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CONDITIONAL DIFFERENTIAL EQUATIONS

Abstract. We introduce and study conditional differential equations,
a kind of random differential equations. We give necessary and sufficient
conditions for the existence of a solution of such an equation. We apply our
main result to a Malthus type model.

1. Introduction. In this paper we introduce the definition of condi-
tional differential equations, a random version of ordinary differential equa-
tions. We obtain necessary and sufficient conditions for the existence of a
solution of such equations. We can use them to describe various phenomena.
We give an example of an application of our results to a model of Malthu-
sian growth of a population size. Results that we obtain using conditional
differential equations are similar to those obtained by using more advanced
methods [1], [2], [4].

2. Preliminaries. We use the following notation throughout our paper.
Let R+ denote the set of positive real numbers and let N denote the set
of positive integers. For n ∈ N and real numbers a1, . . . , an, b1, . . . , bn such
that ai < bi for i = 1, . . . , n, the set K = [a1, b1] × · · · × [an, bn] is called a
cuboid. We write x = (x1, . . . , xn) for vectors in Rn. For n ∈ N, x,y ∈ Rn,
we denote by ‖x‖Rn , ‖(x,y)‖R2n the usual norms of x and (x,y) in Rn and
R2n respectively. For a fixed n ∈ N, we denote by Ln the family of Lebesgue
measurable sets included in Rn, and by µ the Lebesgue measure defined
on Ln.
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3. Conditional differential equations. Now we are going to define
conditional differential equations which will be considered in this paper.

Fix a, b ∈ R and n ∈ N, and suppose 0 ∈ (a, b). Let

D = {J = (α, β) : α, β ∈ [a, b] and α < β}.

For J ∈ D, let GJ denote the set of all functions ω : J → Rn which have
continuous first and second derivatives on J and satisfy

lim
t→α+

‖(ω(t), ω′(t))‖R2n =∞ if α 6= a,

lim
t→β−

‖(ω(t), ω′(t))‖R2n =∞ if β 6= b.

Throughout this paper, we consider the sets

Ω =
⋃
J∈D

GJ and Ωt =
⋃

{J∈D : t∈J}

{ω ∈ Ω : dom(w) = J} for t ∈ (a, b).

Let A ∈ L2n and t, t1 ∈ (a, b). We define

At = {ω ∈ Ω : (ω(t), ω′(t)) ∈ A} and At,t1 = Ωt ∩At1 .

Let Σ denote the σ-field generated by the family of sets {At : A ∈ L2n,
t ∈ (a, b)}. Let Σt denote the σ-field generated by the family of sets {At,t1 :
t1 ∈ (a, b), A ∈ L2n}.

Notice that Σt ⊂ Σ for every t ∈ (a, b). Let ν be a measure on the mea-
surable space (Ω,Σ). Suppose that ν(Ωt) = 1 for every t ∈ (a, b). Given such
a measure ν we define random vectors Xt, Yt, Wt,∆t on the space (Ωt, Σt, ν)
in the following way:

Xt = (X1t, . . . , Xnt), Xit(ω) = ωi(t) for ω ∈ Ωt, i = 1, . . . , n,

Yt = (Y1t, . . . , Ynt), Yit(ω) = ω′i(t) for ω ∈ Ωt, i = 1, . . . , n,

and

Wt,∆t = (X1t + ∆tY1t, . . . , Xnt + ∆tYnt) = (W1,t,∆t, . . . ,Wn,t,∆t), ∆t ∈ R.

Let M0 be the family of measures ν on (Ω,Σ) satisfying the following
conditions:

(a) ν(Ωt) = 1 for any t ∈ (a, b),
(b) the vector (X1t, . . . , Xnt) has the joint probability density function

%Xt continuous in Rn, for any t ∈ (a, b),
(c) the vector (X1t, . . . , Xnt, Y1t, . . . , Ynt) has the joint probability den-

sity function %Xt,Yt continuous in R2n, for any t ∈ (a, b),
(d) for any t ∈ (a, b) and ∆t ∈ R, the vector (W1,t,∆t, . . . ,Wn,t,∆t) has

the joint probability density function %Wt,∆t
continuous in Rn.
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For a fixed ν ∈ M0, we define

c : Rn × (a, b)→ R, c(x, t) = %Xt(x),

d : Rn × Rn × (a, b)→ R, d(x,y, t) = %Xt,Yt(x,y),

w : Rn × (a, b)× R→ R+, w(x, t,∆t) = %Wt,∆t
(x),

for x,y ∈ Rn, t ∈ (a, b) and ∆t ∈ R. Notice that the functions c, d, w
are uniquely determined by the measure ν because ν determines the density
functions %Xt , %Xt,Yt , %Wt,∆t

, for each t ∈ (a, b).
Let M denote the subset of M0 consisting of all ν ∈ M0 such that

(1a) c(x, t) > 0 for all x ∈ Rn and t ∈ (a, b),
(2a) c is of class C1 on Rn × (a, b),
(3a) there exists a ∈ R+ such that c(x, t) ≤ a, ∂c∂t (x, t) ≤ a and ∂c

∂xi
(x, t)

≤ a for i = 1, . . . , n and (x, t) ∈ Rn × (a, b),

(4a) lim
∆t→0

c(x, t+ ∆t)− w(x, t,∆t)

∆t
= 0 for all x ∈ Rn and t ∈ (a, b).

For each fixed ν ∈ M, t ∈ (a, b) and x ∈ Rn, we denote by fYt(y |Xt = x)
the conditional probability density function of Yt given Xt = x.

Let p : Rn × Rn × (a, b)→ R satisfy:

(1b) p(y,x, t) > 0 for all x,y ∈ Rn and t ∈ (a, b),
(2b)

	
Rn p(y,x, t) dµ(y) = 1 for all x ∈ Rn and t ∈ (a, b).

Let %0 : Rn → R satisfy:

(1c) %0(x) > 0 for any x ∈ Rn,
(2c)

	
Rn %0(x) dµ(x) = 1,

(3c) %0 is of class C1 on Rn,
(4c) there exists a ∈ R+ such that %0(x) < a and ∂%0

∂xi
(x) < a for all

x ∈ Rn and i = 1, . . . , n.

Our aim is to find a measure ν ∈ M such that

fYt(y|Xt = x) = p(y,x, t) for all x,y ∈ Rn and t ∈ (a, b),(Ia)
c(x, 0) = %0(x) for every x ∈ Rn.(Ib)

Equation (Ia) is called a conditional differential equation with the initial
condition (Ib). Each measure ν ∈ M for which conditions (Ia) and (Ib) are
fulfilled is called a solution of (Ia) with the initial condition (Ib).

The solution measure ν may not be a probability measure on the whole
space (Ω,Σ), but ν(Ωt) = 1 for all t ∈ (a, b). Therefore ν defines a proba-
bility measure Pt on (Ωt, Σt) for each fixed t ∈ (a, b).

In the remaining part of our paper we additionally assume that

(3b) p is of class C2 on Rn × Rn × (a, b),
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(4b) for every fixed cuboid K ⊂ Rn and t ∈ (a, b), there exist a suffi-
ciently small closed interval L and an integrable function g :
Rn → R+ such that 0 ∈ L,

	
Rn g dµ(y) < ∞, and for all x ∈ K,

∆t ∈ L, y ∈ Rn, i = 1, . . . , n, we have
(i) |yip(y,x−∆ty, t)| ≤ g(y),
(ii)

∣∣yi ∂p∂xi (y,x−∆ty, t)
∣∣ ≤ g(y).

For i = 1, . . . , n, define Ei : Rn × (a, b)→ R by

Ei(x, t) =
�

Rn

yip(y,x, t) dµ(y) for x ∈ Rn and t ∈ (a, b).

Notice that it follows from (4b) that |Ei(x, t)| <∞ for all x ∈ Rn, t ∈ (a, b)
and i = 1, . . . , n. Moreover,

(5b) each Ei is of class C1 on Rn × (a, b).

4. Main result. We give a necessary condition for the existence of a
solution of some conditional equation.

Theorem 1. Let p : Rn × Rn × (a, b)→ R satisfy conditions (1b)–(5b),
and let %0 : Rn → R satisfy conditions (1c)–(4c). Assume that the condi-
tional differential equation (Ia) with the initial condition (Ib) has a solution
ν ∈ M (so conditions (a)–(d) and (1a)–(4a) are fulfilled). Then the functions
c and Ei, i = 1, . . . , n, determined by the measure ν as in Section 3 satisfy
the equation

(Ic)
∂c

∂t
+

n∑
i=1

∂(cEi)

∂xi
= 0 with the initial condition c(x, 0) = %0(x),

where x ∈ Rn and t ∈ (a, b).

Proof. Let c, d and w be defined from ν (as in Section 3). Using known
formulas for the density function of a random variable we obtain

w(x, t,∆t) =
�

Rn

d(x−∆ty,y, t) dµ(y)

for x ∈ Rn and t, t+ ∆t ∈ (a, b). Since ν ∈ M condition (4a) is satisfied. We
will show that under our assumptions this condition is equivalent to (Ic).
For x ∈ Rn and t, t+ ∆t ∈ (a, b), we have

c(x, t+ ∆t)− w(x, t,∆t) = c(x, t+ ∆t)−
�

Rn

d(x−∆ty,y, t) dµ(y).
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By the Taylor formula we obtain

c(x, t+ ∆t)− w(x, t,∆t)

= c(x, t) +
∂c

∂t
(x, t)∆t+

(
∂c

∂t
(x, t+ θ1,x)− ∂c

∂t
(x, t)

)
∆t

−
�

Rn

(
d(x,y, t) +

n∑
i=1

∂d

∂xi
(x,y, t)(−yi∆t)

)
dµ(y)

−
�

Rn

( n∑
i=1

(
∂d

∂xi
(x− θ2,yy,y, t)−

∂d

∂xi
(x,y, t)

)
(−yi∆t)

)
dµ(y),

where θ1,x, θ2,y are between 0 and ∆t. Hence

c(x, t+ ∆t)− w(x, t,∆t) = c(x, t) +
∂c

∂t
(x, t)∆t

+

(
∂c

∂t
(x, t+ θ1,x)− ∂c

∂t
(x, t)

)
∆t− c(x, t) +

n∑
i=1

�

Rn

yi
∂d

∂xi
(x,y, t)∆t dµ(y)

+
n∑
i=1

�

Rn

yi

(
∂d

∂xi
(x− θ2,yy,y, t)−

∂d

∂xi
(x,y, t)

)
∆t dµ(y).

From condition (2a), we obtain

lim
∆t→0

(
∂c
∂t (x, t+ θ1,x)− ∂c

∂t (x, t)
)
∆t

∆t
= 0.

Moreover, using conditions (2a), (3a), (3b), (4b) and taking into account
that d(x,y, t) = c(x, t)p(y,x, t), we get

lim
∆t→0

�

Rn

yi
(
∂d
∂xi

(x− θ2,yy,y, t)− ∂d
∂xi

(x,y, t)
)
∆t

∆t
dµ(y)

=
�

Rn

lim
∆t→0

(
yi

(
∂d

∂xi
(x− θ2,yy,y, t)−

∂d

∂xi
(x,y, t)

))
dµ(y) = 0

for i = 1, . . . , n. Thus

lim
∆t→0

c(x, t+ ∆t)− w(x, t,∆t)

∆t
=
∂c

∂t
(x, t) +

n∑
i=1

�

Rn

yi
∂d

∂xi
(x,y, t) dµ(y).

Now, using conditions (2a), (3a), (3b), (4b), (5b) and again taking into ac-
count that d(x,y, t) = c(x, t)p(y,x, t), we get

∂c

∂t
(x, t) +

n∑
i=1

�

Rn

yi
∂d

∂xi
(x,y, t) dµ(y)

=
∂c

∂t
(x, t) +

n∑
i=1

∂

∂xi

( �

Rn

yid(x,y, t) dµ(y)
)
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=
∂c

∂t
(x, t) +

n∑
i=1

∂

∂xi

( �

Rn

yic(x, t)p(y,x, t) dµ(y)
)

=
∂c

∂t
(x, t) +

n∑
i=1

∂

∂xi

(
c(x, t)

�

Rn

yip(y,x, t) dµ(y)
)

=
∂c

∂t
(x, t) +

n∑
i=1

∂

∂xi
(c(x, t)Ei(x, t)).

Theorem 1 is proved.

The next theorem gives sufficient conditions for the existence of a solution
of a conditional differential equation.

Theorem 2. Suppose that the functions p = p(y,x, t) and Ei = Ei(x, t)
satisfy conditions (1b)–(5b). Suppose that %0 = %0(x), x ∈ Rn, satisfies
conditions (1c)–(4c). Moreover, suppose that (Ic) has exactly one solution
c = c(x, t) for (x, t) ∈ Rn × (a, b). Assume that the function c satisfies
conditions (1a)–(3a), and additionally:

(5a)
	
Rn c(x, t) dµ(x) = 1 for all t ∈ (a, b),

(6a) c is of class C2 in Rn × (a, b).

Then the conditional differential equation (Ia) with the initial condition (Ib)
has a solution ν ∈ M.

In the proof of Theorem 2, we construct a measure ν ∈ M which is a
solution of the conditional differential equation. Our proof is based on [3,
Theorem 2] and on the following lemma.

Lemma 1. Under the notation and assumptions of Theorem 2, let d =
d(x,y, t) = p(y,x, t)c(x, t) for x,y ∈ Rn and t ∈ (a, b). Then there exist
functions F1, . . . , Fn : Rn × Rn × (a, b) → R such that F1, . . . , Fn−1 are of
class C2, Fn is of class C1 on Rn × Rn × (a, b) and

(IIc)
∂d

∂t
+

n∑
i=1

∂

∂xi
(dyi) +

n∑
i=1

∂

∂yi
(dFi) = 0

for all x,y ∈ Rn and t ∈ (a, b).

Proof. Fix any functions F1, . . . , Fn−1 : Rn×Rn× (a, b)→ R of class C2.
Our aim is to construct a function Fn such that F1, . . . , Fn satisfy the
assertion of Lemma 1. Let us consider equation (IIc) with our functions
F1, . . . , Fn−1 as parameters and the unknown function Fn. It follows from
(IIc) that
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Fn(x,y, t) = −1

d

( yn�

0

(
∂d

∂t
(u) +

n∑
i=1

∂(dyi)

∂xi
(u) +

n−1∑
i=1

∂(dFi)

∂yi
(u)

)
dξ

)
+

1

d
η(x1, . . . , xn, y1, . . . , yn−1, t),

where u = (x1, . . . , xn, y1, . . . , yn−1, ξ, t) for fixed x,y ∈ Rn, t ∈ (a, b) and
η : R2n−1 × (a, b) → R is a fixed function of class C1. The assumptions
on F1, . . . , Fn−1 and p, c, η guarantee that Fn is of class C1. Moreover,
F1, . . . , Fn satisfy (IIc).

Proof of Theorem 2. We are looking for a measure ν ∈ M such that

%Xt,Yt(x,y) = d(x,y, t) = p(y,x, t)c(x, t) for t ∈ (a, b) and x,y ∈ Rn.
Let F1, . . . , Fn : Rn × Rn × (a, b) → R be as in Lemma 1. In particular all
these functions are of class C1 and satisfy (IIc) for x,y ∈ Rn and t ∈ (a, b).
Then the function d is a local integral invariant of the system of differential
equations

(Id) x′1 = y1, . . . , x
′
n = yn, y′1 = F1, . . . , y

′
n = Fn

(cf. [3, Theorem 2]). Denote by C the set of all saturated solutions of (Id)
(i.e. solutions which have no non-trivial extension). Notice that for ω̃ ∈ C,
we have ω̃(t) = (ω(t), ω′(t)) for any ω ∈ Ω, ω : J → Rn and t ∈ J . Let

C = {ω ∈ Ω : ω̃ ∈ C}.
For t0 ∈ (a, b) and x0,y0 ∈ Rn, we denote by ω̃x0,y0,t0 the function ω̃ ∈ C
such that ω̃(t0) = (x0,y0). Let A ∈ L2n. We denote

(A)t = {ω ∈ Ω : ω̃ ∈ C, ω̃(t) ∈ A}.
Let

D = {(A)t : A ∈ L2n, t ∈ (a, b)} ∪ {Ω \ C}.
Define ρ : D→ R by

ρ((A)t) =
�

A

d(x,y, t) dµ(x,y) and ρ(Ω \ C) = 0.

Notice that ρ((A1)t1) = ρ((A2)t2) for A1, A2 ∈ L2n and t1, t2 ∈ (a, b) such
that (A1)t1 = (A2)t2 (cf. [3, Theorem 1]). So, our definition is correct.

Let E ⊂ Ω and S={
⋃
k∈N(Ak)tk : (Ak)tk ∈ D, k ∈ N, E ⊂

⋃
k∈N(Ak)tk}.

We define ν(E) = inf
∑

k ρ((Ak)tk), where the infimum is taken over the
family S of all finite and countable covers of E. It is well known that ν
is an outer measure. Now, we are going to show that the set At0 ∈ Σ is
ν-measurable for any fixed A ∈ L2n and t0 ∈ (a, b). We want to prove that

ν(At0 ∩ E) + ν(A′t0 ∩ E) ≤ ν(E)

for every set E ⊂ Ω and for A′t0 = Ω \At0 . If ν(E) =∞ then our inequality
is satisfied.
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Suppose that ν(E) <∞, E ⊂
⋃
k(Ak)tk∪(Ω\C) and

∑
k ρ((Ak)tk) <∞,

where (Ak)tk ∈ D for k ∈ N, tk ∈ (a, b) and Ak ∈ L2n. Let (Ak)tk =
(Bk)tk ∪ (Dk)tk for a fixed k ∈ N and Bk, Dk ∈ L2n, (Bk)tk = At0 ∩ (Ak)tk
and (Dk)tk = A′t0 ∩ (Ak)tk .

First we show that such sets Bk, Dk ∈ L2n exist. Let Uk be an open set
in R2n such that (x0,y0) ∈ Uk if tk ∈ J for ω̃x0,y0,t0 ∈ C and ω̃x0,y0,t0 :
J → R2n. Let ϕk : Uk → R2n be given by ϕk(x0,y0) = ω̃x0,y0,t0(tk) for
(x0,y0) ∈ Uk. Under our assumptions about the system (Id), the function
ϕk locally satisfies the Lipschitz condition. So, ϕk(A ∩ Uk) ∈ L2n. Let Bk =
ϕk(A∩Uk)∩Ak. Hence, Bk ∈ L2n and (Bk)tk = At0 ∩ (Ak)tk ∈ D. Moreover,
Dk ∈ L2n and (Dk)tk = A′t0 ∩ (Ak)tk ∈ D for Dk = Ak \Bk.

Now for k ∈ N, we have ρ((Ak)tk) = ρ((Bk)tk) + ρ((Dk)tk), At0 ∩ E ⊂⋃
k(Bk)tk ∪ (Ω \ C) and A′t0 ∩ E ⊂

⋃
k(Dk)tk ∪ (Ω \ C). Thus, we ob-

tain

ν(At0 ∩ E) + ν(A′t0 ∩ E) ≤
∑
k

ρ((Bk)tk) +
∑
k

ρ((Dk)tk) =
∑
k

ρ((Ak)tk)

and hence
ν(At0 ∩ E) + ν(A′t0 ∩ E) ≤ ν(E).

So, the set At0 is measurable with respect to ν.
Let ν be the measure on the σ-field Σ such that ν(A) = ν(A) for all

A ∈ Σ. The next step is to show that

ν(At) =
�

A

d(x,y, t) dµ(x,y) for t ∈ (a, b) and A ∈ L2n.

Note that (A)t0 ∈ D and ρ((A)t0)=
	
A d(x,y, t0) dµ(x,y) for fixed t0 ∈ (a, b)

and A ∈ L2n. Thus, ν(At0) ≤
	
A d(x,y, t0)dµ(x,y). Let sets (Ak)tk ∈ D, for

Ak ∈ L2n, k ∈ N and tk ∈ (a, b), be such that At ⊂
⋃
k(Ak)tk ∪ (Ω \ C).

Reasoning as previously, we obtain At0 ∩ (Ak)tk = (Bk)tk ∈ D for a set
Bk ⊂ Ak with Bk ∈ L2n. Let Vk be an open set in R2n such that (x0,y0) ∈ Vk
if t0 ∈ J for ω̃x0,y0,tk ∈ C and ω̃x0,y0,tk : J → R. Define ϕ1,k : Vk → R2n by
ϕ1,k(x0,y0) = ω̃x0,y0,tk(t0) for (x0,y0) ∈ Vk, k ∈ N and ω̃x0,y0,tk ∈ C. The
functions ϕ1,k, k∈N, locally satisfy the Lipschitz condition, so ϕ1,k(Bk)∈L2n

for k ∈ N. Moreover,
�

ϕ1,k(Bk)

d(x,y, t0) dµ(x,y) =
�

Bk

d(x,y, tk) dµ(x,y)

because d is a local integral invariant of the system (Id). Notice that At0 ⊂⋃
k(Bk)tk ∪ (Ω \ C) and (Bk)tk = (ϕ1,k(Bk))t0 for k ∈ N. So, At0 ⊂⋃
k(ϕ1,k(Bk))t0 ∪ (Ω \ C) and A ⊂

⋃
k ϕ1,k(Bk). Thus
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�

A

d(x,y, t0) dµ(x,y) ≤
∑
k

�

ϕ1,k(Bk)

d(x,y, t0) dµ(x,y)

=
∑
k

�

Bk

d(x,y, tk) dµ(x,y) ≤
∑
k

�

Ak

d(x,y, tk) dµ(x,y)

=
∑
k

ρ((Ak)tk),

and hence
	
A d(x,y, t0) ≤ ν(At0). So, ν(At) =

	
A d(x,y, t) dµ(x,y) for

A ∈ L2n and t ∈ (a, b). Hence, %Xt,Yt(x,y) = d(x,y, t) for t ∈ (a, b)
and x,y ∈ Rn. For the measure ν we have %Xt,Yt(x,y) = d(x,y, t) =
p(y,x, t)c(x, t), %Xt(x) = c(x, t) and w(x, t,∆t) =

	
Rn d(x−∆ty,y, t) dµ(y),

for x,y ∈ Rn and t, t + ∆t ∈ (a, b). Therefore it follows from conditions
(1b)–(5b) and (1c)–(4c) that the measure ν fulfills conditions (a)–(d) in the
definition of the family M. Moreover, by our assumptions equation (Ic) is
equivalent to condition (4a), so ν ∈ M.

The measure ν given in the proof of Theorem 2 is not unique. So, the
conditional differential equation does not have a unique solution. However,
using Theorems 1 and 2 we can uniquely determine the functions %Xt for
t ∈ (a, b). In some situations this may be sufficient: see the example in the
next section. It should be emphasized that conditional differential equations
describe much more general situations than is described by the system (Id)
in the proof of Theorem 2.

Let us consider the space Ω ⊂ Ω such that

Ω = {ω ∈ Ω : ω : (a, b)→ Rn, lim
t→a+

‖(ω(t), ω′(t))‖R2n 6=∞,

lim
t→b−

‖(ω(t), ω′(t))‖R2n 6=∞}.

We endow Ω with the metric ρ given by ρ(ω1, ω2) = supt∈(a,b) ‖(ω1(t)−ω2(t),

ω′1(t) − ω′2(t))‖R2n for ω1, ω2 ∈ Ω. Let Γ be the σ-field on Ω defined just
as in Ω. Notice that Γ ⊂ Σ. Basing on the proof of Theorem 2, we can
construct a measure ν ∈ M such that

(a) ν is a solution of the conditional differential equation from Theorem 2,
(b) its support is the whole space Ω if the measure ν is restricted to the

space (Ω,Γ ).

Assumptions (1a)–(3a) in the definition of conditional differential equa-
tions are fulfilled by most of distributions which are used in applications.

Notice that condition (4a) is very general. So, we are able to describe a
lot of real phenomena using equation (Ic).

Remark 1. The verification of assumption (5a) in Theorem 2 can be
difficult in applications. Notice that the function c = c(x, t), for x ∈ Rn and
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t ∈ (a, b), is a local integral invariant of the system of differential equations

(IId) x′1 = E1(x, t), . . . , x′n = En(x, t)

for x ∈ Rn and t ∈ (a, b) (cf. [3, Theorem 2]). Suppose that

(6b) the functions Ei = Ei(x, t) fulfill the Lipschitz condition with re-
spect to x.

Then solutions of (IId) are uniquely determined on (a, b). Thus, condition
(5a) in Theorem 2 results from condition (6b) and condition (2c) in Theo-
rem 2 (cf. [3, Theorem 2]).

Assumption (4a) is in fact equivalent to equation (Ic) (see the proof of
Theorem 1). We can use (Ic) to determine the probability density functions
for the random variables Xt, t ∈ (a, b). Recall that %Xt(x) = c(x, t) for
x ∈ Rn and t ∈ (a, b). Naturally condition (4a) is not always true in applica-
tions. We can assume that equation (Ic) is realistic in the case of phenomena
for which trajectories ω ∈ Ω with large values ‖ω′′(t)‖Rn for t ∈ (a, b) are
rare. The following theorem explains this.

Theorem 3. Under the notation of Section 3, assume that

(a) the measure ν is defined on the σ-field Σ,
(b) the functions c = c(x, t), p = p(y,x, t) and Ei = Ei(x, t), for

x,y ∈ Rn and t ∈ (a, b), are determined by ν as in the definition
of the family M in Section 3,

(c) the functions c, p and Ei, i = 1, . . . , n, satisfy conditions (1a)–(3a)
and (1b)–(5b).

For r > 0, set

Hr = {ω ∈ Ω : there exists t ∈ (a, b) such that ‖ω′′(t)‖Rn > r}.

Suppose that

(5ax) for the outer measure ν induced by ν there exists r0 > 0 such that
ν(Hr) ≤ 1/r2 for r > r0.

Then the measure ν satisfies condition (4a) and ν ∈ M.

Proof. We keep the notation of Sections 2 and 3. Let t ∈ (a, b) and ∆t ∈ R
with t+ ∆t ∈ (a, b). Fix a cuboid K ⊂ Rn, K = [a1, b1]× · · · × [an, bn], and
r > 0. Set

K+
−r(∆t)

2 = [a1 − r(∆t)2, b1 + r(∆t)2]× · · · × [an − r(∆t)2, bn + r(∆t)2].

Define

A = {ω ∈ Ω : Wt,∆t(ω) ∈ K},
Br,∆t = {ω ∈ Ω : ω(t+ ∆t) ∈ K+

−r(∆t)
2}.
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Notice that A ∈ Σ and Br,∆t ∈ Σ. Taking into account the Taylor formula
for ω ∈ Ω and the definitions of A, Br,∆t, Hr, we obtain A ⊂ Br,∆t ∪ Hr.
Thus

ν(A) ≤ ν(Br,∆t ∪Hr) ≤ ν(Br,∆t) + ν(Hr).

Therefore�

K

w(x, t,∆t) dµ(x) ≤
�

K+
−r(∆t)

2

c(x, t+ ∆t) dµ(x) + ν(Hr).

From the above inequalities and assumption (3a) about c, we obtain�

K

(
w(x, t,∆t)− c(x, t+ ∆t)

)
dµ(x)

≤
�

(K+
−r(∆t)

2)\K

c(x, t+ ∆t) dµ(x) + ν(Hr)

≤ aµ
(
(K+
−r(∆t)

2) \K
)

+ ν(Hr)

≤ asr(∆t)2 + ν(Hr),

where s is a constant coefficient depending on K. We can assume that s is
independent of r and ∆t for ∆t sufficiently small and r < 1/|∆t|. Let

C = {ω ∈ Ω : ω(t+ ∆t) ∈ K},
Dr,∆t = {ω ∈ Ω : Wt,∆t(ω) ∈ K+

−r(∆t)
2}.

We have C ∈ Σ, Dr,∆t ∈ Σ and C ⊂ Dr,∆t ∪Hr. By the formula for w and
assumptions (3a) and (4b), for sufficiently small ∆t, we have w(x, t,∆t) < b
for all x ∈ K+

−r(∆t)
2 and r < 1/|∆t|, with some b > 0. Therefore

ν(C) ≤ ν(Dr,∆t ∪Hr) ≤ ν(Dr,∆t) + ν(Hr)

and �

K

c(x, t+ ∆t) dµ(x) ≤
�

K+
−r(∆t)

2

w(x, t,∆t) dµ(x) + ν(Hr).

Hence�

K

(
c(x, t+ ∆t)− w(x, t,∆t)

)
dµ(x) ≤

�

(K+
−r(∆t)

2)\K

w(x, t,∆t) dµ(x) + ν(Hr)

≤ bµ
(
(K+
−r(∆t)

2) \K
)

+ ν(Hr)

≤ brs(∆t)2 + ν(Hr),

where s is as previously. So,

−
(
ars∆t+

ν(Hr)

∆t

)
≤

�

K

c(x, t+ ∆t)− w(x, t,∆t)

∆t
dµ(x)

≤ brs∆t+
ν(Hr)

∆t
for ∆t sufficiently small and r < 1/|∆t|. Substituting r = 1/|∆t|α (1/2 <
α < 1 and |∆t| < 1) in the above inequalities and taking into account
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condition (5ax), we obtain

lim
∆t→0

�

K

c(x, t+ ∆t)− w(x, t,∆t)

∆t
dµ(x) = 0

for each fixed cuboid K ⊂ Rn. Under our assumptions,

c(x, t+ ∆t)− w(x, t,∆t)

∆t

=
∂c

∂t
(x, t) +

n∑
i=1

∂(cEi)

∂xi
(x, t) +

(
∂c

∂t
(x, t+ θ1,x)− ∂c

∂t
(x, t)

)

+
n∑
i=1

�

Rn

yi

(
∂d

∂xi
(x− θ2,yy,y, t)−

∂d

∂xi
(x,y, t)

)
dµ(y),

where θ1,x, θ2,y are between 0 and ∆t (see the proof Theorem 1). Thus,
for sufficiently small ∆t, for x ∈ K and fixed t ∈ (a, b), the values of
c(x,t+∆t)−w(x,t,∆t)

∆t are uniformly bounded (conditions (3a), (4b)). So, we have

lim
∆t→0

�

K

c(x, t+ ∆t)− w(x, t,∆t)

∆t
dµ(x)

=
�

K

lim
∆t→0

c(x, t+ ∆t)− w(x, t,∆t)

∆t
dµ(x).

Thus �

K

lim
∆t→0

c(x, t+ ∆t)− w(x, t,∆t)

∆t
dµ(x) = 0

for each fixed cuboid K and each t ∈ (a, b). Let

h(x, t) = lim
∆t→0

c(x, t+ ∆t)− w(x, t,∆t)

∆t
.

We have h(x, t) = ∂c
∂t (x, t) +

∑n
i=1

∂(cEi)
∂xi

(x, t) (see the proof of Theorem 1).
Notice that h = h(x, t) is a continuous function of x ∈ Rn for each fixed
t ∈ (a, b). It follows that

lim
∆t→0

c(x, t+ ∆t)− w(x, t,∆t)

∆t
= 0

for each x ∈ Rn and t ∈ (a, b).

Condition (5ax) means that Pt0(A) = ν(A) < 1/r2 for each fixed t0 ∈
(a, b) and for all events A ∈ Σt0 included in Hr. For specific mathematical
models, events A ∈ Σt0 , A ⊂ Hr, can have some interpretation. So, condition
(5ax) is intuitively more clear than (4a). However, (4a) is much more general.
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5. Random model of Malthus type for the population size. We
will use the notation and definitions of Section 3 for n = 1.

Assume that various populations of a species K can live in a region P .
We will consider a random model of population size of such populations.

Fix an interval (a, b) ⊂ R such that 0 ∈ (a, b). Suppose that some pop-
ulation of species K stays in region P in the time interval J ⊂ (a, b). Let
ω : J → R describe the dependence of the number of individuals of this pop-
ulation on time. We assume that ω can be any element of the set Ω. Suppose
that populations in our model can migrate from and into P . We assume that
such migrations can occur when sudden changes of the population size ap-
pear. So, in our model, functions ω ∈ Ω for which limt→α+ ‖(ω(t), ω′(t))‖R2

= ∞ and limt→β− ‖(ω(t), ω′(t))‖R2 = ∞ for α, β ∈ [a, b] take into account
migrations of observed populations.

Let us take a measure ν ∈ M defined on the space (Ω,Σ). For each fixed
t ∈ (a, b) we consider the probability Pt on (Ωt, Σt) given by Pt(A) = ν(A)
for A ∈ Σt. This probability measures the chance that a population of size
described by a function ω ∈ A, A ∈ Σt, appears in region P . For a fixed
t ∈ (a, b), the function c = c(·, t) is the probability density function for the
random variable Xt. Recall that for ω ∈ Ωt, t ∈ (a, b), we have Xt(ω) = ω(t)
and ω(t) is the population size at time t. Also recall that Yt(ω) = ω′(t) for
ω ∈ Ωt. We will write f(x) ∼ N(m,σ) whenever f(x) is the probability
density function of the normal distribution with expected value m ∈ R and
standard deviation σ > 0.

To prepare our model we assume that we look for a measure ν ∈ M for
which

(Ia) fYt(y |Xt = x) =
1√

2πσ1

exp

(
−(y − kx)2

2σ2
1

)
∼ N(kx, σ1),

where k ∈ R. Moreover, we suppose that

(Ib) c(x, 0) =
1√
2πσ

exp

(
−(x−m0)2

2σ2

)
∼ N(m0, σ),

where m0 > 0.
We consider such a model because it is known that the random values

of the population size of many populations and their increases have normal
distributions. Moreover, we take into account the classical Malthus model
of growth described by the differential equation x′ = kx for k ∈ R and
the initial condition x(0) = m0, m0 > 0 (x : (a, b) → R). Condition (Ia)
takes into account that the most probable development of the population at
time t ∈ (a, b) is described by the relationship x′ = kx. Thus, on the space
(Ω,Σ), we consider the conditional differential equation (Ia) with the initial
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condition (Ib). It is easy to see that the function given by

p(y, x, t) =
1√

2πσ1

exp

(
−(y − kx)2

2σ2
1

)
∼ N(kx, σ1)

for x, y ∈ R and t ∈ (a, b), satisfies conditions (1b)–(4b), and the function
ρ0 : R → R given by ρ0(x) ∼ N(m0, σ) for x ∈ R satisfies conditions
(1c)–(4c). Moreover, E(x, t) =

	
R yp(y, x, t) dµ(y) = kx for x, y ∈ R and

t ∈ (a, b). Notice that the function E = E(x, t) for x ∈ R and t ∈ (a, b)
satisfies conditions (5b), (6b). Thus, our considerations lead to the equation

(Ic)
∂c

∂t
+
∂(kxc)

∂x
= 0 with c(x, 0) ∼ N(m0, σ) for x ∈ R

(cf. Theorem 1). The function c : R× (a, b)→ R such that

c(x, t) =
1

σekt
√

2π
exp

(
−(x−m0e

kt)2

2(σekt)2

)
for x ∈ R and t ∈ (a, b) is a solution of (Ic). The functions c, p and ρ0

fulfill the assumptions of Theorem 2. Thus, the conditional differential equa-
tion (Ia) with the initial condition (Ib) has a solution ν ∈ M (Theorem 2).
Moreover, for each such solution,

%Xt(x) = c(x, t) =
1

σekt
√

2π
exp

(
−(x−m0e

kt)2

2(σekt)2

)
for x ∈ R and t ∈ (a, b) (Theorem 1).

From our model we obtain the following conclusions:

Conclusion 1. In our model, for fixed t ∈ (a, b), the random values of
the population size have the normal distribution N(m(t), σ(t)) with m(t) =
m0e

kt and σ(t) = σekt.

Conclusion 2. Let us consider the expected value of the population size
in our model as a function of time, m : (a, b) → R. Then m is the solution
of the differential equation x′ = ax with the initial condition x(0) = m0

considered in the Malthus model. So, if σ1, σ ≈ 0 our random model reduces
to the classical Malthus model.

In our model, values of functions ω ∈ Ω may be negative. This is a
defect of the model, as such values have no interpretation as population size.
However in our model, c(x, t) ≈ 0 for each fixed t and x < 0. So, we can still
regard our model as good.

Our results are consistent with intuition and, under some conditions,
with experimental data. The above model shows that we can get results
credibly describing reality using conditional differential equations. Moreover,
conditional differential equations give other possibilities of applications than
those available with the use of standard stochastic equations.
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