VOL. 145

2016

NO. 2

CELLS AND n-FOLD HYPERSPACES

ВY

JAVIER CAMARGO (Bucaramanga), DANIEL HERRERA (Bucaramanga) and SERGIO MACÍAS (México and Birmingham)

In memoriam Professor James T. Rogers, Jr.

Abstract. We prove that X is a hereditarily indecomposable metric continuum if and only if the *n*-fold hyperspace $C_n(X)$ does not contain (n + 1)-cells, for any positive integer *n*. Also we characterize the class of continua whose *n*-fold hyperspaces and *n*-fold hyperspace suspensions are cells.

1. Introduction. In [16], it is shown that the hyperspace of all nonempty compact subsets of a nondegenerate metric continuum X, denoted by 2^X , always contains Hilbert cubes; and we know that 2^X is a Hilbert cube if and only if X is a locally connected continuum [2, Theorem 3.2]. It is also known that the hyperspace $\mathcal{C}(X)$ of all subcontinua of X contains *n*-cells if and only if X contains *n*-ods (see [5] and [19]). In studying the structure of hyperspaces, it is useful to know if they contain cells or Hilbert cubes.

Let X be a continuum and let n be a positive integer. Then the nfold hyperspace of X, denoted by $C_n(X)$, is the family of all nonempty closed subsets of X with at most n components. By [10, Theorem 7.1] and [13, Theorem 3.4], the hyperspace $C_n(X)$ is a Hilbert cube if and only if X is locally connected without free arcs. Also, it is known that if X contains a decomposable subcontinuum, then $C_n(X)$ contains (n + 1)-cells [12, Theorem 6.1.10]. Therefore, we correct [12, Question 7.4.1] and ask:

1.1. QUESTION. Let X be a continuum. If $C_n(X)$ contains (n+1)-cells, then does X contain a decomposable subcontinuum?

We give a positive answer to Question 1.1 in Theorem 3.4. First, in Theorem 3.2, we prove that if the *n*-fold symmetric product $\mathcal{F}_n(X)$ con-

Key words and phrases: Cantor manifold, cell, continuum, graph, hereditarily indecomposable continuum, hyperspace, hyperspace suspension, indecomposable continuum. Received 30 January 2015; revised 12 January 2016. Published online 25 April 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 54B20.

tains an (n + 1)-cell, then X contains a simple closed curve. Let us recall [12, Question 7.4.2]:

1.2. QUESTION. Is $C_3([0,1])$ homeomorphic to $[0,1]^6$?

We provide a negative answer to Question 1.2 in Theorem 4.2. In fact, in this theorem, we characterize the n-fold hyperspaces that are cells. We also characterize the n-fold hyperspace suspensions that are cells (Theorem 4.5).

2. Definitions. A simple closed curve is any space homeomorphic to $S^1 = \{z \in \mathbb{R}^2 \mid ||z|| = 1\}$. A map is a continuous function.

A continuum is a nonempty, compact, connected and metric space. A subcontinuum of a space X is a continuum contained in X. A dendrite is a locally connected continuum that does not contain a simple closed curve. A continuum X is decomposable if there exist two proper subcontinua A and B of X such that $X = A \cup B$. If X is not decomposable, X is indecomposable. A continuum is hereditarily indecomposable if each of its subcontinua is indecomposable. An *n*-cell is any space homeomorphic to $[0, 1]^n$, $n \in \mathbb{N}$. An arc is a 1-cell.

Let X be a continuum of dimension n. Then X is a Cantor manifold provided that for each subset A of X such that $\dim(A) \leq n-2$ the set $X \setminus A$ is connected.

Given a continuum X, we define several of its *hyperspaces* as the following sets:

$$2^{X} = \{A \subset X \mid A \text{ is closed and nonempty}\},\$$
$$\mathcal{C}_{n}(X) = \{A \in 2^{X} \mid A \text{ has at most } n \text{ components}\}, \quad n \in \mathbb{N},\$$
$$\mathcal{F}_{n}(X) = \{A \in 2^{X} \mid A \text{ has at most } n \text{ points}\}, \quad n \in \mathbb{N}.$$

If n = 1, we write $\mathcal{C}(X)$ instead of $\mathcal{C}_1(X)$. The hyperspace 2^X is topologized by the *Vietoris topology*, defined as the topology generated by

 $\beta = \{ \langle U_1, \dots, U_k \rangle \mid U_1, \dots, U_k \text{ are open subsets of } X, k \in \mathbb{N} \},\$

where $\langle U_1, \ldots, U_k \rangle = \{A \in 2^X \mid A \subset \bigcup_{i=1}^k U_i \text{ and } A \cap U_i \neq \emptyset \text{ for each } i \in \{1, \ldots, k\}\}$. By definition, $\mathcal{C}_n(X)$ and $\mathcal{F}_n(X)$ are subspaces of 2^X . We call $\mathcal{C}_n(X)$ the *n*-fold hyperspace of X, and $\mathcal{F}_n(X)$ the *n*-fold symmetric product of X. To simplify notation, $\langle U_1, \ldots, U_m \rangle_n$ stands for the intersection of the open set $\langle U_1, \ldots, U_m \rangle$ with $\mathcal{C}_n(X)$.

We also consider the quotient space

$$\operatorname{HS}_n(X) = \mathcal{C}_n(X) / \mathcal{F}_n(X)$$

with the quotient topology. It is called the *n*-fold hyperspace suspension of X and was originally defined in [11]. Let $q_X^n : \mathcal{C}_n(X) \to \mathrm{HS}_n(X)$ be the quotient map and denote by F_X^n the point corresponding to $q_X^n(\mathcal{F}_n(X))$. 2.1. REMARK. Note that the space $\operatorname{HS}_n(X) \setminus \{F_X^n\}$ is homeomorphic to $\mathcal{C}_n(X) \setminus \mathcal{F}_n(X)$ via the appropriate restriction of q_X^n .

3. Cells in *n*-fold hyperspaces

3.1. LEMMA. Let X be a continuum and let $n \geq 2$. Let \mathcal{K} be a subcontinuum of $\mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X)$ and $A \in \mathcal{K}$. If K is a component of $\bigcup \mathcal{K}$ and A has exactly m components in K, then each $D \in \mathcal{K}$ has exactly m components contained in K.

Proof. Note that $\bigcup \mathcal{K} \in \mathcal{C}_n(X)$ [12, Lemma 6.1.1]. Let K be a component of $\bigcup \mathcal{K}$. Since $\bigcup \mathcal{K}$ has a finite number of components, $K' = \bigcup \mathcal{K} \setminus K$ is a closed subset of X. We define, for each $j \in \{1, \ldots, n\}$,

 $\mathcal{L}_j = \{ D \in \mathcal{K} \mid D \text{ has exactly } j \text{ components contained in } K \}.$

CLAIM. \mathcal{L}_j is an open subset of \mathcal{K} for each $j \in \{1, \ldots, n\}$.

Let $j_0 \in \{1, \ldots, n\}$. If $\mathcal{L}_{j_0} = \emptyset$, then \mathcal{L}_{j_0} is open. Suppose that $\mathcal{L}_{j_0} \neq \emptyset$. Let $A \in \mathcal{L}_{j_0}$. Since $A \in \mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X)$, we may write $A = A_1 \cup \cdots \cup A_{j_0} \cup A_{j_0+1} \cup \cdots \cup A_n$, where A_1, \ldots, A_n are the components, $A_1 \cup \cdots \cup A_{j_0} \subset K$ and $A_{j_0+1} \cup \cdots \cup A_n \subset K'$. Let U_1, \ldots, U_n be pairwise disjoint open subsets of X such that:

- $A_j \subset U_j$ for each $j \in \{1, \ldots, n\}$;
- $U_1 \cup \cdots \cup U_{j_0} \subset X \setminus K';$
- $U_{j_0+1} \cup \cdots \cup U_n \subset X \setminus K$.

Note that $A \in \langle U_1, \ldots, U_n \rangle_n$ and $\langle U_1, \ldots, U_n \rangle_n \cap \mathcal{K} \subset \mathcal{L}_{j_0}$. Therefore, \mathcal{L}_{j_0} is an open subset of \mathcal{K} .

Now we show that $\mathcal{K} = \bigcup_{j=1}^{n} \mathcal{L}_{j}$. It is clear that $\bigcup_{j=1}^{n} \mathcal{L}_{j} \subset \mathcal{K}$. Let $B \in \mathcal{K}$. Suppose that $B \notin \mathcal{L}_{j}$ for any $j \in \{1, \ldots, n\}$. Hence, $B \cap K = \emptyset$. Let U and V be open subsets of X such that $K \subset U$, $K' \subset V$ and $U \cap V = \emptyset$. Let $\mathcal{U} = \langle X, U \rangle_n \cap \mathcal{K}$ and $\mathcal{V} = \langle V \rangle_n \cap \mathcal{K}$ be open subsets of \mathcal{K} . It is clear that $\mathcal{U} \neq \emptyset$. Since $B \subset K'$, $B \in \mathcal{V}$ and $\mathcal{V} \neq \emptyset$. Moreover, observe that $\mathcal{U} \cap \mathcal{V} = \emptyset$ and $\mathcal{K} = \mathcal{U} \cup \mathcal{V}$. Since \mathcal{K} is connected, we obtain a contradiction. Therefore, $\mathcal{K} = \bigcup_{j=1}^{n} \mathcal{L}_j$. Finally, since $\mathcal{L}_j \cap \mathcal{L}_l = \emptyset$ for each $j \neq l$, we have $\mathcal{K} = \mathcal{L}_l$ for some $l \in \{1, \ldots, n\}$.

The following theorem shows that if X does not contain a simple closed curve, then the *n*-fold symmetric product $\mathcal{F}_n(X)$ cannot contain (n+1)-cells.

3.2. THEOREM. Let X be a continuum and let $n \in \mathbb{N}$. If $\mathcal{F}_n(X)$ contains an (n + 1)-cell, then X contains a simple closed curve.

Proof. Suppose that X does not contain a simple closed curve. Since $\mathcal{F}_1(X)$ is homeomorphic to X, $\mathcal{F}_1(X)$ does not contain 2-cells. Suppose,

inductively, that $\mathcal{F}_{n-1}(X)$ does not contain *n*-cells; we will prove that $\mathcal{F}_n(X)$ does not contain (n + 1)-cells. Suppose that \mathcal{A} is an (n + 1)-cell contained in $\mathcal{F}_n(X)$. Since $\mathcal{F}_{n-1}(X)$ is closed subset of $\mathcal{F}_n(X)$ and $\mathcal{F}_{n-1}(X)$ does not contain *n*-cells, we assume that $\mathcal{A} \subset \mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X)$.

Note that $\bigcup \mathcal{A} \in \mathcal{C}_n(X)$ [12, Lemma 6.1.1], and $\bigcup \mathcal{A}$ is a compact and locally connected subset of X [1, Lemma 2.2]. Let A_1, \ldots, A_k be the components of $\bigcup \mathcal{A}$ for some $k \leq n$. Since X does not contain a simple closed curve, each A_j is a dendrite, $j \in \{1, \ldots, k\}$.

By Lemma 3.1, $|B \cap A_j| = |D \cap A_j| = m_j$ for any $B, D \in \mathcal{A}$ and $j \in \{1, \ldots, k\}$. Observe that $1 \leq m_j \leq n$ for any $j \in \{1, \ldots, k\}$, and $\sum_{j=1}^k m_j = n$. Let $\varphi \colon \mathcal{A} \to \prod_{j=1}^k \mathcal{F}_{m_j}(A_j)$ be given by

$$\varphi(B) = (B \cap A_1, \dots, B \cap A_k)$$
 for each $B \in \mathcal{A}$.

To see that φ is continuous, let $\varphi_j \colon \mathcal{A} \to \mathcal{F}_{m_j}(A_j)$ be defined by $\varphi_j(B) = B \cap A_j$ for each $j \in \{1, \ldots, k\}$ and $B \in \mathcal{A}$. Let $B \in \mathcal{A}$ and let W_1, \ldots, W_s be open subsets of X such that $\varphi_j(B) = B \cap A_j \in \langle W_1, \ldots, W_s \rangle \cap \mathcal{F}_{m_j}(A_j)$. Let U and V be open subsets of X such that $A_j \subset U$, $\bigcup_{l \neq j} A_l \subset V$ and $U \cap V = \emptyset$. Since $|B \cap A_j| = m_j$, there exist pairwise disjoint open subsets U_1, \ldots, U_{m_j} of X with $\bigcup_{l=1}^{m_j} U_l \subset U$ and $\varphi_j(B) \in \langle U_1, \ldots, U_{m_j} \rangle \cap \mathcal{F}_{m_j}(A_j)$. $\subset \langle W_1, \ldots, W_s \rangle \cap \mathcal{F}_{m_j}(A_j)$. Note that if $\mathcal{U} = \langle U_1, \ldots, U_{m_j}, V \rangle \cap \mathcal{A}$, then $B \in \mathcal{U}$ and $\varphi_j(\mathcal{U}) \subset \langle U_1, \ldots, U_{m_j} \rangle \cap \mathcal{F}_{m_j}(A_j) \subset \langle W_1, \ldots, W_s \rangle \cap \mathcal{F}_{m_j}(A_j)$. Thus, φ_j is continuous for each $j \in \{1, \ldots, k\}$. Therefore, φ is continuous.

Observe that if $B \neq D$, then there exists $j \in \{1, \ldots, k\}$ with $B \cap A_j \neq D \cap A_j$. Hence, $\varphi_j(B) \neq \varphi_j(D)$ and $\varphi(B) \neq \varphi(D)$. Thus, φ is one-to-one. Therefore, φ is an embedding.

Note that $\dim(\mathcal{A}) = \dim(\varphi(\mathcal{A}))$. By [4, Theorem III.1, p. 26], we have $\dim(\mathcal{A}) \leq \dim(\prod_{j=1}^k \mathcal{F}_{m_j}(A_j))$. Moreover, by [4, Theorem III.4, p. 33],

$$\dim\left(\prod_{j=1}^{k} \mathcal{F}_{m_j}(A_j)\right) \le \sum_{i=j}^{k} \dim(\mathcal{F}_{m_j}(A_j)).$$

In the proof of [1, Lemma 3.1], it is shown that $\dim(\mathcal{F}_{m_j}(A_j)) \leq m_j \dim(A_j)$ for each $j \in \{1, \ldots, k\}$. Since A_j is a dendrite, $\dim(A_j) = 1$. Thus, $\dim(\mathcal{A}) \leq \sum_{j=1}^k m_j \dim(A_j) = \sum_{j=1}^k m_j = n$, a contradiction. Therefore, $\mathcal{F}_n(X)$ does not contain (n + 1)-cells.

The following result gives an interesting property of the n-fold hyperspace of a hereditarily indecomposable continuum.

3.3. PROPOSITION. Let X be a hereditarily indecomposable continuum and let $n \ge 2$. If Γ is a locally connected subcontinuum in $\mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X)$, then $\bigcup \Gamma \in \mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X)$. *Proof.* Let $\gamma \colon [0,1] \to \Gamma \subset \mathcal{C}_n(X)$ be an onto map [18, Theorem 8.14]. Let $\sigma \colon [0,1] \to \mathcal{C}_n(X)$ be given by

$$\sigma(t) = \bigcup \gamma([0, t]) \quad \text{ for each } t \in [0, 1].$$

Note that σ is a map, by [12, Lemma 6.1.1] and [17, Lemma (1.48)]. Observe that $\sigma(0) \in \Gamma$, and $\sigma(t) \subset \sigma(s)$ whenever $t \leq s$.

CLAIM. If s < t, then each component of $\sigma(t)$ intersects $\sigma(s)$.

Let s < t. Since γ is a map, $\gamma([0,t])$ is a subcontinuum of $\mathcal{C}_n(X)$. Suppose D is a component of $\sigma(t)$ such that $D \cap \sigma(s) = \emptyset$. Since $\sigma(t) = \bigcup \gamma([0,t])$, we have $\gamma(r) \subset \sigma(t)$ for each $r \in [0,t]$. Observe that $\sigma(t) \setminus D$ is a closed subset of X. Let U and V be disjoint open subsets of X with $D \subset U$ and $\sigma(t) \setminus D \subset V$. Let $\langle X, U \rangle_n$ and $\langle V \rangle_n$ be open subsets of $\mathcal{C}_n(X)$. If r < s, then $\gamma(r) \subset \sigma(s)$. Hence, $\gamma(r) \cap D = \emptyset$ and $\gamma(r) \in \langle V \rangle_n$. So, $\langle V \rangle_n \cap \gamma([0,t]) \neq \emptyset$. Moreover, D is a component of $\sigma(t)$. So, there exists $l \in [0,t]$ such that $\gamma(l) \cap D \neq \emptyset$, and $\langle X, U \rangle_n \cap \gamma([0,t]) \neq \emptyset$. Since $U \cap V = \emptyset$, we have $\langle X, U \rangle_n \cap \langle V \rangle_n = \emptyset$. Finally, since $\sigma(t) \subset U \cup V$, we find that $\gamma([0,t]) \subset \langle X, U \rangle_n \cup \langle V \rangle_n$, a contradiction. Therefore, each component of $\sigma(t)$ intersects $\sigma(s)$ whenever s < t.

Suppose $\bigcup \Gamma \in \mathcal{C}_{n-1}(X)$, that is, $\sigma(1) \in \mathcal{C}_{n-1}(X)$. Since $\mathcal{C}_{n-1}(X)$ is a closed subset of $\mathcal{C}_n(X)$, there exists $t_0 = \min\{t \in [0,1] \mid \sigma(t) \in \mathcal{C}_{n-1}(X)\}$. Let L_1, \ldots, L_k be the components of $\sigma(t_0)$ for some $k \leq n-1$.

Let $A \in \Gamma$. Assume that $A = A_1 \cup \cdots \cup A_n$, where A_1, \ldots, A_n are the components of A. Since $k \leq n-1$, there exists $j \in \{1, \ldots, k\}$ such that A has at least two components in L_j . Without loss of generality, we assume that j = 1 and A has exactly m $(1 < m \leq n)$ components, say A_1, \ldots, A_m , contained in L_1 . Since $\sigma(0) \in \Gamma$, by Lemma 3.1, $\sigma(0)$ has exactly m components contained in L_1 . Furthermore, $\sigma(t)$ has exactly m components in L_1 for each $t < t_0$, because $\sigma(0), \sigma(t) \in \mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X)$ and by the Claim. Let $R_t = \bigcup \gamma([t, t_0]) \in \mathcal{C}_n(X)$ for each $t \in [0, t_0]$. Note that $R_t \subset \sigma(t_0)$ and $\sigma(t) \cup R_t = \sigma(t_0)$. Hence, $L_1 = (\bigcup_{j=1}^m A_{j,t}) \cup (\bigcup_{j=1}^l R_{j,t})$, where $A_{1,t}, \ldots, A_{m,t}$ are the m components of $\sigma(t)$ in L_1 , and $R_{1,t}, \ldots, R_{l,t}$ are components of R_t . Since L_1 is indecomposable and $\bigcup_{j=1}^m A_{j,t} \subseteq L_1$, we have $R_{s,t} = L_1$ for some $s \in \{1, \ldots, l\}$. Thus, L_1 is a component of R_t for all $t \in [0, t_0]$; in particular, L_1 is a component of $R_{t_0} = \gamma(t_0) \in \Gamma$, contrary to the fact that R_{t_0} has exactly m components contained in L_1 (Lemma 3.1). Therefore, $\bigcup \Gamma \in \mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X)$.

The following result gives a positive answer to Question 1.1.

3.4. THEOREM. Let X be a continuum and let $n \in \mathbb{N}$. If X is hereditarily indecomposable, then $\mathcal{C}_n(X)$ does not contain (n + 1)-cells. Proof. By [5, Theorem 1.9], $\mathcal{C}(X)$ does not contain 2-cells. Suppose, inductively, that $\mathcal{C}_{n-1}(X)$ does not contain *n*-cells; we will prove that $\mathcal{C}_n(X)$ does not contain (n + 1)-cells. Suppose that there exists an (n + 1)-cell \mathcal{A} contained in $\mathcal{C}_n(X)$. Since $\mathcal{C}_{n-1}(X)$ is a closed subset of $\mathcal{C}_n(X)$ and $\mathcal{C}_{n-1}(X)$ does not contain *n*-cells, we have $\mathcal{A} \subset \mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X)$. Let $\varphi: \mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X) \to \mathcal{F}_n(\mathcal{C}(X))$ be given by $\varphi(A) = \{A_1, \ldots, A_n\}$ for each $A \in \mathcal{C}_n(X) \setminus \mathcal{C}_{n-1}(X)$, where A_1, \ldots, A_n are the components of A. By [12, Theorem 6.1.21], φ is an embedding. Thus, $\varphi(\mathcal{A})$ is an (n + 1)-cell such that $\varphi(\mathcal{A}) \subset \mathcal{F}_n(\mathcal{C}(X))$. Note that, by [17, Theorem (1.61)], $\mathcal{C}(X)$ is uniquely arcwise connected. Hence, $\mathcal{C}(X)$ does not contain a simple closed curve. Therefore, $\mathcal{F}_n(\mathcal{C}(X))$ does not contain (n + 1)-cells, by Theorem 3.2, a contradiction. Hence, $\mathcal{C}_n(X)$ does not contain (n + 1)-cells.

The next theorem follows from [12, Theorem 6.1.10] and Theorem 3.4.

3.5. THEOREM. Let X be a continuum and let $n \in \mathbb{N}$. Then X is a hereditarily indecomposable continuum if and only if $\mathcal{C}_n(X)$ does not contain (n+1)-cells.

3.6. THEOREM. Let X be a continuum and let $n, k \in \mathbb{N}$, where $k \geq 2$. Then $\mathcal{C}_n(X)$ contains a k-cell if and only if $\operatorname{HS}_n(X)$ contains a k-cell.

Proof. Since it is always the case that $C_n(X)$ contains an *n*-cell [12, 6.1.9] and $\operatorname{HS}_n(X)$ also contains an *n*-cell [11, Theorem 3.7], we only need to consider the case when k > n.

Suppose $\operatorname{HS}_n(X)$ contains a k-cell \mathfrak{K} . Without loss of generality we assume that $\mathfrak{K} \subset \operatorname{HS}_n(X) \setminus \{F_X^n\}$. Hence, by Remark 2.1, $(q_X^n)^{-1}(\mathfrak{K})$ is a k-cell in $\mathcal{C}_n(X)$.

Now, suppose \mathcal{K} is a k-cell contained in $\mathcal{C}_n(X)$. If $\mathcal{K} \cap (\mathcal{C}_n(X) \setminus \mathcal{F}_n(X)) \neq \emptyset$, then there exists a k-cell $\mathcal{K}_0 \subset \mathcal{K} \cap (\mathcal{C}_n(X) \setminus \mathcal{F}_n(X))$. Thus, by Remark 2.1, $q_X^n(\mathcal{K}_0)$ is a k-cell in $\mathrm{HS}_n(X)$. We assume now that \mathcal{K} is contained in $\mathcal{F}_n(X)$. Let $K = \{k_1, \ldots, k_m\}$ be a point of \mathcal{K} , and let U_1, \ldots, U_m be pairwise disjoint open subsets of X such that $K \in \langle U_1, \ldots, U_m \rangle \cap \mathcal{F}_n(X)$. Since \mathcal{K} is a k-cell, without loss of generality we assume $\mathcal{K} \subset \langle U_1, \ldots, U_m \rangle \cap \mathcal{F}_n(X)$. Thus, $\bigcup \mathcal{K} \subset \bigcup_{j=1}^m U_j \neq X$.

If $\mathcal{K} \subset \mathcal{F}_{n-1}(X)$, then, by [12, 6.1.1], $\bigcup \mathcal{K} \in \mathcal{C}_{n-1}(X)$. Also, by the previous paragraph, we assume that $\bigcup \mathcal{K} \neq X$. Let D be a nondegenerate subcontinuum of X such that $D \cap \bigcup \mathcal{K} = \emptyset$ [18, 5.5]. Thus, $\mathcal{K}_0 = \{K \cup D \mid K \in \mathcal{K}\}$ is homeomorphic to \mathcal{K} , and $\mathcal{K}_0 \subset \mathcal{C}_n(X) \setminus \mathcal{F}_n(X)$. Therefore, $q_X^n(\mathcal{K}_0)$ is a k-cell contained in $\mathrm{HS}_n(X)$.

Suppose $\mathcal{K} \cap (\mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X)) \neq \emptyset$. As before, $\mathcal{K} \subset \langle U_1, \ldots, U_n \rangle \cap \mathcal{F}_n(X)$, where U_1, \ldots, U_n are pairwise disjoint and nonempty open subsets of X. Thus, $\bigcup \mathcal{K}$ has exactly n components [3, Lemma 3.1]. Since \mathcal{K} is lo-

cally connected, $\bigcup \mathcal{K}$ is a locally connected subset of X [1, Lemma 2.2]. Let K_1, \ldots, K_n be the components of $\bigcup \mathcal{K}$. Note that $\prod_{j=1}^n K_j$ is homeomorphic to $\langle K_1, \ldots, K_n \rangle \cap \mathcal{F}_n(X)$. Thus, $\prod_{j=1}^n K_j$ contains a k-cell. Since k > n, there exists $j_0 \in \{1, \ldots, n\}$ with $\dim(K_{j_0}) \ge 2$ [4, Theorem III.4, p. 33]. Let $p \in K_{j_0}$ with $\dim_p(K_{j_0}) \ge 2$, that is, there exists an open neighborhood U of p such that for each open subset V of K_{j_0} with $p \in V \subset U$ the boundary $\operatorname{Bd}(V)$ is of dimension at least one. Hence, $|\operatorname{Bd}(V)| = \infty$. Thus, $\operatorname{ord}_p(X) \ge m$ for each $m \in \mathbb{N}$ (see [8, p. 274] for the definition of $\operatorname{ord}_p(X)$). In particular, $\operatorname{ord}_p(X) \ge k$. Hence, there exist $k \operatorname{arcs} \alpha_1, \ldots, \alpha_k$ in K_{j_0} such that $\alpha_j \cap \alpha_l = \{p\}$ for $j \neq l$ and $j, l \in \{1, \ldots, k\}$ [8, p. 277]. By [17, (1.100)], $\mathcal{C}(K_{j_0})$ contains a k-cell \mathcal{K}' such that $\mathcal{K}' \subset \mathcal{C}(K_{j_0}) \setminus \mathcal{F}_1(K_{j_0}) \subset \mathcal{C}_n(X) \setminus \mathcal{F}_n(X)$. Therefore, $q_X^n(\mathcal{K}')$ is homeomorphic to \mathcal{K}' , and $\operatorname{HS}_n(X)$ contains a k-cell.

3.7. COROLLARY. Let X be a continuum and let $n \in \mathbb{N}$. The following are equivalent:

- (1) X is hereditarily indecomposable;
- (2) $C_n(X)$ does not contain (n+1)-cells;
- (3) $\operatorname{HS}_n(X)$ does not contain (n+1)-cells.

4. *n*-fold hyperspaces that are cells. We characterize the *n*-fold hyperspaces that are cells (Theorem 4.2) and *n*-fold hyperspace suspensions that are cells too (Theorem 4.5).

We begin with the characterization of graphs whose n-fold hyperspace is a Cantor manifold.

4.1. THEOREM. Let X be a graph and let n be a positive integer. Then $C_n(X)$ is a Cantor manifold if and only if X is either an arc or a simple closed curve.

Proof. Suppose X is neither an arc nor a simple closed curve. Then X has a ramification point p. Hence, if A is an element of $\mathcal{C}_n(X)$ with exactly n components and such that $p \in A$, we find that $\dim_A(\mathcal{C}_n(X)) \geq (2n-1) + \operatorname{ord}_p(X) \geq (2n-1) + 3 = 2n+1$. Also, if x is an element of X that is not a ramification point, then there exists a subarc L of X such that $x \in \operatorname{Int}_X(L)$ and L does not contain a ramification point of X. Thus, $\mathcal{C}_n(L)$ is a closed 2n-dimensional neighborhood of $\{x\}$ [12, 6.8.10] that is a Cantor manifold [14, Theorem 4.6]. This implies that $\dim_{\{x\}}(\mathcal{C}_n(X)) = 2n$. Since a Cantor manifold has the same dimension at each of its points [4, A), pp. 93 and 94], we deduce that $\mathcal{C}_n(X)$ is not a Cantor manifold.

If X is either an arc or a simple closed curve, then by [14, Theorem 4.6], $C_n(X)$ is a 2n-dimensional Cantor manifold.

4.2. THEOREM. Let X be a continuum and let n and k be positive integers. Then $C_n(X)$ is homeomorphic to $[0,1]^k$ if and only if X is an arc or a simple closed curve, $n \in \{1,2\}$ and $k \in \{2,4\}$. Moreover, if n = 2, then X is an arc and k = 4.

Proof. Suppose $C_n(X)$ is homeomorphic to $[0,1]^k$. Then, by [12, 6.1.4], X is a locally connected continuum. Since $\dim(C_n(X)) = k < \infty$, by [12, 6.8.3], X is a graph. Since $[0,1]^k$ is a Cantor manifold [4, Example VI.11, p. 93], by Theorem 4.1, X is an arc or a simple closed curve. Hence, by [12, 6.8.10], k = 2n. Suppose $n \ge 3$. Note that each point of $[0,1]^k$ has a local basis of closed neighborhoods homemorphic to $[0,1]^k$. Hence, by $[6, \text{Lemma 3.4}], C_n(X)$ cannot be homeomorphic to $[0,1]^k$. Thus, $n \in \{1,2\}$ and $k \in \{2,4\}$.

If n = 1, then $C_1(X)$ is homeomorphic to $[0, 1]^2$ [17, (0.54) and (0.55)]. Now, if n = 2, then $C_2([0, 1])$ is homeomorphic to $[0, 1]^4$ [12, 6.8.11] and $C_2(S^1)$ is homeomorphic to the cone over a solid torus [7].

4.3. REMARK. Observe that Theorem 4.2 gives a negative answer to [12, Question 7.4.2].

The next theorem characterizes the graphs whose n-fold hyperspace suspensions are Cantor manifolds.

4.4. THEOREM. Let X be a graph and let n be a positive integer. Then $HS_n(X)$ is a Cantor manifold if and only if X is either an arc or a simple closed curve.

Proof. Suppose X is neither an arc nor a simple closed curve. Then X has a ramification point p. Hence, by the proof of Theorem 4.1, there exists an element A of $C_n(X)$ with exactly n components such that $\dim_A(C_n(X)) \geq 2n+1$. Since $q_X^n|_{\mathcal{C}_n(X)\setminus\mathcal{F}_n(X)}$ is a homeomorphism (Remark 2.1), we obtain $\dim_{q_X^n(A)}(\operatorname{HS}_n(X)) \geq 2n+1$. Now, by [15, Lemma 4.1], there exists an element χ in $\operatorname{HS}_n(X)$ such that $\dim_{\chi}(\operatorname{HS}_n(X)) = 2n$. Since a Cantor manifold has the same dimension at each of its points [4, A), pp. 93 and 94], we see that $\operatorname{HS}_n(X)$ is not a Cantor manifold.

If X is either an arc or a simple closed curve, then by [9, Corollary 3.1], $HS_n(X)$ is a 2n-dimensional Cantor manifold.

4.5. THEOREM. Let X be a continuum and let n and k be positive integers. Then $\operatorname{HS}_n(X)$ is homeomorphic to $[0,1]^k$ if and only if X is an arc, $n \in \{1,2\}$ and $k \in \{2,4\}$.

Proof. Suppose $\operatorname{HS}_n(X)$ is homeomorphic to $[0,1]^k$. Then, by [9, Theorem 5.2], X is a locally connected continuum. Since $\operatorname{dim}(\operatorname{HS}_n(X)) = k < \infty$ and $\operatorname{dim}(\operatorname{HS}_n(X)) = \operatorname{dim}(\mathcal{C}_n(X))$ [9, Theorem 3.6], by [12, 6.8.3], X is a

graph. Since $[0, 1]^k$ is a Cantor manifold [4, Example VI.11, p. 93], by Theorem 4.4, X is an arc or a simple closed curve. Hence, k is an even number [9, Corollary 3.1]. Suppose $n \ge 3$. Note that each point of $[0, 1]^k$ has a local basis of closed neighborhoods homemorphic to $[0, 1]^k$. Hence, since $q_X^n|_{\mathcal{C}_n(X)\setminus\mathcal{F}_n(X)}$ is a homeomorphism (Remark 2.1), by [6, Lemma 3.4], $\mathrm{HS}_n(X)$ cannot be homeomorphic to $[0, 1]^k$. Thus, $n \in \{1, 2\}$ and $k \in \{2, 4\}$.

If n = 1, then $\operatorname{HS}_1([0,1])$ is homeomorphic to a 2-cell and $\operatorname{HS}_1(S^1)$ is homeomorphic to a 2-sphere. Thus, if n = 1, then X is an arc and k = 2.

If n = 2, then $\operatorname{HS}_2([0, 1])$ is homeomorphic to a 4-cell [15, Theorem 4.6] and $\operatorname{HS}_2(\mathcal{S}^1)$ cannot be homeomorphic to a 4-cell since $T_{\mathcal{S}^1}^2$ does not have a 4-cell neighborhood in $\operatorname{HS}_2(\mathcal{S}^1)$ [15, Lemma 4.7]. Hence, if n = 2, then X is an arc and k = 4.

Acknowledgments. The first named author thanks Vicerrectoría de Investigación y Extensión de la Universidad Industrial de Santander and its programa de Movilidad de Investigadores. The third named author was partially supported by DGAPA, UNAM; he thanks the University of Birmingham for the support given during this research.

REFERENCES

- D. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to ℵ₀-dimensional linear metric spaces, Topology Appl. 19 (1985), 251–260.
- [2] D. Curtis and R. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), 19–38.
- [3] H. Hosokawa, Induced mappings on hyperspaces, Tsukuba J. Math. 21 (1997), 239–250.
- [4] W. Hurewicz and H. Wallman, *Dimension Theory*, Princeton Math. Ser. 4, Princeton Univ. Press, Princeton, NJ, 1941.
- [5] A. Illanes, Cells and cubes in hyperspaces, Fund. Math. 130 (1988), 57–65.
- [6] A. Illanes, Finite graphs X have unique hyperspaces $C_n(X)$, Topology Proc. 27 (2003), 179–188.
- [7] A. Illanes, A model for the hyperspace $C_2(S^1)$, Questions Answers Gen. Topology 22 (2004), 117–130.
- [8] K. Kuratowski, *Topology*, Vol. II, Academic Press, New York, 1968.
- S. Macías, On the n-fold hyperspace suspension of continua, Topology Appl. 138 (2004), 125–138.
- [10] S. Macías, On the hyperspaces $C_n(X)$ of a continuum X, Topology Appl. 109 (2001), 237–256.
- S. Macías, On the n-fold hyperspace suspension of continua, Topology Appl. 138 (2004), 125–138.
- [12] S. Macías, Topics on Continua, Chapman & Hall/CRC, Boca Raton, FL, 2005.
- [13] S. Macías, On n-fold hyperspaces of continua, Glas. Mat. 44 (64) (2009), 479–492.
- [14] S. Macías and S. B. Nadler, Jr., n-fold hyperspaces, cones and products, Topology Proc. 26 (2001–2002), 255–270.

[15]	S. Macías	and S.	B. Nadler,	Jr.,	Absolute	n-fold	hyperspace	suspensions,	Colloq.
	Math. 105	(2006).	221 - 231.						

- S. Mazurkiewicz, Sur le type de dimension de l'hyperespace d'un continu, C. R. Soc. Sci. Varsovie 24 (1931), 191–192.
- [17] S. B. Nadler, Jr., Hyperspaces of Sets, Monogr. Textbooks Pure Appl. Math. 49, Dekker, New York, 1978; reprinted as: Aportaciones Mat. 33, Soc. Mat. Mexicana, 2006.
- [18] S. B. Nadler, Jr., Continuum Theory. An Introduction, Monogr. Textbooks Pure Appl. Math. 158, Dekker, New York, 1992.
- [19] J. T. Rogers, Jr., Dimension of hyperspaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 177–179.

Javier Camargo, Daniel Herrera	Sergio Macías				
Escuela de Matemáticas	Instituto de Matemáticas				
Facultad de Ciencias	Universidad Nacional Autónoma de México				
Universidad Industrial de Santander	Circuito Exterior, Ciudad Universitaria				
Ciudad Universitaria	México D.F., C.P. 04510, Mexico				
Carrera 27 Calle 9	E-mail: sergiom@matem.unam.mx				
Bucaramanga, Santander, A. A. 678, Colomb	bia Current address:				
E-mail: jcam@matematicas.uis.edu.co	School of Mathematics				
capoakd@hotmail.com	University of Birmingham				
	Birmingham, B15 2TT, UK				
	E-mail: s.macias@bham.ac.uk				