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Dichotomy of global density of Riesz capacity

by

Hiroaki Aikawa (Sapporo)

Abstract. Let Cα be the Riesz capacity of order α, 0 < α < n, in Rn. We consider
the Riesz capacity density

D(Cα, E, r) = inf
x∈Rn

Cα(E ∩B(x, r))

Cα(B(x, r))

for a Borel set E ⊂ Rn, where B(x, r) stands for the open ball with center at x and
radius r. In case 0 < α ≤ 2, we show that limr→∞D(Cα, E, r) is either 0 or 1; the
first case occurs if and only if D(Cα, E, r) is identically zero for all r > 0. Moreover, it is
shown that the densities with respect to more general open sets enjoy the same dichotomy.
A decay estimate for α-capacitary potentials is also obtained.

1. Introduction. Let ϕ be a nonnegative set function on Rn, n ≥ 2,
such that:

(i) If E ⊂ F , then ϕ(E) ≤ ϕ(F ).
(ii) If U is a nonempty bounded open set, then 0 < ϕ(U) <∞.

We denote by B(x, r) the open ball with center at x and radius r. Following
the previous paper [3], we consider the lower and upper densities

D(ϕ,E, r) = inf
x∈Rn

ϕ(E ∩B(x, r))

ϕ(B(x, r))
, D(ϕ,E, r) = sup

x∈Rn

ϕ(E ∩B(x, r))

ϕ(B(x, r))

with respect to ϕ. (Note that the order of the parameters is changed from [3].)
By definition 0 ≤ D(ϕ,E, r) ≤ D(ϕ,E, r) ≤ 1. We note that D(ϕ,E, r) > 0
means that E is uniformly distributed in Rn in scale r with respect to ϕ. We
are interested in the limits of D(ϕ,E, r) and D(ϕ,E, r) as r → ∞. Typical
examples of ϕ are the n-dimensional Lebesgue outer measure m and various
capacities.
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There is a significant difference between the Lebesgue outer measure m
and capacities. In [3] we observed that, for each 0 ≤ c ≤ 1, there exists a
closed set E ⊂ Rn such that

lim
r→∞

D(m,E, r) = lim
r→∞

D(m,E, r) = c.

If ϕ is a capacity, then the situation is very different. For many capacities
ϕ the limit limr→∞D(ϕ,E, r) is either 0 or 1. Stegenga [7] first proved
this dichotomy for logarithmic capacity in R2. In [1] and [2] we implicitly
observed the same phenomenon for the Newtonian capacity in Rn. In the
previous paper [3], we showed the dichotomy for the Lp-capacity

Capp(E) = inf
{ �

Rn
|∇u|p dx : u ≥ 1 on E, u ∈ C∞0 (Rn)

}
with 1 < p < n.

Theorem A. Let E be a Borel set in Rn. Then limr→∞D(Capp, E, r) is
either 0 or 1; the first case occurs if and only if D(Capp, E, r) is identically
zero for all r > 0.

In this note we shall study the dichotomy for the Riesz capacity

(1.1) Cα(E) = inf{‖µ‖ : Uµα ≥ 1 on E}, Uµα (x) =
�

Rn
|x− y|α−n dµ(y),

with 0 < α < n and α ≤ 2. Note that if α = 2 < n, then C2(E) is the
Newtonian capacity up to a multiplicative constant. Our main result is the
following.

Theorem 1.1. Let 0 < α < n and α ≤ 2. Let E be a Borel set in Rn.
Then limr→∞D(Cα, E, r) is either 0 or 1; the first case occurs if and only
if D(Cα, E, r) is identically zero for all r > 0.

The density over general open sets can be considered. We write E(x, r) =
{x + ry ∈ Rn : y ∈ E} for E ⊂ Rn, r > 0 and x ∈ Rn, i.e., E(x, r) is E
dilated by a factor of r and translated by x. If x = 0, then we simply write
rE for E(0, r). Note that if E is the unit ball B(0, 1), then E(x, r) = B(x, r).
Let us consider the density over Ω(x, r), where Ω is an open set satisfying
the following condition.

Definition 1.2. Let Ω be an open set. We say that Ω satisfies the
interior corkscrew condition with 0 < κ < 1 and r0 > 0 if

ξ ∈ ∂Ω and 0 < r ≤ r0 ⇒ B(ξ, r) ∩Ω contains a ball of radius κr.

Theorem 1.3. Let 0 < α < n and α ≤ 2. Let Ω be a bounded open set
satisfying the interior corkscrew condition with 0 < κ < 1 and r0 > 0. Let
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E be a Borel set in Rn. For r > 0 define

DΩ(Cα, E, r) = inf
x∈Rn

Cα(E ∩Ω(x, r))

Cα(Ω(x, r))
.

Then limr→∞DΩ(Cα, E, r) is either 0 or 1; the first case occurs if and only
if DΩ(Cα, E, r) is identically zero for all r > 0.

We readily obtain Theorem 1.1 from Theorem 1.3 by letting Ω = B(0, 1).
Another typical example of Ω is an open cube. However, Theorem 1.3 treats
more general open sets Ω, which may even be disconnected.

There are significant differences between the cases α = 2 and 0 < α < 2.
While the process corresponding to the case α = 2 is the Brownian motion,
the process corresponding to 0 < α < 2 is a jump process, so that the
maximum principle is unavailable. While the classical harmonic measure in
an open set D is supported on the boundary ∂D, the α-harmonic measure
is supported in the complement of D if 0 < α < 2. So, the arguments in
[1]–[3] do not extend to the case 0 < α < 2 straightforwardly. We shall
get around the difficulty by the technique of Bogdan [4]. Hereafter, we let
0 < α < 2 since Theorem 1.1, in case α = 2, is known from [1] and [2], at
least implicitly.

Our argument is based on a decay estimate with respect to α-capacitary
potentials, which may be of independent interest. For a set E ⊂ Rn we let
E be the closure of E. It is known that a bounded Borel set E has the
α-capacitary potential UµEα such that Cα(E) = ‖µE‖ and

UµEα ≤ 1 in Rn,
UµEα = 1 q.e. on E,

suppµE ⊂ E,
(1.2)

where ‘q.e.’ (quasieverywhere) means the property holds outside a set of
Cα-capacity zero. The measure µE is called the capacitary measure for E.
See [6, p. 274]. For simplicity we write UEα for UµEα .

Definition 1.4. We say that a closed set F satisfies the capacity density
condition with 0 < η < 1 and r0 > 0 if

Cα(F ∩B(ξ, r))

Cα(B(ξ, r))
≥ η for ξ ∈ F and 0 < r ≤ r0.

It is easy to see that if D satisfies the the interior corkscrew condition
with 0 < κ < 1 and r0 > 0, then D satisfies the capacity density condition
with 0 < η = η(κ, α, n) < 1. Here η = η(κ, α, n) means that η depends
only on κ, α and n. Our decay estimate for an α-capacitary potential is as
follows.
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Theorem 1.5. Let D be a bounded open set whose closure is included
in a ball B and let F = B \D. If F satisfies the capacity density condition
with 0 < η < 1 and r0 > 0, then there exist positive constants β = β(η, α, n)
and A = A(η, α, n, r0) such that

1− UFα (x) ≤ AδD(x)β for x ∈ D.
Here δD(x) = dist(x, ∂D).

We use the following notation. The symbol A stands for a positive con-
stant whose exact value is unimportant and may change from one occurrence
to the next. If necessary, we use A0, A1, . . . , to specify them. We say that
positive quantities f and g are comparable and write f ≈ g if A−1 ≤ f/g ≤ A
with some constant A ≥ 1. The constant A is referred to as the constant of
comparison. We have to pay attention to the dependency of the constant of
comparison.

2. Preliminaries. In view of the definition (1.1), we have the following
lemma.

Lemma 2.1. Let E ⊂ Rn and κ > 0. If there is a measure µ such that
Uµα ≥ κ on E, then Cα(E) ≤ ‖µ‖/κ.

The α-capacity of a ball is well-known. Recall that E stands for the
closure of E. In particular, B(x, r) is the closed ball with center at x and
radius r.

Lemma 2.2 ([6, p. 163]). There exists a positive constant A0 = A0(α, n)
such that Cα(B(x, r)) = Cα(B(x, r)) = A0r

n−α.

Let us give some general observations for α-harmonic measure, α-reduced
function, α-Green function and so on. Let D be an open set. We denote by
ωxD(E) the α-harmonic measure on D of E ⊂ Rn \ D evaluated at x ∈ D.
In case x is understood from the context, we suppress the superscript x and
simply write ωD(E). Note that, in case 0 < α < 2, the support of ωD(E) is
not concentrated on the boundary ∂D. In fact, the α-harmonic measure on
the ball B(0, r) is explicitly given by

ωxB(0,r)(E) = A
�

E

(
r2 − |x|2

|y|2 − r2

)α/2 dy

|x− y|n
for x ∈ B(0, r)

with A = A(α, n) (see e.g. [6, p. 265] or [4, (2.6)]). In particular, if ρ ≥ 2r,
then

ωB(0,r)(B(0, ρ)c) ≤ A
�

|y|≥ρ

(
r2

|y|2 − (|y|/2)2

)α/2 dy

(|y| − |y|/2)n

≤ A1

(
r

ρ

)α
on B(0, r)
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with A1 = A1(α, n) > 1. By translation we have

(2.1) ωB(x,r)(B(x, ρ)c) ≤ A1

(
r

ρ

)α
on B(x, r).

For E ⊂ D we define DRE
1 (x) by

inf{u(x) : u ≥ 0 in Rn, u is α-superharmonic in D, u ≥ 1 on E},

and let DR̂E
1 be the lower semicontinuous regularization of DRE

1 . Observe
that if E is a compact set in D, then

(2.2) ωD\E(Dc) = 1− DR̂E
1 on D \ E.

We extend the α-harmonic measure to arbitrary sets E ⊂ D by the right
hand side of (2.2). We denote by GD(x, y) the α-Green function for D. We
have

DR̂E
1 (x) =

�
GD(x, y) dµ̃E(y),

where µ̃E is the capacitary measure for E in D (see [5]). Since GD(x, y) ≤
|x − y|α−n, it follows that U µ̃Eα ≥ GDµ̃E ≥ 1 on E outside a set of null
Cα-capacity. Hence

(2.3) Cα(E) ≤ ‖µ̃E‖

by Lemma 2.1. We have an estimate of α-harmonic measure in terms of
Cα-capacity.

Lemma 2.3. There exists a positive constant A2 = A2(α, n) < 1 with the
following property: if E ⊂ B(x, r) satisfies Cα(E) ≥ ηCα(B(x, r)), then

(2.4) ωB(x,2r)\E(B(x, 2r)c) ≤ 1−A2η on B(x, r).

Proof. It is easy to see that

GB(x,2r)(y, z) ≥ A|y − z|α−n for y, z ∈ B(x, r),

where 0 < A = A(α, n) < 1. Let µ̃E be the α-capacitary measure of E with
respect to B(x, 2r). Since supp µ̃E ⊂ B(x, r), it follows that if y ∈ B(x, r),
then
B(x,2r)R̂E

1 (y) = GB(x,2r)µ̃E(y) ≥ A
�
|y − z|α−n dµ̃E(z) ≥ A

�
(2r)α−n dµ̃E(z)

≥ A(2r)α−nCα(E) ≥ A(2r)α−nηCα(B(x, r)) = A2α−nA0η

by assumption and by (2.3) and Lemma 2.2. Hence (2.4) with A2 = A2α−nA0

follows from (2.2).

3. Decay estimate for α-capacitary potentials. The main aim of
this section is to prove Theorem 1.5. The following lemma provides a sub-
stantial estimate.
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Lemma 3.1. Let A1 and A2 be as in (2.1) and Lemma 2.3, respectively.
Let 0 < η < 1 and take τ such that 1 − A2η < τ < 1. Choose M > 4 such
that

(3.1) 1−A2η +
2α+1A1

τMα
≤ τ and τMα ≥ 2.

Let F be a compact set and let ξ ∈ F . Let ρ > 0 and let k be a positive
integer. If

(3.2)
Cα(F ∩B(ξ, r))

Cα(B(ξ, r))
≥ η for ρ ≤ r ≤Mkρ,

then

(3.3) 1− UFα ≤ τk on B(ξ, ρ).

Proof. We prove the lemma by induction on k. Observe that

(3.4) 1− UFα (x) ≤
�

B(ξ,2ρ)c

(1− UFα (y))ωxB(ξ,2ρ)\F (dy) for x ∈ B(ξ, 2ρ).

First, let k = 1. DecomposeB(ξ, 2ρ)c intoB(ξ,Mρ)\B(ξ, 2ρ) andB(ξ,Mρ)c.
Then (3.4) gives

1− UFα (x) ≤ ωxB(ξ,2ρ)\F (B(ξ,Mρ) \B(ξ, 2ρ)) + ωxB(ξ,2ρ)\F (B(ξ,Mρ)c)

≤ ωxB(ξ,2ρ)\F (B(ξ, 2ρ)c) + ωxB(ξ,2ρ)(B(ξ,Mρ)c)

≤ 1−A2η +A1

( 2

M

)α
< τ

by Lemma 2.3 and (2.1), and by (3.1). Thus (3.3) with k = 1 holds.

Second, let k ≥ 2 and suppose the lemma holds up to k−1. For simplicity
we let aj = supB(ξ,Mjρ)(1− UFα ) for 0 ≤ j ≤ k. By induction hypothesis we

have aj ≤ τk−j for 1 ≤ j ≤ k. (Apply the lemma with M jρ in place of ρ.)
We have to show that a0 ≤ τk. Decompose B(ξ, 2ρ)c into

[B(ξ,Mρ) \B(ξ, 2ρ)] ∪
k⋃
j=2

[B(ξ,M jρ) \B(ξ,M j−1ρ)] ∪B(ξ,Mkρ)c.

We see from (3.4) that if x ∈ B(ξ, ρ), then 1− UFα (x) is bounded by

a1ω
x
B(ξ,2ρ)\F (B(ξ,Mρ) \B(ξ, 2ρ)) +

k∑
j=2

ajω
x
B(ξ,2ρ)(B(ξ,M jρ)\B(ξ,M j−1ρ))

+ ωxB(ξ,2ρ)(B(ξ,Mkρ)c).

Use the induction hypothesis and take the supremum over x ∈ B(ξ, ρ). By
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Lemma 2.3, (2.1) and (3.1) we obtain

a0 ≤ τk−1(1−A2η) +
k∑
j=2

τk−jA1

(
2

M j−1

)α
+A1

(
2

Mk

)α

= τk−1
{

1−A2η + 2αA1

k∑
j=2

(τMα)1−j + 2αA1τ(τMα)−k
}

≤ τk−1
{

1−A2η + 2αA1
2

τMα

}
≤ τk,

which completes the induction.

Proof of Theorem 1.5. Let M > 4 be as in Lemma 3.1. Let x ∈ D.
Without loss of generality we may assume that 0 < δD(x) < M−1r0. Let
k be the positive integer such that M−k−1r0 ≤ δD(x) < M−kr0. We find
a point ξ ∈ ∂D such that |x − ξ| < M−kr0, i.e., x ∈ B(ξ,M−kr0). Invoke
Lemma 3.1 with ρ = M−kr0. We have

1− UFα (x) ≤ τk =

(
1

M

)−(log τ/logM)k

≤
(
M

r0
δD(x)

)− log τ/logM

,

since M−k−1r0 ≤ δD(x). Hence we have the required estimate with β =
− log τ/logM .

Theorem 1.5 gives the following decay estimate of more familiar form.

Corollary 3.2. Let D be a bounded open set and let K be a compact
subset of D. If Dc satisfies the capacity density condition with 0 < η < 1
and r0 > 0, then

DR̂K
1 (x) ≤ AδD(x)β for x ∈ D

with β = β(η, α, n) > 0 and A = A(η, r0,K,D, α, n) > 0.

Proof. Take an open ball B containing D and set F = B \D. Observe

that 0 < c = infK(1−UFα ) ≤ 1. Define a nonnegative function u by u = DR̂K
1

on D and u = 0 on Rn \ D. Since u is regular α-harmonic in D \ K, and
u ≤ (1− UFα )/c on Rn \ (D \K), it follows that u ≤ (1− UFα )/c in D \K.
Hence Theorem 1.5 gives the required estimate.

4. Approximation of α-capacity. In this section we give a uniform ap-
proximation of α-capacity from the inside. The decay estimate (Lemma 3.1)
in the previous section plays an important role. Let us begin with an ap-
proximation from the outside. For ε > 0 the closed ε-neighborhood of K is
denoted by

K[ε] = {x ∈ Rn : dist(x,K) ≤ ε}.
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Let us estimate Cα(K[ε]) in case K is the closure of a bounded open set D
satisfying a condition slightly weaker than the interior corkscrew condition.

Lemma 4.1. Let D be a bounded open set. Suppose there exist κ > 0 and
0 < r1 < r2/2 such that

(4.1) ξ ∈ ∂D and r1 ≤ r ≤ r2
⇒ D ∩B(ξ, r) contains a ball of radius κr.

Then there exist positive constants β = β(κ, α, n), A3 = A3(κ, α, n) and
A4 = A4(κ, α, n) such that

Cα(K[2r1])

Cα(K)
≤ 1

1−A3(2r1/r2)β
with K = D,

provided 2r1/r2 ≤ A4. In particular, if D satisfies the interior corkscrew
condition, then, for each b > 1, there exists ε = ε(b, κ, ρ0, α, n) > 0 such
that

Cα(K[ε])

Cα(K)
≤ b.

Proof. Let K = D. First we claim that (4.1) implies

(4.2) ξ ∈ K and 2r1 ≤ r ≤ r2
⇒ D ∩B(ξ, r) contains a ball of radius κr/2.

We need to show the claim only for ξ ∈ D. In this case we find ξ∗ ∈ ∂D
such that |ξ − ξ∗| = δD(ξ). If 0 < r ≤ 2δD(ξ), then D ∩B(ξ, r) ⊃ B(ξ, r/2);
if r ≥ 2δD(ξ), then D ∩ B(ξ, r) ⊃ D ∩ B(ξ∗, r/2), which contains a ball of
radius κr/2 by (4.1). Thus the claim is proved.

In view of (4.2) and Lemma 2.2, we find 0 < η = η(κ, α, n) < 1 such
that

Cα(K ∩B(ξ, r))

Cα(B(ξ, r))
≥ η for 2r1 ≤ r ≤ r2

whenever ξ ∈ K. Let 0 < τ < 1 and M > 4 be as in Lemma 3.1 and let β =
− log τ/logM > 0. Let k be the integer such that 2r1M

k ≤ r2 < 2r1M
k+1.

Observe that τk+1 < (2r1/r2)
β ≤ τk. If 2r1/r2 ≤ M−1, then k ≥ 1, so that

Lemma 3.1 yields

1− UKα ≤ τk < τ−1(2r1/r2)
β on B(ξ, 2r1).

Since ξ ∈ K is arbitrary, the same inequality holds on K[2r1]. Hence Lemma
2.1 gives the required estimate with A3 = τ−1 and A4 = M−1.

For a bounded open set D and ε > 0 we write Dε = {x ∈ D : δD(x) > ε}.
We know the following geometric properties of Dε.

Lemma 4.2 ([3, Lemma 5.3]). Suppose a bounded open set D satisfies the
interior corkscrew condition with 0 < κ < 1 and r0 > 0. If 0 < ε < κr0/2,
then
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(i) D ⊂ {y : dist(y,Dε) ≤ (1 + 2/κ)ε};
(ii) if ξ ∈ ∂Dε and 2ε/κ ≤ r ≤ r0, then B(ξ, r) ∩Dε contains a ball of

radius 1
2κ(1− κ)r.

By translation and dilation and by Lemma 4.2 we have the following
approximation of α-capacity from the inside as a corollary to Lemma 4.1.

Theorem 4.3. Suppose a bounded open set Ω satisfies the interior cork-
screw condition with 0 < κ < 1 and r0 > 0. Then there exist positive
constants β = β(κ, α, n), A3 = A3(κ, α, n) and A4 = A4(κ, α, n) such that
if 0 < ε ≤ A4κr0/4, then

Cα(Ω(x, ρ))

Cα(Ωε(x, ρ))
≤ 1

1−A3[4ε/(κr0)]β
uniformly for x ∈ Rn and ρ > 0.

Proof. Let x ∈ Rn and ρ > 0. By translation and dilation and by Lemma
4.2 we have

(i) Ω(x, ρ) ⊂ {y : dist(y,Ωε(x, ρ)) ≤ (1 + 2/κ)ερ};
(ii) if ξ ∈ ∂Ωε(x, ρ) and 2ερ/κ ≤ r ≤ r0ρ, then Ωε(x, ρ)∩B(ξ, r) contains

a ball of radius 1
2κ(1− κ)r.

Let β, A3 and A4 be as in Lemma 4.1 with 1
2κ(1− κ) in place of κ. Let us

apply Lemma 4.1 to D = Ωε(x, ρ). Since (1 + 2/κ)ερ ≤ 4ερ/κ, it follows
from (i) that Ω(x, ρ) ⊂ D[4ερ/κ], so that from (ii),

Cα(Ω(x, ρ))

Cα(Ωε(x, ρ))
≤ Cα(D[4ερ/κ])

Cα(D)
≤ 1

1−A3[(4ερ/κ)/(r0ρ)]β

=
1

1−A3[4ε/(κr0)]β
,

provided 4ε/(κr0) ≤ A4.

5. Proof of Theorem 1.3. The following lemma is a crucial step of
the proof of Theorem 1.3.

Lemma 5.1. Let A1 > 1 and 0 < A2 < 1 be as in (2.1) and Lemma 2.3,
respectively. Suppose E ⊂ Rn satisfies

(5.1)
Cα(E ∩B(x,R))

Cα(B(x,R))
≥ η for every x ∈ Rn

with R > 0 and 0 < η < 1. If M > 4 and

(5.2) A1

(
2

M

)α
≤ 1 and 1−A2η +M−α < 1,

then, for every open set D and k ≥ 1,

1− UE∩Dα ≤ (1−A2η +M−α)k−1 on Dk
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whenever Dk = {x ∈ D : δD(x) ≥ (M+· · ·+Mk)R} is nonempty. Moreover,
if Cα(Dk) > 0, then

Cα(E ∩D)

Cα(Dk)
≥ 1− (1−A2η +M−α)k−1.

Proof. For simplicity we let F = E ∩ D and bk = supDk(1 − UFα ). By
definition 0 ≤ bk ≤ 1. So, there is nothing to prove for k = 1. Let k ≥ 2 and
x ∈ Dk. Observe that

1− UFα ≤
�

B(x,2R)c

(1− UFα (y))ωB(x,2R)\F (dy) on B(x, 2R).

We estimate the right hand side by decomposing B(x, 2R)c. Since B(x, 2R)
⊂ B(x,MkR) ⊂ Dk−1, it follows from (2.4) and (2.1) with r = 2R and
ρ = MkR that 1− UFα (x) is bounded by

bk−1ω
x
B(x,2R)\F (B(x,MkR) \B(x, 2R)) + ωxB(x,2R)\F (B(x,MkR)c)

≤ bk−1ωxB(x,2R)\F (B(x, 2R)c) + ωxB(x,2R)(B(x,MkR)c)

≤ bk−1(1−A2η) +A1

(
2

Mk

)α
.

Since x ∈ Dk is arbitrary, we have

bk ≤ bk−1(1−A2η) +A1

(
2

Mk

)α
.

Let us consider the sequence {ck} defined by c1 = 1 and

ck = ck−1(1−A2η) +A1

(
2

Mk

)α
for k ≥ 2.

Obviously bk ≤ ck. By the above identity with k − 1 in place of k, we have

ck−1 ≥ A1

(
2

Mk−1

)α
= A1

(
2

Mk

)α
·Mα

for k ≥ 3. The same inequality holds for k = 2 by (5.2), so that

ck ≤ ck−1(1−A2η) +M−αck−1 = (1−A2η +M−α)ck−1 for k ≥ 2.

Hence bk ≤ ck ≤ (1 − A2η + M−α)k−1, which gives the first assertion. The
second assertion readily follows from Lemma 2.1.

Proof of Theorem 1.3. It is sufficient to show that if DΩ(Cα, E, r) > 0
for some r > 0, then limr→∞DΩ(Cα, E, r) = 1. We find z ∈ Ω and 0 <
R1 < R2 such that B(z,R1) ⊂ Ω ⊂ B(z,R2). Observe that B(x+rz,R1r) ⊂
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Ω(x, r) ⊂ B(x+ rz,R2r), so that

Cα(E ∩Ω(x, r))

Cα(Ω(x, r))
≤ Cα(E ∩B(x+ rz,R2r))

Cα(B(x+ rz,R1r))

=

(
R2

R1

)n−αCα(E ∩B(x+ rz,R2r))

Cα(B(x+ rz,R2r))
.

Hence DΩ(Cα, E, r) > 0 implies (5.1) with some 0 < η < 1 and R =
R2r > 0.

Let 0 < c < 1. In view of Theorem 4.3, we find ε > 0 so small that

(5.3)
Cα(Ω(x, ρ))

Cα(Ωε(x, ρ))
≤ 1√

c
for every x ∈ Rn and ρ > 0.

Let M > 4 satisfy (5.2) and let k be so large that

1− (1−A2η +M−α)k−1 ≥
√
c.

Observe that dist(Ωε(x, ρ), ∂Ω(x, ρ)) = ρdist(Ωε, ∂Ω) = ερ. If

ρ ≥ ε−1(M + · · ·+Mk)R,

then

Ωε(x, ρ) ⊂ {y ∈ Ω(x, ρ) : δΩ(x,ρ)(y) ≥ (M + · · ·+Mk)R},
so that Lemma 5.1 with D = Ω(x, ρ) yields

Cα(E ∩Ω(x, ρ))

Cα(Ωε(x, ρ))
≥ 1− (1−A2η +M−α)k−1 ≥

√
c.

This, together with (5.3), implies that if ρ ≥ ε−1(M + · · ·+Mk)R, then

Cα(E ∩Ω(x, ρ))

Cα(Ω(x, ρ))
≥ c for every x ∈ Rn,

so that DΩ(Cα, E, ρ) ≥ c. Since 0 < c < 1 is arbitrary, we have

lim
r→∞

DΩ(Cα, E, r) = 1,

as required.
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