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VANISHING THEOREMS FOR KILLING VECTOR FIELDS ON
COMPLETE HYPERSURFACES IN THE HYPERBOLIC SPACE

BY

GUANGYUE HUANG and HONGJUAN LI (Xinxiang)

Abstract. We study vanishing theorems for Killing vector fields on complete stable
hypersurfaces in a hyperbolic space Hn+1(−1). We derive vanishing theorems for Killing
vector fields with bounded L2-norm in terms of the bottom of the spectrum of the Laplace
operator.

1. Introduction. Let Mn be an isometrically immersed submanifold
in a complete Riemannian manifold Nm. Mn is called stable if for any f in
C∞
0 (Mn),

(1.1)
�

Mn

{|∇f |2 − (|A|2 + Ric(ν, ν))f2} dv ≥ 0,

where A is the second fundamental form, Ric denotes the Ricci curvature
of Nm, ν is the unit normal vector of Mn, and dv stands for the volume
form on Mn. Recently, several results have appeard on nonexistence of L2

harmonic forms on complete noncompact stable submanifolds of a Rieman-
nian manifold with nonnegative sectional curvature. Kim and Yun [8] proved
that for 2 ≤ n ≤ 4, if Mn satisfies the stability inequality (1.1), then there
is no nontrivial L2 harmonic one-form on Mn, which is a generalization of a
well-known fact in the case when Mn is a complete stable minimal hypersur-
face. Extending Kim and Yun’s result to the case when n = 5, 6, Dung and
Seo [4] studied complete hypersurfaces Mn satisfying the δ-stability inequal-
ity for a number 0 < δ < 1 in a complete manifold of nonnegative sectional
curvature. They proved that there is no nontrivial L2β harmonic one-form
on Mn for some constant β. For related research, see [1, 5, 6, 9, 10, 3, 11]
and the references therein.

A vector field V on a Riemannian manifold (M, g) is Killing if the Lie
derivative of the metric with respect to V vanishes, that is,

(1.2) LV g = 0.
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This is equivalent to the fact that the one-parameter group of diffeomor-
phisms generated by V consists of isometries. Therefore, it is very inter-
esting to study the nonexistence of Killing vector fields since the space of
nontrivial Killing vector fields measures the size of the isometry group, in
a sense.

It is well known that there is no nontrivial Killing vector field on a com-
pact Riemannian manifold with negative Ricci curvature. A natural ques-
tion is whether Killing vector fields vanish on a given complete Riemannian
manifold under a suitable assumption on the bottom of the spectrum of the
Laplace operator. In this paper, we study vanishing theorems for Killing
vector fields on complete hypersurfaces in an (n+1)-dimensional hyperbolic
space Hn+1(−1) with constant sectional curvature −1. More precisely, we
shall prove the following.

Theorem 1.1. Let Mn be an n-dimensional complete noncompact stable
hypersurface in a hyperbolic space Hn+1(−1).

(i) If 2 ≤ n ≤ 4 and the first eigenvalue λ1(M) of Mn satisfies

λ1(M) > 1,

then there is no nontrivial Killing vector field with bounded L2-norm
on Mn.

(ii) If 4 ≤ n ≤ 7 and

λ1(M) >
(n− 2)2

8− n
,

then there is no nontrivial Killing vector field with bounded L2-norm
on Mn.

Remark 1.2. It is still an interesting problem to find some examples
satisfying the assumption of Theorem 1.1.

2. Proofs. It has been shown by Chen [2, Theorem 4] that for an n-
dimensional isometrically immersed submanifold Mn in a hyperbolic space
Hn+1(−1), the Ricci curvature of Mn satisfies

(2.1) RicM ≤ H2/4− (n− 1),

where H denotes the mean curvature defined by H = trace(A). Using the
Cauchy inequality, we have

H2 ≤ n|A|2.

Thus, (2.1) becomes

(2.2) RicM ≤
n

4
|A|2 − (n− 1).
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For a Killing vector field V , it has been proved by Hu and Li [7, Lem-
ma 3.2] that

(2.3) 1
2∆|V |

2 ≥ 2
∣∣∇|V |∣∣2 − RicM (V, V ),

which gives

(2.4) |V |∆|V | ≥
∣∣∇|V |∣∣2 − RicM (V, V ),

where ∆,∇ denote the Laplace operator and the gradient operator on Mn,
respectively. Inserting (2.2) into (2.4), one has

(2.5) |V |∆|V | ≥
∣∣∇|V |∣∣2 − (

n

4
|A|2 − (n− 1)

)
|V |2.

Proof of Theorem 1.1(i). Now we fix a point p ∈ Mn and consider a
geodesic ball Bp(R) of radius R centered at p. Choose a test function φ such
that 0 ≤ φ ≤ 1, φ ≡ 1 on Bp(R) and φ ≡ 0 on Mn\Bp(2R), and |∇φ| ≤ 1/R.
Replacing f in (1.1) by φ|V |, we obtain

0 ≤
�

Mn

{|∇(φ|V |)|2 − (|A|2 + Ric(ν, ν))φ2|V |2} dv(2.6)

=
�

Mn

{|∇(φ|V |)|2 − (|A|2 − n)φ2|V |2} dv,

where we have used Ric(ν, ν) = −n. The divergence theorem gives

�

Mn

|∇(φ|V |)|2 dv = −
�

Mn

φ|V |∆(φ|V |) dv

= −
�

Mn

φ|V |
(
φ∆|V |+ |V |∆φ+ 2〈∇φ,∇|V |〉

)
dv

=
�

Mn

|V |2|∇φ|2 dv −
�

Mn

φ2|V |∆|V | dv.

Therefore, from (2.6) we derive

(2.7) 0 ≤
�

Mn

{|V |2|∇φ|2 − φ2(|V |∆|V |+ |A|2|V |2) + nφ2|V |2} dv.

Applying (2.5) into (2.7), we obtain

(2.8) 0 ≤
�

Mn

{
|V |2|∇φ|2 + φ2|V |2 − φ2

∣∣∇|V |∣∣2 +
n− 4

4
φ2|A|2|V |2

}
dv.
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From the definition of the bottom of the spectrum, it follows that

(2.9) λ1(M)
�

Mn

φ2|V |2 dv ≤
�

Mn

|∇(φ|V |)|2 dv

=
�

Mn

{
φ2

∣∣∇|V |∣∣2 + |V |2|∇φ|2 + 2φ|V |〈∇φ,∇|V |〉
}
dv

≤
(

1 +
1

ε

) �

Mn

|V |2|∇φ|2 dv + (1 + ε)
�

Mn

φ2
∣∣∇|V |∣∣2 dv,

where the first eigenvalue λ1(M) of a complete noncompact manifold Mn is
defined by

λ1(M) = inf
Ω
λ1(Ω).

Here the infimum is taken over all compact domains in Mn. Combining (2.8)
and (2.9), we obtain

0 ≤
[(

1 +
1

ε

)
1

λ1(M)
+ 1

] �

Mn

|V |2|∇φ|2 dv(2.10)

+

[
(1 + ε)

1

λ1(M)
− 1

] �

Mn

φ2
∣∣∇|V |∣∣2 dv

+
n− 4

4

�

Mn

φ2|A|2|V |2 dv.

Since λ1(M) > 1, we can choose a sufficiently small ε > 0 such that

(1 + ε)
1

λ1(M)
− 1 < 0.

Notice 2 ≤ n ≤ 4. Letting R → ∞ and using the fact that the L2-norm of
V is bounded, we obtain

(2.11)
�

Mn

∣∣∇|V |∣∣2 dv = 0,

which implies that |V | ≡ const. Furthermore, we have Vol(Mn) = ∞ ac-
cording to [11, Proposition 3.4] which states that if a complete noncompact
Riemannian manifold satisfies λ1(M) > 0, then Vol(Mn) = ∞. Thus, we
have V ≡ 0 since the L2-norm of V is bounded. This completes the proof of
Theorem 1.1(i).

Proof of Theorem 1.1(ii). By replacing f by φ|V | in (1.1), we obtain the
following inequality (see (2.6)):

0 ≤
�

Mn

{|∇(φ|V |)|2 − (|A|2 − n)φ2|V |2} dv,
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which gives

(2.12) 0 ≤
�

Mn

{
φ2

∣∣∇|V |∣∣2 + |V |2|∇φ|2 + 2φ|V |〈∇φ,∇|V |〉

− (|A|2 − n)φ2|V |2
}
dv.

This yields

(2.13)
�

Mn

φ2|A|2|V |2 dv ≤
�

Mn

{
φ2

∣∣∇|V |∣∣2 + |V |2|∇φ|2

+ 2φ|V |〈∇φ,∇|V |〉+ nφ2|V |2
}
dv.

On the other hand, from (2.5) we derive

(2.14)
n

4

�

Mn

φ2|A|2|V |2 dv

≥
�

Mn

{
−φ2|V |∆|V |+ φ2

∣∣∇|V |∣∣2 + (n− 1)φ2|V |2
}
dv.

Using the divergence theorem again gives

(2.15) −
�

Mn

φ2|V |∆|V | dv =
�

Mn

{
2φ|V |〈∇φ,∇|V |〉+ φ2

∣∣∇|V |∣∣2} dv.
Therefore, the inequality (2.14) can be written as

(2.16)
n

4

�

Mn

φ2|A|2|V |2 dv

≥
�

Mn

{
2φ|V |〈∇φ,∇|V |〉+ 2φ2

∣∣∇|V |∣∣2 + (n− 1)φ2|V |2
}
dv.

Combining (2.13) with (2.16), we obtain

(2.17) 0 ≤
�

Mn

{
n− 8

4
φ2

∣∣∇|V |∣∣2 +
n

4
|V |2|∇φ|2 +

n− 4

2
φ|V |〈∇φ,∇|V |〉

+
(n− 2)2

4
φ2|V |2

}
dv

≤
�

Mn

{(
n− 8

4
+

(n− 4)ε

4

)
φ2

∣∣∇|V |∣∣2 +

(
n

4
+
n− 4

4ε

)
|V |2|∇φ|2

+
(n− 2)2

4
φ2|V |2

}
dv
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for any positive constant ε. Inserting (2.9) into (2.17), we obtain

0 ≤
[
n− 8

4
+

(n− 4)ε

4
+

(n− 2)2

4

1

λ1(M)
(1 + ε)

] �

Mn

φ2
∣∣∇|V |∣∣2 dv(2.18)

+

[
n

4
+
n− 4

4ε
+

(n− 2)2

4

1

λ1(M)

(
1 +

1

ε

)] �

Mn

|V |2|∇φ|2 dv.

Clearly,
n

4
+
n− 4

4ε
+

(n− 2)2

4

1

λ1(M)

(
1 +

1

ε

)
> 0

for any ε since 4 ≤ n ≤ 7. Moreover, since

λ1(M) >
(n− 2)2

8− n
,

we can choose a sufficiently small ε > 0 such that

n− 8

4
+

(n− 4)ε

4
+

(n− 2)2

4

1

λ1(M)
(1 + ε) < 0.

Letting R → ∞ and using the fact that the L2-norm of V is bounded, we
obtain

(2.19)
�

Mn

∣∣∇|V |∣∣2 dv = 0,

which implies that |V | ≡ const. Furthermore, we have Vol(Mn) = ∞
from λ1(M) > (n− 2)2/(8− n), and hence V ≡ 0 as the L2-norm of V
is bounded. The proof of Theorem 1.1(ii) is complete.
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