3)
as its perturbation. Thus, to conclude this section, we show the following
stability result, which will be frequently used in this paper and the proof of
which can be found in [?].

Lemma 2.5 (Ḣ1
x critical stability result, Tao et al. [?]). Let I be a com-

pact time interval and let w̃ be an approximate solution of the equation

(i∂t +∆)w = |w|4w(2.2)

on I × R3 in the sense that

(i∂t +∆)w̃ = |w̃|4w̃ + e(2.3)

for some function e. Assume that

‖w̃‖W (I) ≤ L,(2.4)

‖w̃‖L∞t Ḣ1
x
≤ E0(2.5)

for some constants L,E0 > 0. Let t0 ∈ I and let w(t0) be close to w̃(t0) in
the sense that

‖w(t0)− w̃(t0)‖Ḣ1
x
≤ E′(2.6)

for some E′ > 0. Assume also the smallness conditions(∑
N

‖PN∇ei(t−t0)∆(w(t0)− w̃(t0))‖L10
t L

30/13
x

)1/2
≤ ε,(2.7)

‖∇e‖Ṅ0(I×R3) ≤ ε(2.8)

for some 0 < ε < ε2, where ε2 = ε2(E0, E
′, L) is a small constant. Then

there exists a solution w to equation (2.2) on I × R3 with the initial data



DAVEY–STEWARTSON SYSTEM 75

w(t0) at time t = t0 satisfying

‖∇(w − w̃)‖
L10
t L

30/13
x

≤ c(E0, E
′, L)(ε+ ε7),(2.9)

‖w − w̃‖Ṡ1(I×R3) ≤ c(E0, E
′, L)(E′ + ε+ ε7),(2.10)

‖w‖Ṡ1(I×R3) ≤ c(E0, E
′, L).(2.11)

3. Local theory. Before we construct local-in-time solutions, we prove
two linear estimates.

Lemma 3.1. Let I be a compact time interval, λ1, λ2 be nonzero real
numbers, and k ∈ {0, 1}. Then

‖λ1|u|4u+ λ2E1(|u|2)u‖Ṅk(I×R3) . |I|
1/2‖u‖2

Ẋ1(I×R3)
‖u‖Ẋk(I×R3)

+ ‖u‖4
Ẋ1(I×R3)

‖u‖Ẋk(I×R3)

and

‖(λ1|u|4u+ λ2E1(|u|2)u)− (λ1|v|4v + λ2E1(|v|2)v)‖Ṅ0(I×R3)

. |I|1/2(‖u‖2
Ẋ1(I×R3)

+ ‖v‖2
Ẋ1(I×R3)

)‖u− v‖Ẋ0(I×R3)

+ (‖u‖4
Ẋ1(I×R3)

+ ‖v‖4
Ẋ1(I×R3)

)‖u− v‖Ẋ0(I×R3).

Proof. We only estimate the quantity λ2E1(|u|2)u, because the reasoning
in the case of |u4|u is similar. Using the Hölder and Sobolev inequalities and
the boundedness of E1 on Lp, we have

‖E1(|u|2)u‖Ṅk(I×R3) .
∥∥|∇|k(E1(|u|2)u)

∥∥
L
8/7
t L

12/7
x (I×R3)

. |I|1/2
∥∥|∇|k(E1(|u|2)u)

∥∥
L
8/3
t L

12/7
x (I×R3)

. |I|1/2
∥∥‖E1(|u|2)‖L6

x

∥∥|∇|ku∥∥
L
12/5
x

+
∥∥|∇|kE1(|u|2)

∥∥
L2
x
‖u‖L12

x

∥∥
L
8/3
t (I)

. |I|1/2
∥∥|u|2∥∥

L4
tL

6
x(I×R3)

∥∥|∇|ku∥∥
L8
tL

12/5
x (I×R3)

+ |I|1/2
∥∥u|∇|ku∥∥

L4
tL

2
x(I×R3)

‖u‖L8
tL

12
x (I×R3)

. |I|1/2‖u‖2L8
tL

12
x (I×R3)

∥∥|∇|ku∥∥
L8
tL

12/5
x (I×R3)

. |I|1/2‖∇u‖2
L8
tL

12/5
x (I×R3)

∥∥|∇|ku∥∥
L8
tL

12/5
x (I×R3)

. |I|1/2‖u‖2
Ẋ1(I×R3)

‖u‖Ẋk(I×R3).
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By a completely analogous reasoning, we obtain

‖λ2E1(|u|2)u− λ2E1(|v|2)v‖Ṅ0(I×R3)

. ‖E1(|u|2)u− E1(|v|2)v‖L8/7
t L

12/7
x (I×R3)

. |I|1/2‖E1(|u|2)u− E1(|v|2)v‖L8/3
t L

12/7
x (I×R3)

. |I|1/2‖E1(|u|2)(u− v) + E1(|u|2 − |v|2)v‖L8/3
t L

12/7
x (I×R3)

. |I|1/2‖u‖2
Ẋ1(I×R3)

‖u− v‖Ẋ0(I×R3)

+ |I|1/2(‖u‖Ẋ1(I×R3) + ‖v‖Ẋ1(I×R3))‖v‖Ẋ1(I×R3)‖u− v‖Ẋ0(I×R3)

. |I|1/2(‖u‖2
Ẋ1(I×R3)

+ ‖v‖2
Ẋ1(I×R3)

)‖u− v‖Ẋ0(I×R3).

Lemma 3.2. Let I × R3 be an arbitrary spacetime slab and k ∈ {0, 1}.
Then

‖E1(|u|2)u‖Ṅk(I×R3) . ‖u‖V (I)‖u‖W (I)

∥∥|∇|ku∥∥
V (I)

,∥∥|u|4u∥∥
Ṅk(I×R3)

. ‖u‖4W (I)

∥∥|∇|ku∥∥
V (I)

.

Proof. By the boundedness of E1 on Lp(R3) for every 1 < p < ∞, and
by the Hölder and interpolation inequalities, we have

‖E1(|u|2)u‖Ṅk(I×R3) .
∥∥|∇|k(E1(|u|2)u)

∥∥
L
10/7
t,x (I×R3)

. ‖E1(|u|2)‖L5/2
t,x (I×R3)

∥∥|∇|ku∥∥
L
10/3
t,x (I×R3)

+
∥∥|∇|kE1(|u|2)

∥∥
L
5/3
t,x (I×R3)

‖u‖L10
t,x(I×R3)

. ‖u‖2L5
t,x(I×R3)

∥∥|∇|ku∥∥
L
10/3
t,x (I×R3)

+
∥∥|∇|ku∥∥

L
10/3
t,x (I×R3)

‖u‖
L
10/3
t,x (I×R3)

‖u‖L10
t,x(I×R3)

. ‖u‖L10
t,x(I×R3)‖u‖L10/3

t,x (I×R3)

∥∥|∇|ku∥∥
L
10/3
t,x (I×R3)

. ‖u‖V (I)‖u‖W (I)

∥∥|∇|ku∥∥
V (I)

.

The estimate of
∥∥|u|4u∥∥

Ṅk(I×R3)
can be obtained similarly.

Based on the linear estimates from Lemmas 3.1 and 3.2, we may use
the standard argument from [2, 3] to achieve the following proposition (see
also [12–14] for more details).

Proposition 3.3 (Local well-posedness). Let u0 ∈ H1
x(R3) and λ1, λ2

be nonzero real constants. Then for every T > 0, there exists η = η(T ) such
that if

‖eit∆u0‖X1([−T,T ]) ≤ η,
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then problem (1.3) admits a unique strong H1
x-solution u defined on [−T, T ].

Let (−Tmin, Tmax) be the maximal time interval on which u is defined. Then
u ∈ S1(I ×R3) for every compact time interval I ⊂ (−Tmin, Tmax). Further-
more,

• if Tmax <∞, then

either lim
t→Tmax

‖u‖Ḣ1
x

=∞, or ‖u‖Ṡ1((0,Tmax)×R3) =∞;

similarly, if Tmin <∞, then

either lim
t→−Tmin

‖u‖Ḣ1
x

=∞, or ‖u‖Ṡ1((−Tmin,0)×R3) =∞.

• The solution u depends continuously on the initial datum u0 in the

following sense: if u
(m)
0 → u0 in H1

x and if u(m) is the maximal so-

lution to problem (1.3) with initial datum u
(m)
0 , then u(m) → u in

LqtH
1
x([−S, T ] × R3) for every q < ∞ and every interval [−S, T ] ⊂

(−Tmin, Tmax).

Lemma 3.4 (Blow-up criterion). Let u0 ∈ H1
x and let u be the unique

strong solution to problem (1.3) on the spacetime slab [0, T0]×R3 such that
‖u‖Ẋ1([0,T0])

<∞. Then there exists δ = δu0 such that the solution u can be

extended to a strong H1
x-solution on the slab [0, T0 + δ]× R3.

The proof of the blow-up criterion is based on a standard contradiction
argument: if the time existence interval of the solution cannot be extended
beyond a time T0, then the Ẋ1-norm must blow-up at T0 (see e.g. [1] for
more details).

Lemma 3.5. Let k ∈ {0, 1}, I be a compact time interval, and u be a
unique solution to problem (2.2) on I ×R3 obeying the bound ‖u‖W (I) ≤ L,
where L > 0. If t0 ∈ I and u(t0) ∈ Hk

x , then ‖u‖Ṡk(I×R3) ≤ c(L)‖w(t0)‖Ḣk
x
.

Proof. Divide the interval I into N ∼ (1 + M/η)6 subintervals Ij =
[tj , tj+1] such that

‖u‖W (Ij) ≤ η,

where η is a small constant to be chosen later. By the Strichartz estimate
(see Lemma 2.1), in each Ij , we obtain

‖u‖Ṡk(Ij×R3) . ‖u(tj)‖Ḣk
x

+ ‖u‖Ṡk(Ij×R3)‖u‖
4
W (Ij)

+ ‖u‖W (Ij)‖u‖
2
Ṡk(Ij×R3)

≤ ‖u(tj)‖Ḣk
x

+ ‖u‖Ṡk(Ij×R3)η
4 + η‖u‖2

Ṡk(Ij×R3)
.

Hence, choosing η sufficiently small, we get

‖u‖Ṡk(Ij×R3) . ‖u(tj)‖Ḣk
x

for all j ∈ {0, 1, 2, . . .}.
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Indeed, in the interval I0, we have

‖u(t1)‖Ḣk
x
≤ ‖u‖Ṡk(I0×R3) ≤ C‖u(t0)‖Ḣk

x
.

Moreover, in I1, we get

‖u(t2)‖Ḣk
x
≤ ‖u‖Ṡk(I1×R3) ≤ C‖u(t1)‖Ḣk

x
≤ C2‖u(t0)‖Ḣk

x
.

Similarly, for each interval Ij , we obtain

‖u(tj)‖Ḣk
x
≤ Cj‖u(t0)‖Ḣk

x
.

Summing up the above estimates over all subintervals Ij , we complete the
proof.

4. Global well-posedness. In order to obtain a global well-posedness
result, we first get an a priori bound on the kinetic energy of a solution.
Then we establish a “good” local well-posedness result, which shows that
the existence time of a H1

x-solution depends only on the H1
x-norm of the

initial datum. The above two steps combined with the conservation of mass
lead to the global-in-time solution by a standard iterative method.

Proposition 4.1 (Kinetic energy control). Let u0 ∈ H1
x and λ1 > 0.

There exists a unique global-in-time solution u(t, x) to problem (1.3). More-
over, there exists a number C(E,M) > 0 such that

‖u(t, x)‖Ḣ1
x
≤ C(E,M) for t ∈ R.

Proof. Recall that the energy

E(u) =
1

2

�

R3

|∇u(x, t)|2 dx+
λ1
6

�

R3

|u(x, t)|6 dx

+
λ2
4

�

R3

E1(|u(x, t)|2)|u(x, t)|2 dx

is conserved in time. We consider the following two cases:

(1) Let λ1, λ2 > 0. Then by the inequality 1
4

	
R3 E1(|u(x, t)|2)|u(x, t)|2 dx

≥ 0 and the conservation of energy, we have

‖u(t, x)‖Ḣ1
x
≤ E(u(t, x)) = E(u0(x)).

(2) Let λ1 > 0, λ2 < 0. Hence,

λ1
6
|u|6 +

−|λ2|
4
|u|4 ≥ −C(λ1, λ2)|u|2(4.1)

for a constant C(λ1, λ2) > 3λ22/(32λ1). Indeed, this is an easy property of
the quadratic function f(x) = (λ1/6)x2 − (|λ2|/4)x + C(λ1, λ2) with the
discriminant (−|λ2|/4)2− 4(λ1/6)C(λ1, λ2) < 0 for C(λ1, λ2) > 3λ22/(32λ1).
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Combining (4.1) with the estimate�

R3

E1(|u(x, t)|2)|u(x, t)|2 dx ≤
�

R3

|u(x, t)|4 dx

we obtain
1

2

�

R3

|∇u(x, t)|2 dx

= E(u)−
[
λ1
6

�

R3

|u(x, t)|6 dx+
λ2
4

�

R3

E1(|u(x, t)|2)|u(x, t)|2 dx
]

≤ E(u)−
[
λ1
6

�

R3

|u(x, t)|6 dx− |λ2|
4

�

R3

|u(x, t)|4 dx
]

≤ E(u) + C(λ1, λ2)|u|2 ≤ C(E,M).

Thus, we have proved ‖u(t, x)‖Ḣ1
x
≤ C(E,M).

From now on, we will treat the quantity λ2E1(|u|2)u as a perturbation
in the energy-critical NLS.

Proposition 4.2 (“Good” local well-posedness result). Let u0 ∈ H1
x

and λ1 > 0. There exists T = T (‖u0‖H1
x
) > 0 such that problem (1.3)

admits a unique strong solution u ∈ S1(I × R3) satisfying

‖u‖S1(I×R3) ≤ C(E,M), I = [−T, T ].

Proof. By the local result from Proposition 3.3, it suffices to prove an
a priori Ẋ1-bound for u, namely ‖u‖Ẋ1(I) ≤ C(‖u0‖H1

x
). In fact, if we assume

the existence of a strong solution u to problem (1.3), we should prove that
the norm ‖u‖Ẋ1(I) is finite as long as T = T (‖u0‖H1

x
) is sufficiently small.

Let w be a unique strong global-in-time solution to the NLS equation
(2.2) with the initial datum w0 = u0 at time t0 = 0. By a known result, the
function w satisfies

‖w‖Ṡ1(R×R3) ≤ C(‖u0‖H1
x
).

By Lemma 3.5, we also have

‖w‖Ṡ0(I×R3) ≤ C(‖u0‖Ḣ1
x
)‖u0‖L2

x
≤ C(E,M).

By time reversal symmetry, it suffices to prove the required result forward
in time.

First, we prove

‖u‖Ṡ1([0,T ]×R3) ≤ C(E,M).(4.2)

Now we partition R+ into J = J(E, η) disjoint subintervals Ij such that

‖w‖Ẋ1(Ij)
∼ η,
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where Ij = [tj , tj+1] (j = 0, 1, . . . , J − 1), IJ = [tJ ,∞) and η will be chosen
later. We may assume that there exists J ′ < J such that for all 0 ≤ j < j′−1,

[0, T ] ∩ Ij 6= ∅. Thus, [0, T ] =
⋃J ′−1
j=0 ([0, T ] ∩ Ij).

Then by the Strichartz estimate, we have

‖ei(t−tj)∆w(tj)‖Ẋ1(Ij)
≤ ‖w‖Ẋ1(Ij)

+‖∇(|w|4w)‖
L
10/7
t,x (Ij×R3)

≤ ‖w‖Ẋ1(Ij)
+C‖∇w‖

L
10/3
t,x (Ij×R3)

‖w‖4L10
t,x(Ij×R3)

≤ ‖w‖Ẋ1(Ij)
+C‖∇w‖

L
10/3
t,x (Ij×R3)

‖∇w‖4
L10
t L

30/13
x (Ij×R3)

≤ η + C‖w‖5
Ẋ1(Ij)

≤ η + Cη5,

where C depends only on the Strichartz constant.

Now we use the Stability Lemma 2.5 in the time interval I0, with the per-
turbation term e = λ2E1(|u|2)u. Note that u0 = w0. Hence by the Strichartz
estimate, we have

‖u‖Ẋ1(I0)
≤ ‖eit∆u0)‖Ẋ1(I0)

+ C|I0|1/2‖u‖3Ẋ1 + C‖u‖5
Ẋ1(I0)

≤ η + Cη5 + CT 1/2‖u‖3
Ẋ1 + C‖u‖5

Ẋ1(I0)
.

Assuming η, T are sufficiently small, a standard continuity method yields

‖u‖Ẋ1(I0)
≤ 2η.

Thus,

‖u‖W (I0) = ‖u‖L10
t,x(I0×R3) ≤ ‖∇u‖L10

t L
30/13
x (I0×R3)

≤ ‖u‖Ẋ1(I0)
≤ 2η.

By Proposition 4.1, we have

‖u‖L∞t Ḣ1
x(I0×R3) ≤ E0 = C(E,M).

By the Hölder inequality, we obtain

‖∇e‖Ṅ0(I0×R3) . T 1/2‖u‖3
Ẋ1(I0)

. T 1/2η3.

Choosing T sufficiently small depending only on E,M , we get

‖∇e‖Ṅ0(I0×R3) < ε,(4.3)

where ε = ε(E,M) will be chosen later. Hence, using the stability theory
from Lemma 2.5, we obtain the estimate

‖u− w‖Ṡ1(I0×R3) ≤ C(E,M)ε7,

which implies

‖u(t1)− w(t1)‖Ḣ1
x
≤ C(E,M)ε7,

‖ei(t−t1)∆(u(t1)− w(t1))‖Ẋ1(I1)
≤ C(E,M)ε7.
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Thus, by the above two inequalities,

‖u‖Ẋ1(I1)
≤ ‖ei(t−t1)∆u(t1)‖Ẋ1(I1)

+ |I1|1/2‖u‖3Ẋ1(I1)
+ C‖u‖5

Ẋ1(I1)

≤ ‖ei(t−t1)∆w(t1)‖Ẋ1(I1)
+ ‖ei(t−t1)∆(u(t1)− w(t1))‖Ẋ1(I1)

+ |T |1/2‖u‖3
Ẋ1(I1)

+ C‖u‖5
Ẋ1(I1)

≤ η + Cη5 + C(E,M)ε7 + CT 1/2‖u‖3
Ẋ1(I0)

+ C‖u‖5
Ẋ1(I1)

.

Choosing a sufficiently small ε > 0 (depending on E,M), by a standard
continuity method, we get

‖u‖Ẋ1(I1)
≤ 2η.

Furthermore, inequality (4.3) holds true when I0 is replaced by I1.
Applying Lemma 2.5 on I1 again, we obtain

‖u− w‖Ṡ1(I1×R3) ≤ C(E,M)ε7
2
.

By induction, for every interval Ij with 0 ≤ j ≤ J(E, η)− 1, we have

‖u‖Ẋ1(Ij)
≤ 2η.

Combining these estimates for all intervals Ij , we obtain

‖u‖Ẋ1([0,T ]) ≤ 2ηJ ≤ C(E).(4.4)

By estimate (4.4), Proposition 4.1, and the Strichartz estimate, we obtain

(4.5) ‖u‖Ṡ1([0,T ]×R3) ≤ ‖u0‖H1
x

+ T 1/2‖u‖3
Ẋ1(I)

+ ‖u‖5
Ẋ1(I)

≤ C(E,M).

Next, we will prove

‖u‖Ṡ0([0,T ]×R3) ≤ C(E,M).(4.6)

By Proposition 4.1 and the Strichartz estimate, we get

‖u‖Ṡ0([0,T ]×R3) ≤ ‖u0‖L2
x

+ T 1/2‖u‖2
Ẋ1(I)

‖u‖Ẋ0(I) + ‖u‖4
Ẋ1(I)

‖u‖Ẋ0(I)

≤M1/2 + C(E,M)‖u‖2
Ẋ1(I)

‖u‖Ṡ0(I) + ‖u‖4
Ẋ1(I)

‖u‖Ṡ0(I).

Hence, we decompose [0, T ] into N = N(E,M, δ) subintervals Jk such that
‖u‖Ẋ1(Jk)

∼ δ for some small constant δ > 0 to be chosen later. Thus

‖u‖Ṡ0(Jk×R3) .M1/2 + C(E,M)δ2‖u‖Ṡ0(Jk)
+ δ4‖u‖Ṡ0(Jk)

.

Choosing δ sufficiently small depending on E,M, a standard continuity
method yields

‖u‖Ṡ0(Jk×R3) ≤ C(E,M).

Summing up these bounds over all subintervals Jk, we get

‖u‖Ṡ0([0,T ]×R3) ≤ C(E,M).(4.7)
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Finally, combining (4.5) and (4.7), we obtain

‖u‖S1([0,T ]×R3) ≤ C(E,M),(4.8)

where T only depends on energy and mass.
If we divide the interval I into subintervals of length T, and sum up

the corresponding Ṡ1-bounds in these subintervals, we complete the proof
of Proposition 4.2.

5. Scattering theory. In the case λ1 > 0, in order to obtain the scat-
tering result, we need a small mass condition.

The first step is to show that the S1-norm of the solution to problem
(1.3) is bounded on the whole line, namely

‖u‖S1(R×R3) ≤ C(E,M).

Let w be a unique strong global-in-time solution to the NLS equation (2.2)
with the initial datum w0 = u0 at time t0 = 0. By a known result, the
function w satisfies

‖w‖Ṡ1(R×R3) ≤ C(E).

By Lemma 3.5, we obtain

‖w‖Ṡ0(R×R3) ≤ C(E)M1/2.

Now, we define the following spaces:

Ẏ 0(I) = V (I) ∩ L10
t L

30/13
x (I × R3),

Ẏ 1(I) = {u : ∇u ∈ Ẏ 0(I)}, Y 1(I) = Ẏ 0(I) ∩ Ẏ 1(I).

Thus, by Lemma 3.2 we have, for k ∈ {0, 1},∥∥|∇|k(E1(|u|2)u)
∥∥
Ṅ0(I×R3)

. ‖u‖Ẏ 0(I)‖u‖Ẏ 1(I)‖u‖Ẏ k(I),(5.1) ∥∥|∇|k(|u|4u)
∥∥
Ṅ0(I×R3)

. ‖u‖4
Ẏ 1(I)

‖u‖Ẏ k(I).(5.2)

For sake of simplicity, we only consider the domain R+×R3. We divide the
half-line R+ into J = J(E, η) subintervals Ij such that

‖w‖Ẏ 1(Ij)
∼ η,

where Ij = [tj , tj+1] (j = 0, 1, . . . , J − 1), IJ = [tJ ,∞). Assuming that
M = M(E, η) is sufficiently small, we have

‖w‖Ṡ0(R×R3) ≤ C(E)M1/2 ≤ η.
Thus,

‖w‖Y 1(Ij) ∼ η.(5.3)

By relation (5.3) and the Strichartz estimate, we obtain

‖ei(t−tj)∆w(tj)‖Y 1(Ij) ≤ ‖w‖Y 1(Ij) + ‖w‖5Y 1(Ij)
≤ η + Cη5 ≤ 2η,

provided η is sufficiently small.
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First, we consider the time interval I0 = [t0, t1]. By (5.1), (5.5) and the
Strichartz estimate,

‖u‖Y 1(I0) ≤ 2η + C‖u‖3Y 1(I0)
+ C‖u‖5Y 1(I0)

.(5.4)

By a standard continuity method, for sufficiently small η,

‖u‖Y 1(I0) ≤ 4η.

Similarly, by (5.1), (5.5) and the Strichartz estimate,

‖u‖Ẏ 0(I0)
≤ ‖u0‖L2

x
+ C‖u‖2

Ẏ 0(I0)
‖u‖Ẏ 1(I0)

+ ‖u‖Ẏ 0(I0)
‖u‖4

Ẏ 1(I0)

≤M1/2 + η‖u‖2
Ẏ 0(I0)

+ η4‖u‖Ẏ 0(I0)
,

which implies that

‖u‖Ẏ 0(I0)
.M1/2,

provided that η and M are sufficiently small.
For the perturbation term E1(|u|2)u, by (5.1) we have

‖E1(|u|2)u‖Ṅ1(I0×R3) . ‖u‖Ẏ 0(I0)
‖u‖2

Ẏ 1(I0)
.M1/2η ≤M δ0 ,

where δ0 is a small constant.
Applying Lemma 2.5, we have

‖u− w‖Ṡ1(I0×R3) ≤M
cδ0 ,

which implies that

‖ei(t−t1)∆(u(t1)− w(t1))‖Ṡ1(I0×R3) ≤M
cδ0 .

Thus,

‖u‖Y 1(I1) ≤ ‖e
i(t−t1)∆u(t1)‖Ẏ 0(I1)

+ ‖ei(t−t1)∆w(t1)‖Ẏ 1(I1)

+ ‖ei(t−t1)∆(u(t1)− w(t1))‖Ẏ 1(I1)
+ c‖u‖3Y 1(I1)

+ C‖u‖5Y 1(I1)

≤M1/2 +M cδ0 + η + c‖u‖3Y 1(I1)
+ C‖u‖5Y 1(I1)

.

Hence, the standard continuity method yields

‖u‖Y 1(I1) ≤ 4η, ‖u‖Ẏ 0(I1)
≤M1/2.

Using Lemma 3.5, we further obtain

‖u− w‖Ṡ1(I1×R3) ≤M
cδ1

for some δ1 satisfying 0 < δ1 < δ0.
By induction, for any time interval Ij we obtain

‖u‖Y 1(Ij) ≤ 4η.

Adding all these intervals, we have

‖u‖Y 1(R+) . Jη ≤ C(E).(5.5)
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Hence, by the Strichartz estimate,

‖u‖S1(R+×R3) . ‖u0‖H1
x

+ ‖u‖3Y 1(R+) + ‖u‖5Y 1(R+)(5.6)

.M + E + C(E) ≤ C(E,M).

Next, we will prove that boundedness of global Strichartz norms implies
scattering.

For 0 < t <∞, define

u+(t) = u0 − i
t�

0

e−is∆
(
λ1|u|4u+ λ2E1(|u|2)u

)
(s) ds.

Since u ∈ S1(R×R3), by the Strichartz estimate, we have u+(t) ∈ H1
x. Now,

we will show that u+(t) converges in H1
x as t→∞. For 0 < τ < t, we obtain

‖u+(t)− u+(τ)‖H1
x

=
∥∥∥t�
τ

e−is∆
(
λ1|u|4u+ λ2E1(|u|2)u

)
(s) ds

∥∥∥
H1

x

≤
∥∥∥t�
τ

e−is∆
(
λ1|u|4u+ λ2E1(|u|2)u

)
(s) ds

∥∥∥
L∞t H1

x

. C(λ1, λ2)‖u‖V ([τ,t])‖u‖W ([τ,t])

∥∥|∇|ku∥∥
V ([τ,t])

+ ‖u‖4W ([τ,t])

∥∥|∇|ku∥∥
V ([τ,t])

≤ ‖u‖V ([τ,t])‖u‖W ([τ,t])‖(1 + |∇|)u‖V ([τ,t]) + ‖u‖4W ([τ,t])‖(1 + |∇|)u‖V ([τ,t]).

Since ‖u‖S1(R×R3) <∞, for every ε > 0 there exists Tε > 0 such that

‖u+(t)− u+(τ)‖H1
x
≤ ε for all τ, t > Tε.

Next, we will show that u(t) converges to eit∆u+ in the norm of H1
x as

t→∞. Indeed,

‖e−it∆u(t)− u+‖H1
x

=
∥∥∥∞�
t

e−is∆
(
λ1|u|4u+ λ2E1(|u|2)u

)
(s) ds

∥∥∥
H1

x

=
∥∥∥∞�
t

ei(t−s)∆
(
λ1|u|4u+ λ2E1(|u|2)u

)
(s) ds

∥∥∥
H1

x

. ‖u‖V ([t,∞])‖u‖W ([t,∞])‖(1 + |∇|)u‖V ([t,∞])

+ ‖u‖4W ([t,∞])‖(1 + |∇|)u‖V ([t,∞]).

Hence, using the boundedness of ‖u‖S1(R×R3), we obtain

‖e−it∆u(t)− u+‖H1
x
→ 0 as t→∞.

This completes the proof of scattering for problem (1.3).

6. Blow-up. In this section, following the convexity method of Glassey
[10], we will prove the blow-up result stated in Theorem 1.3.
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Consider the strong H1
x-solution u(t, x) of problem (1.3) with an initial

datum u0 ∈ H1
x(R3) such that xu0 ∈ L2(R3). By the Hardy inequality and

the conservation of mass, we have

‖u0‖22 =
�

R3

|x| |u| |u|
|x|

dx . ‖xu‖2‖∇u‖2.

Hence, in order to prove the blow-up result, we only need to show the exis-
tence of T > 0 such that

lim
t→T

�

R3

|x|2|u(t, x)|2 dx = 0.(6.1)

Let

V (t) =
�

R3

|x|2|u(t, x)|2 dx.

Then a direct computation leads to the equalities

V ′(t) = 4 Im
�

R3

ūx · ∇u dx = −4y(t) and V ′′(t) = −4y′(t),

where

y′(t) = −2
�

R3

|∇u|2 dx− 2λ1
�

R3

|u(t, x)|6 dx− 3

2
λ2

�

R3

E1(|u|2)|u|2 dx.

We only need to show that

y′(t) ≥ C‖∇u‖22 > 0 for some constant C > 0.(6.2)

Indeed, if λ2 > 0 and E < 0, then

y′(t) = −2
�

R3

|∇u|2 dx+ 12

{
1

2
‖∇u‖22 +

λ2
4

�

R3

E1(|u|2)|u|2 dx− E
}

− 3λ2
2

�

R3

E1(|u|2)|u|2 dx

= 4‖∇u‖22 +
3λ2
2

�

R3

E1(|u|2)|u|2 dx− 12E > 4‖∇u‖22 > 0.

Otherwise, if λ2, E < 0, then

y′(t) = −2
�

R3

|∇u|2 dx+ 6

{
1

2
‖∇u‖22 +

λ1
6

�

R3

|u|6 dx− E
}
− 2λ1

�

R3

|u|6 dx

= ‖∇u‖22 − λ1‖u‖66 − 6E > ‖∇u‖22 > 0.

By the assumption, y(t) > y0 > 0 for all t ∈ [0, T ]. Combining this fact with
the differential inequality (6.2), we see that V (t) is decreasing and concave,
which implies that relation (6.1) is satisfied, which is impossible. Thus, we
have completed the proof.
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46 (1987), 113–129.

[14] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998),
955–980.

[15] J. Lu and Y. Wu, Sharp threshold for scattering of a generalized Davey–Stewartson
system in three dimension, Comm. Pure Appl. Anal. 14 (2015), 1641–1670.

[16] C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-
critical, defocusing Hartree equation for radial data, J. Funct. Anal. 253 (2007),
605–627.

[17] C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the defocusing
H1/2-subcritical Hartree equation in Rd, Ann. Inst. H. Poincaré Anal. Non Linéaire
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