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Abstract. We deal with complete spacelike hypersurfaces immersed with constant
mean curvature in a Lorentzian space form. Under the assumption that the support func-
tions with respect to a fixed nonzero vector are linearly related, we prove that such a
hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of the
ambient space.

1. Introduction. In 2008, Aĺıas, Brasil and Perdomo [3] studied com-
plete hypersurfaces immersed in the unit Euclidean sphere Sn+1 ⊂ Rn+2,
whose support functions with respect to a fixed nonzero vector of the Eu-
clidean space Rn+2 are linearly related. They showed that such a hyper-
surface having constant mean curvature must be either totally umbilical or
isometric to a Clifford torus.

Later on, using a different approach, the first and second authors charac-
terized the totally umbilical and the hyperbolic cylinders of the hyperbolic
space Hn+1 as the only complete hypersurfaces with constant mean curva-
ture and whose support functions with respect to a fixed nonzero vector a
of the Lorentz–Minkowski space are linearly related (see [4, Theorem 4.1]
for the case that a is either spacelike or timelike, and [5, Theorem 4.2] for a
being a nonzero null vector).

Let Ln+1
1 be an (n + 1)-dimensional Lorentz space, that is, a semi-

Riemannian manifold of index 1. When Ln+1
1 has constant sectional cur-

vature c, it is called a Lorentz space form and denoted by Ln+1
1 (c). The

Lorentz–Minkowski space Ln+1, the de Sitter space Sn+1
1 and the anti-de

Sitter space Hn+1
1 are the standard Lorentz space forms of constant sectional

curvature 0, 1 and −1, respectively. We also recall that a hypersurface Σn
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immersed in a Lorentz space Ln+1
1 is said to be spacelike if the metric on

Σn induced from that of the ambient space Ln+1
1 is positive definite.

Now, let x : Σn → Ln+1
1 (c) be a complete spacelike hypersurface isomet-

rically immersed in Ln+1
1 (c), with future-pointing Gauss map N . For a fixed

nonzero vector a, we define the support functions on Σn with respect to a by

la(p) = 〈x(p), a〉 and fa(p) = 〈N(p), a〉, p ∈ Σn.

We say that the support functions la and fa are linearly related when

(1.1) la = λfa

for some λ ∈ R.
Our purpose is to extend the techniques developed in [4] and [5] in order

to characterize constant mean curvature spacelike hypersurfaces in Ln+1
1 (c)

whose support functions are linearly related. For this, in Section 2 we recall
some standard facts concerning hypersurfaces immersed in Ln+1

1 (c) and,
in particular, we recall a suitable Simons-type formula for such a hyper-
surface. Then in Section 3 we present some examples of quadric spacelike
hypersurfaces satisfying condition (1.1). Finally, in Section 4 we prove our
characterization result, stated below:

Theorem 1.1. Let x : Σn → Ln+1
1 (c) be a complete spacelike hyper-

surface with constant mean curvature H. If Σn satisfies condition (1.1) for
some fixed nonzero vector a, then Σn is either totally umbilical or isometric
to

(a) Rk ×Hn−k(c2), where c2 < 0, when c = 0;
(b) Sk(c1)×Hn−k(c2), where c1 > 0, c2 < 0 and 1/c1 + 1/c2 = 1, when

c = 1;
(c) Hk(c1)×Hn−k(c2), where c1 < 0, c2 < 0 and 1/c1+1/c2 = −1, when

c = −1,

where k ∈ {1, . . . , n− 1}.

2.Preliminaries. For q ∈ {1, 2}, letRn+2
q denote the (n+2)-dimensional

semi-Euclidean space endowed with the following metric of index q:

〈u, v〉 = −
q∑
i=1

uivi +

n+2∑
i=q+1

uivi

for u, v ∈ Rn+2
q . In particular, when q = 1, Rn+2

1 = Ln+2 is the Lorentz–
Minkowski space.

The de Sitter space Sn+1
1 is the hyperquadric in Ln+2 defined by

Sn+1
1 = {x ∈ Ln+2; 〈x, x〉 = 1}.

Endowed with the induced metric from Ln+2, n ≥ 2, the de Sitter space is
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a complete simply connected (n+ 1)-dimensional Lorentzian manifold with
constant sectional curvature one.

When q = 2, we define the anti-de Sitter space Hn+1
1 as the hyperquadric

in Rn+2
2 given by

Hn+1
1 = {x ∈ Rn+2

2 ; 〈x, x〉 = −1}.
Topologically, Hn+1

1 corresponds to the product S1 × Rn, and the semi-
Euclidean metric on Rn+2

2 induces a Lorentzian metric of constant sectional

curvature −1 on Hn+1
1 . Moreover, the universal covering manifold H̃n+1

1 of

Hn+1
1 is topologically the Euclidean space Rn+1 (that is, H̃n+1

1 is simply
connected) and thus is a Lorentzian analogue of the usual Riemannian hy-
perbolic space Hn+1 of negative curvature −1, which is called the universal
anti-de Sitter spacetime (see, for instance, [6, Section 5.3] or [15, Section
8.6]).

From now on, we consider Ln+1
1 (c), where c ∈ {−1, 0, 1}, denoting the

Lorentz–Minkowski space if c = 0, the de Sitter space if c = 1, and the
anti-de Sitter space if c = −1. A smooth immersion x : Σn → Ln+1

1 (c) of
an n-dimensional connected manifold Σn is called a spacelike hypersurface
if the metric induced via x is a Riemannian metric on Σn, which is also
denoted by 〈 , 〉. Since Ln+1

1 (c) is time-oriented, we can choose a unique
unit normal vector field N on Σn which is a future-pointing timelike vector
field in Ln+1

1 (c), that is, 〈N, e1〉 < 0 where e1 = (1, 0, . . . , 0) ∈ Ln+1
1 (c). In

this setting, we will assume that Σn is oriented by N , and we will denote
by ∇ and ∇ the Levi-Civita connections of Ln+1

1 (c) and Σn, respectively.
For 1 ≤ r ≤ n and p ∈ Σn, if Sr(p) denotes the rth elementary symmetric

function of the eigenvalues of Ap, we get n smooth functions Sr : Σn → R
such that

det(tI −A) =

n∑
k=0

(−1)kSkt
n−k,

where S0 = 1 by definition. Taking a local orthonormal frame {e1, . . . , en}
on Σn such that Aei = λiei, i = 1, . . . , n, it is easy to verify that

Sr = σr(λ1, . . . , λn),

where σr ∈ R[X1, . . . , Xn] is the rth elementary symmetric polynomial in
the indeterminates X1, . . . , Xn. In particular, when r = 1 we know that
H = −(1/n)S1 is the mean curvature of Σn with respect to its future-
pointing Gauss mapping N . Moreover, if |A| stands for the Hilbert–Schmidt
norm of A, then it is immediate to check that

(2.1) S2
1 = |A|2 + 2S2.

Now, for 0 ≤ r ≤ n, let Pr : X(Σ)→ X(Σ) be the rth Newton transfor-
mation of Σn, defined inductively by setting P0 = I (the identity operator)
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and, for 1 ≤ r ≤ n,

(2.2) Pr = (−1)rSrI +APr−1.

Associated to each Newton transformation Pr, one has the second order
linear differential operator Lr : C∞(Σ)→ C∞(Σ) given by

(2.3) Lr(f) = tr(Pr ◦Hess f),

where C∞(Σ) stands for the ring of smooth real functions on Σn. In partic-
ular, when r = 0, the operator L0 is just the Laplacian ∆.

In [7], Caminha extended a technique due to Alencar, do Carmo and
Colares [2] obtaining a suitable formula for Lq(Sr), with 0 ≤ q < n and
0 < r < n (cf. [2, Lemma 3.7] and [7, Proposition 3]). In particular, from [7,
Corollary 2] we deduce

Lemma 2.1. Let Σn be a spacelike hypersurface in Ln+1
1 (c). Then

L1(S1) =−∆S2 − |∇A|2 + |∇S1|2

− 2S2(|A|2 + cn) + S1
(
S1S2 − 3S3 + c(n− 1)S1

)
.

Now, for a fixed nonzero vector a ∈ Rn+2
q , let us consider the support

functions la : Σn → R and fa : Σn → R given, respectively, by la(p) =
〈x(p), a〉 and fa(p) = 〈N(p), a〉. Then we can write

(2.4) a = a> − faN + clax,

where a> denotes the projection of the vector a on the tangent bundle of Σn.
A direct computation allows us to conclude that

∇la = a> and ∇fa = −A(a>).

So, we get the useful relation

(2.5) 〈a, a〉 = |∇la|2 − f2a + cl2a.

We close this section by quoting convenient formulas for the operator Lr
acting on the support functions of spacelike hypersurfaces in Ln+1

1 (c). Their
proofs can be found, for instance, in [11].

Lemma 2.2. Let Σn be a spacelike hypersurface in a Lorentzian space
form Ln+1

1 (c) of constant sectional curvature c. Then:

(i) Lr(la) = −(r + 1)Sr+1fa − c(n− r)Srla,

(ii) Lr(fa) = −〈∇Sr+1, a
>〉+ (S1Sr+1− (r+ 2)Sr+2)fa + c(r+ 1)Sr+1la.

3. Quadric spacelike hypersurfaces in Ln+1
1 (c). This section is de-

voted to a description of quadric spacelike hypersurfaces in Ln+1
1 (c). In fact,

Theorem 1.1 asserts that these examples are the only ones whose support
functions with respect to a nonzero vector satisfy condition (1.1).
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Example 3.1 (Totally umbilical spacelike hypersurfaces in Ln+1
1 (c)). In

case c = 0, if Σn is a spacelike hyperplane orthogonal to a timelike vector
a ∈ Ln+1, it is immediate that the functions la and fa on Σn are constant,
and hence relation (1.1) holds.

So, let c ∈ {−1, 1} and let a ∈ Rn+2
q be a nonzero vector with 〈a, a〉 ∈

{−1, 0, 1}. Consider the smooth function g : Ln+1
1 (c)→ R defined by g(x) =

〈x, a〉. It is not difficult verify that, for every τ ∈ R with 〈a, a〉 − cτ2 6= 0,
the set

(3.1) Lτ = g−1(τ) = {x ∈ Ln+1
1 (c); 〈x, a〉 = τ}

is a totally umbilical spacelike hypersurface in Ln+1
1 (c), with future-pointing

Gauss map

Nτ (p) =
1√

|〈a, a〉 − cτ2|
(a− cτx).

Moreover, the shape operator A and mean curvature H are given, respec-
tively, by

Av =
cτ√

|〈a, a〉 − cτ2|
v and H2 =

τ2

|〈a, a〉 − cτ2|
.

So, after a straightforward computation, it follows that the support functions
la and fa satisfy the linear dependence relation

la =
|τ |√

|〈a, a〉 − cτ2|
fa = |H|fa.

Example 3.2 (Hyperbolic cylinders in Ln+1
1 ). For ρ > 0 and k an integer

satisfying 0 < k < n, a hyperbolic cylinder in Rn+1
1 is defined by

Σn = {x ∈ Rn+1
1 ; −x21 + x22 + · · ·+ x2k+1 = −ρ2} = Hk(−1/ρ2)× Rn−k.

For the timelike unit normal vector field

N(x) = −1

ρ
(x− ν(x)),

where ν(x) = (0, . . . , 0, xk+2, . . . , xn+2) and x = (x1, . . . , xn+2), we deduce
that the Weingarten operator A of Σn with respect to N has principal
curvatures

λ1 = · · · = λk = 1/ρ, λk+1 = · · · = λn = 0.

Considering a = (1, 1, 0, . . . , 0) for the case of a null vector, a = (1, 0, . . . , 0)
for a timelike vector, and a = (1, 2, 0, . . . , 0) for a spacelike vector, it is not
difficult to verify that

la = ρfa on Σn.

Example 3.3 (Hyperbolic cylinders in Sn+1
1 ⊂ Rn+2

1 ). Let k be an in-
teger satisfying 0 ≤ k < n. We define a smooth function f : Sn+1

1 → R
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by
f(x) = x22 + · · ·+ x2k+2,

where x = (x1, . . . , xn+2). For ρ > 0, set Σn = f−1(ρ2). If x = (x1, . . . , xn+2)
∈ Σn, then

Σn =
{
x ∈ Sn+1

1 ;
k+2∑
i=2

x2i = ρ2 and −x21 +
n+2∑
i=k+3

x2i = 1− ρ2
}

= Sk(1/ρ2)×Hn−k(−1/(1 + ρ2)).

Now, for X = (X1, . . . , Xn+2), we have

〈∇f(x), X〉 = 〈2ν(x), X〉,
where ν(x) = (0, x2, . . . , xk+2, 0, . . . , 0) and ν = ν> + 〈ν, x〉x = ν> + ρ2x.
Thus, ∇f(x) = 2(ν(x)− ρ2x), and consequently

〈∇f(x),∇f(x)〉 = 4ρ2(1− ρ2).
So,

|∇f(x)| = 2ρ
√

1− ρ2.
Hence, the vector field

N(x) =
∇f(x)

|∇f(x)|
=
ν(x)− ρ2x
ρ
√

1− ρ2

defines the future-pointing Gauss map of Σn. Moreover, the Weingarten
operator A of Σn with respect to N has principal curvatures

λ1 = · · · = λk = −
√

1− ρ2
ρ

, λk+1 = · · · = λn =
ρ√

1− ρ2
.

Finally, if a = (1, 1, 0, . . . , 0) for the case of a null vector, a = (1, 0, . . . , 0)
for a timelike vector, and a = (1, 2, 0, . . . , 0) for a spacelike vector, it is not
difficult to verify that

la = −
√

1− ρ2
ρ

fa.

Example 3.4 (Hyperbolic cylinders in Hn+1
1 ⊂ Rn+2

2 ). In an analogous
way to the de Sitter space, we define a smooth function g : Hn+1

1 → R by

g(x) = −x21 + x23 + · · ·+ x2k+2,

where x=(x1, . . . , xn+2). For ρ>0, set Σn=g−1(−ρ2). If x=(x1, . . . , xn+2)
∈ Σn, then

Σn =
{
x ∈ Hn+1

1 ; −x21 +
k+2∑
i=3

x2i = −ρ2 and −x22 +
n+2∑
i=k+3

x2i = ρ2 − 1
}

= Hk(−1/ρ2)×Hn−k(1/(ρ2 − 1)).
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Now, for X = (X1, . . . , Xn+2), we have

〈∇g(x), X〉 = 〈2ν(x), X〉.
Thus

∇g(x) = 2ν>,

where ν(x) = (−x1, 0, x3, . . . , xk+2, 0, . . . , 0) and ν = ν>−〈ν, x〉x = ν>+ρ2x.
Hence, ∇g(x) = 2(ν(x)− ρ2x), and consequently

〈∇g(x),∇g(x)〉 = 4ρ2(ρ2 − 1).

Then

|∇g(x)| = 2ρ
√
ρ2 − 1.

So,

N(x) =
∇g(x)

|∇g(x)|
=
ν(x)− ρ2x
ρ
√
ρ2 − 1

defines the future-pointing Gauss map of Σn. Moreover, the Weingarten
operator A of Σn with respect the N has principal curvatures

λ1 = · · · = λk = −
√
ρ2 − 1

ρ
, λk+1 = · · · = λn =

ρ√
ρ2 − 1

.

Furthermore, if we take a = (0, 1, 0, . . . , 0, 1, 0, . . . , 0) for the case of a null
vector, a = (0, 1, 0, . . . , 0) for a timelike vector, and a = (0, 1, 0, . . . , 0, 2, 0,
. . . , 0) for a spacelike vector, it is not difficult to verify that

la = −
√
ρ2 − 1

ρ
fa.

4. Proof of Theorem 1.1. First, we observe that if λ = 0, from (1.1)
and (2.5), and taking into account [15, Lemma 2.6], it is not difficult to verify
that a must be a timelike vector. So, using (2.5) once more, we obtain f2a = 1,
and consequently, assuming without loss of generality that 〈a, a〉 = −1, we
have N = ±a. Thus,

(4.1) Σn ⊂ a⊥ = {v ∈ TpΣn; 〈a, v〉 = 0}, p ∈ Σn,

and, by completeness, Σn must be a leaf of the foliation of Ln+1
1 (c) orthogo-

nal to the vector a. From [12, Proposition 1], such leaves are totally umbilical
spacelike hypersurfaces in Ln+1

1 (c). But, since la = 0, we see that Σn is to-
tally geodesic. Therefore, Σn is either a spacelike hyperplane in Ln+1, when
c = 0, or a totally geodesic round sphere in Sn+1

1 , when c = 1, or is isometric
to a totally geodesic hyperbolic space in Hn+1

1 , when c = −1.
Now, let λ 6= 0. Since λ is constant, (1.1) guarantees that ∆la = λ∆fa.

Taking r = 0 in Lemma 2.2, we obtain

(4.2) (S1 + ncλ+ λS2
1 − 2λS2 + cλ2S1)la = 0



96 C. P. AQUINO ET AL.

on Σn. Let h : Σn → R be defined by

h = S1 + ncλ+ λS2
1 − 2λS2 + cλ2S1.

If there exists p0 ∈ Σn such that h(p0) 6= 0, then there exists a neighborhood
U of p0 in Σn in which h(p) 6= 0 for all p ∈ U . Then, from (4.2) it follows
that la = 0 in U . This implies that fa and la are simultaneously zero in U
and, taking into account (2.5), a must be a null vector. On the other hand,
fa = 0 implies that a is a spacelike vector. Hence, we reach a contradiction.

Consequently, h = 0 on Σn. Thus, from (4.2) we get

(4.3) S1 + cnλ+ λS2
1 − 2λS2 + cλ2S1 = 0,

and since λ 6= 0, it follows from (4.3) that S2 is also constant.

Now, suppose that, for some 1 ≤ r < n, Sj is constant for j ∈ {1, . . . , r}.
Since Lr−1la = λLr−1fa, from Lemma 2.2 we have

Lr−1la = −rSrfa − c(n− r + 1)Sr−1la,

Lr−1fa = (S1Sr − (r + 1)Sr+1)fa + crSrla.

So, we can reason in a similar way to the case r = 0 to obtain

(4.4) Sr+1 =
r

λ(r + 1)
Sr +

c(n− r + 1)

r + 1
Sr−1 +

1

r + 1
S1Sr +

crλ

r + 1
Sr.

Since by induction we are supposing that Sr and Sr−1 are constant, it follows
that Sr+1 must also be constant. Hence, Sr is constant for all r ∈ {1, . . . , n}.

Consequently, from (2.1) and Lemma 2.1 we have

|∇A|2 − S2
1S2 + 4S2

2 − 2cnS2 − 3S1S3 + c(n− 1)S2
1 = 0.(4.5)

Suppose that S1 = 0, that is, Σn is maximal. When c = 0, from the
classical theorem of Cheng–Yau [8] we see that Σn must be a spacelike
hyperplane in Ln+1. When c = 1, from [13, Theorem A] we conclude that
Σn is isometric to a totally geodesic round sphere in Sn+1

1 . Finally, when
c = −1, from (2.1) we have |A|2 = −2S2. On the other hand, from (4.3) we
get 2S2 = −n, and consequently |A|2 = n. Hence, [9, Theorem 1.3] shows
that Σn is isometric to a maximal hyperbolic cylinder

Hm

(
− n
m

)
×Hn−m

(
− n

n−m

)
, 1 ≤ m ≤ n− 1.

Now, suppose that S1 6= 0. Taking r = 2 in (4.4) and multiplying by S1,
we get

(4.6) −3λS1S3 + cλ(n− 1)S2
1 = −2S1S2 − 2cλ2S1S2 − λS2

1S2.

Since λ 6= 0, we can multiply (4.5) by λ to get

(4.7) λ|∇A|2 − λS2
1S2 + 4λS2

2 − 2λcnS2 − 3λS1S3 + cλ(n− 1)S2
1 = 0.
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Applying (4.7) in (4.6), we obtain

(4.8) λ|∇A|2 − 2λS2
1S2 + 4λS2

2 − 2λcnS2 − 2S1S2 − 2cλ2S1S2 = 0.

If S2 = 0, from (4.8) we have λ|∇A|2 = 0, and since λ 6= 0, it follows that
|∇A|2 = 0, that is, Σn has parallel second fundamental form. Therefore,
Σn is an isoparametric spacelike hypersurface in Sn+1

1 . Now, if S2 6= 0,
multiplying (4.3) by 2S2 we get

(4.9) 2S1S2 + 2cnλS2 + 2λS2
1S2 − 4λS2

2 + 2cλ2S1S2 = 0.

From λ 6= 0, and equations (4.8) and (4.9), we obtain |∇A|2 = 0. Thus,
we can proceed as before to conclude that Σn is an isoparametric spacelike
hypersurface in Sn+1

1 .

Hence, a classical result due to Nomizu [14] shows that Σn has at most
two distinct principal curvatures in the Lorentz–Minkowski and de Sitter
spaces. The same holds for the case of the anti-de Sitter space, according to
Li and Xie [10]. Therefore, we can apply Theorem 5.1 of Abe et al. [1] to
finish the proof of Theorem 1.1.
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64.049-550 Teresina, Piaúı, Brazil
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