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Reproducing kernels, Englǐs algebras and some applications

by

Mubariz T. Karaev (Baku and Riyadh), Mehmet Gürdal (Isparta)
and Mualla Birgül Huban (Isparta)

Abstract. We introduce the notion of Englǐs algebras, defined in terms of repro-
ducing kernels and Berezin symbols. Such algebras were apparently first investigated by
Englǐs (1995). Here we give some new results on Englǐs C∗-algebras on abstract reproduc-
ing kernel Hilbert spaces and some applications to various questions of operator theory.
In particular, we give applications to Riccati operator equations, zero Toeplitz products,
and the existence of invariant subspaces for some operators.

1. Introduction and preliminaries. In this paper we study some
C∗-operator algebras defined in terms of reproducing kernels. Such algebras
were investigated by Englǐs in his seminal paper [E2], and for this reason
we call them Englǐs algebras. We give new applications of reproducing ker-
nels and Englǐs algebras to some problems in operator theory. Since we will
mainly deal with an abstract Reproducing Kernel Hilbert Space (briefly,
RKHS) H = H(Ω), and also more concrete RKHS H2 = H2(D) (Hardy
space) and L2

a = L2
a(D) (Bergman space), let us start with necessary defini-

tions, notation and preliminaries about these spaces.
By a reproducing kernel Hilbert space we mean a Hilbert spaceH = H(Ω)

of complex-valued functions on some set Ω such that evaluation at any point
of Ω is a continuous linear functional on H. The classical Riesz representa-
tion theorem ensures that the Hilbert function space H has a reproducing
kernel, that is, a function kH : Ω × Ω → C with 〈f, kH,λ〉 = f(λ) for all

f ∈ H and λ ∈ Ω, where kH,λ = kH(·, λ) ∈ H. Let k̂H,λ := kH,λ/‖kH,λ‖H be
the normalized reproducing kernel of H. For any bounded linear operator T
on H, its Berezin symbol T̃ is defined by (see [NR])

T̃ (λ) := 〈T k̂H,λ, k̂H,λ〉, λ ∈ Ω.
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The Berezin symbol of an operator provides important information about
the operator. Namely, it is well known that on the most familiar RKHS,
including the Hardy, Bergman and Fock Hilbert spaces, the Berezin symbol
uniquely determines the operator (i.e., T̃1(λ) = T̃2(λ) for all λ ∈ Ω implies
T1 = T2); see, for instance, [E2] and [Zhu].

The RKHS is said to be standard (see Nordgren and Rosenthal [NR])
if the underlying set Ω is a subset of a topological space and its boundary
∂Ω is nonempty and has the property that {k̂H,λn} converges weakly to 0
whenever {λn} is a sequence in Ω that converges to a point in ∂Ω. The
common RKHSs of analytic functions, including the Hardy, Bergman and
Fock Hilbert spaces, are standard in this sense.

For a compact operator K on the standard RKHS H, it is clear that

lim
n→∞

K̃(λn) = 0

whenever {λn} converges to a point of ∂Ω (since compact operators send
weakly convergent sequences to strongly convergent ones). In this sense,
the Berezin symbol of a compact operator on a standard RKHS vanishes
on the boundary. In [NR], Nordgren and Rosenthal characterized compact
operators K on RKHS in terms of the Berezin symbols of U−1KU, where
U : H → H is unitary:

Lemma 1.1. An operator K on a standard RKHS is compact if and only

if all the Berezin symbols ˜U−1KU for all unitary U vanish on the boundary.

Let T = ∂D ={eit : 0 ≤ t < 2π} be the unit circle, dt be the arc-length
measure on T, the Lebesgue measure on T, and m(eit) = dt/(2π) the nor-
malized Lebesgue measure.

Recall that the Hardy space H2 = H2(D) is the Hilbert space of an-
alytic functions f(z) =

∑
n≥0 anz

n defined in the open unit disc D =

{z ∈ C : |z| < 1} such that
∑

n≥0 |an|2 < ∞. It is convenient to estab-

lish a natural embedding of H2 in L2 = L2(T,m), by associating to each
f ∈ H2 its boundary value (bf)(ζ) := limr→1− f(rζ), which exists by the
Fatou theorem (see Hoffman [Hof]) for m-almost all ζ ∈ T. Then we have

H2 = {f ∈ L2 : f̂(n) = 0, n < 0}, where f̂(n) :=
	
T ζ

n
f(ζ) dm(ζ) is the nth

Fourier coefficient of f . In what follows, we will not distinguish the functions
f and bf.

For ϕ ∈ L1 = L1(T), we will denote by ϕ̃ its harmonic extension into D
defined by

ϕ̃(reit) =
1

2π

2π�

0

ϕ(eiτ )
1− r2

1 + r2 − 2r cos(t− τ)
dτ, reit ∈ D.

For ϕ ∈ L2(T), this harmonic function is analytic if and only if ϕ ∈ H2.
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Let H∞ = H∞(D) denote the Banach algebra of bounded analytic func-
tions on D, normed by ‖f‖∞ = supz∈D |f(z)|. Let H∞ := {g : g ∈ H∞}
be the space of bounded co-analytic functions on D, and L∞ = L∞(T) the
space of all (equivalence classes of) essentially bounded functions on T,
normed by the essential supremum norm (relative to Lebesgue measure
m = m(ζ) on T). For g ∈ L∞(T), ‖g‖∞ stands for the essential supre-
mum of |g|. It is well known (see Hoffman [Hof]) that to every f ∈ H∞

there corresponds a function bf ∈ L∞(T), defined almost everywhere by
(bf)(eit) = limr→1− f(reit). The equality ‖f‖∞ = ‖bf‖∞ holds.

For any inner function θ ∈ H∞ (i.e., |θ(z)| ≤ 1 on D and |θ(ξ)| = 1 for
almost all ξ ∈ T) the corresponding model space Kθ is defined as Kθ :=
H2 	 θH2.

If ϕ ∈ L∞(T), then the Toeplitz operator Tϕ acting on H2 is defined
by Tϕf = P+(ϕf), where P+ : L2 → H2 is the Riesz orthoprojector. It is
clear from the definition of that T ∗ϕ = Tϕ. It is also well known (see Halmos

[Hal]) that for ψ and ϕ in L∞(T), TψTϕ is a Toeplitz operator on H2 if and

only if either ψ ∈ H∞ or ϕ ∈ H∞. In both cases, TψTϕ = Tψϕ. Therefore
TfTgTh = Tfgh for any f ∈ H∞, g ∈ L∞, h ∈ H∞.

The following is well-known (see Englǐs [E2]).

Lemma 1.2. If ϕ ∈ L∞, then T̃ϕ = ϕ̃, i.e., the Berezin symbol of the
Toeplitz operator Tϕ is equal to the harmonic extension ϕ̃ of its symbol ϕ.

The present paper is organized as follows. In Section 2, we introduce
Englǐs algebras and give some of their properties. We give a criterion for a
truncated Toeplitz operator to belong to the Englǐs algebra A0

Kθ
.

In Section 3, we investigate the solvability of the Riccati operator equa-
tion

(R) XAX +XB − CX −D = 0

on the Englǐs algebra AH of operators on a RKHS H(Ω) over some set Ω.
More exactly, we prove a necessary condition for the solvability of (R) in
terms of Berezin symbols. It turns out that if (R) is solvable on an appro-
priate subset of AH, then the solution of (R) is unique and it is represented
in terms of Berezin symbols of the coefficient operators A and D.

Section 4 studies zero operator products, in particular, zero Toeplitz
products. It is proved that if ϕ1, . . . , ϕn ∈ L∞(T) and H1, . . . ,Hn are oper-
ators from the Englǐs algebra FH2 such that (Tϕ1 +H1) . . . (Tϕn +Hn) = 0,
then ϕ1 . . . ϕn = 0. This generalizes the known Douglas lemma. In par-
ticular, we obtain a new proof of the Brown–Halmos theorem. Similar re-
sults are proved for zero Toeplitz products on the Bergman space L2

a. In
particular, we partially solve a conjecture due to Čučković [C] (see Corol-
lary 4.7).
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In Section 5, we study the maximal Berezin set W̃0(Tϕ) of the Toeplitz

operator Tϕ on H2, and prove that W̃0(Tϕ) = {‖ϕ‖∞}. In general, we show

that for any T ∈ AH (Englǐs’s algebra), we have W̃0(T ) ⊂ T‖T‖, where T‖T‖
denotes the circle with center 0 and radius ‖T‖.

In Section 6, we are mainly interested in the following question: if A,B,C
belong to the Englǐs algebra A0

H, then under which conditions is AB −C a
compact operator on H? Here we characterize the compactness of AB − C
in terms of Berezin symbols.

Section 7 proves an Axler–Chang–Sarason–Volberg type theorem for the
semi-commutator [Tu, Tv) := Tuv − TuTv of the Toeplitz operators Tu and
Tv on the Bergman space L2

a.

In Section 8, we discuss the extended eigenvalues and extended eigen-
vectors of operators on some Englǐs algebras. In Section 9, we give some
sufficient conditions for the existence of a nontrivial invariant subspace in
H2 in terms of reproducing kernels and Duhamel operators.

2. Englǐs algebras and some of their properties. In this section, we
will discuss some operator algebras defined in terms of reproducing kernels
and study their properties. These algebras were introduced and investigated
mainly by Englǐs [E2].

Following [E2], let T be the C∗-algebra generated by the set {TΦ :
Φ ∈ L∞(T)} of Toeplitz operators on H2. The following famous result is
due to Douglas [Dou].

Theorem 2.1 (Douglas). There is a C∗-homomorphism σ : T →L∞(T)
which satisfies σ(TΦ) = Φ for all Φ ∈ L∞(T). The kernel of σ coincides with
the commutator ideal of T , i.e. the ideal in T generated by all commutators

[R,S] = RS − SR, R, S ∈ T .

σ is sometimes called the symbol map.

Englǐs [E2] gives an alternative method for proving results akin to the
Douglas theorem. The symbol of an operator T is then obtained as the non-
tangential boundary value of the Berezin symbol T̃ of T. As is shown in [E2],
this method also works for operator algebras larger than the Toeplitz alge-
bra. The same technique is also applicable to the Bergman space L2

a=L2
a(D),

which is the closed subspace of L2(D) consisting of analytic functions on D.

Here we give other applications of reproducing kernels and Berezin sym-
bol techniques; in particular, we will investigate other properties and ap-
plications of Englǐs algebras. Before stating our results, let us give some
necessary definitions and notation.
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Recall that if f is a bounded continuous function on D, then we say that
f → 0 radially if

lim
r→1−

f(reit) = 0

for all t ∈ [0, 2π), except possibly for a set of measure zero.

We define the following Englǐs algebras on the RKHS H = H(Ω) (in the
case of H = H2(D) and H = L2

a(D), these algebras were defined in terms of
radial, nontangential and uniform limits and investigated by Englǐs [E2]):

FH := {T ∈ B(H) : ‖T k̂H,λ‖, ‖T ∗k̂H,λ‖ → 0 as λ→ ∂Ω};
A1 := {TΦ + T : Φ ∈ L∞(T), T ∈ FH2};

AH := {T ∈B(H) : ‖T k̂H,λ‖2−|T̃ (λ)|2, ‖T ∗k̂H,λ‖2−|T̃ (λ)|2→0 as λ→∂Ω},

where k̂H,λ := kH,λ/‖kH,λ‖H is the normalized reproducing kernel of the
space H(Ω); and

A0
H := {T ∈ B(H) : ‖T k̂H,λ‖2 − |T̃ (λ)|2 → 0 as λ→ ∂Ω}.

Englǐs [E2] proved that AH2 is a C∗-algebra. Also, it follows from the fol-
lowing result of Englǐs [E2] (see also Karaev [K2]) that TΦ ∈ AH2 for any
Φ ∈ L∞(T).

Lemma 2.2. Let Φ ∈ L∞(T), and denote, as before, by Φ̃ its harmonic

extension (by the Poisson formula) into D. Then TΦk̂H2,λ − Φ̃(λ)k̂H2,λ → 0
radially, i.e.,

lim
r→1
‖TΦk̂H2,reit − Φ̃(reit)k̂H2,reit‖ = 0

for almost all t ∈ [0, 2π).

Let θ be an inner function and ϕ ∈ L∞(T). The truncated Toeplitz
operator Aθϕ is defined on the model space

Kθ := H2 	 θH2

by the formula Aθϕf := PθTϕ|Kθ, where Pθ : H2 → Kθ is the orthogonal

projection and Tϕ : H2 → H2 is the Toeplitz operator of symbol ϕ.

Note that in the case of H = H2(D), H = L2
a(D) and H = Kθ, the

limits in the definition of the corresponding Englǐs algebras are assumed, as
mentioned above, to be radial, or nontangential.

So, the next result proves membership of truncated Toeplitz operators
in the Englǐs algebra

A0
Kθ

= {T ∈ B(Kθ) : ‖T k̂θλ‖2 − |T̃ (λ)|2 → 0 radially}.

Theorem 2.3. Let Aθϕ be a truncated Toeplitz operator on the space Kθ.

Then Aθϕ ∈ A0
Kθ

if and only if
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lim
λ→∂D
radially

1

1− |θ(λ)|2
[
‖T

ϕ(1−θ(λ)θ)k̂λ‖
2 − ‖T

ϕθ−θ(λ)k̂λ‖
2

− 2 Re
(
Ãθϕ(λ)

)(
ϕ|1− θ(λ)θ|2

)∼
(λ) + (1− |θ(λ)|2)|Ãθϕ(λ)|2

]
= 0.

Proof. First, note that the normalized reproducing kernel of the RKHS
Kθ is

k̂θλ(z) :=

(
1− |λ|2

1− |θ(λ)|2

)1/2 1− θ(λ)θ(z)

1− λz
, λ ∈ D,

and hence the Berezin symbol of the operator Aθϕ is

Ãθϕ(λ) := 〈Aθϕk̂θλ, k̂θλ〉, λ ∈ D.

Since Aθϕk̂
θ
λ − Ãθϕk̂θλ ⊥ Ãθϕk̂θλ, we have

‖Aθϕk̂θλ − Ãθϕ(λ)k̂θλ‖2 = ‖Aθϕk̂θλ‖2 − |Ãθϕ(λ)|2, λ ∈ D.

Hence Aθϕ ∈ A0
Kθ

if and only if ‖Aθϕk̂θλ − Ãθϕ(λ)k̂θλ‖ → 0 as λ→ ∂D radially.

Therefore we will examine the boundary behavior of ‖Aθϕk̂θλ − Ãθϕ(λ)k̂θλ‖.
Indeed, since Pθ = I − TθTθ, we have

‖Aθϕk̂θλ − Ãθϕ(λ)k̂θλ‖2

= ‖PθTϕk̂θλ − Ãθϕ(λ)k̂θλ‖2 = ‖(I − TθTθ)Tϕk̂
θ
λ − Ãθϕ(λ)k̂θλ‖2

= 〈Tϕk̂θλ − TθTθTϕk̂
θ
λ − Ãθϕ(λ)k̂θλ, Tϕk̂

θ
λ − TθTθTϕk̂

θ
λ − Ãθϕ(λ)k̂θλ〉

= ‖Tϕk̂θλ‖2 − 〈Tϕk̂θλ, TθTθTϕk̂
θ
λ〉 − Ãθϕ(λ)〈Tϕk̂θλ, k̂θλ〉

− 〈TθTθTϕk̂
θ
λ, Tϕk̂

θ
λ〉+ ‖TθTθTϕk̂

θ
λ‖2

− Ãθϕ(λ)〈k̂θλ, Tϕk̂θλ〉+ |Ãθϕ(λ)|2

= ‖Tϕk̂θλ‖2 − 2 Re[Ãθϕ(λ)〈Tϕk̂θλ, k̂θλ〉]− 2‖Tθϕk̂
θ
λ‖2

+ ‖TθTθϕk̂
θ
λ‖2 + |Ãθϕ(λ)|2

= ‖Tϕk̂θλ‖2 − 2 Re[Ãθϕ(λ)〈Tϕk̂θλ, k̂θλ〉]− ‖Tθϕk̂
θ
λ‖2 + |Ãθϕ(λ)|2

=
1

1− |θ(λ)|2
‖T

ϕ(1−θ(λ)θ)k̂λ‖
2

− 2 Re[Ãθϕ(λ)〈T
ϕ|1−θ(λ)θ|2 k̂λ, k̂λ〉]

1

1− |θ(λ)|2

+ |Ãθϕ(λ)|2 − ‖T
ϕ(1−θ(λ)θ)k̂λ‖

2 1

1− |θ(λ)|2
,
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and hence

‖Aθϕk̂θλ − Ãθϕ(λ)k̂θλ‖2 =
1

1− |θ(λ)|2
[
‖T

ϕ(1−θ(λ)θ)k̂λ‖
2 − ‖T

ϕθ−θ(λ)k̂λ‖
2

− 2 Re
(
Ãθϕ(λ)(ϕ|1− θ(λ)θ|2)∼(λ)

)
+ (1− |θ(λ)|2)|Ãθϕ(λ)|2

]
for all λ ∈ D, which shows that Aθϕ is in the Englǐs algebra A0

Kθ
if and only

if

lim
λ→∂D
radially

1

1− |θ(λ)|2
[
‖T

ϕ(1−θ(λ)θ)k̂λ‖
2 − ‖T

ϕθ−θ(λ)k̂λ‖
2

− 2 Re(Ãθϕ(λ))
(
ϕ|1− θ(λ)θ|2

)∼
(λ) + (1− |θ(λ)|2)|Ãθϕ(λ)|2

]
= 0,

as desired.

Let AL2
a

denote the C∗-algebra of operators in B(L2
a) (see [E2]) defined

by

AL2
a

:= {T ∈ B(L2
a) : ‖T k̂L2

a,λ
‖2−|T̃ (λ)|2→ 0 radially, and similarly for T ∗}.

The main properties of the Englǐs algebras are collected in the following
proposition, which can be found in [E2].

Proposition 2.4. We have:

(i) FH is a C∗-algebra.
(ii) TΦ ∈ FH ⇒ Φ = 0.

(iii) A1 is a C∗-algebra.
(iv) For any T ∈ A1, there exists σ(T ) ∈ L∞(T) such that

T̃ (λ)→ σ(T ) radially as λ→ ∂D.

(v) For Φ ∈ L∞(T), TΦ ∈ AH2.
(vi) AH is a C∗-algebra.
(vii) A0

H is an algebra.

Proposition 2.5. Let T ∈ B(L2
a). Then T ∈ AL2

a
if and only if

‖(T − T̃ (λ)I)k̂L2
a,λ
‖2, ‖(T ∗ − T̃ ∗(λ)I)k̂L2

a,λ
‖2→0 radially as λ→ ∂D.

Proof. Since

‖T k̂L2
a,λ
‖22 = ‖T k̂L2

a,λ
− T̃ (λ)k̂L2

a,λ
‖22 + |T̃ (λ)|2,

‖T ∗k̂L2
a,λ
− T̃ ∗(λ)k̂L2

a,λ
‖22 = ‖T ∗k̂L2

a,λ
‖22 − |T̃ (λ)|2,

the desired result follows.
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3. On the solvability of a Riccati operator equation on Englǐs
algebras. In this section, we investigate the solvability of the Riccati op-
erator equation

(1) XAX +XB − CX −D = 0

on the Englǐs algebra AH of operators on a RKHS H = H(Ω) over some
set Ω. More exactly, we give a necessary condition for the solvability of
(1) in terms of Berezin symbols. In turns out that if (1) is solvable on
an appropriate subset of AH, then the solution of (1) is unique and it is
represented in terms of Berezin symbols of the coefficient operators A and D.
To state our results, denote, for any A ∈ B(H),

Ãbv(ξ) := lim
λ→ξ∈∂Ω

Ã(λ)

if it exists and if Ãbv ∈ L∞(∂Ω). We also set

AuH := {A ∈ AH : Ãbv is in L∞(∂Ω) and uniquely determines A}.

The main result of this section essentially improves and generalizes [K2,
Theorem 2.1]:

Theorem 3.1. LetH=H(Ω) be a RKHS over a set Ω, and let A,B,C,D

∈ B(H) with Ãbv, B̃bv, C̃bv, D̃bv ∈ L∞(∂Ω), B ∈ A0
H and B̃bv 6= C̃bv almost

everywhere on ∂Ω.

If equation (1) is solvable on AuH, i.e., if there exists T ∈ AuH satisfy-
ing (1), then:

(a) D̃bv/(B − C)∼bv ∈ L∞(∂Ω) if Ãbv = 0;

(b) ((B −C)∼bv)2 + 4ÃbvD̃bv = 0 if Ãbv 6= 0 almost everywhere on ∂Ω.

Proof. Suppose that there exists T ∈ AuH such that

TAT + TB − CT −D = 0,

where A,B,C,D satisfy the hypotheses of the theorem. Then, for all λ ∈ Ω,

0 = 〈(TAT + TB − CT −D)k̂H,λ, k̂H,λ〉

= 〈TAT k̂H,λ, k̂H,λ〉+ 〈TBk̂H,λ, k̂H,λ〉 − 〈CT k̂H,λ, k̂H,λ〉 − 〈Dk̂H,λ, k̂H,λ〉

= 〈ATk̂H,λ, T ∗k̂H,λ − T̃ ∗(λ)k̂H,λ〉+ T̃ (λ)〈ATk̂H,λ, k̂H,λ〉

+ 〈T (Bk̂H,λ − B̃(λ)k̂H,λ), k̂H,λ〉+ B̃(λ)T̃ (λ)

− 〈C(T k̂H,λ − T̃ (λ)k̂H,λ), k̂H,λ〉 − C̃(λ)T̃ (λ)− D̃(λ)

= 〈ATk̂H,λ, T ∗k̂H,λ − T̃ ∗(λ)k̂H,λ〉

+ T̃ (λ)[〈A(T k̂H,λ − T̃ (λ)k̂H,λ), k̂H,λ〉+ T̃ (λ)Ã(λ)]
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+ 〈Bk̂H,λ − B̃(λ)k̂H,λ, T
∗k̂H,λ〉+ B̃(λ)T̃ (λ)

− 〈T k̂H,λ − T̃ (λ)k̂H,λ, C
∗k̂H,λ〉 − C̃(λ)T̃ (λ)− D̃(λ)

= [Ã(λ)(T̃ (λ))2 + (B̃(λ)− C̃(λ))T̃ (λ)− D̃(λ)]

+ 〈ATk̂H,λ, T ∗k̂H,λ − T̃ ∗(λ)k̂H,λ〉+ T̃ (λ)〈T k̂H,λ − T̃ (λ)k̂H,λ, A
∗k̂H,λ〉

+ 〈Bk̂H,λ − B̃(λ)k̂H,λ, T
∗k̂H,λ〉,

which yields

|Ã(λ)(T̃ (λ))2 + (B − C)∼(λ)T̃ (λ)− D̃(λ)|

≤ ‖AT‖ ‖T ∗k̂H,λ − T̃ ∗(λ)k̂H,λ‖H + ‖T‖ ‖A‖ ‖T k̂H,λ − T̃ (λ)k̂H,λ‖H
+ ‖T‖ ‖Bk̂H,λ − B̃(λ)k̂H,λ‖H → 0 as λ→ ∂Ω,

because T ∈ AH and B ∈ A0
H. This implies that

(2) Ãbv(ξ)(T̃ bv(ξ))2 + (B − C)∼bv(ξ)T̃ bv(ξ)− D̃bv(ξ) = 0

for a.a. ξ ∈ ∂Ω.
(a) If Ãbv(ξ) = 0 almost everywhere on ∂Ω then obviously equation (2)

has a unique solution

T̃ bv = D̃bv/(B − C)∼bv ,

and since T̃ bv ∈ L∞(∂Ω), we have D̃bv/(B − C)∼bv ∈ L∞(∂Ω).

(b) If Ãbv(ξ) 6= 0 almost everywhere on ∂Ω then since T̃ bv uniquely
determines the operator T, we deduce that the quadratic equation (2) has
only one solution. This means that

((B − C)∼bv)2 + 4ÃbvD̃bv = 0,

as desired.

It is clear from the proof that, in fact, Theorem 3.1 proves that if the
Riccati equation (1) is solvable on AuH, and T ∈ AuH is a solution, then the
solution T is unique and

T̃ bv =


D̃bv

(B − C)∼bv
if Ãbv = 0,

(C −B)∼bv

2Ãbv
if Ãbv 6= 0 almost everywhere on ∂Ω.

Note that the solvability of the Riccati operator equation in concrete
operator classes is an important problem of operator theory and its appli-
cations. For instance, the existence of a nontrivial solution of (1) for fixed
A ∈ B(H), B = D = 0 and C = A on the set PH of all orthogonal projectors
P ∈ B(H) is equivalent to the solution of the famous Invariant Subspace
Problem in the infinite-dimensional separable Hilbert space H; here non-
triviality means that 0 6= X 6= IH , where IH is the identity operator on H.
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4. Zero operator products

4.1. Zero operator products on H2. In the following proposition
we investigate the so-called zero products for A1-class operators which im-
plies, in particular, the well-known Douglas lemma [Dou] for zero Toeplitz
products on the Hardy space H2.

Proposition 4.1. Let ϕ1, . . . , ϕn ∈ L∞(T) and H1, . . . ,Hn ∈ FH2,
where n is an integer, be such that

(Tϕ1 +H1) . . . (Tϕn +Hn) = 0.

Then ϕ1 . . . ϕn = 0.

Proof. Since (Tϕ1 +H1) . . . (Tϕn +Hn) = 0, we have

0 = [(Tϕ1 +H1) . . . (Tϕn +Hn)]∼(λ)(3)

= 〈(Tϕ1 +H1) . . . (Tϕn +Hn)k̂H2,λ, k̂H2,λ〉

for all λ ∈ D. It is easy to see that

(4) (Tϕ1 +H1) . . . (Tϕn +Hn) = Tϕ1 . . . Tϕn +Xϕ1,...,ϕn
H1,...Hn

+H1 . . . Hn

where Xϕ1,...,ϕn
H1,...Hn

is a sum of products of operators

Tϕ1 , . . . , Tϕn , H1, . . . ,Hn.

Since every such product has a factor equal to at least one of H1, . . . ,Hn,
and Hi ∈ FH2 for any i ∈ {1, . . . , n}, by Lemma 2.2 it is not difficult to
deduce that

|X̃ϕ1,...,ϕn
H1,...Hn

(λ)| → 0 radially,

that is,

(5) lim
r→1−

|X̃ϕ1,...,ϕn
H1,...Hn

(reit)| = 0

for almost all t ∈ [0, 2π). From (3) and (4) we obtain

(6) 0 = (Tϕ1 . . . Tϕn)∼(λ) + X̃ϕ1,...,ϕn
H1,...Hn

(λ) + (H1 . . . Hn)∼(λ)

for all λ ∈ D. On the other hand,

(Tϕ1 . . . Tϕn)∼(λ)

= 〈Tϕ1 . . . Tϕn k̂H2,λ, k̂H2,λ〉 = 〈Tϕ2 . . . Tϕn k̂H2,λ, Tϕ1
k̂H2,λ〉

= 〈Tϕ2 . . . Tϕn k̂H2,λ, (Tϕ1
k̂H2,λ − ϕ̃1(λ)k̂H2,λ) + ϕ̃1(λ)k̂H2,λ〉
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= 〈Tϕ2 . . . Tϕn k̂H2,λ, Tϕ1
k̂H2,λ − ϕ̃1(λ)k̂H2,λ〉

+ ϕ̃1〈Tϕ2 . . . Tϕn k̂H2,λ, k̂H2,λ〉

= A1,λ + ϕ̃1(λ)[〈Tϕ3 . . . Tϕn k̂H2,λ, Tϕ2
k̂H2,λ − ϕ̃2(λ)k̂H2,λ〉

+ ϕ̃2(λ)〈Tϕ3 . . . Tϕn k̂H2,λ, k̂H2,λ〉]
= A1,λ + ϕ̃1(λ)A2,λ

+ ϕ̃1(λ)ϕ̃2(λ)[A3,λ + ϕ̃3(λ)〈Tϕ4 . . . Tϕn k̂H2,λ, k̂H2,λ〉]
= A1,λ + ϕ̃1(λ)A2,λ + ϕ̃1(λ)ϕ̃2(λ)A3,λ

+ ϕ̃1(λ)ϕ̃2(λ)ϕ̃3(λ)〈Tϕ4 . . . Tϕn k̂H2,λ, k̂H2,λ〉
= · · ·
= A1,λ + ϕ̃1(λ)A2,λ + ϕ̃1(λ)ϕ̃2(λ)A3,λ + ϕ̃1(λ)ϕ̃2(λ)ϕ̃3(λ)A4,λ

+ · · ·+ ϕ̃1(λ)ϕ̃2(λ)ϕ̃3(λ) . . . ϕ̃n(λ)

for every λ ∈ D, where

Ak,λ := 〈Tϕk+1...ϕn k̂H2,λ, Tϕk k̂H2,λ − ϕ̃k(λ)k̂H2,λ〉, k = 1, . . . , n− 1.

Hence, for every λ ∈ D, we infer from (6) that

|ϕ̃1(λ) . . . ϕ̃n(λ)|
=
∣∣A1,λ + ϕ̃1(λ)A2,λ + ϕ̃1(λ)ϕ̃2(λ)A3,λ + · · ·+ ϕ̃1(λ) . . . ϕ̃n−2(λ)An−1,λ

+ X̃ϕ1,...,ϕn
H1,...Hn

(λ) + (H1 . . . Hn)∼(λ)
∣∣.

Since (H1 . . . Hn)∼(λ)→ 0 radially, by (5) and the Cauchy–Schwarz inequal-
ity, we conclude that

lim
r→1−

|ϕ̃1(re
it) . . . ϕ̃n(reit)| = 0,

and hence ϕ1(e
it) . . . ϕn(eit) = 0 for almost all t ∈ [0, 2π), as claimed.

As a corollary of Proposition 4.1 (for Hi = 0, i = 1, . . . , n), we obtain
the following well-known Douglas lemma.

Corollary 4.2. Let ϕ1, . . . , ϕn ∈ L∞(T). If Tϕ1 . . . Tϕn = 0, then
ϕ1 . . . ϕn = 0.

Recall that in the Hardy space H2 it is routine that if u or v is holomor-
phic then TuTv = Tuv. In [BH], it was shown by A. Brown and P. Halmos
that the converse is also true. That is, if TuTv = Tw then one of the two
symbols u or v must be holomorphic and in this case w = uv. From this
they easily deduce that if TuTv = 0, then one of the two symbols u or v
must be identically zero. There are many other interesting applications of
their result. (For the history of the Brown–Halmos theorem and also new
Brown–Halmos type theorems, see, for instance, Ahern and Čučković [AC]).
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A special case of Corollary 4.2 is the following, which gives a new simpler
proof of the Brown–Halmos result.

Corollary 4.3. Let ϕ,ψ ∈ L∞(T) with ψ(ξ) 6= 0 almost everywhere
on T. If TϕTψ = 0, then Tϕ = 0.

4.2. Zero operator products on L2
a. Following Axler and Zheng

[AZ1], let U denote the C∗-subalgebra of L∞(D) generated by H∞. It is
well known (see [AZ1, Proposition 4.5]) that U equals the closed subalgebra
of L∞ generated by the set of bounded harmonic functions on D.

It is also well known (see Ahern, Flores and Rudin [AFR] and Englǐs
[E1]) that a function in L∞(D) equals its Berezin symbol (transform) if and
only if it is harmonic.

Recall that for f ∈ L∞(D, dA), the Toeplitz operator Tf with symbol
f is the operator on L2

a = L2
a(D) defined by Tfg = P (fg), where P is the

orthogonal projection from L2(D, dA) onto L2
a.

The Berezin symbol (transform) f̃ of a function f ∈ L∞(D, dA) is defined
to be the Berezin symbol of the Toeplitz operator Tf on L2

a. In other words,

f̃ := T̃f . Because 〈Tf k̂λ, k̂λ〉 = 〈P (fk̂λ), k̂λ〉 = 〈fk̂λ, k̂λ〉, we obtain the
formula

f̃(λ) =
�

D

f(z)|k̂λ(z)|2 dA(z).

The Berezin transform of a function in L∞(D, dA) often plays the same
important role in the theory of Bergman spaces as the harmonic extension
of a function in L∞(∂D, dm) plays in the theory of Hardy spaces (for more
details see, for instance, Axler and Zheng [AZ1] and Zhu [Zhu]).

The following two results are due to Axler and Zheng [AZ1, Corollary
3.4 and 3.7].

Lemma 4.4. If u ∈ U , then ũ − u has nontangential limit 0 at almost
every point of T.

Lemma 4.5. If u ∈ U , then the function

λ 7→ ‖(Tu − u(λ)I)k̂L2
a,λ
‖L2

a

has nontangential limit 0 at almost every point of T.

Now, by the same arguments used in the proof of Proposition 4.1 and
also by applying Lemmas 4.4 and 4.5, one can prove the following (the proof
is omitted).

Proposition 4.6. Let u1, . . . un ∈ U and Tui , i = 1, . . . , n, be the
Toeplitz operators on the Bergman space L2

a(D). If Tu1 . . . Tun = 0, then
u1(ξ) . . . un(ξ) = 0 for almost all T; here ui(ξ) denotes the nontangential
boundary value of u at ξ ∈ T, which exists by Lemma 4.4.
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Corollary 4.7. Let f, g ∈ U with g harmonic. Then TfTg = 0 on
L2
a(D) has only a trivial solution.

This corollary, in particular, generalizes [AC, Corollary 2], and also par-
tially solves the following known conjecture (see [AC]).

Conjecture 4.8. Let f, g ∈ L∞(D) with g harmonic. Then TfTg = 0
on L2

a(D) has only a trivial solution.

For more information about zero Toeplitz products on the Hardy and
Bergman spaces, see, for instance, Ahern and Čučković [AC], Aleman and
Vukotić [AV], Čučković [C], and their references.

5. Maximal Berezin set. Recall that for any operator A ∈ B(H(Ω))

the maximal Berezin set W̃0(A) is defined by (see [GGSU])

W̃0(A) :=
{
λ ∈ C : ∃{λn} ⊂ Ω such that

λ = lim
λn→∂Ω

Ã(λn) and lim
λn→∂Ω

‖Ak̂H,λn‖ = ‖A‖
}
.

Our next result improves [GGSU, Theorem 1] (which actually means that

{‖Tϕ‖} ⊂ W̃0(Tϕ)) for any ϕ ∈ H∞,d := {f ∈ H∞ : |f | = ‖f‖∞ on a subset
of T of positive measure}.

Proposition 5.1. For any Toeplitz operator Tϕ on H2, we have

W̃0(Tϕ) = {‖ϕ‖∞}.
Proof. By Lemma 1.2, it is elementary that for any ϕ ∈ L∞(T),

‖Tϕk̂H2,λ − T̃ϕ(λ)k̂H2,λ‖2 = ‖Tϕk̂H2,λ‖2 − ‖T̃ϕ(λ)‖2

= ‖Tϕk̂H2,λ‖2 − |ϕ̃(λ)|2 (∀λ ∈ D).

Since ‖Tϕk̂H2,λ− T̃ϕ(λ)k̂H2,λ‖ → 0 radially (see Lemma 2.2), we deduce that

lim
|λ|→1−

‖Tϕk̂H2,λ‖ = lim
|λ|→1−

|ϕ̃(λ)|,

which implies that W̃0(Tϕ) = {‖Tϕ‖} = {‖ϕ‖∞}.
By the same argument as in the proof of Proposition 5.1, one can prove

the following for the Englǐs algebra AH.

Proposition 5.2. For any T ∈ AH, we have W̃0(T ) ⊂ T‖T‖ and W̃0(T
∗)

⊂ T‖T‖, where T‖T‖ denotes the circle with center 0 and radius ‖T‖.

6. Compactness and related problems. Recall (see Hoffman [Hof])
that the maximal ideal space of the Banach algebra H∞(D), denoted byM,
is defined to be the set of multiplicative linear functionals from H∞ to the
field of complex numbers. With the weak-star topology, M is a compact
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Hausdorff space. If z ∈ D, then the point evaluation f 7→ f(z) at z is a
multiplicative linear functional onM. Thus we can think of z as an element
ofM, and of D as a subset ofM. The celebrated Carleson Corona Theorem
(see [Hof]) states that D is dense in M.

For λ ∈ D, let ϕλ be the Möbius map on D defined by

ϕλ(z) :=
λ− z
1− λz

.

Following Axler and Zheng [AZ1], we define HOP (which stands for “har-
monic on parts”) to be the set of functions u ∈ U such that u ◦ ϕm is
harmonic on D for every m ∈M \ D.

Every bounded harmonic function on D is in HOP; also every function
in C(D), the space of continuous functions on D, is in HOP (see [AZ1]).

Proposition 6.1. Suppose S is a finite sum of operators of the form
Tu1 . . . Tun , where uj ∈ U and Tuj : L2

a → L2
a for j = 1, . . . , n.

(a) If S̃ ∈ HOP and A ∈ B(L2
a) with A(S − T

S̃
) = (S − T

S̃
)A, then A

has a nontrivial hyperinvariant subspace on L2
a.

(b) If S̃ ∈ HOP and S̃ has limit 0 on ∂D then S has a representation

S = compact Toeplitz operator + compact operator.

Proof. The proofs are immediate from [AZ1, Corollary 3.12] and the fa-

mous Lomonosov theorem [Lom]. Indeed, if S̃ ∈ HOP, then by [AZ1, Corol-
lary 3.12], S − T

S̃
is a compact operator, and Lomonosov’s result applies.

This proves (a).

(b) Since S̃ vanishes on ∂D, we know by Axler–Zheng’s theorem [AZ1]

that T
S̃

is a compact operator on L2
a. Also, since S̃ ∈ HOP, we see that

S − T
S̃

is compact, S − T
S̃

= K, which implies the desired representation
S = T

S̃
+K, where T

S̃
is a compact Toeplitz operator on L2

a.

LetH = H(Ω) be a standard RKHS over a set Ω, and consider the Englǐs
algebra

A0
H :=

{
T ∈ B(H) : lim

λ→∂Ω
(‖T k̂H,λ‖2 − |T̃ (λ)|2) = 0

}
.

It can be proved as in [E2, proof of (A1), p. 186] that A0
H is a norm-closed

algebra (the proof is omitted). Also it is clear that AH ⊂ A0
H, where AH is

the Englǐs algebra defined in Section 2. Further, A0
H contains all compact

operators on H.
In the next theorem we will study compactness of the operator AB−C,

where A,B,C belong to A0
H and are noncompact operators on H.

Theorem 6.2. Let A,B,C ∈ A0
H. Then AB − C is a compact operator

on H if and only if
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lim
λ→∂Ω

[
〈Uk̂H,λ − Ũ(λ)k̂H,λ, (AB − C)∗Uk̂H,λ〉

+ |Ũ(λ)|2(Ã(λ)B̃(λ)− C̃(λ))
]

= 0

for all unitary operators U on H.

Proof. We will apply Lemma 1.1. Let U : H → H be a unitary operator.
Let us calculate the Berezin symbol of U−1(AB − C)U :

(U−1(AB − C)U)∼(λ) = 〈ABUk̂H,λ, Uk̂H,λ〉 − 〈CUk̂H,λ, Uk̂H,λ〉

= 〈AB(Uk̂H,λ − Ũ(λ)k̂H,λ), Uk̂H,λ)〉+ Ũ(λ)〈ABk̂H,λ, Uk̂H,λ〉

− 〈C(Uk̂H,λ − Ũ(λ)k̂H,λ), Uk̂H,λ〉 − Ũ(λ)〈Ck̂H,λ, Uk̂H,λ〉

= 〈AB(Uk̂H,λ − Ũ(λ)k̂H,λ), Uk̂H,λ〉+ Ũ(λ)〈A(Bk̂H,λ − B̃(λ)k̂H,λ), Uk̂H,λ〉

+ Ũ(λ)B̃(λ)〈Ak̂H,λ, Uk̂H,λ〉 − 〈C(Uk̂H,λ − Ũ(λ)k̂H,λ), Uk̂H,λ〉

− Ũ(λ)〈Ck̂H,λ − C̃(λ)k̂H,λ, Uk̂H,λ〉 − Ũ(λ)C̃(λ)〈k̂H,λ, Uk̂H,λ〉

= 〈AB(Uk̂H,λ − Ũ(λ)k̂H,λ), Uk̂H,λ〉

+ Ũ(λ)〈A(Bk̂H,λ − B̃(λ)k̂H,λ), Uk̂H,λ〉

+ Ũ(λ)B̃(λ)〈Ak̂H,λ − Ã(λ)k̂H,λ, Uk̂H,λ〉

+ Ũ(λ)B̃(λ)Ã(λ)〈k̂H,λ, Uk̂H,λ〉 − 〈C(Uk̂H,λ − Ũ(λ)k̂H,λ), Uk̂H,λ〉

− Ũ(λ)〈Ck̂H,λ − C̃(λ)k̂H,λ, Uk̂H,λ〉 − Ũ(λ)C̃(λ)〈k̂H,λ, Uk̂H,λ〉

= 〈AB(Uk̂H,λ − Ũ(λ)k̂H,λ), Uk̂H,λ〉

+ Ũ(λ)〈A(Bk̂H,λ − B̃(λ)k̂H,λ), Uk̂H,λ〉

+ Ũ(λ)B̃(λ)〈Ak̂H,λ − Ã(λ)k̂H,λ, Uk̂H,λ〉

+ |Ũ(λ)|2Ã(λ)B̃(λ)− 〈C(Uk̂H,λ − Ũ(λ)k̂H,λ), Uk̂H,λ〉

− Ũ(λ)〈Ck̂H,λ − C̃(λ)k̂H,λ, Uk̂H,λ〉 − |Ũ(λ)|2C̃(λ).

Thus,

(U−1(AB − C)U)∼(λ) = 〈Uk̂H,λ − Ũ(λ)k̂H,λ, (AB − C)∗Uk̂H,λ〉(7)

+ |Ũ(λ)|2[Ã(λ)B̃(λ)− C̃(λ)]

+ Ũ(λ)〈A(Bk̂H,λ − B̃(λ)k̂H,λ), Uk̂H,λ〉

+ Ũ(λ)B̃(λ)〈Ak̂H,λ − Ã(λ)k̂H,λ, Uk̂H,λ〉

− Ũ(λ)〈Ck̂H,λ − C̃(λ)k̂H,λ, Uk̂H,λ〉
for any unitary operator U on H and any λ ∈ Ω.

By the hypotheses of theorem and the obvious inequality

‖Uk̂H,λ − Ũ(λ)k̂H,λ‖ ≤ 2,
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we infer from (7) by the Cauchy–Schwarz inequality that

lim
λ→∂Ω

(U−1(AB − C)U)∼(λ) = 0

if and only if

lim
λ→∂Ω

[
〈Uk̂H,λ − Ũ(λ)k̂H,λ, (AB − C)∗Uk̂H,λ〉

+ |Ũ(λ)|2(Ã(λ)B̃(λ)− C̃(λ))
]

= 0.

Since U is arbitrary, by Lemma 1.1 this proves the theorem.

Corollary 6.3. If AB − C is compact, then

lim
λ→∂Ω

(
Ã(λ)B̃(λ)− C̃(λ)

)
= 0.

7. Asymptotic multiplicativity and compactness of semi-com-
mutators on Bergman space. In what follows, nt-limλ→∂D a(λ) will de-
note the nontangential limit of a(λ). It is well known that the Berezin trans-
form is not multiplicative even over the space of harmonic functions. How-
ever, ũv(λ) − ũ(λ)ṽ(λ) → 0 as λ → ∂D for some pairs of functions u, v.
In [AZ1], the authors describe the bounded harmonic functions for which
this happens. Their proof is based on Hankel operators (see [AZ1, Lemma
4.1 and Theorem 4.5]).

In this section, we consider more general situations for u and v, and
give necessary and sufficient conditions for the asymptotic multiplicativity
of the Berezin transform for functions. We prove, in particular, the follow-
ing Axler–Chang–Sarason–Volberg type theorem (see [ACS] and [V]) for
Bergman space Toeplitz operators with symbols in U (see (b1) and (b2)
below).

Theorem 7.1. Let u, v ∈ L∞(D, dA), and let Tu, Tv, Tuv be the corre-
sponding Toeplitz operators on L2

a. Then

(a) limλ→∂D(ũv(λ)− ũ(λ)ṽ(λ)) = 0 if and only if

lim
λ→∂D

[(Tuv − TuTv)∼(λ) + 〈Tv−ṽ(λ)k̂L2
a,λ
, Tuk̂L2

a,λ
〉] = 0.

(b) If u, v ∈ U , then:

(b1) nt-limλ→∂D(ũv(λ)− ũ(λ)ṽ(λ)) = 0 if and only if Tuv − TuTv is
compact on L2

a;
(b2) nt-limλ→∂D(ũv(λ)− ũ(λ)ṽ(λ)) = 0 if and only if Tuv − TvTu is

compact on L2
a.

Proof. For u, v ∈ L∞(D, dA) we have

(Tuv − TuTv)∼(λ) = T̃uv(λ)− T̃uTv(λ)

= 〈Tuvk̂L2
a,λ
, k̂L2

a,λ
〉 − 〈TuTvk̂L2

a,λ
, k̂L2

a,λ
〉
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= 〈Tuvk̂L2
a,λ
− T̃uv(λ)k̂L2

a,λ
, k̂L2

a,λ
〉+ 〈T̃uv(λ)k̂L2

a,λ
, k̂L2

a,λ
〉

− 〈Tvk̂L2
a,λ
− T̃v(λ)k̂L2

a,λ
, Tuk̂L2

a,λ
〉 − 〈T̃v(λ)k̂L2

a,λ
, Tuk̂L2

a,λ
〉

= ũv(λ)− ũ(λ)ṽ(λ)− 〈Tv−ṽ(λ)k̂L2
a,λ
, Tuk̂L2

a,λ
〉,

and hence

(8) ũv(λ)− ũ(λ)ṽ(λ) = (Tuv − TuTv)∼(λ) + 〈Tv−ṽ(λ)k̂L2
a,λ
, Tuk̂L2

a,λ
〉

for all λ ∈ D, which implies (a).
(b1) Since u, v ∈ U and U is an algebra, we have uv ∈ U and ũ, ṽ ∈ U . On

the other hand, it is easy to see from [AZ1, proof of Corollary 3.7] that by

the same arguments it can be shown that the function λ 7→ ‖Tv−ṽ(λ)k̂L2
a,λ
‖2

has nontangential limit 0 at almost every point of ∂D. For this, it is enough
to note that

‖(v − ṽ(λ))k̂L2
a,λ
‖22 =

�

D

|v(z)− ṽ(λ)|2|k̂L2
a,λ

(z)|2dA(z)

=
�

D

(
|v(z)|2 − 2 Re ṽ(λ)v(z) + |ṽ(λ)|2

)
|k̂L2

a,λ
(z)|2 dA(z)

= |̃v|2(λ)− 2 Re ṽ(λ)ṽ(λ) + |ṽ(λ)|2

for all λ ∈ D. Hence, by the same argument as in [AZ1, proof of Corollary

3.7], the function λ 7→ ‖(v − ṽ(λ))k̂L2
a,λ
‖2 belongs to U and it has nontan-

gential limit 0 almost everywhere on ∂D. Consequently,

|〈Tv−ṽ(λ)k̂L2
a,λ
, Tuk̂L2

a,λ
〉| ≤ ‖Tu‖ ‖Tv−ṽ(λ)k̂L2

a,λ
‖2 → 0

nontangentially almost everywhere on ∂D. Hence, by (8),

nt-lim
λ→∂D

(ũv(λ)− ũ(λ)ṽ(λ)) = 0

almost everywhere on ∂D if and only if nt-limλ→∂D(Tuv − TuTv)∼(λ) = 0
almost everywhere on ∂D. To complete the proof of (b1), it suffices to note
that the last condition is equivalent to the compactness of Tuv−TuTv on L2

a

(see Axler and Zheng [AZ2, Theorem 2.2]). The proof of (b2) is the same.

By similar arguments one can prove the following result, which improves
[AC, Corollary 3].

Proposition 7.2. If f, g, h ∈ U are such that TfTg = TfTh and f is not
identically 0, then g = h.

Proof. Since TfTg = TfTh, we have (TfTg−TfTh)∼(λ) = 0 for all λ ∈ D.
Hence, as in the previous proofs,

(g − h)∼(λ)f̃(λ) = 〈Th−g−(h−g)∼(λ)k̂L2
a,λ
, Tf k̂L2

a,λ
〉, λ ∈ D.

As in the proof of Theorem 7.1(b), since

〈Th−g−(h−g)∼(λ)k̂L2
a,λ
, Tf k̂L2

a,λ
〉 → 0



130 M. T. Karaev et al.

nontangentially almost everywhere on ∂D, we conclude that

(g − h)(ξ)f(ξ) = (g − h)∼(ξ)f̃(ξ) = 0

almost everywhere on ∂D (because if u ∈ U , then ũ(ξ) = u(ξ) for almost
all ξ ∈ ∂D, see [AZ1]). By assumption, f is not identically 0, and there-
fore f(ξ) 6= 0 almost everywhere on ∂D. Then (g − h)(ξ) = 0 for almost
all ξ ∈ ∂D. As g − h ∈ U and U is the C∗-algebra in L∞(D, dA) gener-
ated by H∞, the Riesz brothers’ theorem shows that (g − h)(z) = 0 for all
z ∈ D.

Theorem 7.1 can also be reformulated as follows, which essentially im-
proves a result due to Axler and Zheng [AZ1, Theorem 4.5], because every
bounded harmonic function is in the C∗-algebra U .

Theorem 7.3. Let u, v ∈ U . Then nt-limλ→∂D(ũv(λ)− ũ(λ)ṽ(λ)) = 0 if
and only if 2Tuv−TuTv−TvTu is a compact operator on the Bergman space
L2
a(D).

Proof. Since

(2Tuv − TuTv − TvTu)∼(λ) = (Tuv − TuTv)∼(λ) + (Tuv − TvTu)∼(λ),

it follows from (8) that

ũv(λ)− ũ(λ)ṽ(λ) = 1
2(2Tuv − TuTv − TvTu)∼(λ)

+ 1
2 [〈Tv−ṽ(λ)k̂L2

a,λ
, Tuk̂L2

a,λ
〉+ 〈Tu−ũ(λ)k̂L2

a,λ
, Tvk̂L2

a,λ
〉]

for all λ ∈ D. From this, as in the proof of Theorem 7.1(b), by applying
Axler and Zheng’s arguments (see [AZ2, proof of Corollary 3.7]) we deduce
that ũv(λ) − ũ(λ)ṽ(λ) → 0 nontangentially almost everywhere on T if and
only if (2Tuv − TuTv − TvTu)∼(λ) → 0 nontangentially almost everywhere
on T. It remains to note that by [AZ2, Theorem 2.2], the last assertion is
equivalent to the compactness of 2Tuv − TuTv − TvTu.

Let V denote the subalgebra of L∞(D, dA) consisting of all functions v ∈
L∞(D, dA) such that the function λ 7→ ‖Tv−ṽ(λ)k̂L2

α,λ
‖2 has nontangential

limit 0 almost everywhere on ∂D.

It is not difficult to see from the proofs of Theorems 7.1 and 7.3 that
they can be proved in more general cases (we omit the proofs).

Theorem 7.4. If u, v ∈ V , then nt-limλ→∂D(ũv(λ) − ũ(λ)ṽ(λ)) = 0 if
and only if Tuv − TuTv is compact on L2

a.

Theorem 7.5. Let u, v ∈ V . Then nt-limλ→∂D(ũv(λ)− ũ(λ)ṽ(λ)) = 0 if
and only if 2Tuv − TuTv − TvTu is a compact operator on L2

a.
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8. Some remarks on extended eigenvalues and extended eigen-
vectors of operators. Let X be a Banach space and T ∈ B(X). A com-
plex number λ is said to be an extended eigenvalue for T provided that there
exists a nonzero operator A ∈ B(X) such that

TA = λAT.

Such an operator is called an extended eigenvector or an eigenoperator for
T corresponding to the extended eigenvalue λ. We denote by

{T}′λ := {A ∈ B(X) : TA = λAT}

the set of extended eigenvectors for T corresponding to the extended eigen-
value λ. We also denote by ext(T ) the set of all extended eigenvalues of T.
The set of extended eigenvectors will be denoted by Ext(T ).

The notions of extended eigenvalue and extended eigenvector became
popular in the 1970’s when searching for invariant subspaces, especially in
the work of Lomonosov [Lom], S. Brown [B] and Kim, Moore and Pearcy
[KMP]. Beginning from Malamud’s papers [Mal1, Mal2], these concepts
have received a considerable amount of attention, both in the context of
invariant subspaces (see Lacruz [Lac] and Lambert [Lam]) and in the study
of extended eigenvalues and extended eigenvectors for some special classes
of operators in the work of Biswas, Lambert and Petrovic [BLP], Lacruz
et al. [LLPZ], Lacruz [Lac], Domanov and Malamud [DM], Karaev [K3],
Bourdan and Shapiro [BS], Lauric [Lau], Cassier and Alkanjo [CA]. Note
that since IT = TI, where I is the identity operator on X, we always
have 1 ∈ ext(T ). Also recall that the extended eigenvalues of analytic
Toeplitz operators Tϕ, ϕ ∈ H∞, on the Hardy space H2 were investigated
by Deddens [D], Bourdon and Shapiro [BS] and Gürdal [G] (see also Alkanjo
[Alk]).

Note that if ϕ is a constant function whose value is nonzero, then ext(Tϕ)
= C. So, we will assume that ϕ is nonconstant. Hence, Tϕ is one-to-one so
that 0 is never an extended eigenvalue. In fact,

ext(Tϕ) ⊂ {z : |z| ≥ 1}

for every (nonconstant) ϕ ∈ H∞ (see, for instance, Bourdon and Shapiro
[BS] and Deddens [D]).

In this section, we consider the operators from Englǐs algebras, in par-
ticular, the Toeplitz operators Tϕ on the Hardy space H2, and prove some
results on the commutant, extended eigenvalues and extended eigenvectors.

Proposition 8.1. Let H = H(Ω) be a RKHS on the unit disc Ω, and
Mult(H) be the set of all multipliers of H. Let ϕ ∈ Mult(H) be a non-
constant function and Mϕ be the associated multiplication operator on H,
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Mϕf := ϕf . Then

{Mϕ}′ = {A ∈ B(H) : 〈ϕ− ϕ(λ)k̂H,λ, A
∗k̂H,λ〉 = 0 for all λ ∈ Ω},

where {Mϕ}′ denotes the commutant of Mϕ.

Proof. By the closed graph theorem, Mϕ is a bounded operator on H.

Let AMϕ = MϕA. Then obviously ÃMϕ(λ) = M̃ϕA(λ) for all λ ∈ Ω, and

hence in view of M∗ϕkH,λ = ϕ(λ)kH,λ, we have

〈A(Mϕk̂H,λ − ϕ(λ)k̂H,λ), k̂H,λ〉+ ϕ(λ)Ã(λ)

= 〈MϕAk̂H,λ, k̂H,λ〉 = 〈Ak̂H,λ,M∗ϕk̂H,λ〉 = 〈Ak̂H,λ, ϕ(λ) k̂H,λ〉 = ϕ(λ)Ã(λ).

Thus,

〈A(Mϕk̂H,λ − ϕ(λ)k̂H,λ), k̂H,λ〉 = 0,

or equivalently 〈(ϕ− ϕ(λ))k̂H,λ, A
∗k̂H,λ〉 = 0 for all λ ∈ Ω, as desired.

Apparently, the following is known, but we will give a new proof.

Proposition 8.2. Let ϕ ∈ L∞(T), let Tϕ be a Toeplitz operator on H2,
and let h ∈ H∞. Then Th ∈ {Tϕ}′ if and only if ϕ ∈ H∞.

Proof. As in the proof of the previous proposition, by passing to Berezin
symbols, we have

TϕTh = ThTϕ

if and only if

〈Tϕk̂H2,λ − ϕ̃(λ)k̂H2,λ, h(λ) k̂H2,λ〉 = 〈Thk̂H2,λ, Tϕk̂H2,λ − ϕ̃(λ) k̂H2,λ〉,
hence

h(λ)〈Tϕk̂H2,λ − ϕ̃(λ)k̂H2,λ, k̂H2,λ〉 = 〈Thk̂H2,λ, Tϕk̂H2,λ − ϕ̃(λ) k̂H2,λ〉,

for all λ ∈ D. Since 〈Tϕk̂H2,λ − ϕ̃(λ)k̂H2,λ, k̂H2,λ〉 = 0 for all λ ∈ D, we

deduce that TϕTh = ThTϕ if and only if 〈Thk̂H2,λ, Tϕk̂H2,λ− ϕ̃(λ) k̂H2,λ〉 = 0
for all λ ∈ D, or equivalently

0 = 〈k̂H2,λ, Thϕk̂H2,λ − ϕ̃(λ)h(λ) k̂H2,λ〉 = 〈k̂H2,λ, Thϕk̂H2,λ − (ϕ̃h)(λ) k̂H2,λ〉
for all λ ∈ D. Thus, TϕTh = ThTϕ if and only if

(9) 〈k̂H2,λ, Thϕk̂H2,λ − (ϕ̃h)(λ) k̂H2,λ〉 = 0

for all λ ∈ D. On the other hand, always

〈k̂H2,λ, Thϕk̂H2,λ − h̃ϕ(λ)k̂H2,λ〉 = 0,

or equivalently

(10) 〈k̂H2,λ, Thϕk̂H2,λ − h̃ϕ(λ)k̂H2,λ〉 = 0
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for all λ ∈ D. So, by combining (9) and (10), we find that TϕTh = ThTϕ if

and only if ϕ̃h = ϕ̃h.

Since ϕ̃, h and ϕ̃h are harmonic functions on D, from the equality

ϕ̃h = ϕ̃h we deduce by [AZ1, Lemma 4.2] that ϕ is analytic on D. This
shows that ϕ ∈ H∞, as desired.

Remark 8.3. The assertion that TϕTh = ThTϕ if and only if ϕ̃h = ϕ̃h
can also be proved in the following simpler way:

TϕTh = ThTϕ ⇔ T̃hTϕ(λ) = T̃ϕTh(λ), ∀λ ⇔ h(λ)ϕ̃(λ) = T̃ϕh(λ), ∀λ

⇔ h(λ)ϕ̃(λ) = ϕ̃h(λ), ∀λ.

Remark 8.4. In Remark 8.3, we have used the unicity theorem for the
Berezin symbols of operators, which says that A = B if and only if Ã = B̃
(see, for example, Zhu [Zhu]). Now, by using this unicity theorem we give, in
terms of Berezin symbols, a new characterization of Toeplitz operators on the
Hardy space H2, which is quite different from the classical characterization
that an operator A on H2 is a Toeplitz operator if and only if S∗AS = A,
where S is the unilateral shift operator defined on H2 by Sf(z) = zf(z)
(see, for example, Halmos [Hal]).

Proposition 8.5. An operator A in B(H2) is a Toeplitz operator if and

only if its Berezin symbol Ã is a harmonic function on D.

Proof. If A = Tϕ for some ϕ, then by Lemma 1.2, Ã = ϕ̃ is harmonic

on D. Conversely, if Ã is harmonic on D, then the Toeplitz operator T
Ã

with

harmonic symbol Ã satisfies

T̃
Ã

(λ) = Ã(λ)

for all λ ∈ D, which implies in view of the above unicity theorem for Berezin
symbols that A = T

Ã
, as desired.

Of course, a similar result for the Bergman space is only true in the
following form: if an operator A on La2 has a harmonic Berezin symbol Ã
then A = T

Ã
.

For any operator T ∈ B(H(D)) on the RKHS H = H(D), we will denote

T̃ rad(eit) := limr→1− T̃ (reit) if these radial limits exist almost everywhere

on the unit circle T, and if T̃ rad ∈ L∞(T).

For any Englǐs algebra AH on the RKHS H = H(D), we set

Ãrad
H := {T ∈ AH : T̃ rad 6= 0 almost everywhere on ∂D}.

Proposition 8.6. Let T ∈ Ãrad
H , and let µ 6= 1 be a complex number. If

A ∈ B(H(D)) and AT = µTA, then Ãrad = 0.
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Proof. As in the proof of the preceding proposition, we obtain

〈ATk̂H,λ, k̂H,λ〉 = µ〈TAk̂H,λ, k̂H,λ〉,
and hence

(µ− 1)T̃ (λ)Ã(λ) = 〈T k̂H,λ − T̃ (λ)k̂H,λ, A
∗k̂H,λ〉

− µ〈Ak̂H,λ, T ∗k̂H,λ − T̃ ∗(λ)k̂H,λ〉
for all λ ∈ D. From this, as T ∈ AH, we find that

|µ− 1| |T̃ (λ)| |Ã(λ)|

≤ ‖A‖ ‖T k̂H,λ − T̃ (λ)k̂H,λ‖H + |µ| ‖A‖ ‖T ∗k̂H,λ − T̃ ∗(λ)k̂H,λ‖H → 0

radially, which implies in view of µ 6= 1 and T̃ rad 6= 0 that Ãrad = 0, as
desired.

Corollary 8.7. If λ 6= 1 is an extended eigenvalue of an analytic
Toeplitz operator Tϕ on H2, then {Tϕ}′λ does not contain any (nonzero)
Toeplitz operator Tψ with ψ ∈ L∞(T).

Another similar result is formulated in terms of the extended spectrum
of an operator T, and gives some structure for the extended eigenvectors
of T.

Corollary 8.8. Let T ∈ Ãrad
H on the RKHS H = H(D) be such that

ext(T ) ⊆ D. Then

Ext(T ) ⊂ B(H) \ Ãrad
H .

Proof. Let A ∈ Ext(T ). If Ãrad does not exist almost everywhere on ∂D,

then obviously A ∈ B(H) \ Ãrad
H . So, we will assume that Ãrad exists for any

A ∈ Ext(T ).
Suppose on the contrary that there exists B ∈ Ext(T ) such that B /∈

B(H) \ Ãrad
H , that is, BT = βTB for some β ∈ ext(T ) and B̃rad 6= 0 almost

everywhere on ∂D. Then by passing to Berezin symbols, we have

T̃ (λ)B̃(λ) = βT̃ (λ)B̃(λ) + β〈Bk̂H,λ, T ∗k̂H,λ − T̃ ∗(λ)k̂H,λ〉

− 〈T k̂H,λ − T̃ (λ)k̂H,λ, B
∗k̂H,λ〉

for all λ ∈ D. Hence

|T̃ (λ)| |B̃(λ)| ≤ |β| |T̃ (λ)| |B̃(λ)|+ |β| ‖B‖ ‖T ∗k̂H,λ − T̃ ∗(λ)k̂H,λ‖

+ ‖B‖ ‖T k̂H,λ − T̃ (λ)k̂H,λ‖,
which implies that

|T̃ rad(ξ)| |B̃rad(ξ)| ≤ |β| |T̃ rad(ξ)| |B̃rad(ξ)|

for almost all ξ ∈ ∂D, because T ∈ Ãrad
H . Since B̃rad(ξ) 6= 0 for almost all

ξ ∈ ∂D, it follows that |β| ≥ 1, which contradicts β ∈ D.
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9. Reproducing kernels, Duhamel operator and existence of
invariant subspaces. Let Hol(D) denote the space of all analytic functions
in D. The Duhamel product in Hol(D) is defined by

(f ~ g)(z) :=
d

dz

z�

0

f(z − t)g(t) dt =

z�

0

f ′(z − t)g(t) dt+ f(0)g(z)

for f, g ∈ Hol(D) (see Wigley [W1]). This product is also known to be
commutative and associative and has the identity f(z) ≡ 1.

Lemma 9.1 (Wigley [W2]). Let 1 ≤ p < ∞ and let f, g ∈ Hp(D) (the
Hardy space). Then f ~ g ∈ Hp and there exists a constant Cp, depending
only on p, such that

‖f ~ g‖p ≤ Cp‖f‖p‖g‖p.
Moreover, given f ∈ Hp, there exists g ∈ Hp such that (f ~ g)(z) ≡ 1 if and
only if f(0) 6= 0.

In particular, it follows from this lemma that H2 becomes a Banach
algebra. For f ∈ H2, we define the Duhamel operator by Dfg := f ~ g,
g ∈ H2. So, Df is invertible on H2 if and only if f(0) 6= 0. This means that
there is only one maximal ideal, namely, the set of functions which vanish
at the origin, and the spectrum of each Df is the singleton {f(0)}.

The following lemma can be easily proved by similar arguments to those
in the first author’s papers [K4, K5].

Lemma 9.2. Let f ∈ H2 be a nonzero function and Df be the associated
Duhamel operator on H2. Then Df is compact if and only if f(0) = 0.

Now we state the main result of this section, which gives some sufficient
conditions in terms of reproducing kernels and Duhamel operators for the
existence of a nontrivial invariant subspace (briefly, n.i.s.) in H2. Let S de-
note the shift operator on H2 defined by Sf = zf, and let S∗ be a backward
shift operator.

Theorem 9.3. Let T : H2 → H2 be an operator. Suppose that there
exists a nonzero operator B ∈ {T}′ such that:

(i) |(S∗βλB)∼(λ)| = o

(
|((I − SS∗)S∗βλB)∼(λ)|

1− |λ|2

)
as λ→ ∂D,

where βλ := k
Bk̂λ

(0) is the order of zero of the function Bk̂λ at
z = 0;

(ii) there exists a sequence (λn)n≥1 ⊂ D tending to a point ξ0 in ∂D such
that

D
k̂λn~(S∗βλnBk̂λn )

−1~−(k̂λn~(S∗βλnBk̂λn ))
−1~(0)

S∗βλn

converges in the uniform operator topology to some operator K on H2.

Then T has a n.i.s.
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Proof. Suppose that T has no nontrivial invariant subspace in H2. Then
ker(A) = {0} for any nonzero operator A in {T}′, and therefore Ah 6= 0 for

any nonzero function h in H2. In particular, Ak̂λ 6= 0 for all A ∈ {T}′ \ {0}
and λ ∈ D; here k̂λ := k̂H2,λ denotes the normalized reproducing ker-

nel of H2. Let Ak̂λ = fA,λ for any λ ∈ D. Then fA,λ = zαλgA,λ, where
αλ := kfA,λ(0) is the order of zero of fA,λ at z = 0, gA,λ ∈ H2, and

gA,λ(0) 6= 0. Hence Ak̂λ = zαλgA,λ, and therefore S∗αλAk̂λ = gA,λ, where S∗

is the backward shift operator on H2 (which is just a co-analytic Toeplitz
operator Tz on H2). Since gA,λ(0) 6= 0 by Lemma 9.1, there exists a function

GA,λ ∈ H2 (which is the ~-inverse of S∗αλAk̂λ, i.e., GA,λ = (S∗αλAk̂λ)−1~)
such that GA,λ ~ gA,λ = 1 for all λ ∈ D. Then

(k̂λ ~ GA,λ) ~ S∗αλAk̂λ = k̂λ ~ 1 = k̂λ,

and hence

D
k̂λ~GA,λ

S∗αλAk̂λ = k̂λ,

or by setting FA,λ := k̂λ ~ GA,λ = k̂λ ~ (S∗αλAk̂λ)−1~, we obtain

FA,λ(0) = (k̂λ ~ (S∗αλAk̂λ)−1~)(0) = k̂λ(0)((S∗αλAk̂λ)−1~)(0)

= (1− |λ|2)1/2((S∗αλAk̂λ)−1~)(0) 6= 0

and

(11) DFA,λS
∗αλAk̂λ = k̂λ

for all A ∈ {T}′ \ {0} and all λ ∈ D. It is easy to see from (11) that

(12) k̂λ − FA,λ(0)S∗αλAk̂λ = DFA,λ−FA,λ(0)S
∗αλAk̂λ

for any A ∈ {T}′ \ {0} and any λ ∈ D, where DFA,λ−FA,λ(0) is a compact

Duhamel operator on H2 (see Lemma 9.2). In particular, from (12) we have

(13) k̂λn − FB,λn(0)S∗βλnBk̂λn = DFB,λn−FB,λn (0)S
∗βλnBk̂λn

for all n ≥ 1, where B ∈ {T}′ satisfies the conditions of the theorem and
βλn := k

Bk̂λn
(0), n ≥ 1. By condition (ii), there exists an operator K on H2

such that

lim
n→∞

‖DFB,λn−FB,λn (0)S
∗βλn −K‖B(H2) = 0.

Clearly, K is compact. Then by using (ii) and the last equality (13), we have

‖k̂λn − FB,λn(0)S∗βλnBk̂λn‖

= ‖(DFB,λn−FB,λn (0)S
∗βλn −K)Bk̂λn +KBk̂λn‖

≤ ‖DFB,λn−FB,λn (0)S
∗βλn −K‖‖B‖+ ‖KBk̂λn‖ → 0 as n→∞,
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because (k̂λn)n≥1 is a weak null sequence and KB is a compact operator
on H2. Thus

(14) lim
n→∞

‖k̂λn − FB,λn(0)S∗βλnBk̂λn‖ = 0.

On the other hand,

‖k̂λn − FB,λn(0)S∗βλnBk̂λn‖2

= 1− 2 Re[FB,λn(0)(S∗βλnB)∼(λn)] + ‖FB,λn(0)S∗βλnBk̂λn‖2

≥ 1− 2|FB,λn(0)(S∗βλnB)∼(λn)|+ |FB,λn(0)(S∗βλnB)∼(λn)|2

= 1− 2

∣∣∣∣ (S∗βλnB)∼(λn)

(S∗βλnBkλn)(0)

∣∣∣∣+

∣∣∣∣ (S∗βλnB)∼(λn)

(S∗βλnBkλn)(0)

∣∣∣∣2.
Also we have

1

(S∗βλnBkλn)(0)
=

1

〈S∗βλnBkλn ,1〉
=

1

〈S∗βλnBkλn , (I − SS∗)kλn〉

=
1− |λn|2

〈(I − SS∗)S∗βλnBk̂λn , k̂λn〉

=
1− |λn|2

[(I − SS∗)S∗βλnB]∼(λn)
,

and hence

‖k̂λn − FB,λn(0)S∗βλnBk̂λn‖2 ≥ 1− 2

∣∣∣∣(1− |λn|2)[S∗βλnB]∼(λn)

[(I − SS∗)S∗βλnB]∼(λn)

∣∣∣∣(15)

+

∣∣∣∣ (1− |λn|2)(S∗βλnB)∼(λn)

[(I − SS∗)(S∗βλnB)]∼(λn)

∣∣∣∣2.
Since by condition (i) of the theorem,

lim
n→∞

∣∣∣∣(1− |λn|2)[S∗βλnB]∼(λn)

[(I − SS∗)S∗βλnB]∼(λn)

∣∣∣∣ = 0,

we deduce from (15) that

lim
n→∞

‖k̂λn − FB,λn(0)S∗βλnBk̂λn‖2 ≥ 1,

which contradicts (14).

Corollary 9.4. Let T ∈ B(H2). Suppose that there exists a nonzero
B ∈ {T}′ such that:

(i) (Bkλ)(0) 6= 0 for all λ ∈ D and limλ→ξ∈∂D B̃(λ)/(Bkλ)(0) = 0;
(ii) there exists a sequence (λn)n≥1 ⊂ D converging to some ξ0 ∈ ∂D and

an operator K such that

lim
n→∞

‖D
k̂λn~(Bk̂λn )

−1~−(k̂λn~(Bk̂λn )
−1~)(0)

−K‖ = 0.

Then T has a n.i.s.
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Proof. As in the proof of (15), we obtain

(16) (Bkλ)(0) = 〈Bkλ, k0〉 = 〈Bkλ,1〉 = 〈Bkλ, kλ〉+ 〈Bkλ, 1− kλ〉

= 〈Bkλ, kλ〉+

〈
Bkλ, 1−

1

1− λz

〉
= 〈Bkλ, kλ〉 −

〈
Bkλ,

λz

1− λz

〉
= 〈Bkλ, kλ〉 − 〈Bkλ, SS∗kλ〉 = 〈(I − SS∗)Bkλ, kλ〉

= ‖kλ‖2〈(I − SS∗)Bk̂λ, k̂λ〉 = (1− |λ|2)−1((I − SS∗)B)∼(λ)

for all λ ∈ D. On the other hand, since (Bkλ)(0) 6= 0 if and only if (Bk̂λ)(0)
6= 0, we have k

Bk̂λn
(0) = 0. Now the remainder of the proof is immediate

from the proof of Theorem 9.3.

Corollary 9.5. Let T ∈ B(H2) be an operator such that

(i) (Tkλ)(0) 6= 0 for all λ ∈ D and limλ→∂D T̃ (λ)/(Tkλ)(0) = 0;
(ii) there exists a sequence (λn)n≥1 ⊂ D tending to some point in ∂D

and an operator K such that

lim
n→∞

‖D
k̂λn~(T k̂λn )

−1~−(k̂λn~(T k̂λn )
−1~)(0)

−K‖ = 0.

Then T has a n.i.s.

The proof of this corollary uses the same method as that of Theorem 9.3,
and therefore is omitted.

Remark 9.6. (a) By considering formula (16), and compactness of the
(one-dimensional) operator (I−SS∗)B, note that condition (i) in Corollary

9.4 means some growth condition for the Berezin symbol B̃ of the operator
B in the commutant of T at the boundary ∂D.

(b) Also it is easy to see that if T ∈ B(H2) and

(17) ‖Tkλ‖ → 0 radially,

then obviously T has a nontrivial invariant subspace, because in this case T
will just be the zero operator. Indeed, since

(T ∗f)(λ) = 〈T ∗f, kλ〉 = 〈f, Tkλ〉

for all f ∈ H2 and λ ∈ D, by (17) we have

|(T ∗f)(λ)| ≤ ‖f‖ ‖Tkλ‖ → 0 as λ→ ∂D radially,

which implies that (T ∗f)(eit) = 0 for almost all t ∈ [0, 2π). Then, by the
Riesz brothers’ theorem we have T ∗f = 0. Since f ∈ H2 is arbitrary, this
means that T ∗ = 0, and hence T = 0, as desired.

In general, the following two questions naturally arise:
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Question 9.7. Let T : H(Ω) → H(Ω) be a bounded operator on the
standard RKHS H = H(Ω) such that

(18) lim
λ→∂Ω

‖T k̂H,λ‖ = 0.

Is it true that T has a nontrivial hyperinvariant subspace?

Question 9.8. Let T ∈ B(H) be an operator on the standard RKHS
H = H(Ω) such that

(19) lim
λ→∂Ω

T̃ (λ) = 0.

Is it true that T has a nontrivial hyperinvariant subspace?

Since |T̃ (λ)| ≤ ‖T k̂H,λ‖ for λ ∈ Ω, it is clear that a positive answer
to Question 9.8 will also give a positive answer to Question 9.7. Also note
that, of course, for some special operators condition (18) or (19) implies
compactness of T ; see, for instance, Axler and Zheng [AZ2], where the au-
thors characterize compact Toeplitz operators on the Bergman space L2

a(D).
Moreover, since every compact operator on the standard RKHS H = H(Ω)
satisfies condition (18) (and hence also (19)), a positive answer to Ques-
tion 9.8 will give an essential extension of the famous von Neumann and
Lomonosov theorems in the case of RKHS.
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115F265. Also, the first author was supported by King Saud University,
Deanship of Scientific Research, College of Science Research Center.

References
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