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Abstract. We show that Tarski’s concept of cardinal algebra appears naturally in
the context of the current theory of Borel equivalence relations. As a result one can
apply Tarski’s theory to discover a number of interesting laws governing the structure of
Borel equivalence relations, which, in retrospect rather surprisingly, have not been realized
before.

1. Introduction

(A) In the late 1940’s Tarski published the book Cardinal Algebras [T],
in which he developed an algebraic approach to the theory of cardinal ad-
dition, devoid of the use of the full Axiom of Choice, which of course triv-
ializes it. A cardinal algebra is an algebraic system consisting of an abelian
semigroup with identity (viewed additively) augmented with an infinitary
addition operation for infinite sequences, satisfying certain axioms.

The theory of cardinal algebras seems to have been largely forgotten,
but our goal in this paper is to show that they appear naturally in the
context of the current theory of Borel equivalence relations, as can be verified
by rather elementary considerations. Consequently, one can apply Tarski’s
theory to discover a number of interesting laws governing the structure of
Borel equivalence relations, which, in retrospect rather surprisingly, have
not been realized before.

Below, if E,F are Borel equivalence relations on standard Borel spaces
X,Y , resp., a Borel reduction of E to F is a Borel function f : X → Y such
that

xEy ⇔ f(x)Ff(y).
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Then f induces an injection [f ] : X/E → Y/F , defined by [f ]([x]E) =
[f(x)]F . We denote by E ≤B F the pre-order of Borel reducibility, defined
by

E ≤B F ⇔ there is a Borel reduction of E to F .

We also let

E <B F ⇔ E ≤B F & F 6≤B E,

and write

E ∼B F ⇔ E ≤B F & F ≤B E

for the associated notion of Borel bireducibility. Finally, we let

E ∼=B F

denote Borel isomorphism.

If n > 0 is a positive integer and E a Borel equivalence relation, then nE
is the direct sum of n copies of E, i.e., the equivalence relation F on X ×
{0, 1, . . . , n−1} (where E lives onX) defined by (x, i)F (y, j)⇔ xEy & i = j.

Recall also that a Borel equivalence relation E is countable if every
E-class is countable.

In order to give the flavor of the results one can obtain by applying
Tarski’s theory to cardinal algebras associated with Borel equivalence re-
lations, we mention a few representative examples of results that will be
discussed later (in much more general forms, see Theorem 2.2 and Section 3).

Theorem 1.1.

(i) (Existence of least upper bounds) Any increasing sequence F0 ≤B
F1 ≤B · · · of countable Borel equivalence relations has a least upper
bound (in the pre-order ≤B).

(ii) (Interpolation) If S, T are countable sets of countable Borel equiva-
lence relations and ∀E ∈ S ∀F ∈ T (E ≤B F ), then there is a count-
able Borel equivalence relation G such that ∀E ∈ S ∀F ∈ T (E ≤B
G ≤B F ).

(iii) (Cancelation) If n > 0 and E,F are countable Borel equivalence
relations, then

nE ≤B nF ⇒ E ≤B F

and therefore

nE ∼B nF ⇒ E ∼B F.

(iv) (Dichotomy for integer multiples) For any countable Borel equiva-
lence relation E, exactly one of the following holds:

(a) E <B 2E <B 3E <B · · · ,
(b) E ∼B 2E ∼B 3E ∼B · · · .
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(v) The results in (i)–(iv) also hold for arbitrary Borel equivalence re-
lations and ≤B replaced by viB (as defined after 3.1).

(B) This paper is organized as follows. In Section 2, we review the theory
of cardinal algebras. In Section 3, we discuss various cardinal algebras that
arise in the theory of Borel equivalence relations and, in combination with
the results mentioned in Section 2, we derive various consequences about
the structure of certain classes of Borel equivalence relations. In Section 4,
we show, using ergodic theory, that the multiplicative analog of the additive
cancelation law in Theorem 1.1 fails for countable Borel equivalence rela-
tions: we prove that there are countable Borel equivalence relations E <B F
such that E2 ∼B F 2.

2. Cardinal algebras

(A) A cardinal algebra (see [T]) is a system 〈A,+,
∑
〉, where 〈A,+〉 is an

abelian semigroup with identity, which will be denoted by 0, and
∑

: AN →
A is an infinitary operation, satisfying the following axioms, where we let∑

n<∞ an =
∑

((an)n∈N):

(A)
∑

n<∞ an = a0 +
∑

n<∞ an+1.
(B)

∑
n<∞(an + bn) =

∑
n<∞ an +

∑
n<∞ bn.

(C) If a+ b =
∑

n<∞ cn, then there are (an), (bn) such that

a =
∑
n<∞

an, b =
∑
n<∞

bn, cn = an + bn.

(D) If (an), (bn) are such that an = bn + an+1, then there is c such that,
for each n, an = c+

∑
i<∞ bn+i.

Remark 2.1. These axioms are slightly different than the ones in [T,
Definition 1.1] but they are equivalent.

For any natural number n and finite sequence (ai)i<n one can define∑
i<n ai either by induction on n, using the addition operation +, or as∑
i<∞ bi, where bi = ai for i < n and bi = 0 for i ≥ n, and these turn out

to be the same. By convention, when n = 0 this sum is equal to 0.
For a natural number n and any a, we define

na =
∑
i<n

a,

so that in particular 0a = 0. Furthermore, we let

∞a =
∑
n<∞

a.

Let also

a ≤ b ⇔ ∃c(a+ c = b).
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It turns out that this is a partial ordering. Moreover all the expected com-
mutativity and associativity laws for +,

∑
and monotonicity with respect

to ≤ hold (see [T, Section 1]).

Finally, for any finite or infinite family (ai)i<n, where n ≤ ∞, we let∧
i<n ai be the infimum of this family in the poset 〈A,≤〉, if it exists, and

we define similarly the supremum
∨
i<n ai.

(B) In [T, Sections 2–4] Tarski derives various laws that hold in any
cardinal algebra. We list below those laws that appear most interesting in
the application to Borel equivalence relations in Section 3.

Theorem 2.2 (Tarski). The following hold in any cardinal algebra
〈A,+,

∑
〉:

(1) [T, 2.24] If a0 ≤ a1 ≤ a2 ≤ · · · , then
∨
n<∞ an exists.

(2) [T, 2.21, 3.19]
∨
n<∞

∑
i<n ai =

∑
i<∞ ai.

(3) [T, 3.4] If a∧ b exists, then a∨ b exists and (a∧ b) + (a∨ b) = a+ b.
(4) [T, 3.23] If n ≤ ∞ and ai∧aj = 0 for all i 6= j < n, then

∨
i<n ai =∑

i<n ai.
(5) [T, 3.16, 3.17] For any n ≤ ∞, a =

∨
i<n ai iff for each i, ai ≤ a,

and if b is such that for every i, ai ≤ b ≤ a, then a = b. Similarly
for

∧
i<n ai.

(6) [T, 4.3] For any a, we have either a = 2a = 3a = · · · = ∞a or
a < 2a < 3a < · · · <∞a.

(7) [T, 2.28] If S, T ⊆ A are non-empty countable and ∀a ∈ S∀b ∈ T
(a ≤ b), then there is c such that ∀a ∈ S ∀b ∈ T (a ≤ c ≤ b).
[T, 2.30] Moreover, if S, T ⊆ A are non-empty countable and ∀a ∈ S
∀b ∈ T (a ≤ b) and ∀a ∈ S∀b ∈ T (a + d ≤ e ≤ b + d), then there is
c with e = c+ d such that ∀a ∈ S∀b ∈ T (a ≤ c ≤ b).

(8) [T, 2.35] If m 6= 0, n are finite and ma + nc ≤ mb + nc, then
a + c ≤ b + c and similarly after replacing ≤ by =. In particular,
ma ≤ mb⇒ a ≤ b and ma = mb⇒ a = b.

(9) [T, 2.37] If m,n ≥ 1 are finite and relatively prime, then ma =
nb⇒ ∃c(a = nc & b = mc).

(10) [T, 1.37, 1.46, 1.47] We say that b absorbs a iff a + b = b. Then
∞a is the smallest element that absorbs a. If 0 < n ≤ ∞, then b
absorbs a iff b absorbs na. If n ≤ ∞, then b absorbs

∑
i<n ai iff

∀i < n(b absorbs ai).
(11) [T, 2.16, 2.17] If n ≤ ∞ and ai + c ≤ bi + c, then

∑
i<n ai + c ≤∑

i<n bi + c and similarly after replacing ≤ by =.
(12) [T, 2.15] a+ c = b+ c & c ≤ a, b⇒ a = b.

Some additional properties are established in [Tr].
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Theorem 2.3 (Truss). The following hold in any cardinal algebra
〈A,+,

∑
〉:

(1) [Tr, Theorem 3] For a1, . . . , am, m < ∞, there is n < ∞, a map ϕ
from {a1, . . . , am} to the power set of {1, . . . , n} and elements
b1, . . . , bn such that ai ≤ aj ⇔ ϕ(ai) ⊆ ϕ(aj) and ai =

∑
k∈ϕ(ai) bk.

(2) [Tr, p. 582] If a∨b, a∨c, b∧c exist, then a∨ (b∧c) = (a∨b)∧ (a∨c)
and similarly after switching ∨ and ∧.

(C) A subalgebra of a cardinal algebra 〈A,+,
∑
〉 consists of a subset

B ⊆ A such that B is closed under +,
∑

, and 〈B,+,
∑
〉 is a cardinal algebra

(where +,
∑

here are these operations restricted to B). For example, this
is the case if B contains 0, is closed under +,

∑
, and is downwards closed

under ≤.
We note that the following sets form subalgebras in any cardinal algebra

〈A,+,
∑
〉. We say that a ∈ A is idempotent if 2a = a.

(i) For any idempotents a, b, the interval I(a, b) = {c : a ≤ c ≤ b} and the
“infinite interval” I(a) = {c : a ≤ c}. To see this, notice that if a ≤ x, then x
absorbs a. So if in axiom (C) for cardinal algebras we have a′+b′ =

∑
n<∞ c

′
n,

where a ≤ a′, b′, c′n, and (a′n), (b′n) are such that

a′ =
∑
n<∞

a′n, b′ =
∑
n<∞

b′n, c′n = a′n + b′n,

then we can replace a′n, b
′
n by a′n+a, b′n+a without affecting these equalities.

Similarly, in axiom (D) we can replace c by c+ a.
(ii) The set Id = {∞a : a ∈ A} of all idempotents of A. Again notice

that if, in axiom (C), a, b, cn are idempotents, then we can replace an, bn by
∞an,∞bn. Also in axiom (D), if an, bn are idempotents, we can replace c
by ∞c.

It is easy to check that if a is idempotent, then a ∨ b = a+ b. Indeed, if
a, b ≤ c, then c = a+ a′ for some a′. Then c = a+ a′ = a+ a+ a′ = a+ c,
so a+ b ≤ a+ c = c. Thus 〈Id,≤〉 is an upper semilattice.

(D) If S = 〈S,+〉 is an abelian semigroup with identity, a finitely additive
measure (fam) on S is a homomorphism from S into the semigroup R =
〈[0,∞],+〉 (where a + ∞ = ∞ + ∞ = ∞). We define again the partial
pre-order a ≤ b⇔ ∃c(b = a+ c) (this may not be a partial order). Also, for
n ∈ N, a ∈ S let na = a + · · · + a (n times). The following is a well-known
result of Tarski (see, e.g., [W, Theorem 9.1]).

Theorem 2.4 (Tarski). Let S = 〈S,+〉 be an abelian semigroup with
identity and a ∈ S. Then the following are equivalent:

(i) ∀n ∈ N((n+ 1)a 6≤ na),
(ii) there is a fam ϕ such that ϕ(a) = 1.



188 A. S. Kechris and H. L. Macdonald

In the particular case of a cardinal algebra 〈A,+,
∑
〉, for the semigroup

〈A,+〉 condition (i) in Theorem 2.4 is equivalent to:

(i∗) a is not idempotent,

and thus we have the following corollary:

Corollary 2.5. Let 〈A,+,
∑
〉 be a cardinal algebra and a ∈ A. Then

the following are equivalent:

(i) a is not idempotent,
(ii) There is a fam ϕ on 〈A,+〉 such that ϕ(a) = 1.

We also note the following result of Bhaskara Rao and Shortt [BRS]:

Theorem 2.6 (Bhaskara Rao, Shortt). If 〈A,+,
∑
〉 is a cardinal al-

gebra, then for any a 6= b there is a fam ϕ such that ϕ(a) 6= ϕ(b).

3. Cardinal algebras in the theory of Borel equivalence relations

(A) Bireducibility types. In what follows, it will be convenient to
admit the empty equivalence relation (on the empty space), denoted by ∅,
as a Borel equivalence relation.

Definition 3.1. Let E be a class of Borel equivalence relations. We
denote by [E ] the quotient space of E by ∼B, i.e., [E ] = {[E] : E ∈ E}, where
[E] = {F ∈ E : E ∼B F}. We call [E] the bireducibility type of E (in E).

Given Borel equivalence relations E,F on standard Borel spaces X,Y ,
resp., we let E viB F mean that there is a Borel F -invariant set A ⊆ Y so
that E ∼=B F |A. Then E viB F & F viB E ⇒ E ∼=B F .

Finally, if Ei, i < n, where n ≤ ∞, are Borel equivalence relations,
with Ei living on Xi, then we let

⊕
i<nEi be the equivalence relation on⊔

i<nXi =
⋃
i<nXi × {i} given by (x, j)

⊕
i<nEi(y, k)⇔ j = k & xEjy. In

particular, E ⊕ ∅ ∼=B E for any Borel equivalence relation E.

Definition 3.2. Let E be a class of Borel equivalence relations such
that:

(1) ∅ ∈ E .
(2) If F ∈ E and E viB F , then E ∈ E . Equivalently, E is closed under
∼=B, and if F ∈ E lives on Y and X ⊆ Y is Borel F -invariant, then
F |X ∈ E .

(3) If F0, F1, F2, . . . ∈ E , then
⊕

n Fn ∈ E .
(4) If E,F0, F1, F2, . . . ∈ E and E ∼B

⊕
n Fn, then there are En ∈ E with

Fn ∼B En such that E ∼=B
⊕

nEn. Equivalently, if E lives on X,
then there is a Borel partition X =

⊔
nXn, where Xn is E-invariant

and Borel, such that E|Xn ∼B Fn.
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(5) If E,F ∈ E live on X,Y , resp., and f : X → Y is a Borel reduction
of E to F , then the F -saturation B = [f(X)]F of f(X) is a Borel
subset of Y and E ∼B F |B.

Then we say that E is a Tarskian class of Borel equivalence relations.

For any class E of Borel equivalence relations closed under
⊕

i<n, for
n ≤ ∞, we can define on [E ]:

[E] + [F ] = [E ⊕ F ],
∑
n

[En] =
[⊕
n

En

]
.

It is easy to check that these are well-defined.

Proposition 3.3. If E is a Tarskian class of Borel equivalence rela-
tions, then 〈[E ],+,

∑
〉 is a cardinal algebra. Moreover, for E,F ∈ E, we

have E ≤B F ⇔ [E] ≤ [F ].

Proof. Axioms (A), (B) of Section 2(A) are trivial to verify. We now show
that axiom (C) holds. Let E,F,Gn ∈ E be such that [E]+[F ] =

∑
n[Gn], i.e,

[E ⊕ F ] =
∑

n[Gn] or E ⊕ F ∼B
⊕

nGn. By property (4) in Definition 3.2,
if E lives on X, then F lives on Y , so that E ⊕ F lives on X t Y , we have
XtY =

⊔
n Zn, where Zn is Borel (E⊕F )-invariant, and (E⊕F )|Zn ∼B Gn.

Let En = (E ⊕ F )|(Zn ∩ X), Fn = (E ⊕ F )|(Zn ∩ Y ). Then En, Fn ∈ E ,
[En] + [Fn] = [Gn] and [E] =

∑
n[En], [F ] =

∑
n[Fn].

Next we verify axiom (D). Let Fn, Gn ∈ E be such that [Fn] = [Gn] +
[Fn+1]. Consider F0, which lives on X0. As [F0] = [G0] + [F1] = [G0 ⊕ F1],
by property (4) again, we have X0 = Y0 t X1, where Y0, X1 are F0-in-
variant, F0|Y0 ∼B G0 and F0|X1 ∼B F1. Since [F1] = [G1 ⊕ F2], we
have X1 = Y1 t X2, where Y1, X2 are F1-invariant, thus F0-invariant,
F1|Y1 = F0|Y1 ∼B G1 and F1|X2 = F0|X2 ∼B F1, etc. Proceeding this
way, we can find pairwise disjoint F0-invariant sets Y0, Y1, Y2, . . . ⊆ X0 so
that, if X1 = X0 \ Y0, X2 = X \ (Y0 ∪ Y1), . . . , then F0|Yn ∼B Gn and
F0|Xn ∼B Fn. Let Y = X0 \

⋃
n Yn. Then G = F0|Y ∈ E and, for each n,

[Fn] = [F0|Xn] = [F0|Y ] + [
⊕

i<∞ F0|Yn+i] = [G] +
∑

i<∞[Gn+i].
That E ≤B F ⇔ [E] ≤ [F ] is obvious from Definition 3.2(5).

Remark 3.4. Note that when verifying in Proposition 3.3 that 〈[E ],+,
∑
〉

is a cardinal algebra, we only used properties (1)–(4) of Definition 3.2. Prop-
erty (5) is just used to verify the last statement in that proposition.

(B) Tarskian classes of Borel equivalence relations. We next ver-
ify that various classes of Borel equivalence relations are Tarskian.

The following concept was introduced in a stronger form (requiring a ccc
condition) in [K1]:

Definition 3.5. Let E be a Borel equivalence relation on X. Then E
is idealistic if there is a map C ∈ X/E 7→ IC , assigning to each E-class C
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a σ-ideal IC of subsets of C, with C 6∈ IC , such that C 7→ IC is Borel in
the following sense: For each Borel set A ⊆ X2, the set AI ⊆ X defined by
x ∈ AI ⇔ {y ∈ [x]E : (x, y) ∈ A} ∈ I[x]E is Borel.

A typical example of an idealistic E is a Borel equivalence relation in-
duced by a Borel action of a Polish group (see [K1, p. 285]).

By convention, we consider the empty equivalence relation to be count-
able (and so also idealistic). We now have the following result:

Theorem 3.6. The class I of idealistic Borel equivalence relations is a
Tarskian class, so 〈[I],+,

∑
〉 is a cardinal algebra.

Proof. It is clear that I satisfies conditions (1)–(3) of Definition 3.2. We
next verify condition (5).

Lemma 3.7. Let E ∈ I live on a non-empty X, let F be a Borel equiv-
alence relation living on Y and let f : X → Y be a Borel reduction of E
to F . Then the F -saturation B = [f(X)]F of f(X) is a Borel subset of Y
and E ∼B F |B.

Proof. We will apply the “large section” uniformization theorem, see
[K2, 18.6], in the form presented as Theorem 18.6∗ on p. 2 of: http://math
.caltech.edu/˜kechris/papers/CDST-corrections.pdf. For the convenience of
the reader we state it here:

Let X,Y be standard Borel spaces and P ⊆ X × Y be Borel with A =
projX(P ) ⊆ X. Let x ∈ A 7→ Ix be a map assigning to each x ∈ A a σ-ideal
in Y such that:

(i) For each Borel R ⊆ X × Y , there is a Σ1
1 set S ⊆ X and a Π1

1 set
T ⊆ X such that

x ∈ A ⇒ [Rx ∈ Ix ⇔ x ∈ S ⇔ x ∈ T ],

(ii) x ∈ A⇒ Px /∈ Ix.

Then there is a Borel uniformization of P and, in particular, A is Borel.

Define P ⊆ Y × X by (y, x) ∈ P ⇔ f(x)Fy. Then if B = projY(P ),
clearly B = [f(X)]F . Let C 7→ IC witness that E is idealistic, and for
each y ∈ B, let Iy = IC , where C = f−1([y]F ). Clearly, for any y ∈ B,
Py = {x : (y, x) ∈ P} = C 6∈ Iy, so condition (ii) in Theorem 18.6∗ is
satisfied.

We next verify condition (i) in that theorem. Let R ⊆ Y ×X be Borel
and define Q ⊆ X2 by (x, x′) ∈ Q⇔ xEx′ & (f(x), x′) ∈ R. Then Q is Borel
and for y ∈ B we have Ry ∈ Iy ⇔ ∃x[f(x)Fy & x ∈ QI ] ⇔ ∀x[f(x)Fy ⇒
x ∈ QI ]. Thus for y ∈ B, the condition Ry ∈ Iy is both Σ1

1 and Π1
1, which

verifies (i).
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It follows that B is Borel and there is a Borel uniformization of P , which
clearly gives a Borel reduction of F |B to E, thus E ∼B F |B.

It is clear that the proof of Lemma 3.7 also shows the following:

Lemma 3.8. Let E ∈ I live on non-empty X, let F be a Borel equivalence
relation living on Y and let f : X → Y be a Borel reduction of E to F . Then,
for any E-invariant Borel set A ⊆ X, the set B = [f(A)]F is Borel and there
is a function g : B → A which is a Borel reduction of F |B to E|A and if
[f ] : X/A → B/F and [g] : B/F → A/E are the induced functions, then
[g] = [f ]−1.

Lemma 3.9. Let E,F ∈ I live on non-empty X,Y and let f : X → Y
be a Borel reduction of E to F and g : Y → X a Borel reduction of F to E.
Then there is an E-invariant Borel set A ⊆ X such that if B = [f(A)]F , then
B is Borel, [f ] : A/E → B/F is (clearly) a bijection and [g] : (Y \ B)/F →
(X \A)/E is also a bijection.

Proof. We follow the standard proof of the Schröder–Bernstein Theorem
(see, e.g., [K2, Theorem 15.7]).

A subset X ′ ⊆ X/E will be called “Borel” if {x ∈ X : [x]E ∈ X ′} is
Borel, and similarly for Y ′ ⊆ Y/F . By Lemma 3.8, if X ′ is “Borel”, then
[f ](X ′) is “Borel”. Similarly, if Y ′ is “Borel”, so is [g](Y ′).

Define inductively X ′n ⊆ X/E, Y ′n ⊆ Y/F as follows: X ′0 = X/E, Y ′0 =
Y/F , X ′n+1 = [g][f ](X ′n), Y ′n+1 = [f ][g](Y ′n). Let also X ′∞ =

⋂
X ′n, Y ′∞ =⋂

Y ′n and set A′ = X ′∞∪
⋃
n(X ′n\[g](Y ′n)) and B′ = Y ′∞∪

⋃
n([f ](X ′n)\Y ′n+1).

Then [f ](A′) = B′ and [g]((Y/F ) \ B′) = (X/E) \ A′. Finally, define A =
{x ∈ X : [x]E ∈ A′} and B = {y ∈ Y : [y]F ∈ B′}.

To finish the proof of Theorem 3.6, we use the above lemmas to verify
condition (4) of Definition 3.2. Let E,F0, F1, F2, . . . ∈ I and E ∼B

⊕
n Fn.

Say E lives on X. Then we can find Y , a Borel partition Y =
⊔
n Yn and F a

Borel equivalence relation on Y such that Yn is F -invariant, F |Yn ∼B Fn and
E ∼B F . Let f : X → Y and g : Y → X witness that E ∼B F . By Lemma
3.9, there is an E-invariant Borel set A ⊆ X such that if B = [f(A)]F then
B is Borel, [f ] : E/A→ B/F is a bijection and [g] : (Y \B)/F → (X \A)/E
is also a bijection. Let Xn = f−1(B ∩ Yn) ∪ [g((Y \ B) ∩ Yn)]E . Then by
Lemma 3.8, E|Xn ∼B F |Yn ∼B Fn and clearly X =

⊔
nXn.

We next discuss various cardinal subalgebras of 〈[I],+,
∑
〉. We recall

first some basic concepts and results from the theory of Borel equivalence
relations.

A Borel equivalence relation is smooth if it has a Borel reduction to the
equality relation on a Polish space. For countable Borel equivalence rela-
tions this is equivalent to the existence of a Borel transversal. The equiva-
lence relation E0 on 2N defined by (xn)E0(yn) ⇔ ∃n∀m ≥ n(xm = ym) is
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≤B-minimum among non-smooth Borel equivalence relations (see [HKL]).
A Borel equivalence relation E is treeable if there is a Borel acyclic graph
whose connected components are the E-classes. Among the treeable count-
able Borel equivalence relations there is a ≤B-maximum, called the univer-
sal treeable countable Borel equivalence relation (see [JKL]). Also, among
all countable Borel equivalence relations there is a ≤B-maximum, called the
universal countable Borel equivalence relation (see [DJK]). Finally, a Borel
equivalence relation is called essentially countable if it has a Borel reduction
to a countable Borel equivalence relation.

Theorem 3.10.

(i) Let C be the class of countable Borel equivalence relations. Then
〈[C],+,

∑
〉 is a cardinal algebra.

(ii) Let NSC be the class of non-smooth countable Borel equivalence
relations. Then 〈[NSC],+,

∑
〉 is a cardinal algebra.

(iii) Let T be the class of treeable countable Borel equivalence relations.
Then 〈[T ],+,

∑
〉 is a cardinal algebra. Similarly for the class NST

of non-smooth treeable countable Borel equivalence relations.
(iv) Let NU be the class of non-universal countable Borel equivalence

relations. Then 〈[NU ],+,
∑
〉 is a cardinal algebra.

(v) Let IdC be the class of idempotent countable Borel equivalence re-
lations, i.e., those satisfying E ⊕E ∼B E. Then 〈[IdC],+,

∑
〉 is a

cardinal algebra.

Proof. (i) It is easy to check that C is a Tarskian class. Alternatively
note that we can view [C] as a subset of [I] by identifying the bireducibility
type of E in C with its bireducibility type in I. If e∞ is the bireducibility
type of a universal countable Borel equivalence relation, then, by Lemma
3.7, [C] is the interval I(0, e∞) of [I] and thus a subalgebra of [I], since e∞
is idempotent.

(ii) Clearly [NSC] is the “infinite interval” I(e0) of [C], where e0 is the
bireducibility type of E0, which is idempotent.

(iii) Again [T ] is the interval I(0, e∞T ) of [C], where e∞T is the bire-
ducibility type of a universal treeable countable Borel equivalence relation,
which is idempotent, and [NST ] is the interval I(e0, e∞T ).

(iv) [NU ] is a subalgebra of [C], as follows from the fact that the sum of
a sequence of non-universal relations is non-universal, which is a result of
Marks (see [MSS, Theorem 3.8]).

(v) See Section 2(C).

In particular all the laws mentioned in Theorem 2.2 apply to all these
cardinal algebras; this includes all the results in Theorem 1.1 (except for the
last part of (iii) that will be dealt with in (C) below).
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Remark 3.11. Consider the class T ∗ of Borel equivalence relations which
are treeable and essentially countable. Then by Hjorth [H1] every such re-
lation E admits a Borel countable complete section A, and then by an
argument similar to that in the proof of [JKL, Theorem 3.3(i)] it follows
that E|A is a treeable countable Borel equivalence relation and of course
E|A ∼B E. Therefore [T ] = [T ∗] and Theorem 3.10(iii) holds as well for T ∗.

We will finish this subsection with some remarks and open questions
concerning the structure of some of the cardinal algebras of bireducibility
types discussed here.

Consider the cardinal algebra 〈[NSC],+,
∑
〉. Its identity element is [E0],

which is of course its ≤-least element. It also has a ≤-largest element, namely
[E∞], where E∞ is a universal countable Borel equivalence relation. It is
known (see [AK]) that 〈[NSC],≤〉 is very complicated, e.g., one can embed
in it every Borel poset. However the following is open:

Problem 3.12. Is 〈[NSC],≤〉 a lattice? Equivalently (by Theorem 2.2(3))
is it true that for any a, b ∈ [NSC], a ∧ b exists?

In an earlier version of this paper, we mentioned that in fact it seemed
to be unknown whether there are any ≤-incomparable a, b for which a ∧ b
exists. Such examples have now been found in [CK].

Consider next the cardinal algebra 〈[NU ],+,
∑
〉. We have here the fol-

lowing open problem:

Problem 3.13. Does 〈[NU ],≤〉 have a ≤-largest element? If not, what
is the shortest length of an unbounded wellordered subset of 〈[NU ],≤〉 (it is
clearly at least ℵ1)?

We have seen that 〈[IdC],≤〉 is an upper semilattice (see Section 2(C)).

Problem 3.14. Is 〈[IdC],≤〉 a lattice?

If this is the case, then by Theorem 2.3(2) it would be distributive. Note
that, by [AK] again, 〈[IdC],≤〉 also embeds any Borel poset.

It is known that there are non-idempotent elements in [NSC] (see
S. Thomas [Th]). In fact [Th, Lemma 3.4] gives a countable Borel equiv-
alence relation E ∈ NSC which is not divisible by any n > 1, i.e., there is
no F ∈ C with nF ∼B F . It follows, using Corollary 2.5, that there is a fam
on 〈[NSC],+〉 for which ϕ([E]) = 1, so ϕ takes a finite value. Of course no
such ϕ can exist on 〈[IdC],+〉.

Finally, let B be the class of all Borel equivalence relations.

Problem 3.15. Is 〈[B],+,
∑
〉 a cardinal algebra?

As opposed to the last statement in Proposition 3.3, however, it is not
the case that for Borel equivalence relations E,F we have E ≤B F ⇔
[E] ≤ [F ]. To see this we use the following result of Hjorth [H]: There is a
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Borel equivalence relation E such that for some countable Borel equivalence
relation F we have E ≤B F , but for no countable Borel equivalence relation
G do we have E ∼B G. We claim that then [E] 6≤ [F ]. Otherwise there is
a Borel equivalence relation H such that E ⊕H ∼B F . Let E,H,F live on
X,Y, Z, resp., so that E⊕H lives on XtY . Let F : Z → XtY witness that
F ≤B E ⊕ H. Set W = f−1(X). Then W is F -invariant and F |W ∼B E,
a contradiction.

(C) Borel isomorphism types. For each Borel equivalence relation
E ∈ B, denote by [E]∼= = {F ∈ B : E ∼=B F} its Borel isomorphism type. Let
[B]∼= = {[E]∼= : E ∈ B} be the set of isomorphism types of Borel equivalence
relations. We can define +,

∑
on [B]∼= as before, and then it is not hard

to check that 〈[B]∼=,+,
∑
〉 is a cardinal algebra. It is also clear that in this

cardinal algebra [E]∼= ≤ [F ]∼= ⇔ E viB F . In particular all the laws in
Theorem 2.2 hold in 〈[B]∼=,+,

∑
〉.

4. Cancelation fails for products. We show here that the Cancela-
tion Law

n > 1, nE ∼B nF ⇒ E ∼B F

fails for products in the context of countable Borel equivalence relations.
This answers a question of Andrew Marks, who raised it in connection with
a discussion with Igor Pak on a related issue.

If E,F are Borel equivalence relations, on X,Y , resp., then their product
E × F is the equivalence relation on X × Y defined by

(x, y)E × F (x′, y′) ⇔ xEx′ & yFy′.

For n ≥ 1 we let En be the product of n copies of E. We now have:

Theorem 4.1. There are countable Borel equivalence relations E <B F
such that E2 ∼B F 2.

The proof was inspired by the result of Tarski in cardinal arithmetic
that states that the Axiom of Choice is equivalent to the statement: For any
two infinite cardinals κ, λ (κ2 = λ2 ⇒ κ = λ); see [J, Theorem 11.8]. As
opposed to the proof of Tarski’s Theorem, which makes use of the Hartogs
number of an infinite cardinal to produce, assuming the Axiom of Choice
fails, two infinite cardinals µ, ν such that if κ = µ + ν, λ = µ · ν, then
κ2 = λ2 but κ < λ, the proof of Theorem 4.1 uses ideas of ergodic theory
and geometric group theory. The main idea for the construction of a pair
E,F as in Theorem 4.1 is based on the following result:

Theorem 4.2. Suppose R,S are Borel equivalence relations on standard
Borel spaces X,Y , resp., such that:

(i) X/R and Y/S are infinite.
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(ii) There are probability Borel measures µ, ν on X,Y , resp., such that
R is µ-ergodic, S is ν-ergodic and, for any R-invariant Borel set A
with µ(A) = 1 and any S-invariant Borel set B with ν(B) = 1, we
have R|A 6≤B S and S|B 6≤B R.

(iii) R2 ∼B R and S2 ∼B S.

Let E = R⊕ S and F = R× S. Then E <B F but E2 ∼B F 2.

Proof. First notice that R⊕S ≤B R×S. Indeed R⊕S lives on the direct
sum X t Y . Fix (x0, y0) ∈ X × Y . Since clearly R ≤B R|(X \ [x0]R), and
similarly for S, it is enough to show that R|(X \ [x0]R) ⊕ S|(Y \ [y0]S) ≤B
R × S. Let Z = (X \ [x0]R) t (Y \ [y0]S).Then define f : Z → X × Y by
f(x) = (x, y0) and f(y) = (x0, y). Then f is Borel reduction of R|(X \
[x0]R)⊕ S|(Y \ [y0]S) to R× S.

Clearly, we have (R × S)2 ∼B R2 × S2 ∼B R × S. Also (R ⊕ S)2 ∼B
R2 ⊕ 2R × S ⊕ S2 ≥B R × S. Observe that, denoting by 2 the equality
relation on a set of cardinality 2, we have 2 × R = 2R and 2 ≤B R, so
2R ≤B R2 ∼B R, therefore 2R ∼B R. Thus (R⊕S)2 ∼B R⊕S⊕(R×S) ≤B
2R× S ∼B R× S, so (R⊕ S)2 ∼B (R× S)2.

It remains to show thatR⊕S <B R×S. Otherwise, assume thatR×S ≤B
R ⊕ S, towards a contradiction, and let f : X × Y → X t Y witness that.
Set X0 = f−1(X) and Y0 = f−1(Y ), so that X0 t Y0 = X × Y . Also, X0, Y0
are (R× S)-invariant and (R× S)|X0 ≤B R, (R× S)|Y0 ≤B S.

Claim. R× S is (µ× ν)-ergodic.

Proof of Claim. Let A ⊆ X × Y be (R × S)-invariant. Then for each
x the section Ax is S-invariant and xRx′ ⇒ Ax = Ax′ . Thus the function
x 7→ ν(Ax) ∈ {0, 1} is R-invariant, thus constant µ-a.e. If this constant value
is 1, then by Fubini’s Theorem µ× ν(A) = 1, while if it is 0, µ× ν(A) = 0.

So we have two possibilities: µ×ν(X0) = 1 or µ×ν(X1) = 1. In the first
case, there is x such that ν((X0)x) = 1 and of course (X0)x is S-invariant.
The map y ∈ (X0)x 7→ f(x, y) witnesses that S|(X0)x ≤B R, which is a
contradiction. The second case is similar.

This gives the Claim, and hence also Theorem 4.2.

Thus to complete the proof of Theorem 4.1, it remains to construct
examples of countable Borel equivalence relations R,S satisfying conditions
(i)–(iii) of Theorem 4.2.

We will use the following result from group theory that was explained
to us by Simon Thomas in response to a question by one of the authors.

Theorem 4.3 (Yu. A. Ol’shanskĭı). There is a countable, torsion free,
simple group Γ with property (T), and an infinite countable, torsion, simple
group ∆ with property (T).
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Proof. For the convenience of the reader, we will give a sketch of the
proof based on the results of Ol’shanskĭı [O].

Fix a countable group G which is torsion free, hyperbolic and has prop-
erty (T) (see, e.g., [DC, Proposition 2]). By [O, Corollary 1], there is a
torsion free quotient Γ of G all of whose non-trivial proper subgroups are
cyclic. Thus Γ has property (T) and we next check that it is simple. By the
proof of Corollary 1 in [O, pp. 403–404], the center of Γ is trivial. If N is a
non-trivial proper normal subgroup, then it is not contained in the center,
so by looking at the conjugation action of Γ on N , we have a non-trivial ho-
momorphism of Γ into the automorphism group of N , which is a 2-element
group, so Γ has a subgroup of index 2, a contradiction.

To define ∆, use [O, Corollary 4] to find an infinite quotient G1 of G
which is quasi-finite (i.e., every proper subgroup is finite). If N C G1 is a
proper normal subgroup, by looking again at the conjugation action of G1

on the finite group N , we conclude that N ≤ Z(G1). Define ∆ = G1/Z(G1).
Then ∆ is infinite, torsion, simple and has property (T).

Fix the groups Γ,∆ as in Theorem 4.3. Define Γ ∗ = Γ ⊕ Γ ⊕ · · · and
∆∗ = ∆ ⊕ ∆ ⊕ · · · . Then Γ ∗ × Γ ∗ ∼= Γ ∗ and ∆∗ × ∆∗ ∼= ∆∗. Since every
homomorphism from Γ to ∆ is trivial and vice versa, it follows that every
homomorphism of Γ to ∆∗ is trivial and vice versa.

For any countable group G, consider the shift action of G on [0, 1]G re-
stricted to its free part and let FG be the corresponding equivalence relation.
Put now R = FΓ ∗ , which lives in X, and S = F∆∗ , which lives in Y . We
will verify that these satisfy the conditions of Theorem 4.2. Let µ be the
product measure on [0, 1]Γ

∗
restricted to X and similarly define ν on Y .

Condition (i) of Theorem 4.2 is obvious. Also, R is µ-ergodic and sim-
ilarly S is ν-ergodic. We will next verify that if A ⊆ X is R-invariant and
has µ-measure 1, then R|A 6≤B S (and vice versa).

For that we will use the superrigidity result of Popa [P] (see also [K3,
Theorem 30.5] for an exposition), which asserts that if G is a countable
infinite group with property (T), H is a countable group, and α is a Borel
cocycle of the shift action of G on [0, 1]G into H, then α is cohomologous to
a homomorphism from G to H.

So assume that f is a Borel reduction of R|A to S. Viewing Γ in the
obvious way as a subgroup of Γ ∗, we obtain the following Borel cocycle
α(γ, x) from the restriction to Γ of the shift action of Γ ∗ on [0, 1]Γ

∗
into ∆∗:

f(γ ·x) = α(γ, x)·f(x). Since this action of Γ is isomorphic to the shift action
of Γ on [0, 1]Γ , by Popa’s Theorem there is a Borel function π : X → Γ ∗

such that α(γ, x) = π(γ · x)π(x)−1, µ-a.e. Let g(x) = π(x)−1 · f(x). Then g
is also a reduction of R|A, µ-a.e., to S and g(γ · x) = g(x). By ergodicity,
g must be constant µ-a.e., a contradiction.
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Finally, we verify condition (iii) of Theorem 4.2. We will show R2 ∼B R
and similarly for S.

We have R2 = (FΓ ∗)
2, which is an equivalence relation on X2 induced

by the following free action of Γ ∗ × Γ ∗ on X2: (δ, ε) · (x, y) = (δ · x, ε · y).
Any free Borel action of a countable group G on an uncountable standard
Borel space Z, which we can assume is the interval [0, 1], can be embedded
in a Borel way into the shift action of G on [0, 1]G via z 7→ (g → g−1 · z).
Therefore R2 ≤B FΓ ∗×Γ ∗ ∼=B FΓ ∗ = R, so R ∼B R2.

Remark 4.4. There is a Baire category analog of Theorem 4.2, where
X,Y are now Polish spaces and R,S are generically ergodic and, for any
R-invariant Borel comeager set A and any every S-invariant Borel comeager
set B, we have R|A 6≤B S and S|B 6≤B R. Using this, one can show that
for R = EN

0 and S = E1, if E = R ⊕ S and F = R × S, then E <B F
but E2 ∼B F 2. (Here E1 is the equivalence relation on RN defined by
(xn)E1(yn) ⇔ ∃n∀m ≥ n(xm = ym) and EN

0 is the equivalence relation
on (2N)N defined by (xn)EN

0 (yn)⇔ ∀n(xnE0yn).)

Remark 4.5. One can also consider the set [C] as in Theorem 3.10(i),
with the operation of multiplication [E] · [F ] = [E ×F ]. It forms an abelian
semigroup with identity (the equivalence relation on a singleton space). If
E∞T is the universal treeable countable Borel equivalence relation, then,
by [HK, Theorem 8.1], we have E∞T <B E2

∞T <B E3
∞T <B · · · , so, by

Theorem 2.4, there is a fam on 〈[C], ·〉 such that ϕ([E∞T ]) = 1.
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