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The terms of the form 7kx2 in the
generalized Lucas sequence with parameters P and Q

by

Olcay Karaatlı (Sakarya)

1. Introduction. Let P and Q be nonzero integers, let D = P 2 + 4Q
be called the discriminant, and assume that D > 0 (to exclude degenerate
cases). Consider the polynomial X2 − PX − Q, called the characteristic
polynomial, which has the roots

α =
P +

√
D

2
and β =

P −
√
D

2
.

For each n ≥ 0, define Un = Un(P,Q) and Vn = Vn(P,Q) as follows:

U0 = 0, U1 = 1, Un+1 = PUn +QUn−1 (for n ≥ 1),

V0 = 2, V1 = P, Vn+1 = PVn +QVn−1 (for n ≥ 1).

We shall consider special cases of the generalized Fibonacci and Lucas se-
quences. For (P,Q) = (1, 1), (Un) is the sequence of Fibonacci numbers and
(Vn) is the sequence of Lucas numbers. For (P,Q) = (2, 1), (Un) and (Vn)
are the sequences of Pell numbers, respectively Pell–Lucas numbers.

It is convenient to extend these sequences also to negative indices:

U−n = − Un

(−Q)n
, V−n =

Vn
(−Q)n

for n ≥ 1. Then the two relations above hold for all integers n.
Binet’s formulas express the numbers Un and Vn in terms of α and β:

Un =
αn − βn

α− β
, Vn = αn + βn.

Note that by Binet’s formulas we also have

Un(−P,Q) = (−1)n−1Un(P,Q), Vn(−P,Q) = (−1)nVn(P,Q).

So, it will be assumed that P ≥ 1.
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Investigations of the properties of second-order linear recurring sequences
have given rise to questions concerning whether, for certain pairs (P,Q),
Un or Vn is square (= �) or k times a square (= k�). From a result of
Ljunggren [20], Robbins [29] deduced that if (P,Q) = (2, 1), and n ≥ 2,
then Un = � precisely for n = 7, and Pethő [24] (independently Cohn [13])
showed that these are the only perfect powers in the Pell sequence. In 1963,
Moser and Carlitz [22] and Rollett [31] proposed the problem of finding
all square Fibonacci numbers. This problem was solved by Cohn [7]. Cohn
proved that if (P,Q) = (1, 1), then the only perfect square greater than 1 in
the sequence (Un) is U12 = 144 (see also Alfred [1], Wyler [34], and Burr [6]).
Cohn [9, 8] also solved the equations Un(1, 1) = 2� and Vn(1, 1) = �, 2�.

In 2006, Bugeaud, Mignotte and Siksek [5] showed that the perfect pow-
ers in Fibonacci and Lucas sequences are exactly F0 = 0, F1 = F2 = 1,
F6 = 8, F12 = 144 and L1 = 1, L3 = 4, respectively. Robbins [28], under the
conditions that P = 1, Q = 1, found all solutions of the equation Un = px2

such that p is prime and either p ≡ 3 (mod 4) or p < 10000, and then in
1991 the same author [30], using elementary techniques, found all solutions
of the equation Vn = px2, where p is prime and p < 1000. Furthermore,
Cohn [10, 11] determined the squares and double squares in (Un) and (Vn)
when P is odd and Q = ±1.

The determination of squares in generalized Fibonacci and Lucas se-
quences (with odd relatively prime parameters and nonzero discriminant)
was obtained by various authors. Ribenboim and McDaniel [25] determined
all indices n such that Un = �, 2Un = �, Vn = � or 2Vn = � for all odd
relatively prime integers P and Q. Bremner and Tzanakis [2] extended the
result of the equation Un = � by determining all generalized Fibonacci se-
quences (Un) with U12 = �, subject only to the restriction that (P,Q) = 1.
In a later paper, the same authors [3] showed that for 2, . . . , 7, Un is a
square for infinitely many coprime P, Q and determined all sequences (Un)
with Un = �, n = 8, 10, 11. And also in [4], they discussed the more gen-
eral problem of finding all integers n, P, Q for which Un = k� for a given
integer k.

Although the question for even values of P seems to be harder, in 1998,
Kagawa and Terai [14] considered a similar problem, such as that addressed
by Ribenboim and McDaniel [25], for the case when P is even and Q = 1.
Using elementary properties of elliptic curves, they showed that if P = 2t
with t even, then each of Un(P, 1) = �, 2Un(P, 1) = �, Vn(P, 1) = �, or
2Vn(P, 1) = � implies n ≤ 3 under some assumptions. Moreover, Mignotte
and Pethő [21] proved that if n > 4, then Un(P,−1) = wx2 is impossible
when w ∈ {1, 2, 3, 6}; moreover these equations have solutions for n = 4
only if P = 338. Extending the method of Mignotte and Pethő, Nakamula
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and Pethő [23] gave the solutions of the equations Un(P,−1) = wx2 where

w ∈ {1, 2, 3, 6}.
In 1998, Ribenboim and McDaniel [26] showed that if P is even, Q ≡ 3

(mod 4), and Un = �, then n is a square or twice an odd square and all
prime factors of n divide P 2 + 4Q. In a later paper, for all odd values of P
and Q, the same authors [27] determined all indices n such that Un = kx2

under the assumption that for all integers u ≥ 1, k is such that, for each
odd divisor h of k, the Jacobi symbol

(−V2u

h

)
is defined and equal to 1.

Afterwards, they solved the equation Vn = 3� for P ≡ 1, 3 (mod 8), Q ≡ 3
(mod 4), (P,Q) = 1, and solved Un = 3� for all odd relatively prime integers
P and Q.

Also, in [33], Şiar and Keskin determined all indices n such that Vn = kx2

when k |P and P is odd and Q = 1. In [16], Karaatlı and Keskin dealt with
Lucas numbers of the form Vn(P,Q) with the special restriction that P ≥ 3
is odd and Q = −1. Under these assumptions, they solved the equations
Vn = wkx2, w ∈ {5, 7}, when k |P with k > 1. Afterwards, Karaatlı [15]
added to the above list the values of n for which Vn(P, 1) is of the form 5kx2

and 7kx2 when k |P with k > 1. Furthermore, as an application of some
of these results, he gave all positive integer solutions to the equations Vn =
wx2, w ∈ {15, 21, 35}. Actually, for k = 1, Keskin and Karaatlı even solved
the equations Vn(P,−1) = 5x2 in [17] and Vn(P, 1) = 5x2 and Vn(P, 1) = 7x2

in [19] and [18], respectively.

In this study, we determine all indices n such that Vn = 7kx2 if P and
Q are odd and relatively prime and k |P with k > 1. Moreover, as an
application, we determine the indices n such that the equation Vn = 21x2

has solutions.

We organize the paper as follows. Section 2 consists of preliminaries
where all the required facts are gathered for the convenience of the reader.
The last section will be devoted to the main theorem. Throughout this study,(∗
∗
)

will denote the Jacobi symbol. Our method of proof is similar to that
presented by Cohn, McDaniel and Ribenboim [10, 11, 12, 25].

2. Preliminaries. Among the numerous identities and divisibility prop-
erties satisfied by the generalized Fibonacci and Lucas numbers, we list be-
low those to be used in this paper:

V−n = Vn/(−Q)n,(2.1)

V2n = V 2
n − 2(−Q)n,(2.2)

V 2
n −DU2

n = 4(−Q)n,(2.3)

if Vm 6= 1 and m 6= 0, then Vm |Vn ⇔ m |n and n/m is odd,(2.4)
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if n is odd, then Vn ≡ (−Q)(n−1)/2P (mod P 2 + 4Q),(2.5)

if P is odd, then

(
−1

V2r

)
= −1 for r ≥ 1,(2.6)

if 7 |P, then V2r ≡ 2Q2r/2 (mod 7) for r ≥ 1.(2.7)

From (2.6) and (2.7), we have

(2.8)

(
7

V2r

)
=

{
(−1)

(Q
7

)
if r = 1,

−1 if r ≥ 2.

Theorem 2.1 (Şiar and Keskin [32, Corollary 3.3]). Let P and Q be
integers with Q 6= ±1. Then for all n,m ∈ N ∪ {0} and r ∈ Z such that
mn+ r ≥ 0 we get

(2.9) V2mn+r ≡ (−(−Q)m)nVr (mod Vm).

Theorem 2.2 (Şiar and Keskin [32, Corollary 3.5]). Let P and Q be
integers with Q 6= ±1. Then for all n ∈ N ∪ {0}, m ∈ N, and r ∈ Z such
that mn+ r ≥ 0, we get

(2.10) V2mn+r ≡ (−Q)mnVr (mod Um).

By using (2.10), since 8 |U6 we get

(2.11) V12q+r ≡ Vr (mod 8),

for any nonnegative integer q.

Lemma 2.3 (Ribenboim and McDaniel [25, Lemma 3]). Let r be a posi-
tive integer. Then (

Q

V2r

)
=

(
−1

Q

)
,(2.12) (

P 2 + 3Q

V2r

)
=

{(−1
Q

)
if r = 1,

1 if r ≥ 2,
(2.13) (

P

V2r

)
=

{(−2Q
P

)
if r = 1,(−2

P

)
if r ≥ 2.

(2.14)

If M is any positive divisor of P, then (2.14) implies that

(2.15)

(
M

V2r

)
=

{
(−1)(M−1)/2(−1)(M

2−1)/8
( Q
M

)
if r = 1,

(−1)(M−1)/2(−1)(M
2−1)/8 if r ≥ 2.

If 7 |P, then by (2.8) and (2.14), we have

(2.16)

(
7

V2r

)(
P

V2r

)
=

{
(−1)(−1)(P−1)/2(−1)(P

2−1)/8
(Q
7

)(Q
P

)
if r = 1,

(−1)(−1)(P−1)/2(−1)(P
2−1)/8 if r ≥ 2.
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And by (2.16), we have

(2.17)

(
7

V2r

)(
M

V2r

)
=


(−1)(−1)(M−1)/2(−1)(M

2−1)/8
(Q
7

)( Q
M

)
if r = 1,

(−1)(−1)(M−1)/2(−1)(M
2−1)/8 if r ≥ 2.

From now on, we assume that P and Q are odd and relatively prime. We
omit the proof of the following lemma, as it is a straightforward induction.

Lemma 2.4. If n is a positive even integer, then Vn ≡ 2Qn/2 (mod P 2),
and if n is a positive odd integer, then Vn ≡ nPQ(n−1)/2 (mod P 2).

Lemma 2.5. Let n be a positive integer. If 3 |P, then 3 |Vn if and only
if n is odd. If 3 - P, then 3 |Vn if and only if n ≡ 2 (mod 4) and Q ≡ 1
(mod 3).

Proof. Let 3 |P. If n is odd, then by Lemma 2.4 we have Vn ≡ nPQ(n−1)/2

(mod P 2), implying that 3 |Vn. Conversely, assume that 3 |Vn and n is even.
Then by Lemma 2.4, it follows that Vn ≡ 2Qn/2 (mod P 2). Since 3 |P and
3 |Vn, it follows that 3 | 2Qn/2. But this is impossible since 3 - Q.

Now assume that 3 - P. Also, assume that 3 |Vn. Then by (2.3), we
readily obtain 3 - Un. So, 3 | 4(−Q)n + 1 + 4Q. If n is odd, then a simple
calculation shows that 3 - Vn in all the cases Q ≡ 0, 1, 2 (mod 3). Hence, n
is even. Therefore, when Q ≡ 0, 2 (mod 3), it follows that 3 - Vn. So, Q ≡ 1
(mod 3). The fact that P 2 ≡ 1 (mod 3) and Q ≡ 1 (mod 3) gives 3 |V2.
On the other hand, since n is even, we can write n = 2t for some positive
integer t. Assume now that t is even, t = 2r, say. Then n = 4r and so
Vn = V4r ≡ (−Q)rV0 (mod V2) by (2.9). Using the fact that 3 |V2, we see
that Vn ≡ 2(−Q)r (mod 3). But this is impossible since 3 - 2(−Q)r. Hence,
n ≡ 2 (mod 4). As a consequence, if 3 |Vn, then n ≡ 2 (mod 4) and Q ≡ 1
(mod 3). Conversely, assume that n ≡ 2 (mod 4) and Q ≡ 1 (mod 3). Then
by (2.4), V2 |Vn. On the other hand, since P 2 ≡ 1 (mod 3) and Q ≡ 1
(mod 3), it follows that 3 |V2. And so, 3 |Vn.

The idea behind the proof of the following lemma is similar to that of
the lemma above and we omit the proof.

Lemma 2.6. Let n be a positive integer. If 7 |P, then 7 |Vn if and only if
n is odd. If P 2 ≡ 1 (mod 7), then 7 |Vn if and only if n ≡ 2 (mod 4), Q ≡ 3
(mod 7) or n = 4t, 2 - t, Q ≡ 1 (mod 7) or n = 3t, 2 - t, Q ≡ 2 (mod 7). If
P 2 ≡ 2 (mod 7), then 7 |Vn if and only if n ≡ 2 (mod 4), Q ≡ 6 (mod 7)
or n = 4t, 2 - t, Q ≡ 1 (mod 7) or n = 3t, 2 - t, Q ≡ 4 (mod 7). If P 2 ≡ 4
(mod 7), then 7 |Vn if and only if n ≡ 2 (mod 4), Q ≡ 5 (mod 7) or n = 4t,
2 - t, Q ≡ 2 (mod 7) or n = 3t, 2 - t, Q ≡ 1 (mod 7).
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Under the conditions that P 2 ≡ 1 (mod 7), Q ≡ 2 (mod 7) or P 2 ≡ 2
(mod 7), Q ≡ 4 (mod 7) or P 2 ≡ 4 (mod 7), Q ≡ 1 (mod 7) in Lemma 2.6,
we have

(2.18)

(
7

V2r

)
= 1

for all r ≥ 1. Therefore, by (2.18) and (2.15), we obtain

(2.19)

(
7

V2r

)(
M

V2r

)
=

{
(−1)(M−1)/2(−1)(M

2−1)/8
( Q
M

)
if r = 1,

(−1)(M−1)/2(−1)(M
2−1)/8 if r ≥ 2.

The following lemma can be proven by induction.

Lemma 2.7. Let r be a positive integer. Then

V2r ≡

{
Q2r−1−1V2 (mod A) if r is odd,

−Q2r−1−1(P 2 + 3Q) (mod A) if r is even,

where A = P 4 + 5P 2Q+ 5Q2.

We see easily from this lemma that if Q ≡ 3 (mod 8), then

(2.20)

(
A

V2r

)
=

(
V2r

A

)
= −1,

since A ≡ 5 (mod 8).

3. Main theorem

Theorem 3.1. If Vn = 7kx2 for some k |P with k > 1, then n = 1, 3, 5.

Proof. Assume that Vn = 7kx2 for some k |P with k > 1. Obviously,
k |Vn and so, by Lemma 2.4, n is odd. Moreover, since k |P, we have P = kM
for some odd M > 0. Suppose n > 3. Then we can write n = 4q + 1 or
n = 4q + 3 for some q > 0. Now we distinguish two cases.

Case I: Let 7 |P.
Subcase I(i): Assume that

(Q
7

)( Q
M

)
= −1. If n = 4q+1, then it follows

from (2.5) that

7kx2 = Vn = V4q+1 ≡ Q2qP (mod P 2 + 4Q).

Multiplying both sides of the congruence above by M and using the fact
that (P, P 2 + 4Q) = 1, we immediately get

7x2 ≡ Q2qM (mod P 2 + 4Q).

This shows that 1 =
(

7
P 2+4Q

)(
M

P 2+4Q

)
. However, this is impossible since(

7

P 2 + 4Q

)(
M

P 2 + 4Q

)
=

(
P 2 + 4Q

7

)(
P 2 + 4Q

M

)
=

(
Q

7

)(
Q

M

)
= −1.
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Now assume that n = 4q + 3. Again using (2.5), (P, P 2 + 4Q) = 1 and
P = kM, we have

7kx2 = Vn = V4q+3 ≡ −Q2q+1P (mod P 2 + 4Q),

i.e.,

7x2 ≡ −Q2q+1M (mod P 2 + 4Q).

This means that 1=
( −1
P 2+4Q

)(
7

P 2+4Q

)(
M

P 2+4Q

)( Q
P 2+4Q

)
. Obviously,

( Q
P 2+4Q

)
=
(
P 2

Q

)
= 1 and

( −1
P 2+4Q

)
= 1. So,

1 =

(
7

P 2 + 4Q

)(
M

P 2 + 4Q

)
=

(
P 2 + 4Q

7

)(
P 2 + 4Q

M

)
=

(
Q

7

)(
Q

M

)
= −1,

a contradiction.

Subcase I(ii): Assume that
(Q
7

)( Q
M

)
= 1. If n = 4q + 1, then set n =

4q + 1 = 2 · 2ra+ 1 with 2 - a and r ≥ 1. Therefore by Theorem 2.1,

7kx2 = Vn = V4q+1 = V2·2ra+1 ≡ −Q2raV1 (mod V2r),

implying that

7x2 ≡ −MQ2ra (mod V2r).

Hence,

1 =

(
−1

V2r

)(
7

V2r

)(
M

V2r

)
.

We first assume that M ≡ 5, 7 (mod 8). Then
(

7
V2r

)(
M
V2r

)
= 1 by (2.17)

and
( −1
V2r

)
= −1 by (2.6). So, the above is impossible. Assume now that

M ≡ 1, 3 (mod 8) and also Q ≡ 1, 5 (mod 8). If we write n = 4q + 1 =
4(q + 1)− 3 = 2 · 2ra− 3 with a odd and r ≥ 1, then by Theorem 2.1,

7kx2 = Vn = V2·2ra−3 ≡ Q2ra−3P (P 2 + 3Q) (mod V2r),

implying that

7x2 ≡ Q2ra−3M(P 2 + 3Q) (mod V2r).

This shows that

1 =

(
7

V2r

)(
M

V2r

)(
Q

V2r

)(
P 2 + 3Q

V2r

)
.

But this is impossible since
(

7
V2r

)(
M
V2r

)
= −1,

( Q
V2r

)
= 1, and

(P 2+3Q
V2r

)
= 1

by (2.17), (2.12), and (2.13).
Now assume that Q ≡ 3, 7 (mod 8). Let n = 4q+1 and 3 | q. Then q = 3t

for some t > 0 and therefore n = 12t+ 1. Thus,

7kx2 = Vn = V12t+1 = V2·6t+1 ≡ V1 ≡ P (mod 8),
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implying that
7x2 ≡M (mod 8).

Since M ≡ 1, 3 (mod 8), the above congruence becomes 7x2 ≡ 1, 3 (mod 8),
which is impossible.

Let n = 4q + 1 and 3 - q. Then either n = 12t + 5 or n = 12t + 9 for
some t ≥ 0. Assume that n = 12t + 5 and Q ≡ 7 (mod 8). Hence, we have
7kx2 = Vn = V12t+5 ≡ V5 (mod 8) by (2.11). Using the fact that P = kM
and M ≡ 1, 3 (mod 8), we readily obtain

7x2 ≡ 6 + 5Q (mod 8) or 7x2 ≡ 2 + 7Q (mod 8).

However, both the congruences above are impossible since Q ≡ 7 (mod 8).
Now assume that n = 12t + 5 and Q ≡ 3 (mod 8). If we write n =

12t+ 5 = 2 · 2r · a+ 5 with a odd and r ≥ 1, then we get

7kx2 = V12t+5 = V2·2r·a+5 ≡ −Q2raV5 (mod V2r),

which implies
x2 ≡ −7Q2r·aMA (mod V2r),

where A = P 4 + 5P 2Q+ 5Q2. This shows that

1 =

(
−1

V2r

)(
7

V2r

)(
M

V2r

)(
A

V2r

)
.

But this is impossible since
( −1
V2r

)
= −1,

(
7

V2r

)(
M
V2r

)
= −1, and

(
A
V2r

)
= −1

by (2.6), (2.17), and (2.20), respectively.
Now assume that n = 12t+ 9 and Q ≡ 3, 7 (mod 8). Then by (2.11), we

immediately have Vn = V12t+9 ≡ V9 ≡ 2P, 6P (mod 8), i.e., 7kx2 ≡ 2P, 6P
(mod 8), which implies 7x2 ≡ 2M, 6M (mod 8). Since M ≡ 1, 3 (mod 8),
we get x2 ≡ 2, 6 (mod 8), which is impossible.

Now let n = 4q+3. Assume that Q ≡ 1, 5 (mod 8). Writing n = 4q+3 =
2 · 2ra+ 3 with a odd and r ≥ 1, we get

7kx2 = Vn = V2·2ra+3 ≡ −Q2raV3 (mod V2r),

that is,
7x2 ≡ −Q2raM(P 2 + 3Q) (mod V2r)

by (2.9). This shows that

1 =

(
−1

V2r

)(
7

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
.

Assume that M ≡ 5, 7 (mod 8). Since Q ≡ 1, 5 (mod 8), it follows from
(2.6), (2.17), and (2.13) that

1 =

(
−1

V2r

)(
7

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
= (−1)(1)(1) = −1,

a contradiction.
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Now assume that M ≡ 1, 3 (mod 8). Putting n = 4q+3 = 4(q+1)−1 = 2·
2ra−1 with a odd and r ≥ 1 and using (2.1) and (2.9) gives 7x2 ≡ Q2ra−1M
(mod V2r), implying that 1 =

(7QM
V2r

)
. Since Q ≡ 1, 5 (mod 8), it follows from

(2.12) and (2.17) that

1 =

(
Q

V2r

)(
7

V2r

)(
M

V2r

)
= (1)(−1) = −1,

a contradiction.
Now assume that Q ≡ 3, 7 (mod 8). If Q ≡ 7 (mod 8), then it can be

easily seen by (2.11) that 7kx2 = Vn ≡ 6P, P (mod 8), which implies that
x2 ≡ 2M, 7M (mod 8). But this congruence does not hold for M ≡ 1, 3, 5
(mod 8). If Q ≡ 3 (mod 8) and n 6≡ 5 (mod 6), then again we have x2 ≡
6M, 7M (mod 8), which is also impossible for M ≡ 1, 3, 5 (mod 8). So, we
have M ≡ 7 (mod 8). Writing n = 4q+ 3 = 2 ·2ra+ 3 with a odd and r ≥ 1,
we readily see by (2.9) that

7kx2 = V4q+3 = V2·2ra+3 ≡ −Q2raV3 (mod V2r),

which implies
7x2 ≡ −Q2raM(P 2 + 3Q) (mod V2r).

This shows that

1 =

(
−7M(P 2 + 3Q)

V2r

)
.

This is impossible for r ≥ 2, since

1 =

(
−1

V2r

)(
7

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
= (−1)(1)(1) = −1

by (2.6), (2.17), and (2.13).
Now assume that r = 1. Then n = 4a + 3 with a odd. Writing n =

4(a+ 1)− 1 = 2 · 2tu− 1 with 2 - u and t ≥ 2, by (2.9) we have

7kx2 = Vn = V2·2tu−1 ≡ Q2tu−2PQ (mod V2t),

that is,
7x2 ≡ Q2tu−2QM (mod V2t).

However, this is also impossible since

1 =

(
Q

V2t

)(
7

V2t

)(
M

V2t

)
= (−1)(1) = −1

by (2.12) and (2.17).
Lastly, let Q ≡ 3 (mod 8) and n = 6a + 5 for some a > 0. Then either

n = 12t+5 for some t > 0 or n = 12t+11 for some t ≥ 0. Hence by (2.11), we
get 7kx2 = Vn ≡ V5, V11 ≡ 5P (mod 8), i.e., x2 ≡ 3M (mod 8), which shows
that M ≡ 3 (mod 8). Assume that n = 12t+ 5. Then setting n = 12t+ 5 =
2 · 2rb + 5 with b odd and r ≥ 1 gives 7kx2 = Vn ≡ −Q2rbV5 (mod V2r) by
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(2.9) and thus we immediately obtain 7x2 ≡ −Q2rbMA (mod V2r), where
A = P 4 + 5P 2Q+ 5Q2. This shows that

1 =

(
−7MA

V2r

)
.

However, this is impossible since

1 =

(
−1

V2r

)(
7

V2r

)(
M

V2r

)(
A

V2r

)
= (−1)(−1)(−1) = −1

by (2.6), (2.17), and (2.20).
Assume that n = 12t+ 11. We can write n = 4c+ 3 for some c > 0. If c

is odd, then n = 4(c+ 1)− 1 = 8b− 1 for some b > 0. Then by (2.9),

7kx2 = Vn = V8b−1 ≡ −Q4b−1V1 (mod V2),

that is,
7x2 ≡ −Q4b−2QM (mod V2).

This gives

1 =

(
−7QM

V2

)
.

But this is impossible since
(−1
V2

)
= −1 by (2.6),

(
7
V2

)(
M
V2

)
= −1 by (2.17),

and
( Q
P 2+2Q

)
= (−1)

(P 2+2Q
Q

)
= −1.

Now assume that c is even, c = 2rb, r ≥ 1 and b is odd, say. Then
n = 2 · 2r+1b+ 3. If r ≥ 2, then by (2.9),

7kx2 = Vn = V2·2r+1b+3 ≡ Q2r+1bV3 (mod V2r),

implying that

7x2 = Q2r+1bM(P 2 + 3Q) (mod V2r).

But this is also impossible since
(

7
V2r

)(
M
V2r

)
= −1 by (2.17) and

(P 2+3Q
V2r

)
= 1

by (2.13).
Lastly, assume that r = 1. Then n = 8b + 3 with b odd. Writing n =

8(b+ 1)− 5 = 2 · 2su− 5 with 2 - u and s ≥ 3, by (2.9), we have

7kx2 = Vn = V2·2su−5 ≡ Q2su−5V5 (mod V2s),

that is,
7x2 ≡ Q2su−5MA (mod V2s),

where A = P 4 + 5P 2Q+ 5Q2. This shows that

1 =

(
7

V2s

)(
M

V2s

)(
Q

V2s

)(
A

V2s

)
.

But this is impossible since
(

7
V2s

)(
M
V2s

)
= −1 by (2.17),

( Q
V2s

)
= −1 by

(2.12), and
(

A
V2s

)
= −1 by (2.20). Hence, we obtain a = 0 and therefore

n = 5.
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Case II: Let 7 - P. Since 7 |Vn, it follows from Lemma 2.6 that n =
12q+ 3 for some q > 0 or n = 12q+ 9 for some q ≥ 0. The remainder of the
proof is split into two subcases.

Subcase II(i): Assume that
( Q
M

)
= −1. Then by (2.5), we have

7kx2 = Vn ≡ −Q6q+1P or Q6q+4P (mod P 2 + 4Q),

that is,

7x2 ≡ −Q6q+1M or Q6q+4M (mod P 2 + 4Q).

This shows that

1 =

(
−7QM

P 2 + 4Q

)
or 1 =

(
7M

P 2 + 4Q

)
.

A simple calculation shows that
(

7
P 2+4Q

)
=
(P 2+4Q

7

)
=
(
2
7

)
or
(
4
7

)
. This

leads to
(

7
P 2+4Q

)
= 1. On the other hand, we easily see that

( −1
P 2+4Q

)
= 1,( Q

P 2+4Q

)
=
(P 2+4Q

Q

)
=
(
P 2

Q

)
= 1, and

(
M

P 2+4Q

)
=
(P 2+4Q

M

)
=
( Q
M

)
= −1.

Hence, we have a contradiction in both cases above.

Subcase II(ii): Assume that
( Q
M

)
= 1. If n = 12q + 3, then by (2.11),

7kx2 = Vn = V12q+3 ≡ V3 (mod 8).

Assume that Q ≡ 3, 7 (mod 8). Then the congruence above becomes

7x2 ≡ 2M, 6M (mod 8),

implying that

x2 ≡ 2M, 6M (mod 8).

But this is impossible for any values of M ≡ 1, 3, 5, 7 (mod 8). Thus Q ≡ 1, 5
(mod 8). In addition, assume that M ≡ 1, 3 (mod 8). Writing n = 12q+3 =
2 · 2ra+ 3 with a odd and r ≥ 1, we get

7kx2 = Vn = V2·2ra+3 ≡ −Q2raP (P 2 + 3Q) (mod V2r),

that is,

7x2 ≡ −Q2raM(P 2 + 3Q) (mod V2r).

This shows that

1 =

(
−1

V2r

)(
7

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
.

But this is impossible since
( −1
V2r

)
= −1,

(
7

V2r

)(
M
V2r

)
= 1, and

(P 2+3Q
V2r

)
= 1

by (2.6), (2.19), and (2.13), respectively.
Now assume that M ≡ 5, 7 (mod 8). On the other hand, suppose n =

12q + 3 and 2 | q. Then n = 24t+ 3 for some t > 0. By (2.9) this gives

7kx2 = Vn = V24t+3 ≡ Q12tV3 (mod V2),
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that is,
7x2 ≡ Q12tM(P 2 + 3Q) (mod V2).

As a consequence,

1 =

(
7

V2

)(
M

V2

)(
P 2 + 3Q

V2

)
.

But this is impossible since
(

7
V2

)(
M
V2

)
= −1 and

(P 2+3Q
V2

)
=
( Q
V2

)
= 1 by

(2.19) and (2.12), respectively.
Now suppose 2 - q. Then n = 24t+ 15. We can write n = 8c− 1 for some

c > 0. Setting n = 8c− 1 = 2 · 2ra− 1 with 2 - a and r ≥ 2, we get

7kx2 = Vn = V2·2ra−1 ≡ Q2ra−1P (mod V2r)

by (2.1) and (2.9). This implies that

7x2 ≡ Q2ra−2QM (mod V2r).

However, this is impossible since
(

7
V2r

)(
M
V2r

)
= −1 by (2.19) and

( Q
V2r

)
= 1

by (2.12).
Now assume that n = 12q + 9. If Q ≡ 3, 7 (mod 8), then V9 ≡ 2P, 6P

(mod 8) and therefore 7kx2 = Vn = V12q+9 ≡ V9 ≡ 2P, 6P (mod 8) by
(2.11), implying that 7x2 ≡ 2M, 6M (mod 8). This is impossible for any
M ≡ 1, 3, 5, 7 (mod 8). Hence, Q ≡ 1, 5 (mod 8). We also assume that
M ≡ 1, 3 (mod 8). Set n = 12q + 9 = 4c+ 1 for some c > 0.

If c is odd, then n = 4(c+ 1)− 3 = 8b− 3 for some b > 0. Then by (2.1)
and (2.9),

7kx2 = Vn = V8b−3 ≡ −Q4b−3P (P 2 + 3Q) (mod V2),

that is,
7x2 ≡ −Q4b−4Q2M (mod V2).

This shows that

1 =

(
−1

V2

)(
7

V2

)(
M

V2

)
.

But this is impossible since
(−1
V2

)
= −1 and

(
7
V2

)(
M
V2

)
= 1 by (2.6) and

(2.19), respectively.
Now assume that c is even. Since n = 4c+ 1, it follows that n = 8b+ 1

for some b > 0 and writing n = 8b+ 1 = 2 · 2ra+ 1 with 2 - a and r ≥ 2, we
get

7kx2 = Vn = V2·2ra+1 ≡ −Q2raV1 (mod V2r)

by (2.9). This implies that

7x2 ≡ −Q2raM (mod V2r).

But this is also impossible since
(

7
V2r

)(
M
V2r

)
= 1 by (2.19) and

( −1
V2r

)
= −1

(2.6).
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Assume now that M ≡ 5, 7 (mod 8). Let q be even for the case of
n = 12q + 9. Then using (2.9), we readily obtain

7kx2 = Vn = V12q+9 ≡ Q6qV9 (mod V2),

that is,

7x2 ≡ Q6qMB(P 2 + 3Q) (mod V2),

where B = P 6 + 6P 4Q+ 9P 2Q2 + 3Q3. This means that

1 =

(
7

V2

)(
M

V2

)(
P 2 + 3Q

V2

)(
B

V2

)
.

However, this is impossible since
(

7
V2

)(
M
V2

)
= −1 by (2.19),

(P 2+3Q
V2

)
=( Q

V2

)
= 1 and

(
B
V2

)
=
(Q3

V2

)
=
( Q
V2

)
= 1 by (2.12). So, q is odd, q = 2t + 1,

say. Therefore n = 24t+ 21 = 8(3t+ 3)− 3 = 8b− 3 = 2 · 2ra− 3 with 2 - a
and r ≥ 2. By (2.1) and (2.9), we readily obtain

7kx2 = Vn = V2·2ra−3 ≡ Q4b−3P (P 2 + 3Q) (mod V2r),

that is,

7x2 ≡ Q4b−4QM(P 2 + 3Q) (mod V2r).

However, this is also impossible since
(

7
V2r

)(
M
V2r

)
= −1,

( Q
V2r

)
= 1, and(P 2+3Q

V2r

)
= 1 by (2.19), (2.12), and (2.13), respectively.

This completes the proof of Theorem 3.1.

Corollary 3.2. If Vn = 21x2 for some integer x, then n = 1, 3, or 5.

Proof. Let 3 |P. Then by Theorem 3.1, we have n = 1, 3, or 5.

Now, let 3 - P. Assume that 7 |P. Since 7 |Vn, it follows from Lemma
2.6 that n is odd. On the other hand, since 3 |Vn and 3 - P, it follows from
Lemma 2.5 that n ≡ 2 (mod 4), a contradiction.

Assume that 7 - P. Since 3 |Vn and 7 |Vn, it follows from Lemmas 2.5 and
2.6 that n ≡ 2 (mod 4). Writing n = 12q + 2, n = 12q + 6, or n = 12q + 10
gives immediately, by (2.11),

(3.1) 21x2 = Vn ≡ V2, V6, V10 (mod 8),

respectively. A simple calculation shows that V2 ≡ 3 (mod 8), V6 ≡ 2
(mod 8), and V10 ≡ 3 (mod 8) when Q ≡ 1, 5 (mod 8) and V2 ≡ 7 (mod 8),
V6 ≡ 2 (mod 8), and V10 ≡ 7 (mod 8) when Q ≡ 3, 7 (mod 8). Thus, (3.1)
implies

21x2 ≡ 2, 3, 7 (mod 8),

that is,

x2 ≡ 2, 3, 7 (mod 8),

which is impossible.
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