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Abstract. A Fréchet space X with a sequence {‖ · ‖k}∞k=1 of generating seminorms is
called tame if there exists an increasing function σ : N→ N such that for every continuous
linear operator T from X into itself, there exist N0 and C > 0 such that

‖T (x)‖n ≤ C‖x‖σ(n) ∀x ∈ X , n ≥ N0.

This property does not depend upon the choice of the fundamental system of seminorms
for X and is a property of the Fréchet space X . In this paper we investigate tameness in
the Fréchet spaces O(M) of analytic functions on Stein manifolds M equipped with the
compact-open topology. Actually we will look into tameness in the more general class of
nuclear Fréchet spaces with properties DN and Ω of Vogt and then specialize to analytic
function spaces. We show that for a Stein manifold M , tameness of O(M) is equivalent
to hyperconvexity of M .

1. Introduction. Tameness of Fréchet spaces is an important property
frequently used in functional analysis since it brings a kind of control on the
otherwise chaotic behaviour of continuous linear endomorphisms. This con-
cept was used effectively in the structure theory of nuclear Fréchet spaces,
especially in finding bases in complemented subspaces of certain infinite type
power series spaces [9]. Frequently the Fréchet spaces that arise in practical
applications (e.g. in non-linear analysis) enjoy (versions of) the tameness
property [11, 28]. In fact, an inquiry into the tameness of analytic func-
tion spaces was undertaken, some time ago, in this context by D. Zarnadze
[private communication]. In this paper we answer this question in a kind of
negative way. We show that there are no tame analytic function spaces other
than the natural ones (Theorem 4.5).
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The organization of the paper is as follows. After establishing the notation
and terminology, in Section 2 we recall the definition of the linear topological
invariants DN and Ω and introduce a technical tool that we will use in the
later sections: local imbeddings of power series spaces of finite type into
Fréchet spaces. After some general results on local imbeddings we establish
a link between the approximate diametral dimension of the space and the
existence of effective local imbeddings from certain finite type power series
spaces (Theorem 2.9).

Section 3 is devoted to proving Theorem 3.3, which characterizes tame
nuclear Fréchet spaces having a finitely nuclear stable exponent sequence
and enjoying properties DN and Ω.

In Subsection 4.1 we show how local imbeddings can be used to construct
Green’s functions on complex manifolds. Subsection 4.2 is devoted to the
diametral dimension of analytic function spaces and the proof of the main
theorem of this paper, Theorem 4.5.

Notation and terminology. We will use the terminology of [15] and
refer the reader to that book for all undefined concepts and the standard
results of functional analysis that we will use. For the notions from complex
potential theory used (especially in Section 3) we refer the reader to [12]. By
a grading on a Fréchet space we mean any fixed sequence of Hilbertian semi-
norms defining the topology of the space. The pair consisting of a Fréchet
space and a fixed grading is called a graded Fréchet space.

Power series sequence spaces play an important role in this paper. Recall
that these are the Fréchet spaces

ΛR(α)
.
=
{

(ξn)∞n=0 : |(ξn)|r
.
=
(∑

n

|ξn|2e2rαn
)1/2

<∞, ∀ −∞ < r < R
}

where R is either 1 or ∞, and α = (αn)n is a sequence of real numbers with
sup ln(n)/αn < ∞, called the exponent sequence of the space. The grading
on these spaces will be the Hilbertian grading {| · |r}r<R.

These spaces are referred to as finite type power series spaces if R = 1,
and infinite type power series spaces if R = ∞. We will write Λr[α] for the
Hilbert space {(ξn)∞n=0 : |(ξn)|r

.
= (
∑

n |ξn|2e2rαn)1/2 < ∞} with the norm
| · |r, 0 < r < 1.

For a pair of Fréchet spaces (X , {‖ · ‖k}k) and (Y, {| · |k}k), the set of
all continuous linear operators will be denoted by L(X ,Y). We will use the
symbol

‖T‖nm
.
= sup
‖x‖n≤1

|Tx|m, n,m ∈ N,

for T ∈ L(X ,Y). Note that ‖ · ‖nm can take the value ∞.
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For a graded Fréchet space (X , {‖ · ‖k}k), the local Hilbert spaces corre-
sponding to the norm ‖ · ‖k will be denoted by Xk, k = 1, 2, . . . . The closed
unit ball in X corresponding to ‖ ‖k will be denoted by Uk, k = 1, 2, . . . .

Throughout the paper we will reserve the symbol εn for the sequence
(0, . . . , 0, 1, 0, . . . ) where 1 is in the nth place.

2. Local imbeddings of power series spaces of finite type into
Fréchet spaces. In this section we will examine local imbeddings of power
series spaces of finite type into nuclear Fréchet spaces with properties DN
and Ω.

In Subsection 2.1 we recall the definition of Vogt’s linear topological in-
variants DN and Ω, and list some properties of Fréchet spaces with properties
DN and Ω that will be used in what follows. We emphasize again that all
the Fréchet spaces that we will deal with will be assumed to be nuclear and
satisfy properties DN and Ω unless otherwise specified. In Subsection 2.2
we will investigate the existence of local imbeddings. In Subsection 2.3 we
consider Fréchet spaces whose diametral approximate dimension is equal to
that of a finite type power series space, and show that this property yields
local imbeddings.

Definition 2.1. A continuous linear operator T from Λ1(α) into a
graded Fréchet space (X , {‖ · ‖n}) is called an (r, k)-local imbedding if

∃C > 0 : ‖T (x)‖k ≥ C|x|r ∀x ∈ Λ1(α).

We will say that a Fréchet space X admits an r-local imbedding of Λ1(α)
if there exists a continuous linear operator T from Λ1(α) to X with the
property that there is a continuous seminorm ‖ ·‖ on X and C > 0 such that

‖T (x)‖ ≥ C|x|r ∀x ∈ Λ1(α).

2.1. Linear topological invariants DN, Ω and associated exponent
sequences

Definition 2.2. A nuclear Fréchet space X is said to have properties DN
and Ω ([21], [24]) if there exists a fundamental system {‖ · ‖k}k of Hilbertian
norms generating the topology of X which satisfy

(DN) : ∀k ∃0 < λ < 1, C > 0 :

‖x‖k+1 ≤ C‖x‖λk ‖x‖
1−λ
k+2 ∀x ∈ X ;

(Ω) : ∀k ∀p ∃C > 0, j ∈ N :

Uk+1 ⊂ CrjUp +
1

r
Uk ∀r > 0.

For more information about these invariants and examples of Fréchet
spaces possessing these properties we refer the reader to [15].
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Let V ⊆ U be subsets of a Fréchet space X . We denote

En(U, V )
.
= − ln dn(V,U), n = 0, 1, . . . ,

where
dn(V,U)

.
= inf

Ln
inf{λ > 0 : V ⊆ λU + Ln}

(the outer infimum is taken over all n-dimensional subspaces Ln of X ) is the
nth Kolmogorov diameter of V in U .

In the case of a graded Fréchet space (X , {‖ · ‖k}), we simplify this no-
tation by setting

En(p, k)
.
= En(Up, Uk), ∀p < k.

Let us now fix a nuclear Fréchet space X with properties DN and Ω [15,
p. 367], and choose a strictly increasing grading ({‖ · ‖}k)k starting with
the “dominating norm” of condition DN and such that the linking maps are
nuclear. By passing to a subsequence of {‖·‖k}k we can choose, by induction,
a new grading that satisfies the requirements of Definition 2.2. Observe that
the linking maps of this grading are also nuclear. In [5] (cf. [4]) we have
shown that all the sequences {En(k, k+ 1)}n, k = 0, 1, 2, . . . , are equivalent,
and called this equivalence class the exponent sequence associated to X . In
this paper, unless otherwise stated, we will use a concrete representation,

En
.
= En(0, 1), n = 0, 1, . . . ,

of the associated exponent sequence of X .
We collect [20] some properties of these sequences that we will use.

Proposition 2.3. Let (X , {‖ · ‖k}) be as above. The Ω-type condition

∃0 < λ < 1, D > 0 : Uq ⊂ r(1−λ)/λUp +
D

r
Uk, ∀r > C (p < q < k)

implies:

(1) ∃C > 0 : En(q, k) ≤ λEn(p; k) + C, ∀n,
(2) ∃C > 0 : En(p, k) ≤ 1

1−λEn(p, q) + C, ∀n,
(3) ∃C > 0 : En(q, k) ≤ λ

1−λEn(p, q) + C, ∀n,
The DN-type condition

∃0 < λ < 1, D > 0 : ‖ · ‖q ≤ D‖ · ‖
1−λ
k ‖ · ‖λp (p < q < k)

implies:

(1′) ∃C > 0 : En(p, k) ≤ 1
λEn(q; k) + C, n = 0, 1, . . . ,

(2′) ∃C > 0 : En(p, q) ≤ (1− λ)En(p, k) + C, n = 0, 1, . . . ,

(3′) ∃C > 0 : En(p, q) ≤ λ
1−λEn(q, k) + C, n = 0, 1, . . . .

In the presence of both Ω and DN conditions we have
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(4) ∃C > 0, 0 < λ1, λ2 < 1 : En ≤ λ1λ2
(1−λ1)(1−λ2)En(p, q)+C, n = 0, 1, . . . ,

(4′) ∃C > 0, 0 < λ1, λ2 < 1 : En(p, q) ≤ λ1λ2
(1−λ1)(1−λ2)En+C, n = 0, 1, . . . .

Proof. See [20] (cf. [5]).

2.2. Local imbeddings of power series spaces of finite type into
nuclear Fréchet spaces with properties DN and Ω. We now turn to
the question of existence of local imbeddings into the graded Fréchet space
(X , {‖ · ‖k}) fixed in Subsection 2.1 above. But we first present some general
considerations concerning local imbeddings.

Proposition 2.4. Let Λ1(α) be a nuclear power series space of finite
type. The following assertions are equivalent:

(i) There exists an (r, k)-local imbedding from Λ1(α) into X .
(ii) There exists a sequence {gn}∞n=0 in X that is orthonormal in Xk and

satisfies

lim
n

ln ‖gn‖s
αn

< 1− r ∀s.

(iii) There exists an isometry from the local Hilbert space Λr[α] into Xk
that induces a continuous linear operator from Λ1(α) into X .

(iv) There exists a closed, Hilbertian bounded disc B in X which satisfies

∃C > 0 : dn(B,Uk) ≥ Ce−(1−r)αn .

Proof. (i)⇒(ii): Fix an (r, k)-local imbedding T with ‖T (x)‖k ≥ C1|x|r
for all x ∈ Λ1(α). Consider

fn
.
=

εn
erαn

, n = 0, 1, . . . ,

and apply the Gram–Schmidt orthogonalization procedure to the linearly
independent sequence {T (fn)}n in Xk to get a sequence

gn
.
=

n∑
i=0

cni T (fi), n = 1, 2, . . . ,

in X that is orthonormal in Xk. We estimate

1 = ‖gn‖k =
∥∥∥T( n∑

i=0

cni fi

)∥∥∥
k
≥ C1

∣∣∣∣ n∑
i=0

cni
εi
erαi

∣∣∣∣
r

= C1

( n∑
i=0

|cni |2
)1/2

.

From continuity of T , for every s we get r < σ(s) < 1 and C > 0 such that

‖gn‖s =
∥∥∥T( n∑

i=0

cni fi

)∥∥∥
s
≤ C

∣∣∣ n∑
i=0

cni fi

∣∣∣
σ(s)

≤ Ce(σ(s)−r)αn
( n∑
i=0

|ci|2
)1/2

≤ C

C1
e(σ(s)−r)αn .
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Hence
lim
n

ln ‖gn‖s
αn

≤ σ(s)− r < 1− r.

(ii)⇒(iii): Choose {gn}n as in (ii) and set

T
( ∞∑
i=0

ciεi

)
.
=
∞∑
i=0

erαicigi.

This operator is plainly a continuous linear operator from Λ1(α) into X that
extends to an isometry from Λr[α] into Xk.

(iii)⇒(iv): Choose an operator T as in (iii) and set

gn
.
= T

(
εn
erαn

)
, n = 0, 1, . . . .

Define
B

.
=
{
x ∈ X :

∞∑
n=0

|〈x, gn〉k|2e2(1−r)αn ≤ 1
}
,

where 〈 , 〉k is the inner product corresponding to ‖ · ‖k.
A direct computation shows that B is the image under T of the compact

set B0 = {(ξn) :
∑
|ξn|2e2αn ≤ 1} in Λ1(α). So B is a compact disc that is

Hilbertian, and hence (see [8, Lemma 6.2.2])

dn(B,Uk) ≥ dn(B ∩ T (X ), Uk ∩ T (X )) = e(r−1)αn .

(iv)⇒(i): Let HB denote the Hilbert space generated by B in X . Since
the inclusion HB ↪→ Xk is a compact operator, we can choose a sequence
{fn}∞n=0 of orthogonal vectors in HB that are orthonormal in the Hilbert
space Xk and have ‖fn‖B = (dn(B,Uk))

−1, n = 0, 1, . . . . Set

T ((ξn)n)
.
=
∞∑
n=0

ξne
rαnfn ∀(ξn) ∈ Λ1(α).

We fix an s > k and, in view of condition DN, choose 0 < λ < 1 and C > 0
such that ‖x‖s ≤ C‖x‖1−λk ‖x‖λB for all x ∈ HB.

Choose λ+ so that 0 < r + λ(1 − r) < λ+ < 1. There exist positive
constants C1, C2 such that

‖T ((ξn))‖s ≤
∑
n

|ξn|erαn‖fn‖s ≤ C1

∑
n

|ξn|erαneλ(1−r)αn

≤ C2

(∑
n

|ξn|2e2λ+αn
)1/2

= C2|(ξn)|λ+ ,

so T defines a continuous linear operator from Λ1(α) into X . Moreover

‖T ((ξn))‖k =
(∑

n

|ξn|2e2rαn
)1/2

= |(ξn)|r.

Hence T is an (r, k)-local imbedding.
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Remark. In contrast to the infinite case [5], the existence of an (r, k)-
local imbedding from a finite type power series space into a graded Fréchet
space need not imply the existence of an (r+, k)-local imbedding for some
r+ > r. In fact, it is not difficult to see that for a nuclear finite type power
series space X = Λ1(α), there exists an (r1, r2)-local imbedding from Λ1(α)
into X if and only if r1 ≤ r2. Indeed, if there is a bounded set B in X such
that dn(B,Ur2) ≥ Ce(r1−1)αn for some C > 0, then for any r2 < s < 1, there
exists a C1 > 0 such that B ⊆ C1Us, which implies that

dn(B,Ur) ≤ C1dn(Us, Ur) = Ce(r2−s)αn

for every n. Hence r1 − 1 ≤ r2 − 1, that is, r1 ≤ r2.
The condition in (iv) of the above proposition can also be expressed by

using the unit balls of the grading:

Proposition 2.5. There exists an (r, p)-local imbedding from Λ1(α) into
X if and only if

sup
k>p

lim
n

En(p, k)

αn
≤ 1− r.

Proof. (⇐): Let p and r satisfy the stated inequality. For a given k > p,
in view of Proposition 2.3(2) we have

∃0 < ρ < 1 : lim
n

En(p, k)

αn
≤ ρ lim

n

En(p, k + 1)

αn
< 1− r.

So for each k > p we can find an N(k) ∈ N, strictly increasing with respect
to k, such that

− ln dn(Uk, Up) < (1− r)αn for n > N(k).

Let δ1 = 1
2e
−(1−r)αN(p+1) . Since Up+1 is precompact in Xp, there exists a

finite set Z1
1 ⊆ Up+1 such that

dn(Up+1, Up) ≤ dn(Z1
1 , Up) + δ1 ∀n.

Hence

dN(p+1)(Z
1
1 , Up) ≥ e−(1−r)αN(p+1) − δ1 = 1

2e
−(1−r)αN(p+1) .

For each n with N(p + 1) ≤ n < N(p + 2), we obtain as above a finite set
Z1
n ⊆ Up+1 satisfying

dn(Z1
n, Up) ≥ e−(1−r)αn/2,

and define Z1 .
=
⋃
N(p+1)≤n<N(p+2) Z

1
n.

Continuing in this fashion we get finite sets Zs, s = 1, 2, . . . , with Zs ⊆
Up+s and dn(Zs, Up) ≥ e−(1−r)αn/2 forN(p+s) ≤ n < N(p+s+1). Note that⋃∞
s=1 Z

s is a bounded set since Z s̄ ⊆ Uk for every k = p+ s and s̄ > s. We
can find a closed Hilbertian disc B in X , containing

⋃∞
s=1 Z

s (see for example
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[23, Lemma 1.2]). Then for n > N(p+ 1) (say N(p+ s) ≤ n < N(p+ s+ 1))
we have

dn(B,Up) ≥ dn(Zs, Up) ≥ e−(1−r)αn/2.

So in view of Proposition 2.4(iv) there is an (r, p)-local imbedding from Λ1(α)
into X .

(⇒): In view of Proposition 2.4(iv) there exists a bounded set B and
C > 0 with dn(B,Up) ≥ Ce−(1−r)αn for n = 1, 2, . . . . Hence for each k there
are Ci > 0, i = 1, 2, such that

En(p, k) ≤ − ln dn(B,Up) + C1 ≤ (1− r)αn + C2.

So
lim
n

En(p, k)

αn
≤ 1− r ∀k = p+ 1, . . . .

Remark. Although the structural assumption DN on X is put into use
in the proposition above, the implication (⇒) can be proved without any
structural assumptions on X . One can use the argument given in [4, Propo-
sition 2.3] to obtain a proof by just using the definition of local imbeddings.

2.3. Approximate diametral dimension and local imbeddings. In
this subsection we investigate the relationship between approximate diame-
tral dimension of a nuclear Fréchet space X with properties DN and Ω
and the existence of local imbeddings from Λ1(En), the finite type power
series space corresponding to the associated exponent sequence of X . Since
we wish to use the information obtained in the previous subsections, we are
forced to make an additional assumption on {En}n, namely that limn ln(n)/En
= 0. This guarantees the nuclearity of Λ1(En) (see [8]), which is needed in
what follows and also for the validity of the results of previous subsections.

Definition 2.6 ([7]). The approximate diametral dimension of a Fréchet
space Y is defined as

δ(Y )
.
=

⋃
U a zero neighborhood of Y

⋃
B a bounded subset of Y

{
(tn) : lim

n

tn
dn(B,U)

=0

}
=
{

(tn)n : ∃ a neighbourhood U of zero and a bounded subset B

of Y such that lim
n
tn/dn(B,U) = 0

}
.

Approximate diametral dimension also admits a representation solely in
terms of a zero neighbourhood basis {Un}n of the Fréchet space Y :

δ(Y ) = {(tn) : ∃s ∀k ≥ s : tn/dn(Uk, Us)→ 0}
(see [7]).

Now let us fix, for the rest of this subsection, a graded nuclear Fréchet
space (X , {‖ · ‖k}k) with properties DN and Ω, whose associated exponent
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sequence (En) satisfies ln(n)/En →n 0 and the grading {‖ · ‖k}k comes from
Definition 2.2. Given p + 1 < q, in view of Proposition 2.3(1), we have
dn(Uq, Up)

λ ≤ Cdn(Uq, Up+1) for some C > 0 and 0 < λ < 1. So if a
sequence (tn)n satisfies for some C,

|tn|
dn(Uq, Up)

≤ C ∀n,

then
|tn|

dn(Uq, Up+1)
→ 0.

Hence under our assumptions, we have

δ(X ) =
{

(tn)n : ∃p ∀q > p : sup
n
|tn|eEn(p,q) <∞

}
.

It is not difficult to show, by direct computation, that ([7])

δ(Λ1(α)) =

{
(tn)n : lim

n

ln |tn|
αn

< 0

}
.

Proposition 2.7.

δ(X ) ⊇ δ(Λ1(α)) ⇔ inf
p

sup
q>p

lim
n

En(p, q)

αn
= 0.

Proof. (⇒): For a fixed pair p < q let

B(p, q)
.
=
{

(tn) : sup
n
|tn|eEn(p,q) <∞

}
.

This linear space becomes a Banach space under the norm

|(tn)|pq
.
= sup

n
|tn|eEn(p,q).

Since B(p, q+) ⊆ B(p, q) for p < q < q+, the space B(p)
.
=
⋂
q>pB(p, q)

with the fundamental generating norms {| · |pq}q>p becomes a Fréchet space.
Moreover by means of continuous inclusions B(p̄) ↪→ B(p), p̄ < p, we can
endow δ(X ) =

⋃
nB(p) with the inductive limit topology and thus view

δ(X ) as a locally convex space which is an inductive limit of Fréchet spaces.
Let us fix 0 < r < 1 and define

Sr
.
=

{
(tn) : ‖(tn)‖ .= sup

n

|tn|
rαn

<∞
}
.

Clearly Sr is a Banach space with respect to the norm ‖ · ‖, and Sr ⊂
δ(Λ1(α)). By our assumption, Sr ⊂ δ(X ) and since projections onto coordi-
nates are continuous in the inductive limit topology on δ(X ), the inclusion
Sr ↪→ δ(X ) is a sequentially closed linear operator. In view of Grothendieck’s
factorization theorem [13, p. 225], there is a p(r) such that for every q > p(r),

∃C > 0 : sup
n
|tn|eEn(p(r),q) ≤ C sup

n

|tn|
rαn
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for any (tn) ∈ Sr. In particular for every q > p(r) there exists a C > 0 such
that En(p(r), q) ≤ lnC − αn ln r, which in turn implies that

inf
p

sup
q>p

lim
n

En(p, q)

αn
≤ − ln r.

Since this holds for every 0 < r < 1, we have

inf
p

sup
q>p

lim
n

En(p, q)

αn
= 0.

(⇐): Fix an r < 1 and choose a (tn)n which satisfies

|tn| ≤ Crαn for some C > 0 and all n.

In view of our assumption, we choose a p so that supq≥p limn En(p, q)/αn <
− ln r. It follows that there exists an n0 such that for n ≥ n0,

eEn(p,q) <
1

rαn
for every q ≥ p.

Hence, for every q > p there exists Cq > 0 such that eEn(p,q) ≤ Cq/rαn , which
in turn implies that for every q > p, supn |tn|eEn(p,q) <∞. It follows that

δ(Λ1(α)) ⊆
⋃
p

⋂
q>p

B(p, q) = δ(X ).

If we focus our attention on the associated exponent sequence (En)n, we
have:

Corollary 2.8.

δ(X ) = δ(Λ1(E)) ⇔ inf
p

sup
q>p

lim
n

En(p, q)

En
= 0.

Proof. Fix a sequence (tn) ∈ δ(X ), and choose a p such that

∀q > p : sup
n
|tn|eEn(p,q) <∞.

In view of Proposition 2.3(4), there exist constants C1, C2 > 0 such that

En ≤ C1En(p, p+ 1) + C2 ∀n.
It follows that

sup
n
|tn|eEn/C1 <∞.

Hence there is a D > 0 such that

ln |tn|+
En
C1

< D,

so
lim

ln |tn|
En

≤ − 1

C1
< 0.

Therefore we always have δ(X ) ⊆ δ(Λ1(E)). Now the corollary follows from
Proposition 2.7.
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We conclude this section with a summary theorem:

Theorem 2.9. Let X be a nuclear Fréchet space with properties DN
and Ω. Assume that the associated exponent sequence (En)n of X is a nuclear
exponent sequence of finite type (i.e. Λ1(E) is nuclear). Then the following
assertions are equivalent:

(1) δ(X ) = δ(Λ1(E))
(2) inf1≤p<∞ supq>p limn En(q, p)/En = 0.
(3) For every 0 < r < 1 there exists an r-local imbedding from Λ1(E)

into X .

3. Tame spaces X with properties DN, Ω and δ(X ) = δ(Λ1(E)). To
every continuous linear operator T between two graded F-spaces (X , {‖·‖k}k)
and (Y, {| · |k}k) one can associate a sequence of natural numbers, {σT (n)}n,
called the characteristic of continuity of T , via

σT (n)
.
= inf{s : ∃C > 0 : |T (x)|n ≤ C‖x‖s, ∀x ∈ X}.

In general the characteristics of continuity of operators between graded
Fréchet spaces could be very disorderly. However, for certain pairs of Fréchet
spaces control over the growth of characteristics of continuity can be ob-
tained. For example, in the space of analytic functions on the unit disc,
O(∆), with the grading

‖f‖k
.
=
∞∑
n=0

∣∣∣∣fn(0)

n!

∣∣∣∣2e−n/k, k = 1, 2, . . . ,

it is not difficult to see that

∀T ∈ L(O(∆),O(∆)) ∃a ∈ N : σT (n) ≤ an, ∀n = 1, 2, . . . .

Following [22], [9] (cf. [16]) we specify this property as:

Definition 3.1. A pair of Fréchet spaces X and Y will be called a tame
pair (written (X ,Y) ∈ T ) if for any given pair of sequences of generating
seminorms {‖ ·‖k}k of X and {| · |k}k of Y there exists an increasing function
ψ : N→ N such that

∀T ∈ L(X ,Y) ∃N ∈ N : σT (n) ≤ ψ(n), ∀n ≥ N.
In case X = Y we say that the Fréchet space X is tame.

Remark 3.2. (1) The definition does not depend on the choice of the
seminorms in X and Y.

(2) Plainly the definition is equivalent to the existence, for a given pair
of sequences of generating seminorms {‖ · ‖k}k of X and {| · |k}k of Y, of
a sequence {SK}K of increasing functions SK : N → N such that for every
T ∈ L(X ,Y), there exists a K with σT (n) ≤ SK(n) for every n = 1, 2, . . . .
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(3) The space O(∆) is tame. More generally, every power series space
of finite type is tame, as was observed by various authors (see [9, 2.1] for
details). A proof of this appears in [16, 2.1].

(4) If (X ,Y) ∈ T , then the space of all continuous linear operators from
(X , {‖ · ‖}k) into (Y, {| · |}k) admits a representation of the form

L(X ,Y) =
∞⋃
K=1

∞⋂
n=1

{T ∈ L(X ,Y) : ∃C > 0 : ‖T (x)‖n ≤ C|x|SK(n), ∀x ∈ X}.

Using this representation one can endow L(X ,Y) with a linear topology
making it an LF-space (i.e. inductive limit of Fréchet spaces) by considering
the seminorms ‖T‖nK

.
= sup|x|SK (n)≤1 ‖T (x)‖n (see [9, 2.1]) on the space

{T ∈ L(X ,Y) : ∃C > 0 : ‖T (x)‖n ≤ C|x|SK(n), ∀x ∈ X}, K, n ∈ N.

This structure allows one to use the results on well studied LF-spaces in
the study of L(X ,Y) for (X ,Y) ∈ T . These ideas are used in the study of
nuclear Fréchet spaces X which form a tame pair with nuclear stable power
series spaces of finite or infinite type in [17] where a complete characterization
of such spaces in terms of Vogt’s linear topological invariants is obtained.

In this section we will once again consider nuclear Fréchet spaces X with
properties DN and Ω. We will assume that the associated exponent sequence
E = (En)n, in addition to our usual assumption of being finitely nuclear, is
also stable, i.e. supn E2n/En <∞.

Theorem 3.3. Let X be a nuclear Fréchet space with stable finitely nu-
clear associated exponent sequence E = (En) and which has properties DN
and Ω. Then X is isomorphic to a power series space of finite type if and
only if X is tame and δ(X ) = δ(Λ1(E)).

Proof. (⇒): If X is isomorphic to a power series space of finite type then
X must be isomorphic to Λ1(E) by [5, Proposition 2.3]. So δ(X ) = δ(Λ1(E)).
Moreover X , being a finite type power series space, is tame in view of Remark
3.2(4) above.

(⇐): Let X be a tame nuclear Fréchet space with stable finitely nuclear
associated exponent sequence E = (En), and which has properties DN and Ω.
In view of [22], we can imbed X into Λ1(E) as a closed subspace. We will
consider the grading on X induced by (Λ1(E), {| · |r}r). Throughout this
proof, εn = (0, . . . , 0, 1, 0, . . . ) with 1 in the nth place, n = 1, 2, . . . . In view
of Theorem 2.9 there exists an r-local imbedding from Λ1(E) into X for every
0 ≤ r < 1. Fix an r0 < 1 and a corresponding (r0, rk0)-local imbedding T ,
with rk0 < 1, from Λ1(E) into X . Say |Tx|rk0 ≥ C0|x|r0 for all x ∈ Λ1(E). Let
en

.
= εn/e

r0En , n = 1, 2, . . . , be the canonical orthonormal basis of Λr0 [E ],
and set gn

.
= T (en), n = 1, 2, . . . .
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We note that {gn}∞n=1 is a finitely linearly independent sequence since T
is a local imbedding. We choose a sequence {fn} in X ⊆ Λ1(E) satisfying;

(1) fn ∈ span{g1, . . . , g2n} for n = 1, 2, . . . ,
(2) 〈fn, fs〉rk0 = 0 for s = 1, . . . , n− 1 and n = 1, 2, . . . ,
(3) 〈fn, εk〉rk0 = 0 for k = 1, . . . , n and n = 1, 2, . . . ,
(4) 〈fn, fn〉rk0 = 1 for n = 1, 2, . . . .

where 〈 , 〉rk0 is the inner product in Λrk0 [E ].
Such a sequence exists and can be selected by induction since for each

n ∈ N, the space {g1, . . . , g2n} is 2n-dimensional and we impose 2n − 1
conditions on fn.

Hence fn =
∑2n

i=1 c
n
i gi for some scalars {cni }i, n = 1, 2, . . . . We have

1 = |fn|rk0 ≥ C0

∣∣∣ 2n∑
i=1

cni ei

∣∣∣
r0

= C0

( 2n∑
i=1

|cni |2
)1/2

, n = 1, 2, . . . .

So
2n∑
i=1

|cni |2 ≤
1

C0
∀n ∈ N.(3.1)

Now fix 0 < s < 1 and estimate, for all n ∈ N,

|fn|s =
∣∣∣ 2n∑
i=1

cni gi

∣∣∣
s
≤

2n∑
i=1

|cni | |gi|s ≤ C1

2n∑
i=1

|ci| |en|σT (s)(3.2)

= C1

2n∑
i=1

|cni |
∣∣∣∣ εi
er0Ei

∣∣∣∣
σT (s)

= C1

2n∑
i=1

|cni |e(σT (s)−r0)Ei

for some C1 > 0, where σT is the characteristic of continuity of T with
respect to the canonical grading of Λ1(E).

Choose a K(s) with max{σT (s), r0} < K(s) < 1, and proceed with the
estimate (3.2):

2n∑
i=1

|cni |e(σT (s)−r0)Ei+K(s)Ei−K(s)Ei

≤ e(K(s)−r0)E2n
( 2n∑
i=1

|cni |2
)1/2( 2n∑

i=1

e2(σT (s)−K(s))Ei
)1/2

≤ Ce(K(s)−r0)E2n ,

to deduce that for all s < 1 there are C = C(s, T ) and K(s) < 1 such that

|fn|s ≤ Ce(K(s)−r0)E2n , n = 1, 2, . . . .(3.3)

We choose an increasing sequence {K+(s)}s with K(s)<K+(s)< 1 for
all s<1.
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On the other hand we also have, for each n ∈ N, a representation

fn =
∞∑

k=n+1

βnk εk

for some sequence {βnk }k. For −∞ < r < rk0 we estimate

|fn|2r =

∞∑
s=n+1

|βns |2e2rEs =

∞∑
s=n+1

|βns |2e2rk0Ese2(r−rk0 )Es(3.4)

≤ e2(r−rk0 )En+1 |fn|2rk0 = e2(r−rk0 )En+1 , n = 1, 2, . . . .

In view of stability of {En} there exists a C0 > 0 such that C0E2n ≤ En+1

for all n = 1, 2, . . . . Hence proceeding with the estimate (3.4) we have

|fn|2r ≤ e2C0(r−rk0 )E2n ∀n ∈ N, −∞ < r < rk0 .(3.5)

We now fix an s0 with −∞ < s0 < −2/C0. In view of (3.5) we have

|fn|s0 ≤ e(2C0s0−2C0rk0+r0)E2ne−r0E2n ≤ e−E2ne−r0E2n , n = 1, 2, . . . .(3.6)

We stress that s0 depends only on the associated exponent sequence E . Now
for a sequence {λn}∞n=1 and s < 1, (3.3) above gives

∞∑
i=1

|λi| |fi|ser0E2i ≤ C
(∑

|λi|2e2K+(s)E2i
)1/2

for some C = C(s).
It follows that the assignment that sends εn to fner0E2n , n = 1, 2, . . . ,

defines a continuous linear operator T̂ from Λ1

(
(E2n)

)
into X that satisfies

|T̂ (x)|rk0 =
∣∣∣T̂( ∞∑

i=1

xiεi

)∣∣∣
rk0

=
∣∣∣ ∞∑
i=1

xifie
r0E2i

∣∣∣
rk0

=
( ∞∑
i=1

|xi|2e2r0E2i
)1/2

= |x|r0 ∀x ∈ Λ1((E2n)).

Hence T̂ is an (r0, rk0)-local isomorphism from Λ1((E2n)) into X .
Moreover T̂ extends to a continuous operator from Λ0((E2n)) into Λs0(E).

Indeed, in view of (3.6), for x ∈ Λ0(E) we have

|T̂ (x)|s0 =
∣∣∣T̂(∑

i

xiεi

)∣∣∣
s0

=
∣∣∣ ∞∑
i=1

xifie
r0E2i

∣∣∣
s0

≤
∞∑
i=1

|xi| |fi|s0er0E2i ≤
∞∑
i=1

|xi|e−E2i ≤
( ∞∑
i=1

e−2E2i
)1/2
|x|0.

We now vary r < 1 and obtain a family {T̂r} of (r, rkr)-local imbeddings
from Λ1

(
(E2n)

)
into X with the additional property mentioned above.
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Using the elementary inequality

| · |t2 ≤ | · |
t3−t2/t3−t1
t1

| · |t2−t1/t3−t1t3

for any t1 < t2 < t3, which is valid in every power series space, for any
s0 < s < 1 we choose a ρ(s) < 1 such that

∀0 ≤ r < 1 ∃C > 0 : |T̂r(x)|s ≤ C|x|ρ(s).(3.7)

After these preparations we now proceed to show (X , Λ1((E2n))) ∈ T .
According to our assumption, there exists a sequence {Sα}∞α=1 of increas-

ing functions from N into N such that for every T ∈ L(X ,X ) there exists
α ∈ N such that σ(T ) ≤ Sα.

Let now S be a given continuous linear operator from X into Λ1((E2n)).
In view of (3.7) above, the family {T̂r ◦S}r<1 of continuous linear operators
from X into X satisfies

σ
T̂r◦S ≤ σS ◦ ρ.

Hence this family is in F
.
= {U ∈ L(X ,X ) : σU ≤ σS ◦ ρ}. On F we

consider the topology coming from the seminorms {‖ · ‖σS◦ρ(s)
s }∞s=1, and on

L(X ,X ) =
⋃∞
α=1

⋂∞
s=1{U ∈ L(X ,X ) : ‖U‖Sα(s)

s < ∞}, we consider the
LF-space structure as explained in Remark 3.2(4) above. Since evaluation at
points of X is continuous in both F and L(X ,X ), the inclusion F ⊆ L(X ,X )
has a sequentially closed graph. It follows that there exists α such that F ⊆⋂∞
s=1{U ∈ L(X ,X ) : ‖U‖Sα(s)

s <∞} in view of Grothendieck’s factorization
theorem [14, p. 68]. It follows that there exists an α ∈ N such that

σ
T̂r◦S ≤ Sα ∀r < 1.

In particular for each r < 1 there exists a Ĉ > 0 such that

|Sx|r ≤ C|T̂r(Sx)|rkr ≤ Ĉ|x|Sα(rkr ).(3.8)

Now if we set Ŝα(r)
.
= Sα(rkr) for r < 1 and α ∈ N, the analysis above shows

that for every S ∈ L(X , Λ1((E2n))) there is n ∈ N such that σS ≤ Ŝα. Hence
(X , Λ1((E2n))) ∈ T .

Now [17, Theorem 11] implies that X satisfies Vogt’s strong Ω condi-
tion, Ω̄. This together with our assumption that X has DN allows us to
conclude that X is isomorphic to a finite type power series space [15, Propo-
sition 2.9.18]. Hence X ∼= Λ1(E) [5, Proposition 1.1].

4. Spaces of analytic functions. In this section we will focus on a
particular class of nuclear Fréchet spaces with properties DN and Ω, namely
the spaces of analytic functions on Stein manifolds. Stein manifolds, being
closed connected submanifolds of complex Euclidean spaces CN , possess a
rich supply of analytic functions. These spaces, with the usual topology of



258 A. Aytuna

uniform convergence on compact subsets, form an important subclass of
Fréchet spaces with properties DN and Ω. The linear topological properties
of O(M), the Fréchet space of analytic functions on a Stein manifold M ,
and the complex analytic properties of M that are reflected by the type of
O(M), have been studied by several authors (see [3], [25] and the references
therein).

In this context, we show in Subsection 4.1 that local imbeddings of finite
type power series spaces into O(M) can be used to construct Green’s func-
tions inM . In Subsection 4.2 we classify Stein manifoldsM for which O(M)
is tame. Some results and concepts from pluripotential theory will be used.
For all undefined terminology and background we refer the reader to [12].

4.1. Local imbeddings of finite type power series spaces into
O(M) and Green’s functions. Let M be a complex manifold and fix
z0 ∈M . We will write PSH(M) for the set of all plurisubharmonic functions
on M . Employing norms in a local chart centred at z0 we consider

Lz0
.
= {u ∈ PSH(M) : u ≤ 0 and u(z)− ln ‖z − z0‖ is bounded near z0}

and set
g(ξ, z0)

.
= sup{u(ξ) : u ∈ Lz0}.

This assignment, if not ≡ −∞, defines a plurisubharmonic function on M .
We will call g(·, z0) Green’s function of M with pole at z0, and say that
Green’s function with pole at z0 exists if g(·, z0) is not identically −∞. If M
is parabolic, i.e. has no non-constant bounded plurisubharmonic function,
then of course, no Green’s function exist. In one variable, non-parabolicity
characterizes existence of Green’s functions [19], but in several complex vari-
ables there is no such general result. The difficulty seems to be in constructing
a negative plurisubharmonic function with pole at a given point.

Proposition 4.1. Let M be a Stein manifold of dimension d and let
z0 ∈ M . If there exists a local imbedding from Λ1(α) into O(M) for some
finitely nuclear exponent sequence {αn}n with lim n1/d/αn > 0, then Green’s
function with pole at z0 exists.

Proof. By [10] there exists a local biholomorphism Φ : ∆d
e � M from

the polydisc with centre 0 and radius e of Cd onto M such that Φ(0) =
z0. We use Φ to imbed O(M) into O(∆d

e) via f 7→ f ◦ Φ, f ∈ O(M)
(see [6]). We choose a bijection ρ : N → Nd such that |ρ(n)| is strictly
increasing in n and (ρ(n)) is ordered lexicographically, and use it to de-
fine an isomorphism between Λ1(n1/d) and O(∆d

e) by the correspondence
εi 7→ zp(i) = z

p1(i)
1 . . . z

pd(i)
d , i = 1, 2, . . . . We note that there exist con-

stants β1, β2 > 0 such that β1(ρ(n)) ≤ n1/d ≤ β2(ρ(n)), n = 1, 2, . . . (see
e.g. [18, p. 362]).
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Fix an (r0, k0)-local imbedding T from Λ1(αn) into Λ1(n1/d), with
T (Λ1(αn)) ⊆ O(M) ⊆ Λ1(n1/d), which exists in view of our assumptions. Let

fn
.
= T

(
εn
er0αn

)
, n = 1, 2, . . . .

The sequence {fn}n is linearly independent, so we can choose a sequence
{gn}∞n=1 of elements of O(M) with

(1) gn ∈ span{f1, . . . , fn} for n = 1, 2, . . . ,
(2) 〈gn, εi〉k0 = 0 for i = 1, . . . , n − 1, where 〈 , 〉k0 is the inner product

in Λk0 [n1/d] for n = 1, 2, . . . ,
(3) |gn|k0 = 1 for n = 1, 2, . . . .

Note that if gn =
∑n

k=1 c
n
kfk then, as in the above arguments,

n∑
k=1

|cnk |2 =
n∑
k=1

∣∣∣∣ cnk
e2r0αk

∣∣∣∣2e2r0αk =

∣∣∣∣ n∑
k=1

cnk
εk

e2r0αk

∣∣∣∣2
r0

≤ C
∣∣∣∣T( n∑

k=1

cnk
εk

e2r0αk

)∣∣∣∣2
k0

= C|gn|2k0 ≤ C

for some C > 0 and for all n = 1, 2, . . . .
Hence, for a given r < 1, using the Cauchy–Schwarz inequality we have

|gn|r =

∣∣∣∣ n∑
i=1

cni fi

∣∣∣∣
r

≤ C1

n∑
i=1

|cni |
∣∣∣∣ εi
er0αi

∣∣∣∣
σT (r)

(4.1)

=

n∑
i=1

|cni |e(σT (r)−r0)αi ≤ C2e
ρ(r)αn , n = 1, 2, . . . ,

for some constants C1, C2 > 0 where σT (r) − r0 < ρ(r) < 1 is a chosen
number that depends on r (and T ).

On the other hand, in view of condition (2) above, each gn, n = 1, 2, . . . ,
has an expansion as

gn =
∑
i≥n

dni εi ↔
∑
i≥n

dni z
ρ(i)

in Λ1(n1/d) and in O(∆d
e), respectively. By abuse of notation we will think

of gn ∈ O(M) ⊆ O(∆d
e), n = 1, 2, . . . , as an analytic function on ∆d

e with
Taylor series

gn(z) =
∑

|t|≥ 1
β2
n1/d

αnt z
t1
1 . . . ztdd .(4.2)

Choose hn ∈ O(M) such that gn = hn ◦ Φ. For a given compact set
K ⊆M choose r < 1 so that Φ(∆d

er) ⊇ K. Then in view of (4.1),

sup
z∈K
|hn(z)| ≤ sup

ξ∈∆der
|gn(ξ)| ≤ C|g|r+ ≤ CC2e

ρ(r+)αn
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for some constant C > 0 and a choice of r < r+ < 1. Hence

u(z)
.
= lim

ξ→z
lim
n

ln |hn(ξ)|
αn

, z ∈M,

is a plurisubharmonic function on M that is bounded by 1. This function
is not ≡ −∞. Indeed, assume it is. Fix large k0 < r < 1 such that |x|k0 ≤
C sup

z∈∆der
|x(z)| for all x ∈ O(∆d

e) and choose a compact set K ⊂ M that

contains Φ(∆
d
er). Our assumption and the Hartogs theorem [12, p. 70] give,

for each N ∈ N, an n0 ∈ N such that

sup
z∈K
|hn(z)| ≤ e−Nαn , n ≥ n0.

This in turn implies that for some C > 0,

1 = |gn|k0 ≤ Ce−Nαn for n ≥ n0.

So u is not identically −∞.
Now consider a z ∈ M near z0, say with ‖z − z0‖ = er for some very

large negative r. Since Φ is a local biholomorphism, there exists a C0 > 0,
independent of r, and ξ ∈ ∆d

e with ‖ξ‖ < C0e
r such that Φ(ξ) = z. Using

(4.2) we estimate, with k−0 < k0 and C1 > 0,

|gn(ξ)| ≤
∑

|t|≥Cn1/d

|αnt |C
|t|
0 e

r|t|e−k
−
0 |t|ek

−
0 |t|

≤ C0e
C(r−k−0 )n1/d

(∑
|t|

|αnt |2e2k0|t|
)1/2

≤ C1e
C(r−k−0 )n1/d

, n = 1, 2, . . . .

Hence our assumption on (αn) implies that there are C2, C3 > 0 such that

lim
n

ln |hn(z)|
αn

≤ lim
n
C(r − k−0 )

n1/d

αn
≤ C2 ln ‖z − z0‖+ C3.

So u/C2 has a logarithmic singularity at z0, and is a bounded plurisubhar-
monic function. It follows that gm(·, z0) is not identically −∞.

4.2. Diametral dimensions of analytic function spaces. In this
subsection we will investigate the diametral dimension of the spaces of ana-
lytic functions on Stein manifolds. These invariants for Fréchet spaces are in
a sense dual to approximate diametral dimensions, but they have been more
extensively studied.

For a nuclear Fréchet space X with a neighbourhood basis {Up}∞p=1 of 0
consisting of discs, we define (in the notation of Section 1)

∆(X ) = {(tn) : ∀p ∃q : tndn(Uq, Up)→ 0}
= {(tn) : ∀p ∃q : tne

−En(p,q) → 0}.
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As the notation suggests, it is easy to see that this sequence space does
not depend upon the neighbourhood basis chosen and is an invariant of the
Fréchet space X .

In this subsection we will use a special generating norm system for an-
alytic function spaces, unless stated otherwise. To describe these norms,
suppose a Stein manifold M of dimension d is given. We choose a strictly
plurisubharmonic C∞ exhaustion function ρ of M and consider a sequence
rp ↑ ∞ such that the sublevel sets Dp

.
= {z ∈ M : ρ(z) < rp}, p = 1, 2, . . . ,

are strictly pseudoconvex. We set Kp
.
= D̄p, p = 1, 2, . . . . Following [27] (cf.

[25]) we choose for each p a Hilbert space Hp that satisfies

A(Kp) ↪→ Hp ↪→ AC(Kp) ↪→ O(Dp)

where A(Kp) denotes the germs of analytic functions on the compact set Kp

with the inductive limit topology, AC(Kp) denotes the Banach space that
is the closure of A(Kp) in C(Kp), the Banach space of continuous functions
on Kp with the sup-norm, and the ↪→’s are imbeddings with dense range,
p = 1, 2, . . . . The norms that we will use to generate the topology O(M)
will be the Hilbertian norms {‖ · ‖p}p of Hp’s. Their corresponding unit balls
in O(M) will be denoted by Up, p = 1, 2, . . . . The primary reason of our
usage of these seminorms is the beautiful formula of Nivoche, Poletsky, and
Zaharyuta:

∀p < q : lim
n

En(p, q)(
2πd!n

C̃(Kp,Dq)

)1/d = 1(4.3)

where C̃(Kp, Dq) = sup{
	
Kp

(ddcu)n : u ∈ PSH(Dq), −1 ≤ u ≤ 0} [27,
Propositions 4.6, 4.8, 4.12]. We refer the reader to [27] and [25] for a proof
and a discussion of the history of this formula.

An immediate consequence of (4.3) is the following proposition.

Proposition 4.2. Let M be a Stein manifold of dimension d. Then

∆(O(M)) ≡
{

(tn) : ∀p ∃q : sup
n
|tn|e−αn/c(p,q) <∞

}
where for p < q, c(p, q) .

= C̃(Kp, Dq)
1/d, and αn

.
= (2πd!)1/dn1/d, n =

1, 2, . . . .

Proof. (⊆): Choose a (tn)n ∈ ∆(O(M)). Fix p and choose q such that

sup
n
|tn|e−En(p,q) <∞.

Now in view of Proposition 2.3(2′) there exist q+, C > 0 and 0 < λ < 1 such
that

En(p, q) ≤ (1− λ)En(p, q+) + C.
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For ε > 0 such that (1 + ε) < 1/(1− λ), in view of (4.3) there exists an
N such that

(1− ε) αn
c(p, q+)

≤ En(p, q+) ≤ (1 + ε)
αn

c(p, q+)
, n ≥ N.

Hence

|tn| ≤ C1e
En(p,q) ≤ C2e

(1−λ)En(p,q+)

≤ e(1−λ)(1+ε)αn/c(p,q+) ≤ eαn/c(p,p+), n ≥ N.

(⊇): Choose a sequence (tn) from the right hand side. For a fixed p,
choose a q such that supn |tn|e−αn/c(p,q) <∞. By Proposition 2.3(2′) choose k,
0 < ρ < 1 and C > 0 such that En(p, q) ≤ (1− ρ)En(p, k) + C. Let ε > 0 be
such that 1− ρ < 1− ε and choose an N (from (4.3)) for which

−(1 + ε)αn
c(p, q)

≤ −En(p, q) ≤ −(1− ε)αn
c(p, q)

, n ≥ N.

Hence
|tn|(1−ε)e−En(p,q) ≤ (|tn|e−αn/c(p,q))1−ε ≤ Q <∞

for some Q > 0. Moreover, since −En(p, q) ≥ −(1− ε)En(p, k)− C, we have

sup
n

(|tn|e−En(p,k))1−ε ≤ QeC , so sup
n
|tn|dn(Uk, Up) <∞.

It follows that (tn) ∈ ∆(O(M)).

Corollary 4.3. Let M be a Stein manifold of dimension d. Then

∆(O(M)) = ∆(Λ1(n1/d)) ⇔ inf
p

sup
q≥p

1

c(p, q)
= 0

⇔ δ(O(M)) = δ(Λ1(n1/d)).

Proof. Suppose that ∆(O(M)) = ∆(Λ1(n1/d)). Suppose that there is an
ε > 0 such that infp supq≥p 1/c(p, q) > ε > 0. In view of (4.3) this implies

inf
p

sup
q≥p

lim
n

En(p, q)

n1/d
> ε(d!2π)1/d.

Setting κ .
= ε(d!2π)1/d, we find that

∀p ∃q,N :
1

dn(Uq, Up)
≥ eκn1/d

, n ≥ N.

Hence,

e(κ/2)n1/d ∈ ∆(O(M)) = ∆(Λ1(n1/d)) =
{

(ξn) : ∀r < 1 : lim
n
|ξn|rn

1/d
= 0
}
.

This contradiction shows that infp supq≥p 1/c(p, q) = 0.
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On the other hand, if infp supq≥p 1/c(p, q) = 0, and r < 1 is given, choose
a p such that, in the notation of Proposition 4.2,

sup
q≥p

αn

c(p, q)n1/d
≤ − ln r ∀n.

In view of Proposition 4.2, for p there is a q � p such that supn |tn|e−αn/c(p,q)

<∞. Hence supn |tn|rn
1/d

<∞. This shows that

(tn) ∈
{

(ξn) : ∀r < 1 : lim
n
|ξn|rn

1/d
= 0
}

= ∆(Λ1(n1/d)).

So ∆(O(M)) ⊆ ∆(Λ1(n1/d)).
On the other hand, (n1/d)n, being the associated exponent sequence of

O(M), always satisfies ∆(Λ1(n1/d)) ⊆ ∆(O(M)) [5, Proposition 1.1]. So
∆(Λ1(n1/d)) = ∆(O(M)). Since O(M) is isomorphic to a closed subspace of
Λ1(n1/d), the other equivalence follows directly from Proposition 2.7 and the
fact that the approximate diametral dimension of a nuclear Fréchet space is
greater than the approximate diametral dimension of its subspaces [7].

Theorem 4.4. Let M be a Stein manifold of dimension d. Then either
∆(O(M)) = ∆(O(∆d)) or ∆(O(M)) = ∆(O(Cd)).

Proof. We will use the grading on O(M) described at the beginning of
this section. Using the notation above, for a given p ≥ 1, we set c(p) .

=
limq>p c(p, q) = infq>p c(p, q). Since c(·, ·) is increasing in the first variable,
the sequence {c(p)} is increasing. We have two cases:

Case 1: c(p) is zero for all p ≥ 1. Choose (tn)n ∈ ∆(O(Cd)) =

∆(Λ∞(n1/d)), R > 1 and C > 0 so that |tn| ≤ CRn
1/d for all n. For a given

p choose a q such that c(p, q) ≤ 1/ln(R̃) for some R̃ with R1/(2πd!)1/d � R̃.
Then for αn = n1/d,

|tn|e−αn/c(p,q) ≤ |tn|e−αn ln R̃+n1/d lnR−n1/d lnR ≤ C.

So (tn)n ∈ ∆(O(M)) in view of Proposition 4.1. Hence

∆(Λ∞(n1/d)) ⊆ ∆(O(M)).

However, (αn)n = (n1/d)n being the associated exponent sequence of O(M),
the inclusion ∆(O(M)) ⊆ ∆(Λ∞(n1/d)) is always true. It follows that in this
case ∆(O(M)) = ∆(O(Cd)).

Case 2: c(p) increases to a non-zero c. We have two possibilities: either
c ∈ R or c =∞.

Suppose that c > 0 is a real number. Fix natural numbers α < γ < β.
For given natural numbers n and m, plainly

dn+m(Uβ, Uα) ≤ dn(Uβ, Uγ)dm(Uγ , Uα),
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where Ut’s, 1 ≤ t < ∞, are the unit balls corresponding to our grading. In
particular,

(4.4) En+m(α, β) ≥ En(γ, β) + Em(α, γ), n,m ≥ 1.

Fix an ε > 0 and using (4.3), choose N = N(α, γ, β) such that

(1− ε) αn+m

c(α, β)
≤ En+m(α, β) ≤ (1 + ε)

αn+m

c(α, β)
,

(1− ε) αn
c(γ, β)

≤ En(γ, β) ≤ (1 + ε)
αn

c(γ, β)
,

(1− ε) αm
c(α, γ)

≤ Em(α, γ) ≤ (1 + ε)
αm

c(α, γ)
, for n,m ≥ N.

Hence

(1− ε) m1/d

c(α, γ)
+ (1− ε) n1/d

c(γ, β)
≤ (1 + ε)

(n+m)1/d

c(α, β)

for n,m ≥ N ; taking m = n and n > N , we get, after cancellation,

1− ε
c(α, γ)

+
1− ε
c(γ, β)

≤ (1 + ε)21/d

c(α, β)
,

which, upon letting first β then γ and α go to infinity, gives 2 ≤ 21/d. Hence
for d > 1, c must be ∞.

For d = 1, we will use the exhaustion given in [1, p. 145] and an associated
fundamental Hilbertian norm system as explained at the beginning of this
section. In this context we will use the modulus inequality of [19, p. 14],
which in our notation states that for 1 ≤ p < q < s <∞,

(4.5)
1

c(p, s)
≥ 1

c(p, q)
+

1

c(q, s)
.

First letting s → ∞ and then q → ∞ we see that 1/c(q) → 0. Hence
in this case c = ∞ as well. So the first possibility does not occur and we
conclude that

lim
p

1

c(p)
= inf

p
sup
q≥p

1

c(p, q)
= 0.

The theorem now follows from Corollary 4.3.

Now we turn our to tameness in spaces of analytic functions. Recall that a
Stein manifoldM is called hyperconvex if it has a bounded plurisubharmonic
exhaustion function. We refer the reader to [12] and the references therein
for an account of hyperconvex manifolds. From a functional analysis point
of view, hyperconvex Stein manifolds M are precisely those Stein manifolds
that satisfy O(M) ≈ O(∆d), d = dimM [26, 2]. Hence for a hyperconvex
manifold M , O(M) is a tame Fréchet space. Our next and final result tells
us that they are the only ones with this property:
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Main Theorem 4.5. Let M be a Stein manifold. Then O(M) is tame
if and only if M is hyperconvex.

Proof. LetM have dimension d. In view of the remarks preceding the the-
orem, it suffices to show that if O(M) is tame then O(M) ≈ O(∆d). In view
of Theorem 4.4 either ∆(O(M)) = ∆(O(Cd)) or ∆(O(M)) = ∆(O(∆d)).
The first case cannot occur. To see this first observe that the assumption on
the diametral dimension implies that O(M) contains a complemented copy
ofO(Cd) by [4, Theorem 1.3]. Since plainly tameness passes to complemented
subspaces and O(Cd) = Λ∞(n1/d) is not tame [9], indeed this case cannot
occur. Now the theorem follows from Corollary 4.3 and Theorem 3.3.
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