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On the diametral dimension
of weighted spaces of analytic germs

by

Michael Langenbruch (Oldenburg)

Abstract. We prove precise estimates for the diametral dimension of certain weighted
spaces of germs of holomorphic functions defined on strips near R. This implies a full
isomorphic classification for these spaces including the Gelfand–Shilov spaces S1

α and Sα1
for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of
modified Fourier hyperfunctions are not isomorphic.

1. Introduction. The isomorphic classification of linear topological
spaces of analysis is a classical problem which has been studied inten-
sively for spaces of analytic functions, (ultra)differentiable functions and
(ultra)distributions and for solution spaces of partial differential equations
(see e.g. [8–18, 20, 21, 23, 24] and the references cited there).

In the present paper we will study this problem for certain weighted
spaces Hv(R) of analytic germs defined by

Hv(R) :=
{
f
∣∣∣ ∃n ∈ N : f ∈ H(V1/n) and sup

z∈V1/n
|f(z)|ev(z)/n <∞

}
.

Here V1/n denotes the strip {z ∈ C | |Im z| < 1/n} near R and v is a weight
function satisfying some mild natural conditions (see Definition 2.1). We have
shown in [17] that the space Hv(R) has a basis and in this way is isomorphic
to some Λ0(αn)

′
b, i.e. to the strong dual of some power series space of finite

type. The results from [17] needed here are collected in Section 2.
In the present paper we will calculate the coefficient space Λ0(αn)

′ for
this basis. We thus obtain an isomorphism to a concrete sequence space
and a precise isomorphic classification for the spaces Hv(R). Notice that the
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test function spaces for the Fourier hyperfunctions and also certain Gelfand–
Shilov spaces are of this type (see the examples below).

In fact we can prove that

(αn)n∈N is equivalent to (n/g(n))n∈N

where g is the inverse function of f(t) := tv(t) (see Theorem 4.6). The
function g can be easily calculated in many situations (see Section 5 for
some instructive examples).

The main tools used in the present paper are the diametral dimension
introduced by Bessaga, Pełczyński and Rolewicz [1] (see Section 3) and a
modified diametral dimension introduced in [14] (see Section 4). The crucial
analytical results are obtained in Theorems 4.2 and 4.4. Specifically, we prove
the surprising result that the auxiliary weighted space

H∞v (R) :=
{
f
∣∣∣ ∃n ∈ N : f ∈ H(V1/n) and sup

z∈V1/n
|f(z)|e−nv(nx) <∞

}
of holomorphic germs near R contains the weighted space of holomorphic
functions on the unit disc D,

H∞v (D) :=
{
f ∈ H(D)

∣∣∣ ∃n ∈ N : sup
z∈D
|f(z)|e−nv(

n
1−|z| ) <∞

}
,

as a closed subspace.
Our results also imply that the spaces Hv(R) are always stable in the

sense that Hv(R)×Hv(R) is isomorphic to Hv(R).
Our calculations (together with the results from [17]) show that the

Gelfand–Shilov spaces S1
α and Sα1 (see [4]) are isomorphic to Λ0(n

1/(α+1))′b
for α > 0. Hence these spaces are pairwise non-isomorphic for different α.

The special case α = 1 shows that the space of test functions for the
Fourier hyperfunctions (see [6] and Section 5) is isomorphic to Λ0(n

1/2)′b
(see [16] for a different proof via Hermite functions). Fourier hyperfunctions
and modified Fourier hyperfunctions (see [7, 22]) are a modern very gen-
eral frame for Fourier transformation. Since these spaces are a flabby sheaf,
this allows one to use Fourier methods for general distributions and hyper-
functions without imposing any growth conditions. We prove here that the
space of test functions for the modified Fourier hyperfunctions (see [7, 22]
and Section 5) is isomorphic to Λ0(n/ln(n))

′
b. Though the spaces of Fourier

hyperfunctions and of modified Fourier hyperfunctions are very similar by
definition, we thus show that surprisingly, they are not isomorphic, on the
contrary, the space of modified Fourier hyperfunctions is minimal in the
class of spaces considered here in the sense that it is isomorphic to a closed
subspace of any of the spaces Hv(R)′b considered in this paper.
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2. Weighted holomorphic germs. In this section we introduce the
basic notions and recall the results from [17] that we need.

In this paper v always denotes a weight function in the following sense:

Definition 2.1. A continuous function v : C→ [0,∞[ is called a weight
function if v(x + iy) := ṽ(|x|) on C where ṽ : [0,∞[ → [0,∞[ is strictly
increasing and satisfies

(2.1) ln(1 + |x|) = o(ṽ(x))

and there are Γ > 1 and C > 0 such that

(2.2) ṽ(x+ 1) ≤ Γ ṽ(x) + C for x ≥ 0.

Without loss of generality we will always assume that v(0) = 0, i.e. v is
bijective on [0,∞[.

The spaces of holomorphic germs considered in this paper are inductive
limits of the weighted Banach spaces

Hτ (Vt) :=
{
f ∈ H(Vt)

∣∣∣ ‖f‖τ,t := sup
z∈Vt
|f(z)|eτv(z) <∞

}
of holomorphic functions on the strips

Vt := {z ∈ C | |Im z| < t}
where t > 0 and τ ∈ R.

The following quantitative decomposition theorem has been proved in [17,
Theorem 2.2]. It will be a major tool in Section 4 (see Theorem 4.2).

Decomposition Theorem 2.2. There are t̃, K1,K2 > 0 such that for
any τ0 < τ < τ2 there are C0 = C0(sign(τ0)) > 0 and K0 = K0(sign(τ)) > 0
such that for any 0 < 2t0 < t < t2 < t̃ with

t0 ≤ min

[
K1,K2

√
τ − C0τ0
τ2 − C0τ0

]
there is C1 ≥ 1 such that for any r ≥ 0 and any f ∈ Hτ (Vt) with ‖f‖τ,t ≤ 1
the following holds: There are f2 ∈ H(Vt2) and f0 ∈ H(Vt0) such that f =
f0 + f2 on Vt0 and

(2.3) ‖f0‖K0τ0,t0 ≤ C1e
−Gr and ‖f2‖τ2,t2 ≤ er

where
G := K1min

[
1,
t− t0
2t̃

,
τ − C0τ0
τ2 − C0τ0

]
.

We are mainly interested in the weighted spaces Hv(R) of holomorphic
germs defined by

Hv(R) := ind
n→∞

H1/n(V1/n).

Recall that the dual of a power series space of finite type is defined as
follows: For M ⊂ Zj let (ak)k∈M be a set of positive numbers such that
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ak →∞ as |k| → ∞ in M . Then

Λ0((ak)k∈M )′b :=
{
(ck)k∈M

∣∣∣ ∃j ∈ N : |(ck)|j :=
∑
k∈M
|ck|eak/j <∞

}
.

If M = N and α = (αn)n∈N is a sequence we also write Λ0(α)
′
b or Λ0(αn)

′
b

instead. The following is the main result of [17] (see [17, Theorem 4.4]):

Theorem 2.3. Hv(R) is (tamely) isomorphic to some Λ0(αn)
′
b.

Notice that by [5, 21.5.1 and 21.5.3] the spaces Hv(R) (and therefore
also Λ0(αn)) are nuclear by our definition of weight functions (use (2.1)) and
therefore

(2.4) ln(n) = o(αn)

by [19, Theorem 29.6].
Since the notion of tameness is not needed in the present paper, we omit

the corresponding definitions. The interested reader is referred to [17].

3. The diametral dimension. We know by Theorem 2.3 that the
Fréchet space Hv(R)′b is isomorphic to a power series space Λ0(α). In this
section we will estimate the sequence α = (αn)n∈N from below using the
diametral dimension (see Theorem 3.2). For the convenience of the reader
we recall this classical notion (see [5, p. 209]): Let E be a vector space
and let V ⊂ U ⊂ E be circled subsets. Let Dn(E) be the set of at most
n-dimensional subspaces of E and let

δn(V,U) := inf{δ > 0 | ∃L ∈ Dn(E) : V ⊂ δU + L}

be the nth diameter of V with respect to U . For a topological vector space
E with a basis U of absolutely convex zero neighborhoods the diametral
dimension is the set

∆(E) := {(cn)n∈N | ∀U ∈ U ∃V ∈ U , V ⊂ U : cnδn(V,U)→ 0}.

We need the following basic facts (see [5, 10.6.8 and 10.6.10]):

Proposition 3.1.

(a) Let E be a nuclear Fréchet space and let E1 be isomorphic to a quo-
tient of E. Then

∆(E) ⊂ ∆(E1).

(b) ∆(Λ0(α)) = Λ0(α) if ln(n) = o(αn).

Let g be the inverse function of f(t) := tv(t), which exists since v is
bijective on [0,∞[ by our general assumption. Then

(3.1) v(g(t)) = t/g(t) = (τv−1(τ))−1(t) for t ≥ 0.
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Indeed, the first equality holds since g(t)v(g(t)) = t by the definition of g,
and the second equality follows from

t

g(t)
v−1
(

t

g(t)

)
=

t

g(t)
v−1(v(g(t))) = t.

Notice that the function t/g(t) is increasing and unbounded on [0,∞[ by
(3.1).

Theorem 3.2.
(a) (Λ0((k + v(j))(k,j)∈N0×Z))

′
b contains Hv(R) as a closed subspace.

(b) There is C > 0 such that n/g(n) ≤ Cαn for large n.

Proof. (a) Let Kn := {x+ z | x ∈ [−1, 1], |z| < 1/n} and
BH(Kn) := {f ∈ H(Kn) | f is bounded on Kn}

endowed with the sup-norm ||| |||n on Kn. Then there is C > 0 such that
H1/n(V1/n) is continuously embedded in

ECn :=
{
(fj) ∈ BH(Kn)

Z
∣∣∣ sup
j∈Z
|||fj |||Cnev(j)/(Cn) <∞

}
for any n ∈ N via the mapping

J(f) := (fj)j∈Z := (f |j+KCn)j∈Z
(use (2.2)). Hence

J : Hv(R) = ind
n→∞

H1/n(V1/n)→ E := ind
n→∞

En

is continuous. If J(M) is bounded in E then J(M) is contained and bounded
in En for some n since the spectrum {En | n ∈ N} is compact. As above, we
conclude that M is contained and bounded in H1/(Cn)(V1/(Cn)) for some C
independent of n, hence M is bounded in Hv(R). Since also the spectrum
{H1/n(V1/n) | n ∈ N} is compact, the Baernstein Lemma [19, 26.26] shows
that Hv(R) is (topologically isomorphic via J to) a closed subspace of E.
Since it is well known that H([−1, 1]) = indn→∞ BH(Kn) is isomorphic to
Λ0(k)

′
b = indn→∞{(ck) |

∑
k∈N0

|ck|ek/n <∞} (see e.g. [2, Example 4.1(3)]),
this implies (a).

(b) (i) We will need an estimate from below for the increasing rearrange-
ment (βn)n∈N of (k + v(j))(k,j)∈N0×Z. Notice that

(3.2) h(t) := ]{(k, j) ∈ N0 × Z | k + v(|j|) ≤ t} ≥ n if βn = t.

We first estimate h(t) from above. Let [ ] denote the Gauss bracket. Then

h(t) =
∑

|j|≤[v−1(t)]

]{k ∈ N0 | k ≤ [t− v(|j|)]} =
∑

|j|≤[v−1(t)]

([t− v(|j|)] + 1)

≤
∑

|j|≤[v−1(t)]

(t+ 1) ≤ (2v−1(t) + 1)(t+ 1) ≤ 3tv−1(t) for large t,
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that is,

(3.3) n ≤ 3βnv
−1(βn) for large n.

Since g is increasing, applying the inverse function in (3.3) we get

(3.4)
n

3g(n)
≤ n/3

g(n/3)
= (3τv−1(τ))−1(n) ≤ βn for large n

by (3.1) and (3.3).
(ii) By (a),Hv(R)′b is isomorphic to a quotient of Λ0(βn). Hence, Theorem

2.3 and Proposition 3.1 imply that

Λ0(βn) = ∆(Λ0(βn)) ⊂ ∆(Λ0(αn)) = Λ0(αn).

Notice that ln(n) = o(αn) by (2.4) and ln(n) = o(βn). The latter is seen
as follows. By (2.1) we have ln(t) ≤ εv(t) for large t; taking inverses we get
v−1(t) ≤ eεt, hence 3tv−1(t) ≤ e2εt for large t. Taking inverses again yields
the claim by (3.4).

The inclusion Λ0(βn) ↪→ Λ0(αn) is continuous by the closed graph theo-
rem, hence there is C > 0 such that

n/(3g(n)) ≤ βn ≤ Cαn for large n

by (3.4).

4. The generalized diametral dimension. To obtain an upper esti-
mate for the sequence (αn) from Theorem 2.3 we need a more sophisticated
variant of Proposition 3.1 based on the results of [14] relating the calculation
of a generalized diametral dimension to a (DN)-type property for a pair of
locally convex spaces which was introduced in [14, (1.1)] as follows:

Let X and X̃ be locally convex spaces with bases U , Ũ of absolutely
convex closed 0-neighborhoods and corresponding seminorms pU and p

Ũ
for

U ∈ U and Ũ ∈ Ũ , respectively. Let d : X → X̃ be linear and continuous.
Then the triple (d,X, X̃) has property (DN) if there is Ũ ∈ Ũ such that for
any U ∈ U there are V ∈ U , 0 < λ < 1 and C > 0 such that

(4.1) pU (x) ≤ CpŨ (d(x))
λpV (x)

1−λ for any x ∈ X.

Switching to polars we see that property (DN) for (d,X, X̃) is equivalent to
a decomposition with bounds in X ′ as follows (see [14, (1.2)]): (d,X, X̃) has
property (DN) if and only if there is Ũ ∈ Ũ such that for any U ∈ U there
are V ∈ U and δ, C > 0 such that for any ξ > 0,

(4.2) U0 ⊂ ξ td(Ũ0) + C(1/ξ)δV 0

where ( )0 denotes the polars in the respective dual spaces.
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Using property (DN) we can estimate the following generalized diametral
dimension introduced in [14, 1.2]:

∆̃(E) := {(cn) | ∀U ∈ U ∃V ∈ U , V ⊂ U ∃C > 0 : cnδn(V,U)C → 0}.

Notice that

(4.3) ∆̃(Λ∞(β)) = Λ∞(β)′

if ln(n) = o(βn) (cf. [5, pp. 211–212]).
The following result from [14] is a refined substitute for Proposition 3.1

(see [14, Lemma 1.3b)] with d1 := d, d2 := id and Y := X̃):

Proposition 4.1. Let X and X̃ be nuclear locally convex spaces such
that (d,X, X̃) has property (DN). Then

∆(X̃) ⊂ ∆̃(X).

The above setting will be used for

X̃ := Hv(R)′b and X := H∞v (R)′b
where H∞v (R) is an auxiliary weighted space of holomorphic germs given by

H∞v (R) := ind
n→∞

Hn

with
Hn :=

{
f ∈ H(V1/n)

∣∣∣ |f |n := sup
z∈V1/n

|f(z)|e−nv(nz) <∞
}
,

which is much easier to handle than Hv(R).

Theorem 4.2. Let d : H∞v (R)′b → Hv(R)′b be the transpose of the natural
inclusion Hv(R) ↪→ H∞v (R). Then (d,H∞v (R)′b,Hv(R)′b) has (DN).

Proof. Since the spaces involved are reflexive, td : Hv(R) → H∞v (R) is
the identity map. We therefore have to prove the following by (4.2): There
is γ > 0 such that for any n ∈ N there are k ∈ N and Cj , δ > 0 such that for
any f ∈ Hn with |f |n ≤ 1 and any r > 0 there are f0 ∈ Hk and f2 ∈ Hγ(Vγ)
such that f = f0 + f2 near R and

(4.4) |f0|k ≤ C1e
−δr and ‖f2‖vγ,γ ≤ C2e

r.

This is proved by applying the Decomposition Theorem 2.2 twice:
(a) Given f ∈ Hn with |f |n ≤ 1 we set F (z) := f(4z/(t̃n)) where t̃ is

taken from Theorem 2.2 for the weight v. Then ‖F‖w−1,t̃/4 ≤ 1 for the weight
function w(z) := nv(z) (instead of v). Since the constants t̃ for the weights v
and w coincide (see the calculation of t̃ in the proofs of [17, Theorem 2.2 and
Lemma 2.4]) we can apply Theorem 2.2 (for the weight w and for t2 = t̃/2,
t = t̃/4, t0 = 1/j and τ = −1, τ0 = −j, τ2 = 1 for sufficiently large j fixed
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according to the general estimates needed in Theorem 2.2). We thus get F`
such that F = F0 + F2 near R and

‖F0‖w−K0j,1/j
≤ C1e

−Gr and ‖F2‖w1,t̃/2 ≤ e
r.

We set f̃`(z) := F`(nt̃z/4) and notice that f = f̃0 + f̃2 near R, and for large
n and k ≥ jnmax{K0, t̃},

|f̃0|k ≤ sup
z∈V4/(jnt̃)

|f̃0(z)|e−K0jnv(Re(nt̃z/4)) = ‖F0‖w−K0j,1/j
≤ C1e

−Gr

and

(4.5) ‖f̃2‖v1,1/n ≤ sup
z∈V2/n

|f̃2(z)|env(Re(nt̃z/4) = ‖F2‖w1,t̃/2 ≤ e
r.

(b) Since the domain of f̃2 is too small and depends on n, we apply
Theorem 2.2 a second time, now for the weight v and the following choices.
We take f := f̃2e

−r and notice that ‖f‖v1,1/n ≤ 1 by (4.5). Set τ := 1,
τ2 := 2 and t := 1/n, t2 := t̃/2. For large n we can then choose t0, τ0 > 0
sufficiently small to satisfy the general estimates in Theorem 2.2, so that we
get holomorphic functions f̃2,l, l = 0, 2, such that f̃2e−r = f̃2,0 + f̃2,2 near R
and

‖f̃2,0‖vK0τ0,t0 ≤ C1e
−2r and ‖f̃2,2‖vt̃/2,t̃/2 ≤ C1e

2r/G

since without loss of generality t̃/2 ≤ τ2 = 2. Notice that we have applied
Theorem 2.2 for 2r/G instead of r. We now set f2,l := f̃2,le

r and get f̃2 =
f2,0 + f2,2 near R and also (if k ≥ 1/t0)

|f2,0|k ≤ ‖f2,0‖vK0τ0,t0 ≤ C1e
−r and ‖f2,2‖vt̃/2,t̃/2 ≤ C1e

(1+2/G)r.

The final decomposition of f is then given by f0 := f̃0 + f2,0 and f2 := f2,2,
and the theorem follows by rescaling r.

We now obtain an implicit estimate for (αn):

Corollary 4.3. Λ0(α) = ∆(Hv(R)′b) ⊂ ∆̃(H∞v (R)′b).

Proof. Apply Theorems 2.3 and 4.2, the estimate (2.4) and Propositions
3.1(b) and 4.1.

Similarly to [5, Proposition 10.6.8] we have

(4.6) ∆̃(E) ⊂ ∆̃(E1)

if E1 is isomorphic to a quotient of E.
To turn the estimate in Corollary 4.3 into an explicit one, we need a

topological subspace of H∞v (R) (and hence a quotient of H∞v (R)′b) whose
generalized diametral dimension can be calculated. Surprisingly, a suitable
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subspace is provided by the following weighted space of holomorphic func-
tions on the unit disc D:
H∞v (D) :=

{
f ∈ H(D)

∣∣∣ ∃n ∈ N : |||f |||n := sup
z∈D
|f(z)|e−nv(

n
1−|z| ) <∞

}
.

To prove this, we use a composition operator defined by an analytic spiral
(cf. [3, Proposition 5.3] where a similar idea was used to show that H(D) is
a closed subspace of the space A(R) of real analytic functions on R).

Theorem 4.4. H∞v (D) is topologically isomorphic to a closed subspace
of H∞v (R).

Proof. The embedding of H∞v (D) into H∞v (R) will be provided by the
composition operator

Tψ : H∞v (D)→ H∞v (R), f 7→ f ◦ ψ,
defined by the function

ψ(z) := (z2 + C)i/2
(
1 +
−1 +B sin

(
1
4 ln(z

2 + C)
)

(z2 + C)1/2

)
where C > 0 is large and fixed, B := (e2π − 1)/(e2π + 1) < 1 and

wd := exp(d ln(w)), d ∈ C,
with ln(w) := ln(|w|)+ id arg(w) for |arg(w)| < π. Then (z2+C)d is defined
for z ∈ V1 if C ≥ 2 since

(4.7) Re(z2+C) = x2−y2+C > x2+C−1 ≥ x2+1 for z = x+ iy ∈ V1.
(a) We first estimate |ψ(z)| for z = x + iy ∈ V1/C as follows. Let b :=

arg(z2 + C). Then

(4.8) |ψ(z)| ≤ e|b|/2
(
|1− (z2 + C)−1/2|+

B
∣∣sin(14 ln(z2 + C)

)∣∣
|z2 + C|1/2

)
.

Notice that

(4.9)
|b|
2
≤ |sin(b)| = 2|xy|

|z2 + C|
≤ 2

C|z2 + C|1/2
≤ 2

C
for z ∈ V1/C

by (4.7) if C ≥ 2. Set ε := (1−B)/4. Then

|1− (z2 + C)−1/2| =
∣∣1− |z2 + C|−1/2e−ib/2

∣∣(4.10)

= [1− 2 cos(b/2)|z2 + C|−1/2 + |z2 + C|−1]1/2

≤ [1− 2(1− ε)|z2 + C|−1/2]1/2

≤ 1− (1− ε)|z2 + C|−1/2 for z ∈ V1/C
provided C is so large that by (4.9),

cos(b/2) ≥ cos(2/C) ≥ 1− ε/2 and C ≥ 1 + 1/ε.
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Obviously,

|sin(ξ + iη)| = (sin2(ξ) + sinh2(η))1/2 ≤ (1 + sinh2(η))1/2(4.11)
= cosh(η) ≤ 1 + ε/B

if |η| is small. We apply this estimate to ξ+ iη := 1
4 ln(z

2+C) (i.e. η = b/4)
and combine it with (4.7)–(4.10). Set B1 := (1 − B)/2 = 1/(e2π + 1) (and
hence 1−B − 2ε = B1). Thus by Taylor’s theorem, for sufficiently large C,

|ψ(z)| ≤ e2|z2+C|−1/2
(1− (1−B − 2ε)|z2 + C|−1/2)(4.12)

≤
(
1 +

3

C
|z2 + C|−1/2

)
(1−B1|z2 + C|−1/2)

≤ 1−
(
B1 −

3

C

)
|z2 + C|−1/2

≤ 1− B1

2
|z2 + C|−1/2 for z ∈ V1/C .

Notice that ψ(z) ∈ D for z ∈ V1/C by (4.12). Also,

(4.13) |ψ(z)| ≤ 1− B1

4|x|
for z ∈ V1/C and |x| ≥ C + 1.

For n ∈ N we choose k ≥ n(1 + 4/B1) + C and get, by (4.13),

‖Tψ(f)‖k = sup
z∈V1/k

|f(ψ(z))|e−kv(kx)

≤ sup
w∈D
|f(w)|e−nv(n/(1−|w|)) sup

z∈V1/k
env(n/(1−|ψ(z)|))−kv(kx)

≤ C1|||f |||n sup
x∈R

env(4nx/B1)−kv(kx) ≤ C1|||f |||n.

Tψ is thus defined and continuous; it is injective by the identity theorem for
analytic functions.

(b) We now show that the range of Tψ is closed in H∞v (R) (and explain
the special choice of B). We define xk > 0 for k ∈ N by ln(x2k + C) = 2πk
and notice that

ψ(xk) = (−1)k[1 + e−πk(−1 +B sin(πk/2))]

and hence

ψ(x4k+1) = −1 + e−(4k+1)π(1−B)(4.14)

= −1 + e−(4k+3)π(B + 1) = ψ(x4k+3)

since B = (e2π − 1)/(e2π + 1) by definition. For x ∈ [x4k+1, x4k+3] we have

(4.15) |ψ(x)| ≥ 1− e−(4k+1)π(B + 1) = 1− e−4kπ/cosh(π).
Let 1− e−4kπ/cosh(π) ≥ |z| ≥ 1− e−4π(k−1)/cosh(π). Then

x4k+3 ≤ C2e
4π(k−1) ≤ C3/(1− |z|),
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and by the maximum principle and also (4.14) and (4.15) we get

|f(z)| ≤ sup
x∈[x4k+1,x4k+3]

|f(ψ(x))|

≤ env(nx4k+3) sup
x∈[x4k+1,x4k+3]

|f(ψ(x))|e−nv(nx)

≤ eC3nv(C3n/(1−|z|))‖Tψ(f)‖n.
Hence range(Tψ) is closed in H∞v (R) and thus a (DFS)-space. So Tψ is open
by the open mapping theorem. The theorem is proved.

Proposition 4.5. H∞v (D) is isomorphic to Λ∞(n/g(n))′b where g is the
inverse function of f(t) := tv(t).

Proof. (a) For f ∈ H∞v (D) with |||f |||n ≤ 1, by Cauchy’s estimate for
|z| := 1−R we get

|f (j)(0)|
j!

≤ inf
1>R>0

env(n/R)

(1−R)j
≤ inf

1/2≥R>0
env(n/R)+2jR

≤ env(g(j/n))+2n2(j/n)/g(j/n) = e(n+2n2)v(g(j/n))

≤ e(n+2n2)v(g(j)) = e(n+2n2)(j/g(j)) for large j

where we have chosen 1/R := g(j/n)/n to show the first inequality in the
second line and used (3.1) several times.

(b) Conversely, if (cj) ∈ Λ∞(n/g(n))′ then for f(z) :=
∑∞

n=0 cjz
j , |z| =:

R < 1 and R′ := (1 +R)/2 we get

|f(z)| ≤
∞∑
n=0

enj/g(j)Rj ≤
∞∑
n=0

(R/R′)j sup
j∈N0

env(g(j))+j ln(R
′)

≤ 2

1−R
sup
j∈N0

env(g(j))−j(1−R
′) =

2

1−R
sup
j∈N0

env(g(j))−j(1−R)/2

since 1−R′ = (1−R)/2. We want to show that for large j,

(4.16) nv(g(j))− j(1−R)/2 ≤ 2nv(2n/(1−R)) for any 0 < R < 1.

Set t := 1 − R and l := g(j), i.e. j = g−1(l) = lv(l). So (4.16) is equivalent
to

(4.17) nv(l) ≤ 2nv(2n/t) + ltv(l)/2 for any 0 < t < 1

for large l. Now, (4.17) clearly holds if n ≤ lt/2. On the other hand, if
n ≥ lt/2 and hence l ≤ 2n/t, (4.17) is also trivial since then v(2n/t) ≥ v(l).
Summarizing, we have shown that

|f(z)| ≤ C4

1− |z|
e2nv(2n/(1−|z|)) ≤ C5e

3nv(3n/(1−|z|))

by (2.1).
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Finally, we can prove the main result of this paper:

Theorem 4.6. Hv(R) is (tamely) isomorphic to Λ0(n/g(n))
′
b where g(t)

is the inverse function of f(t) := tv(t).

Proof. By Theorems 2.3 and 3.2(b) we need to show that there is C > 0
such that

(4.18) αn ≤ Cn/g(n) for large n ∈ N.
By Corollary 4.3, (4.6), Theorem 4.4, Proposition 4.5 and (4.3) we have

Λ0(αn) ⊂ ∆̃(H∞v (R)′b) ⊂ ∆̃(H∞v (D)′b) = ∆̃(Λ∞(n/g(n))) = Λ∞(n/g(n))′.

The inclusion Λ0(αn) ↪→ Λ∞(n/g(n))′b is continuous by the closed graph
theorem. Grothendieck’s factorization theorem (see [19, 24.33]) implies that
Λ0(αn) is continuously embedded in a step space of Λ∞(n/g(n))′b. This shows
(4.18).

Corollary 4.7. Hv(R) is stable, i.e. Hv(R) ×Hv(R) is isomorphic to
Hv(R).

Proof. We have to prove by Theorem 4.6 that Λ0(n/g(n)) is stable. This
is obvious since βn := n/g(n) is increasing by (3.1) and

β2n/2 =
n

g(2n)
≤ n

g(n)
= βn

since g is increasing.

5. Examples. We will discuss several examples of weighted spaces satis-
fying the assumptions of this paper. Specifically, we will calculate the crucial
sequence (n/g(n)) up to equivalence.

We start with some canonical examples of weight functions (see [17, Sec-
tion 5] for the easy calculations).

Example 5.1. The following functions v are weight functions:

(i) v(x) := vα,β(x) := (ln(x))α(ln(ln(x)))β for x ≥ x0 where α > 1 and
β ∈ R or α = 1 and β > 0.

(ii) v(x) := evα,β(x) for x ≥ x0 where α > 0 and β ∈ R.
(iii) v(x) := vα,β(e

x) = xα(ln(x))β for x ≥ x0 where α > 0 and β ∈ R.
(iv) v(x) := eax

α(ln(x))β where a > 0 and 1 > α > 0 and β ∈ R or α = 1
and β ≤ 0.

Of course, products of weight functions from Example 5.1 are also weight
functions.

Two sequences (αn)n∈N and (βn)n∈N are said to be equivalent if there is
C > 1 such that

αn/C ≤ βn ≤ Cαn for large n.
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Notice that Λ0(αn) = Λ0(βn) if (αn)n∈N is equivalent to (βn)n∈N. Hence we
only need to calculate the sequence (n/g(n))n∈N from Theorem 4.6 up to
equivalence. We start with an easy observation:

Lemma 5.2.

(a) Let gv be the inverse function of f(t) := tv(t). Then

gv(t)gv−1(t) = t.

(b) Let v(x) := ew(ln(x)) where w ∈ C1([0,∞[) is positive, increasing and
unbounded.
(i) (n/g(n))n∈N is equivalent to (v(n))n∈N if there is C > 0 such

that

(5.1) w′(t)w(t) ≤ C for large t.

(ii) (n/g(n))n∈N is equivalent to (n/v−1(n))n∈N if there is C > 0
such that

(5.2) t ≤ Cw′(t) for large t.

Proof. (a) By (3.1) we have

t/gv(t) = (τv−1(τ))−1(t) = gv−1(t).

(b)(i) There is C1 ≥ 1 such that

v(t)/C1 ≤ t/g(t) = t/(tv(t))−1 ≤ C1v(t) for large t
⇔ v(τv(τ))/C1 ≤ v(τ) ≤ C1v(τv(τ)) for large τ
⇔ w(ξ + w(ξ)) ≤ lnC1 + w(ξ) for large ξ.

The latter estimate clearly holds since Taylor’s theorem yields, for some
η ∈ [0, w(ξ)],

w(ξ+w(ξ)) ≤ w(ξ)+w(ξ)w′(ξ+ η) ≤ w(ξ)+w(ξ+ η)w′(ξ+ η) ≤ w(ξ)+C

because w is positive and increasing and satisfies (5.1). This proves the claim.
(b)(ii) The function v−1 = exp ◦ w−1 ◦ ln satisfies (5.1) (for w−1 instead

of w) by (5.2). By a) we have n/gv(n) = n/(n/gv−1(n)), which is equivalent
to n/v−1(n) by (b)(i).

Example 5.3. (n/g(n))n∈N is equivalent to

(i) (v(n))n∈N if v(x) := vα,β(x) := (ln(x))α(ln(ln(x)))β for x ≥ x0
where α > 1 and β ∈ R or α = 1 and β > 0;

(ii) (v(n))n∈N if v(x) := evα,β(x) for x ≥ x0 where 1/2 > α > 0 and
β ∈ R or α = 1/2 and β ≤ 0;

(iii) (ne−(ln(n))
1/α

)n∈N if v(x) := e(ln(x))
α where α ≥ 2;

(iv) (nα/(α+1))n∈N if v(x) := xα where α > 0;
(v) (n(ln(n))−1/α)n∈N if v(x) := eax

α where 1 ≥ α > 0 and a > 0.
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Proof. (a) We apply Lemma 5.2(b)(i) for w(t) := α ln(t) + β ln(ln(t)) in
(i) and w(t) := tα(ln(t))β in (ii), respectively. (5.1) is easily shown for α and
β as specified.

(b) We apply Lemma 5.2(b)(ii) for w(t) := tα in (iii) and w(t) := aeαt

in (v). (5.2) is easily shown for α as specified. Calculating v−1 in each case
we get the desired formulas.

(c) We have f(t) = tv(t) = t1+α in (iv) and therefore g(t) = t1/(α+1) and
t/g(t) = t1−1/(α+1) = tα/(α+1).

To treat the weights v(x) := e(ln(x))
α for 1/2 < α < 1 we would have to

take into account more and more terms in the Taylor expansion of (ξ+ξβ)1/β .
The details are left to the reader.

The spaces S1
α of Gelfand–Shilov satisfy the assumptions of this paper.

Recall that Sβα is defined as follows (for α, β > 0, see [4, Chap. IV]):

Sβα := {f ∈ C∞(R) | ∃A,B > 0 ∀k, j ∈ N0 : |xkf (j)(x)| ≤ CAkkkαBjjjβ}.
We thus get:

Example 5.4.

(a) S1
α is (tamely) isomorphic to Λ0(n

1/(α+1))′b for α > 0.
(b) Sβ1 is (tamely) isomorphic to Λ0(n

1/(β+1))′b for β > 0.

Proof. (a) By [4, Chap. IV, Sect. 2], S1
α is (tamely) isomorphic to Hv(R)

for the weight v(x) := |x|1/α. The claim thus follows from Example 5.3(iv)
and Theorem 4.6.

(b) This follows from (a) since the Fourier transform is a tame isomor-
phism between Sβ1 and S1

β by [4, Chap. IV, Sect. 6.2, formula (11)].

In particular, we recover the result proved in [16], that the space P∗(R)′b
of Fourier hyperfunctions on R is (tamely) isomorphic to Λ0(n

1/2)′b. Indeed,
the space P∗(R) of test functions for Fourier hyperfunctions is by definition
(see [6])

P∗(R) :=
{
f
∣∣∣ ∃n ∈ N : f ∈ H(V1/n) and sup

z∈V1/n
|f(z)|e|Re z|/n <∞

}
,

that is, P∗(R) = S1
1 in the notation of Gelfand–Shilov. So this is the special

case α = 1 of Example 5.4(a).
The space P̃(R)′b of modified Fourier hyperfunctions is defined very sim-

ilarly (see [7, 22]). We just use the conical neighborhoods

W1/n := {z ∈ C | |Im z| < (1 + |Re z|)/n}

of R instead of V1/n in the definition of the test function space P̃(R), i.e.

P̃(R) :=
{
f
∣∣∣ ∃n ∈ N : f ∈ H(W1/n) and sup

z∈W1/n

|f(z)|e|Re z|/n <∞
}
.
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Notice that the weights are not changed. We now have the following unex-
pected result:

Example 5.5. The space P̃(R)′b of modified Fourier hyperfunctions is
isomorphic to Λ0(n/ln(n)).

Proof. P̃(R) is isomorphic to Hv(R) for v(x) := exp(|x|) (see [17, Sec-
tion 6]). The claim thus follows from Example 5.3(v) for a = α = 1.

Specifically, the spaces P∗(R)′b of Fourier hyperfunctions and P̃(R)′b of
modified Fourier hyperfunctions are not isomorphic.

Proposition 5.6. P̃(R)′b is isomorphic to a closed subspace of any of
the spaces Hv(R)′b.

Proof. Hv(R)′b isomorphic to Λ0(n/g(n)) by Theorem 4.6. Moreover,
Λ0(n/g(n)) is nuclear by (2.4) and stable by Corollary 4.7. Hence we can
apply the list of [23, p. 296], that is, we have to show that αn = n/g(n) ≤
n/ln(n), i.e. ln(n) ≤ Cg(n) = C(tv(t))−1(n) for some C and large n. Taking
inverses on both sides we have to show that tv(t) ≤ eCt for some C and
large t. The latter estimate now easily follows from (2.2).

By [4, Chap. IV, Sect. 2.3], Sβ1 can be identified for 0 < β < 1 with the
weighted space of entire functions
H1,1/(1−β)

:=
{
f ∈ H(C)

∣∣∣ ∃n ∈ N : |f |n := sup
z∈C
|f(z)|e|Re z|/n−n|Im z|1/(1−β) <∞

}
.

From Example 5.4(b) we thus get:
Corollary 5.7. H1,1/(1−β) is isomorphic to Λ0(n

1/(β+1))′b for 1>β>0.
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