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1. Introduction. Let N denote the set of all positive integers. For a
sequence A ⊆ N, let P (A) be the set of all sums of distinct terms taken
from A. Here 0 ∈ P (A). The sequence A is said to be complete if P (A) con-
tains all sufficiently large integers. The sequence A is said to be subcomplete
if P (A) contains an infinite arithmetic progression. The simplest example
for a complete sequence is the powers of two: S2 = {2n : n = 0, 1, . . . },
where P (S2) contains all nonnegative integers; furthermore, the sequence
Sp = {pn : n = 0, 1, . . . } (p ∈ N, p > 1) is complete if and only if p = 2.
In 1959 Birch [1] confirmed the following conjecture of Erdős: the sequence
Sp,q = {pnqm : n,m = 0, 1, . . . } is complete, where p and q are coprime
integers greater than 1.

Cassels [3] proved a theorem more general than Birch’s.

Theorem (Cassels, 1960). Let A ⊆ N and assume that

lim
n→∞

A(2n)−A(n)

log log n
=∞,

and for every 0<θ <1,
∑∞

i=1 ‖aiθ‖2=∞. Then the sequence A is complete.

Later H. Davenport remarked that there is a stronger version of Erdős’
conjecture: there should be a positive integer K = K(p, q) for which the
sequence

Sp,q(K) = {pnqm : n = 0, 1, . . . ; 0 ≤ m ≤ K}
will be complete.

In [7] it was proved that

K(p, q) ≤ 2p2c
22q

4p+3

,
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where c = 1152 log2 p log2 q, and this result was improved in [5], [4] to

K(p, q) ≤ c2q
2p+3

,

where p and q are coprime integers greater than 1. For related results,
see [2], [8] and [9].

The Fibonacci sequence is defined byF0 = 0,F1 = 1 andFn =Fn−1 +Fn−2
for n > 1. Let F = {F0, F1, . . . } and Fk = {Fk, Fk+1, . . . }. For any se-
quence {Gi} and two integers n ≥ k, define Gk(n) = {Gi}ni=k. For (finite or
infinite) sequences A = {a1 ≤ a2 ≤ · · · } and B = {b1 ≤ b2 ≤ · · · }, define
the sequence AB = {aibj : i = 1, 2, . . . ; j = 1, 2, . . . }.

The aim of this paper is to investigate the completeness of SpA, where
p > 1 is an integer.

If Ap−1 = {a1, . . . , ap−1} with ai = 1 (1 ≤ i ≤ p− 1), then P (SpAp−1) =
N ∪ {0} since every nonnegative integer has a p-ary expansion. It is known
that almost all numbers, when expressed in any scale, contain every possible
digit (see [6, Theorem 143]). It follows that, if t ≤ p−2 and At = {a1, . . . , at}
with ai = 1 (1 ≤ i ≤ t), then P (SpAt) has asymptotic density zero. What
about SpA for general A? In this paper, we solve this problem.

It is not too hard to see that the sequence SpF1(n) is complete provided
n � log p (more precisely, when Fn > p). So it is reasonable to ask the
following question: fixing the integer k > 1, what is the minimum of n = n(k)
for which the sequence SpFk(n) is complete or subcomplete or has positive
lower asymptotic density?

The following results are proved.

Theorem 1.1. Let p > 1 and t ≥ 1 be two integers.

(i) If t ≥ p − 1, then, for any sequence At = {a1 ≤ · · · ≤ at} of posi-
tive integers (not necessarily distinct), P (SpAt) has positive lower
asymptotic density not less than 1/ap−1. Furthermore, the lower
bound 1/ap−1 is the best possible.

(ii) If 2t < p, then, for any sequence At = {a1 ≤ · · · ≤ at} of positive
integers (not necessarily distinct), P (SpAt) has asymptotic density
zero.

(iii) If t < p− 1 and 2t ≥ p, then there exist two sequences A and B of
positive integers with length t such that P (SpA) has positive lower
asymptotic density and P (SpB) has asymptotic density zero.

Theorem 1.2. For any integers p > 1 and k ≥ 1, SpFk(n) is complete,
where n = p2F 2

k+2p−1.

For p = 3 we obtain the following result for general sequences {Gi}.
Theorem 1.3. Let G = {Gi} be a sequence of integers with 1 ≤ Gi < ηi

for some 1 < η < 2 and all i. Then, for any given positive integer k ≥ 1,
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there is an integer n with k ≤ n ≤ ck such that the sequence S3Gk(n) is
subcomplete, where c = c(η) is a positive constant depending only on η.

Motivated by Theorem 1.3, we pose the following problem:

Problem 1.4. Let p > 1 be an integer and G = {Gi} be a sequence
of integers, where 1 ≤ Gi < ηi for some 1 < η < 2 and all i. Given an
integer k, is there an integer n > k such that SpGk(n) is subcomplete?

2. Proof of Theorem 1.1. We need the following lemma.

Lemma 2.1. Let B = {b1 ≤ b2 ≤ · · · } be a sequence of positive inte-
gers. Assume that there exists an integer n0 such that for every n ≥ n0,
bn ≤ b1 + · · ·+ bn−1 + bn0. Then P (B) has bounded gaps, i.e. if P (B) =
{x1 < x2 < · · · }, then xk+1 − xk ≤ bn0 for every k.

Proof. We will prove the following stronger proposition: For any positive
integer m with m ≤ b1 + · · ·+ bn, there exists an integer x ∈ P ({b1, . . . , bn})
with 0 < m− x ≤ bn0 .

For 1 ≤ m ≤ b1, the proposition is true for x = 0 ∈ P ({b1}). Now we
assume that m > b1, b1+· · ·+bn−1 < m ≤ b1+· · ·+bn and the proposition is
true for all positive integers less than m. If n ≤ n0 or m ≤ b1+· · ·+bn−1+bn0 ,
then the proposition is true for x = b1 + · · ·+ bn−1 ∈ P ({b1, . . . , bn}). Now
we assume that n > n0 and b1 + · · ·+ bn−1 + bn0 < m ≤ b1 + · · ·+ bn. Then

0 ≤ b1 + · · ·+ bn−1 + bn0 − bn < m− bn ≤ b1 + · · ·+ bn−1.

By the inductive hypothesis, there exists x ∈ P ({b1, . . . , bn−1}) such that
0 < (m − bn) − x ≤ bn0 . This implies that 0 < m − (bn + x) ≤ bn0 and
bn + x ∈ P ({b1, . . . , bn}). This completes the proof of the proposition.

Now we use Lemma 2.1 to prove Theorem 1.1(i).

Assume that t ≥ p− 1 and

SpAt = {0 = b1 ≤ b2 ≤ · · · }.

Our task is to find an integer n0 such that bn ≤ b1 + · · · + bn−1 + bn0 for
every n ≥ n0.

Since 1 ∈ Sp, it follows that ap−1 ∈ SpAt. Let n0 be such that bn0 = ap−1.
We now show that the n0 is as required.

Let n ≥ n0. For any integer 1 ≤ l ≤ p− 1, let Tl be the integer such that

pTl < bn/al ≤ pTl+1.

Then, for each 1 ≤ l ≤ p − 1, the sum of the integers pial which are less
than bn is

al(1 + p+ · · ·+ pTl) =
alp

Tl+1 − al
p− 1

≥ bn − al
p− 1

.



144 Y.-G. Chen et al.

Hence

b1 + · · ·+ bn−1 ≥
p−1∑
l=1

al(1 + p+ · · ·+ pTl) ≥ bn −
1

p− 1

p−1∑
l=1

al ≥ bn − ap−1.

So bn ≤ b1 + · · ·+ bn−1 + bn0 .
Let P (SpAt) = {x1 < x2 < · · · }. By Lemma 2.1 we have xk+1 − xk ≤

bn0 = ap−1. Hence the lower asymptotic density of P (SpAt) is not less than
1/ap−1.

If a1 = · · · = ap−1 = p, then SpAp−1 consists of all pi (i ≥ 1), where every
pi repeats exactly p− 1 times. Thus P (SpAp−1) consists of all nonnegative
integers which are divisible by p. Hence the asymptotic density of P (SpAp−1)
is 1/p = 1/ap−1. So the bound in Theorem 1.1(i) is the best possible.

Now we prove Theorem 1.1(ii). Assume that 2t < p. Let X be a suffi-
ciently large integer.

Suppose that x ∈ P (SpAt). Then

x =
T∑
i=0

t∑
j=1

εi,jajp
i, εi,j ∈ {0, 1}.

Hence the number of integers in P (SpAt) which are less than X is at most

(2t)logp X+1 ≤ (p− 1)logp X+1 = (p− 1)X logp(p−1) = o(X).

Therefore, P (SpAt) has asymptotic density zero.
Finally we prove Theorem 1.1(iii). Assume that t < p−1 and 2t ≥ p. Let

A = {1, 2, 22, . . . , 2t−1},
and

B = {a1, . . . , at}, ai = 1 (1 ≤ i ≤ t).
Since P (A) = {0, 1, . . . , 2t − 1} and p− 1 ≤ 2t − 1, it follows that

{0, 1, . . . , p− 1} ⊆ P (A).

Thus P (SpA) = N ∪ {0} and then P (SpA) has asymptotic density one. It
is mentioned in the introduction that P (SpB) has asymptotic density zero.
This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

3.1. On P (Fk). In this subsection we establish an interesting fact on
the subset sums of Fk, unnoticed in the literature.

Proposition 3.1. Let k ≥ 2 be an integer. Then the sequence

P (Fk) = {b1 < b2 < · · · }
has bounded gaps. In fact, for every n ∈ N, we have

bn+1 − bn ∈ {Fk−1, Fk}.
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First, we recall a lemma.

Lemma 3.2. If

n = Fi1 + · · ·+ Fit , i1 < · · · < it,

then there are integers i1 ≤ j1 < · · · < js with ju+1 − ju ≥ 2 for all
1 ≤ u ≤ s− 1 such that

n = Fj1 + · · ·+ Fjs .

This lemma is also known as Zeckendorf’s theorem (see [10]). For the
sake of completeness we include a short proof.

Proof of Lemma 3.2. If iu+1 − iu ≥ 2 for all 1 ≤ u ≤ t− 1, then we are
done. Now we assume that there is an integer v such that iv+1 − iv = 1.
Let v0 be the largest integer with iv0+1 − iv0 = 1. Then iv0+2 − iv0+1 ≥ 2
(if iv0+2 exists). That is, iv0+2 ≥ iv0 + 3. Thus

n = Fi1 + · · ·+ Fiv0−1 + Fiv0+2 + Fiv0+2 + · · ·+ Fit .

Now, by induction on t, we obtain the desired conclusion.

Lemma 3.3. Suppose that

m = Fi1 + · · ·+ Fis , i1 > · · · > is ≥ 1

and

n = Fj1 + · · ·+ Fjt , j1 > · · · > jt ≥ 1.

If m > n, then m− n ≥ Fmin{is,jt−1}.

Proof. By Lemma 3.2, we may assume that iu−1 − iu ≥ 2 (2 ≤ u ≤ s)
and jv−1 − jv ≥ 2 (2 ≤ v ≤ t).

If s ≤ t and iu = ju (u = 1, . . . , s), then m ≤ n, a contradiction.
If s > t and iu = ju (u = 1, . . . , t), then m− n ≥ Fis ≥ Fmin{is,jt−1}.
Now we assume that there exists 1 ≤ u ≤ min{s, t} with iu 6= ju. Let

w be the least integer with iw 6= jw. Then 1 ≤ w ≤ min{s, t} and iu = ju
(1 ≤ u < w).

If iw < jw, then

n−m ≥ Fjw − (Fiw + · · ·+ Fis)

≥ Fiw+1 − (Fiw + · · ·+ Fis)

= Fiw−1 − (Fiw+1 + · · ·+ Fis)

≥ Fiw+1+1 − (Fiw+1 + · · ·+ Fis)

≥ · · ·
≥ Fis+1 − Fis = Fis−1 ≥ 0,

contrary to m > n.

Similarly, if iw > jw, then m− n ≥ Fjt−1 ≥ Fmin{is,jt−1}.
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Proof of Proposition 3.1. Let n ∈ N. Since bn, bn+1 ∈ P (Fk), it follows
from Lemma 3.2 that

bn+1 = Fi1 + · · ·+ Fis , i1 > · · · > is ≥ k,

and

bn = Fj1 + · · ·+ Fjt , j1 > · · · > jt ≥ k,

where iu−1 − iu ≥ 2 (2 ≤ u ≤ s) and jv−1 − jv ≥ 2 (2 ≤ v ≤ t).
If jt > k, then bn + Fk ∈ P (Fk). So bn+1 ≤ bn + Fk. By Lemma 3.3, we

have bn+1 − bn ≥ Fmin{is,jt−1} ≥ Fk. Hence bn+1 − bn = Fk.

If jt = k, then jt−1 ≥ k+2. Thus bn+Fk−1 = bn−Fk+Fk+1 ∈ P (Fk). So
bn+1 ≤ bn +Fk−1. By Lemma 3.3, we have bn+1− bn ≥ Fmin{is,jt−1} = Fk−1.
Hence bn+1 − bn = Fk−1.

3.2. On the completeness of SpFk(n)—proof of Theorem 1.2. In
this section we prove Theorem 1.2: for any integers p > 1 and k ≥ 1, there
exists an integer n ≤ p2F 2

k+2p−1 such that the sequence SpFk(n) is complete.

First, we recall a lemma.

Lemma 3.4. We have

P ({F0, F1, . . . }) = N ∪ {0}.

This lemma is well-known. It is also a special case of Proposition 3.1.

Lemma 3.5. For any positive integers m, r with r > 2m, there are inte-
gers

r − 2m+ 2 ≤ i1 < · · · < it

such that

mFr = Fi1 + · · ·+ Fit .

Proof. We use induction on m. It is clear that the assertion is true for
m = 1. Suppose that it is true for m. Now we consider (m + 1)Fr with
r > 2m+2. Since r > 2m+2 > 2m, it follows from the inductive hypothesis
that there are integers r − 2m+ 2 ≤ i1 < · · · < it such that

mFr = Fi1 + · · ·+ Fit .

By Lemma 3.2, we may assume that iu+1 − iu ≥ 2 for all 1 ≤ u ≤ t− 1.

If r /∈ {i1, . . . , it}, then by rearranging r, i1, . . . , it as j1 < · · · < jt+1, we
have

j1 ≥ r − 2m+ 2 > r − 2(m+ 1) + 2

and

(m+ 1)Fr = Fj1 + · · ·+ Fjt+1 .

Now we assume that r ∈ {i1, . . . , it} and say iv = r.
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If iu+1 − iu = 2 for all u ≤ v − 1, then

Fi1 + · · ·+ Fiv + Fr = Fi1 + · · ·+ Fiv−1 + Fiv−2 + Fiv+1

= Fi1 + · · ·+ Fiv−2 + Fiv−1−2 + Fiv−1+1 + Fiv+1

= · · ·
= Fi1−2 + Fi1+1 + · · ·+ Fiv+1.

If iu+1− iu > 2 for some u ≤ v− 1, we assume that u is the largest such
integer. Similarly, we have

Fi1 + · · ·+ Fiv + Fr = Fi1 + · · ·+ Fiu + Fiu+1−2 + Fiu+1+1 + · · ·+ Fiv+1.

Hence

(m+ 1)Fr = Fj1 + · · ·+ Fjt+1

and jt+1 > · · · > j1 ≥ i1 − 2 ≥ r − 2(m+ 1) + 2.

The next lemma is also known; we include a proof for completeness.

Lemma 3.6. For any positive integer d, the sequence {Fr} is purely pe-
riodic modulo d with period length at most d2.

Proof. We consider (Fr, Fr+1) (mod d) (r = 1, 2, . . . ). There are positive
integers m,T with m+ T ≤ d2 + 1 such that

(Fm, Fm+1) ≡ (Fm+T , Fm+T+1) (mod d).

Since

Fr−1 = Fr+1 − Fr, Fr+2 = Fr+1 + Fr,

it follows that

(Fr, Fr+1) ≡ (Fr+T , Fr+T+1) (mod d), r = 0, 1, . . . .

So 1 ≤ T ≤ d2 and Fr ≡ Fr+T (mod d) for all r ≥ 0.

Proof of Theorem 1.2. Let r = k + 2p − 2. Let u be the integer with
Fu ≤ pFr < Fu+1. By Lemma 3.5, for any 1 ≤ m ≤ p − 1 < r/2, there are
integers k + 2 ≤ r − 2m+ 2 ≤ i1 < · · · < it such that

mFr = Fi1 + · · ·+ Fit .

Since Fit ≤ mFr ≤ pFr < Fu+1, it follows that it ≤ u. Thus

(3.1) {0, Fr, . . . , (p− 1)Fr} ⊆ P (Fk(u)).

Let d = pFr. Let s be any integer with

s > Fk + · · ·+ Fk+d2+u.

Suppose that s ≡ s1 (mod d) with 0 ≤ s1 ≤ d − 1. By Lemma 3.4, there
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exist 0 ≤ j1 < · · · < j` such that

s1 = Fj1 + · · ·+ Fj` .

Then Fj` ≤ s1 < d = pFr < Fu+1. So j` ≤ u. By Lemma 3.6, the sequence
{Fr} is purely periodic modulo d with period length T ≤ d2. Suppose that
v is the integer with vT ≤ d2 < (v + 1)T . Then

vT =
v

v + 1
(v + 1)T ≥ 1

2
(v + 1)T >

1

2
d2 =

1

2
p2F 2

r > Fr ≥ Fk+2 > k,

s ≡ s1 = Fj1 + · · ·+ Fj` ≡ FvT+j1 + · · ·+ FvT+j` (mod d)

and
vT + j` ≤ d2 + u.

Let n = d2 +u. Hence there is s2 ∈ P (Fk(n)) such that s ≡ s2 (mod d). Let
s = s2 + dL = s2 + pFrL. Since

s2 ≤ Fk + · · ·+ Fn < Fk + · · ·+ Fk+d2+u < s,

it follows that L is a positive integer. Let its p-ary expansion be

L = `0 + `1p+ · · ·+ `wp
w, 0 ≤ `i ≤ p− 1 (0 ≤ i ≤ w).

Then

s = s2 + dL = s2 + pFrL = s2 + (`0Fr)p+ · · ·+ (`wFr)p
w+1.

It follows from (3.1) and s2 ∈ P (Fk(n)) that s ∈ P (SpFk(n)), where

n = d2 + u = p2F 2
r + u ≤ p2F 2

r + pFr

= p2F 2
k+2p−2 + pFk+2p−2

≤ p2(Fk+2p−1 − 1)2 + pFk+2p−2 ≤ p2F 2
k+2p−1.

Since SpFk(n) is complete for an integer k ≤ n ≤ p2F 2
k+2p−1, it follows

that SpFk(m) is complete for m = p2F 2
k+2p−1. This completes the proof of

Theorem 1.2.

4. Proof of Theorem 1.3. In the following, log2 x is the logarithm of
x to base 2.

In the notation of Theorem 1.3, we choose

(4.1) n =

⌊
k − log2(η − 1)

1− log2 η

⌋
.

Then from 1 < η < 2 we have

k ≤ n ≤ k − log2(η − 1)

1− log2 η
≤ k − k log2(η − 1)

1− log2 η
= c(η)k,

where

c(η) =
1− log2(η − 1)

1− log2 η
.
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It follows from (4.1) that

n >
k − log2(η − 1)

1− log2 η
− 1.

Therefore

2n−k+1 >
ηn+1

η − 1
> 1 + η + η2 + · · ·+ ηn.

Noting that ηi > Gi for all i, we have

2n−k+1 − 1 > η + η2 + · · ·+ ηn ≥ Gk +Gk+1 + · · ·+Gn.

Hence there exists d′ > 0 that has two different representations,

d′ =
∑

k≤i≤n
εiGi =

∑
k≤i≤n

ε′iGi,

where εi, ε
′
i ∈ {0, 1} (k ≤ i ≤ m) and εi 6= ε′i for at least one i. Deleting the

identical terms in these two sums, we obtain∑
k≤i≤n

ηiGi =
∑

k≤i≤n
η′iGi,

where ηi, η
′
i ∈ {0, 1} and ηiη

′
i = 0 (k ≤ i ≤ n). We write this number as d.

Then

d =
∑

k≤i≤n
ηiGi =

∑
k≤i≤n

η′iGi.

Hence

d, 2d ∈ P (Gk(n)).

For any positive integer N , let its 3-ary expansion be

N =
∑

αr3
r, αr ∈ {0, 1, 2}.

Then

dN =
∑

αrd3r ∈ P (S3Gk(n)).

Therefore, dN ⊆ P (S3Gk(n)). This completes the proof of Theorem 1.3.
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[7] N. Hegyvári, On the completeness of an exponential type sequence, Acta Math.
Hungar. 86 (2000), 127–135.
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