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Certain contact metrics satisfying
the Miao–Tam critical condition
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Abstract. We study certain contact metrics satisfying the Miao–Tam critical condi-
tion. First, we prove that a complete K-contact metric satisfying the Miao–Tam critical
condition is isometric to the unit sphere S2n+1. Next, we study (κ, µ)-contact metrics
satisfying the Miao–Tam critical condition.

1. Introduction. In [MT1], Miao–Tam studied the critical points of
the volume functional restricted to the space of constant scalar curvature
metrics on a given compact manifold with boundary. They also derived a
necessary and sufficient condition for a metric to be critical. This leads to
the following definition:

Definition 1.1. Let (Mn, g), n > 2, be a compact Riemannian manifold
with a smooth boundary metric ∂M . Then g is said to be a critical metric
if there exists a smooth function λ : Mn → R such that

(1.1) −(∆gλ)g +∇2
gλ− λS = g

on M and λ = 0 on ∂M , where ∆g and ∇2
gλ are the Laplacian and the

Hessian operator with respect to the metric g, and S is the (0, 2) Ricci
curvature of g. The function λ is known as the potential function.

For simplicity, these metrics will be called Miao–Tam critical metrics
and equation (1.1) the Miao–Tam critical condition. Any Riemannian met-
ric g satisfying (1.1) must have constant scalar curvature [MT1]. The ex-
istence of such metrics was confirmed on certain classes of warped prod-
uct spaces which include the usual spatial Schwarzschild metrics and Ads–
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Schwarzschild metrics restricted to certain domains containing their horizon
and bounded by two spherically symmetric spheres (cf. [MT2, Corollaries
3.1 and 3.2]).

Recently, Miao–Tam critical metrics have been studied under Einstein
and conformally flat assumptions (see [MT2]). In particular, it was proved
that any connected, compact, Einstein manifold with smooth boundary sat-
isfying the Miao–Tam critical condition is isometric to a geodesic ball in a
simply connected space form Rn, Hn or Sn. The same conclusion is true if
one replaces the Einstein condition by the conformally flat assumption. The
last result has been considered further under the Bach-flat assumption in
dimension 4, which is weaker than being conformally flat (see e.g. [BDR]).

Let M be an almost contact metric manifold of dimension 2n + 1 with
almost contact metric structure (ϕ, ξ, η). We note that a Riemannian metric g
on an almost contact manifoldM2n+1 is said to be an almost contact metric if

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

The metric g is known as the associated metric of the almost contact metric
structure. Moreover, if dη = g(·, ϕ ·), then M is said to be a contact metric
manifold (see Preliminaries). Since the metric involved in a contact metric
structure is not just a Riemannian metric, we are interested in studying such
metrics which satisfy the Miao–Tam critical condition. In Section 3, we study
K-contact metrics satisfying the Miao–Tam critical condition and prove that
these are isometric to the unit sphere S2n+1. Next, we study (κ, µ)-metrics
satisfying the Miao–Tam critical condition and prove that these are flat in
dimension 3, and isometric to the trivial sphere bundle En+1 × Sn(4) in
higher dimensions.

2. Preliminaries. In this section, we recall some basic definitions and
fundamental formulas for contact metric manifolds. A Riemannian manifold
of dimension 2n + 1 is said to be a contact manifold if it admits a global
1-form η such that η∧ (dη)n is non-vanishing everywhere on M . The 1-form
η is known as the contact form. Corresponding to this η one can find a unit
vector field ξ, called the Reeb vector field, such that η(ξ) = 1 and dη(ξ, ·) = 0.
It is well known that every contact manifold admits an underlying almost
contact structure (ϕ, ξ, η), where ϕ is a global tensor field of type (1, 1), such
that

η(X) = g(X, ξ), ϕξ = 0, η ◦ ϕ = 0, ϕ2 = −I + η ⊗ ξ.

Further, an almost contact structure is said to be a contact metric if it
satisfies

(2.1) dη(X,Y ) = g(X,ϕY ), g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).
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A Riemannian manifold M2n+1 together with the structure (ϕ, ξ, η, g) is said
to be a contact metric manifold.

We now define two operators h and l by

h = 1
2Lξϕ and l = R(·, ξ)ξ.

These tensors are self-adjoint and satisfy Trh = 0, Trhϕ = 0, lξ = 0
and hϕ = −ϕh. On a contact metric manifold the following formulas are
valid [Bl]:

∇Xξ = −ϕX − ϕhX,(2.2)

g(Qξ, ξ) = Tr l = 2n− Trh2,(2.3)

∇ξh = ϕ− ϕh2 − ϕl,(2.4)

(∇Y ϕ)X + (∇ϕY ϕ)ϕX = 2g(Y,X)ξ − η(X)
(
Y + hY + η(Y )ξ

)
.(2.5)

If the vector field ξ is Killing (equivalently, h = 0 or Tr l = 2n), then the
contact metric manifold M is said to be K-contact. On a K-contact manifold
the following formulas are known [Bl]:

∇Xξ = −ϕX,(2.6)

Qξ = 2nξ,(2.7)

R(X, ξ)ξ = X − η(X)ξ,(2.8)

R(ξ,X)Y = (∇Xϕ)Y,(2.9)

where∇ is the operator of covariant differentiation of g, Q the Ricci operator
associated with the (0, 2) Ricci tensor S, and R the Riemann curvature
tensor of g. A contact metric structure on M is said to be normal if the
almost complex structure on M × R defined by

J(X, fd/dt) = (ϕX − fξ, η(X)d/dt),

where f is a real function on M × R, is integrable. Equivalently, a contact
metric manifold is said to Sasakian if

(2.10) (∇Xϕ)Y = g(X,Y )ξ − η(Y )X.

An important characterization is that a contact metric manifold is a Sasa-
kian manifold if and only if the curvature tensor satisfies

(2.11) R(X,Y )ξ = η(Y )X − η(X)Y.

In [BKP], Blair et al. introduced the notion of a (κ, µ)-contact manifold,
which is a contact metric manifold M2n+1(ϕ, ξ, η, g) whose curvature tensor
satisfies

(2.12) R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }
for some real numbers (κ, µ). Applying the D-homothetic deformation [T]

η̄ = aη, ξ̄ =
1

a
ξ, ϕ̄ = ϕ, ḡ = ag + a(a− 1)η ⊗ η,
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for a positive real constant a, to a contact metric manifold satisfying
R(X,Y )ξ = 0, one obtains this type of manifold. Note that D-homothetic
deformation preserves Sasakian, K-contact and (κ, µ)-contact structures.
It is interesting to point out that the class of (κ, µ)-contact structures
contains Sasakian manifolds (for κ = 1) and the trivial sphere bundle
En+1×Sn(4) (for κ = µ = 0). Examples of non-Sasakian (κ, µ)-contact man-
ifolds are the tangent sphere bundles of Riemannian manifolds of constant
curvature 6= 1. Further, equation (2.7) determines the curvature completely
for κ < 1. For (κ, µ)-contact manifolds the following formulas are known
[BKP]:

QX = [2(n− 1)− nµ]X + [2(n− 1) + µ]hX(2.13)

+ [2(1− n) + n(2κ+ µ)]η(X)ξ,

h2 = (κ− 1)ϕ2,(2.14)

where κ ≤ 1. Moreover, the constant scalar curvature r in that class is given
by

(2.15) r = 2n(2(n− 1) + κ− nµ).

3. K-contact manifolds. In this section, we consider K-contact met-
rics satisfying the Miao–Tam critical condition. First, we prove the following

Lemma 3.1. Let (Mn, g) be a Riemannian manifold without boundary.
Suppose there exists a non-constant smooth function λ on M which is a
solution of the equation

(3.1) −(∆gλ)g +∇2
gλ− λS = g.

Then the curvature tensor R can be expressed as

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + λ(∇XQ)Y(3.2)

− λ(∇YQ)X + (Xf)Y − (Y f)X.

Proof. First, we note that (3.1) implies ∆gλ = − 1
n−1(rλ + n). Thus,

equation (3.2) can be written as

(3.3) ∇XDλ = λQX + fX, where f = −(rλ+ 1)/(n− 1).

Taking covariant differentiation of (3.3) along an arbitrary vector field Y ,
we obtain

∇Y (∇XDλ) = (Y λ)QX + λ(∇YQ)X + λQ(∇YX) + (Y f)X + f∇YX.
Interchanging X and Y in the above equation gives

∇X(∇YDλ) = (Xλ)QY + λ(∇XQ)Y + λQ(∇XY ) + (Xf)Y + f∇XY.
Replacing X by [X,Y ] in (3.3) we obtain

∇[X,Y ]Dλ = λQ(∇XY )− λQ(∇YX) + f∇XY − f∇YX.
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Using the last three equations in the well known expression of the curvature
tensor

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

gives the required result.

Theorem 3.2. Let M(ϕ, ξ, η, g) be a complete K-contact manifold of
dimension 2n+ 1. If the metric g satisfies the Miao–Tam critical condition,
then it is Einstein, Sasakian and isometric to the unit sphere S2n+1.

Proof. Taking covariant differentiation of (2.7) along an arbitrary vector
field X and using (2.6), we get

(3.4) (∇XQ)ξ = QϕX − 2nϕX.

As ξ is Killing for a K-contact manifold, we obtain LξQ = 0. Making use
of (3.4) and (2.7) one can easily deduce that

(3.5) ∇ξQ = Qϕ− ϕQ.
Replacing X by ξ in (3.2) and using (3.4) and (3.5), we get

R(ξ, Y )Dλ = (ξλ)QY − 2n(Y λ)ξ − λϕQY(3.6)

+ 2nλϕY + (ξf)Y − (Y f)ξ.

Taking the scalar product of the foregoing equation with an arbitrary vector
field X and using (2.9) provides

(3.7) g((∇Y ϕ)X,Dλ) + (ξλ)g(QY,X) + 2nλg(ϕY,X)

− {2n(Y λ) + (Y f)}η(X)− λg(ϕQY,X) + (ξf)g(X,Y ) = 0.

Setting X = ϕX and Y = ϕY in (3.7), adding the resulting equation to
(3.7) and then using (2.5) (where h = 0, as M is K-contact) gives

2ξ(λ+ f)g(X,Y )− Y {(2n+ 1)λ+ f}η(X)

− ξ(λ+ f)η(X)η(Y ) + (ξλ)g(QY,X) + 4nλg(ϕY,X)

− λg(QϕY + ϕQY,X) + (ξλ)g(QϕY,ϕX) = 0.

Antisymmetrizing the foregoing equation yields

(3.8) X{(2n+ 1)λ+ f}η(Y )− Y {(2n+ 1)λ+ f}η(X)

− 8nλg(ϕX, Y )− 2λg(QϕY + ϕQY,X) = 0.

At this point, we replace X by ϕX and Y by ϕY in (3.8) to achieve

λ[g(QϕY,X) + g(ϕQY,X)] = 4nλg(ϕY,X).

Since λ is non-zero in the interior of M , the last equation implies

(3.9) (Qϕ+ ϕQ)X = 4nϕX

for all vector fields X on M . Let {ei, ϕei, ξ}, i = 1, . . . , n, be a ϕ-basis of M
such that Qei = ρiei. From this, we deduce ϕQei = ρiϕei. Substituting ei for
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X in (3.9) and using the foregoing equation, we obtain Qϕei = (4n−ρiϕ)ei.
Using the ϕ-basis and (2.7) we now compute the scalar curvature

r = g(Qξ, ξ) +

n∑
i=1

[g(Qei, ei) + g(Qϕei, ϕei)] = 2n(2n+ 1).

Since the dimension of M is 2n+1, we have f = −(rλ+ 1)/(2n) (by Lemma
3.1). Hence from r = 2n(2n+ 1) it follows that

(3.10) (2n+ 1)λ+ f = − 1

2n
.

Now, taking the inner product of (3.6) with Dλ and applying (3.10), we get

(3.11) (ξλ){QDλ− 2nDλ}+ λ{QϕDλ− 2nϕDλ} = 0.

On the other hand, taking Dλ instead of X in (3.9), we obtain

(3.12) QϕDλ+ ϕQDλ− 4nϕDλ = 0.

Using the foregoing equation in (3.11), we find

(3.13) (ξλ){QDλ− 2nDλ}+ λ{2nϕDλ− ϕQDλ} = 0.

Applying ϕ to (3.13) and using (2.7) gives

(3.14) (ξλ){ϕQDλ− 2nϕDλ}+ λ{QDλ− 2nDλ} = 0.

Combining (3.13) with (3.14) provides

(3.15) {λ2 + (ξλ)2}(QDλ− 2nDλ) = 0.

If possible, let λ2 + (ξλ)2 = 0 in some open set O in M . Then λ = 0 and
ξλ = 0 on O. By the definition of the Miao–Tam critical condition, λ does
not vanish in the interior on M . So λ = 0 on O is not possible. Further,
ξλ = 0 on O shows that λ(QDλ−2nDλ) = 0 (by (3.15)) on O. Since λ does
not vanish in the interior on M , we must have QDλ− 2nDλ = 0. Now, the
covariant differentiation of the foregoing equation along an arbitrary vector
field X and the use of (3.3) gives

(∇XQ)Dλ+ λQ2X + (f − 2nλ)QX − 2nfX = 0.

Contracting this over X with respect to an orthonormal field and noting that
r = 2n(2n + 1), we obtain |Q|2 = 2nr. Applying this and r = 2n(2n + 1),
we compute∣∣∣∣Q− r

2n+ 1

∣∣∣∣2 = |Q|2 − 2r2

2n+ 1
+

r2

2n+ 1
= 2nr − r2

2n+ 1

= 4n2(2n+ 1)− 4n2(2n+ 1) = 0.

Since the length of the symmetric tensor Q − r
2n+1I is zero, we must have

Q = r
2n+1I = 2nI. This shows that M is Einstein with Einstein constant 2n.

Since M is complete, it is compact by Myers’ theorem [M]. Using the result
of Boyer–Galicki [BG] that any compact K-contact Einstein manifold is
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Sasakian, we conclude that M is Sasakian. Now, by (3.10) equation (3.3)
can be written as

∇2
gλ = −

(
λ+

1

2n

)
g.

Applying Tashiro’s theorem [TY] we conclude thatM is isometric toS2n+1(1).

Corollary 3.3. Let M(ϕ, ξ, η, g) be a complete and simply connected
Sasakian manifold. If the metric g satisfies the Miao–Tam critical condition,
then M is compact and isometric to S2n+1(1).

Proof. On a Sasakian manifold the Ricci operator Q and ϕ commute, i.e.,
Qϕ = ϕQ (see [Bl]). Using this in (3.9) implies QϕX = 2nϕX. Replacing
X by ϕX in the last equation and using (2.7) gives QX = 2nX. This shows
that M is Einstein with Einstein constant 2n. The rest follows from the last
theorem.

4. (κ, µ)-contact spaces

Theorem 4.1. Let M2n+1(ϕ, ξ, η, g) be a non-Sasakian (κ, µ)-contact
manifold. If the metric g satisfies the Miao–Tam critical condition, then M
is flat for n = 1, while for n > 1, it is locally isometric to En+1 × Sn(4).

Proof. Taking Y = ξ in (2.12) gives

(4.1) l = −κϕ2 + µh.

Using (2.14) and (4.1) in (2.3), we obtain

(4.2) ∇ξh = µhϕ.

Differentiating (2.13) along ξ and recalling (4.2) yields

(4.3) (∇ξQ)X = µ(2(n− 1) + µ)hϕX.

On the other hand, from (2.9) we have Qξ = 2nκξ. Differentiating this along
an arbitrary vector field X and using (2.1) shows that

(4.4) (∇XQ)ξ = Q(ϕ+ ϕh)X − 2nκ(ϕ+ ϕh)X.

Taking the scalar product of (3.2) with ξ and using (4.4) gives

g(R(X,Y )Dλ, ξ) = 2nκ[(Xλ)− (Y λ)η(X)] + λg(QϕX + ϕQX,Y )(4.5)

+ λg(QϕhX + hϕQX, Y )− 4nκλg(ϕX, Y )

+ (Xf)η(Y )− (Y f)η(X).

Replacing X by ϕX, Y by ϕY in (4.5) and noting that R(ϕX,ϕY )ξ = 0
(by (2.12)), we obtain

(4.6) QϕX + ϕQX − ϕQhX − hQϕX − 4nκϕX = 0.

Replacing X by ϕX in (2.13) gives

QϕX = [2(n− 1)− nµ]ϕX + [2(n− 1) + µ]hϕX.
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The action of h on the foregoing equation and using (2.14) implies that

hQϕX = [2(n− 1)− nµ]hϕX − (κ− 1)[2(n− 1) + µ]ϕX.

Operating by ϕ on (2.13) gives

ϕQX = [2(n− 1)− nµ]ϕX + [2(n− 1) + µ]ϕhX.

Taking hX instead of X and using (2.14) reduces the last equation to

ϕQhX = [2(n− 1)− nµ]ϕhX − (κ− 1)[2(n− 1) + µ]ϕX.

Next, we use the last four equations in (4.6) to obtain

(4.7) κ(µ− 2) = µ(n+ 1).

Substituting ξ instead of X in (4.5) and using Qξ = 2nκξ and (4.1) we
obtain

(4.8) κDλ+ µhDλ− 2nκ((ξλ)ξ −Dλ)− (κ(ξλ) + ξf)ξ +Df = 0.

Contracting (3.2) over X, noting that the scalar curvature is constant, we
obtain

(4.9) rDλ+ 2nDf = 0.

Using (4.9) in (4.8) yields

0 = 2nκDλ+ 2nµhDλ− 4n2κ((ξλ)ξ −Dλ)(4.10)

+ 2n(κ(ξλ) + ξf)ξ + rDλ.

From (3.3), we have

(4.11) ∇ξDλ = (2nκλ− f)ξ.

Differentiating (4.10) along ξ and using (4.2), (4.3) and (4.11), we obtain

0 = (2nκ+ 4n2κ− r)(2nκλ− f)ξ + 2nµ2hϕDλ(4.12)

− 4n2κξ(ξλ)ξ − 2nξ(κ(ξλ) + ξf)ξ.

Operating by ϕ on the foregoing equation we obtain µ2hDλ = 0. Again,
operating on this equation by h, and recalling (2.14), shows that

µ2(κ− 1)ϕ2Dλ = 0.

Since M is non-Sasakian, we have either (i) µ = 0, or (ii) ϕ2Dλ = 0.

Case (i): In this case it follows from (4.7) that κ = 0. Hence R(X,Y )ξ
= 0 and therefore M is locally flat in dimension 3, and in higher dimensions
it is locally isometric to the trivial bundle En+1 × Sn(4) (see [Bl]).

Case (ii): This case yields Dλ = (ξλ)ξ. Differentiating this along an
arbitrary vector field X together with (2.1) entails that ∇XDλ = X(ξλ)ξ−
(ξλ)(ϕX − ϕhX). By making use of the Poincaré lemma: g(∇XDf, Y ) =
g(∇YDλ,X), the foregoing equation implies X(ξλ)η(Y ) − Y (ξλ)η(X) +
(ξλ)dη(X,Y ) = 0. Replacing X by ϕX and Y by ϕY , since dη is non-zero
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for any contact metric structure, it follows that ξλ = 0. Hence Dλ = 0, i.e.,
λ is constant and consequently (3.3) implies that M is Einstein, i.e., QX =
λX = (2nκ)X. Taking traces we find the scalar curvature r = 2nκ(2n+ 1).
Comparing this with (2.15) it follows that nµ = 2(n − 1) − 2nκ. On the
other hand, using the last equation and QX = (2nκ)X in (2.13) we obtain
(2(n−1)+µ)h = 0. Since M is non-Sasakian, we have 2(n−1)+µ = 0. Then
for n = 1, µ = 0 = κ, and therefore R(X,Y )ξ = 0) and hence M is locally
flat. Again, for n > 1, using µ = 2(1−n) in (4.7), we have κ = n− 1/n > 1,
a contradiction. This completes the proof of Theorem 4.1.
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