Supercongruences for the Almkvist-Zudilin numbers

by
Tewodros Amdeberhan (New Orleans, LA) and Roberto Tauraso (Roma)

1. Introduction. The Apéry numbers $A(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ were valuable to R. Apéry in his celebrated proof [1] that $\zeta(3)$ is an irrational number. Since then these numbers have been a subject of much research. For example, they stand among a host of other sequences with the property

$$
A\left(p^{r} n\right) \equiv_{p^{3 r}} A\left(p^{r-1} n\right)
$$

now known as supercongruence, a term dubbed by F. Beukers [2].
At the heart of many of these congruences sits the classical example $\binom{p b}{p c} \equiv p_{p^{3}}\binom{b}{c}$ which is a stronger variant of the famous congruence $\binom{p b}{p c} \equiv{ }_{p}\binom{b}{c}$ of Lucas. For a compendium of references on Apéry-type sequences, see [10].

Let us begin by fixing notational conventions. Denote the set of positive integers by \mathbb{N}^{+}. For $m \in \mathbb{N}^{+}$, let \equiv_{m} represent congruence modulo m.

In this paper, we aim to investigate a similar type of supercongruences for the following family of sequences. For integers $i \geq 0$ and $n \geq 1$, define

$$
\begin{equation*}
a_{i}(n):=\sum_{k=0}^{\lfloor(n-i) / 3\rfloor}(-1)^{n-k}\binom{3 k+i}{k}\binom{2 k+i}{k}\binom{n}{3 k+i}\binom{n+k}{k} 3^{n-3 k-i} \tag{1.1}
\end{equation*}
$$

whose generating function is

$$
\sum_{n=0}^{\infty} a_{i}(n) z^{n}=(-1)^{i} \sum_{k=0}^{\infty}\binom{4 k+i}{k, k, k, k+i} \frac{z^{3 k+i}}{(1+3 z)^{4 k+1+i}}
$$

In recent literature, $a_{0}(n)$ are referred to as the Almkvist-Zudilin numbers. Our motivation for the present work emanates from the following claim found in [6] (see also [3], 7]).

[^0]Conjecture 1.1. For a prime p and $n \in \mathbb{N}^{+}$, the Almkvist-Zudilin numbers satisfy

$$
a_{0}(p n) \equiv_{p^{3}} a_{0}(n)
$$

Our main results can be summed up as:
If p is a prime and $n, i \in \mathbb{N}^{+}$, then $a_{0}(p n) \equiv_{p^{3}} a_{0}(n)$ and $a_{i}(p n) \equiv_{p^{2}} 0$.
The organization of the paper is as follows. Section 2 lays down some preparatory results to show the vanishing of $a_{i}(p n)$ modulo p^{2} for $i>0$. Section 3 sees the completion of the proof. Sections 4 and 5 exhibit its elaborate execution. The reduction brings in a tighter claim, and it also offers an advantage in allowing to work with a single sum instead of a double sum. In Section 6, we complete the proof for Conjecture 1.1. The paper concludes with Section 7 where we declare an improvement on the results from Section 3, which states a congruence for the family of sequences $a_{i}(p n)$ modulo p^{3} when $i>0$.
2. Preliminary results. Fermat quotients are numbers of the form

$$
q_{p}(x)=\frac{x^{p-1}-1}{p}
$$

and they played a useful role in the study of cyclotomic fields and Fermat's Last Theorem (see [8]). The next three lemmas are known, but we give their proofs for completeness.

Lemma 2.1. If p is a prime and $a \not \equiv p$ then for $d \in \mathbb{Z}$,

$$
\begin{equation*}
q_{p}\left(a^{d}\right) \equiv_{p^{2}} d q_{p}(a)+p\binom{d}{2} q_{p}(a)^{2} \tag{2.1}
\end{equation*}
$$

Proof. Since by Fermat's Little Theorem $a^{p-1} \equiv_{p} 1$, it follows that

$$
\left(a^{p-1}\right)^{d}=\left(1+\left(a^{p-1}-1\right)\right)^{d} \equiv_{p^{3}} 1+d\left(a^{p-1}-1\right)+\binom{d}{2}\left(a^{p-1}-1\right)^{2}
$$

Lemma 2.2. Let $H_{n}=\sum_{j=1}^{n} 1 / j$ be the nth harmonic number. Then, for $n \in \mathbb{N}^{+}$, we have

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k}\binom{n}{k}\binom{n+k}{k} \frac{1}{k}=-2 H_{n} \tag{2.2}
\end{equation*}
$$

Proof. For an indeterminate y, a simple partial fraction decomposition shows the identity (see [5, Lemma 3.1])

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+k}{k} \frac{1}{k+y}=\frac{(-1)^{n}}{y} \prod_{j=1}^{n} \frac{y-j}{y+j} \tag{2.3}
\end{equation*}
$$

Now, subtract $1 / y$ from both sides and take the limit as $y \rightarrow 0$. The righthand side takes the form

$$
\frac{1}{n!} \lim _{y \rightarrow 0} \frac{\prod_{j=1}^{n}(j-y)-\prod_{j=1}^{n}(j+y)}{y}=-2 \sum_{k=1}^{n} \frac{1}{k} .
$$

The conclusion is clear.
Lemma 2.3. Suppose p is a prime and $0 \leq k<p / 3$. Then

$$
(-1)^{k}\binom{\lfloor p / 3\rfloor}{ k}\binom{\lfloor p / 3\rfloor+k}{k} \equiv_{p}\binom{3 k}{k, k, k} 3^{-3 k} .
$$

Proof. We observe that $\binom{n}{k}\binom{n+k}{k}=\binom{2 k}{k}\binom{n+k}{2 k}$. If $p \equiv_{3} 1$, then $\left\lfloor\frac{p}{3}\right\rfloor=\frac{p-1}{3}$ and hence

$$
\begin{aligned}
\binom{\frac{p-1}{3}+k}{2 k} & =\frac{\frac{p-1}{3}\left(\frac{p-1}{3}+k\right)}{(2 k)!} \prod_{j=1}^{k-1}\left(\frac{p-1}{3} \pm j\right) \\
& \equiv p \frac{(-1)^{k}(3 k-1)}{3^{2 k}(2 k)!} \prod_{j=1}^{k-1}(3 j \pm 1)=\frac{(-1)^{k}(3 k)!}{3^{3 k}(2 k)!k!}
\end{aligned}
$$

Therefore,

$$
(-1)^{k}\binom{\frac{p-1}{3}}{k}\binom{\frac{p-1}{3}+k}{k}=(-1)^{k}\binom{2 k}{k}\binom{\frac{p-1}{3}+k}{2 k} \equiv_{p} \frac{(3 k)!}{3^{3 k}!k!^{3}} .
$$

The case $p \equiv_{3}-1$ runs analogously.
Corollary 2.4. For a prime p and an integer $0<i<p / 3$, we have

$$
\begin{aligned}
& \sum_{k=1}^{p-1}\binom{3 k}{k, k, k} \frac{3^{-3 k}}{k} \equiv \equiv_{p} \sum_{k=1}^{\lfloor p / 3\rfloor}\binom{3 k}{k, k, k} \frac{3^{-3 k}}{k} \equiv_{p} 3 q_{p}(3), \\
& \sum_{k=0}^{p-1}\binom{3 k}{k, k, k} \frac{3^{-3 k}}{k+i} \equiv_{p} \sum_{k=0}^{\lfloor p / 3\rfloor}\binom{3 k}{k, k, k} \frac{3^{-3 k}}{k+i} \equiv_{p} 0 .
\end{aligned}
$$

Proof. For the first assertion, we combine (2.2), Lemma 2.3 and the congruence [4, p. 358]

$$
H_{\lfloor p / 3\rfloor} \equiv_{p}-3 \sum_{r=1}^{\lfloor p / 3\rfloor} \frac{1}{p-3 r} \equiv_{p}-\frac{3 q_{p}(3)}{2} .
$$

The second congruence follows from (2.3) with $y=i$ and Lemma 2.3.
3. Main results on the sequences $a_{i}(n)$ for $i>0$

Theorem 3.1. For a prime p and $n, i \in \mathbb{N}^{+}$with $i<p / 3$, we have

$$
a_{i}(p n) \equiv_{p^{2}} 0
$$

Proof. In 1.1), replace n by $p n$ and $k=p m+r$ for $0 \leq r \leq p-1$ and some $m \in \mathbb{Z}$ (note: $3 k+i=3 p m+3 r+i \leq p n)$ so that

$$
\begin{aligned}
a_{i}(p n)= & \sum_{m=0}^{\lfloor n / 3\rfloor} \sum_{r=0}^{p-1}(-1)^{p n-p m-r}\binom{3 p m+3 r+i}{p m+r}\binom{2 p m+2 r+i}{p m+r} \\
& \cdot\binom{p n}{3 p m+3 r+i}\binom{p n+p m+r}{p m+r} 3^{p n-3 p m-3 r-i}
\end{aligned}
$$

If $t:=3 r+i \geq p+1$, it is easy to show that the following terms vanish modulo p^{2} :

$$
\begin{aligned}
\binom{3 p m+t}{p m+r}\binom{2 p m+2 r+i}{p m+r} & \binom{p n}{3 p m+t} \\
& =\binom{3 p m+t}{p m+r, p m+r, p m+r+i}\binom{p n}{3 p m+t}
\end{aligned}
$$

Therefore, we may restrict to the remaining sum with $3 r+i \leq p$:

$$
\begin{aligned}
& a_{i}(p n)=\sum_{m=0}^{\lfloor n / 3\rfloor} \sum_{r=0}^{\lfloor(p-i) / 3\rfloor}(-1)^{n-m-r}\binom{3 p m+3 r+i}{p m+r}\binom{2 p m+2 r+i}{p m+r} \\
& \cdot\binom{p n}{3 p m+3 r+i}\binom{p n+p m+r}{p m+r} 3^{p n-3 p m-3 r-i}
\end{aligned}
$$

We need Lucas's congruence $\binom{p b+c}{p d+e} \equiv{ }_{p}\binom{b}{d}\binom{c}{e}$ to arrive at

$$
\begin{aligned}
& a_{i}(p n) \equiv \equiv_{p} \sum_{m=0}^{\lfloor n / 3\rfloor} \sum_{r=0}^{\lfloor(p-i) / 3\rfloor}(-1)^{n-m-r}\binom{3 m}{m}\binom{3 r+i}{r}\binom{2 m}{m}\binom{2 r+i}{r} \\
& \cdot\binom{p n}{3 p m+3 r+i}\binom{n+m}{m} 3^{p n-3 p m-3 r-1}
\end{aligned}
$$

Again by Lucas's congruence and using $\binom{p-1}{j} \equiv{ }_{p}(-1)^{j}$ for $0 \leq j<p$, we get

$$
\begin{aligned}
& \binom{p n}{3 p m+3 r+i}=\frac{p n}{3 p m+3 r+i}\binom{p(n-1)+p-1}{3 p m+3 r+i-1} \\
& \equiv_{p^{2}} \frac{p n}{3 r+i}\binom{n-1}{3 m}\binom{p-1}{3 r+i-1} \equiv_{p^{2}}(-1)^{r+i-1} \frac{p n}{3 r+i}\binom{n-1}{3 m}
\end{aligned}
$$

which leads to

$$
\begin{array}{r}
a_{i}(p n) \equiv{ }_{p^{2}} p n \sum_{m=0}^{\lfloor n / 3\rfloor} \sum_{r=0}^{\lfloor(p-i) / 3\rfloor}(-1)^{n-m-r}\binom{3 m}{m}\binom{3 r+i}{r}\binom{2 m}{m}\binom{2 r+i}{r} \\
\cdot \frac{(-1)^{r+i-1}}{3 r+i}\binom{n-1}{3 m}\binom{n+m}{m} 3^{p n-3 p m-3 r-i} .
\end{array}
$$

Next, we use Fermat's Little Theorem and decouple the double sum to obtain

$$
\begin{aligned}
a_{i}(p n) \equiv{ }_{p^{2}} n \sum_{m=0}^{\lfloor n / 3\rfloor}(-1)^{n-m+i-1} 3^{n-3 m-i}\binom{3 m}{m}\binom{2 m}{m}\binom{n-1}{3 m}\binom{n+m}{m} \\
\cdot p \sum_{r=0}^{\lfloor(p-i) / 3\rfloor}\binom{3 r+i}{r}\binom{2 r+i}{r} \frac{3^{-3 r}}{3 r+i} .
\end{aligned}
$$

It suffices to verify that the sum over r vanishes modulo p. To achieve this, apply partial fraction decomposition and Corollary 2.4 (upgrading the sum to $\lfloor p / 3\rfloor$ is harmless here). Thus,

$$
\begin{array}{r}
\sum_{r=0}^{\lfloor p / 3\rfloor}\binom{3 r+i}{r}\binom{2 r+i}{r} \frac{3^{-3 r}}{3 r+i}=\sum_{r=0}^{\lfloor p / 3\rfloor}\binom{3 r}{r, r, r} 3^{-3 r} \prod_{j=1}^{i-1}(3 r+j) \prod_{j=1}^{i}(r+j)^{-1} \\
=\sum_{j=1}^{i} \alpha_{j}(i) \sum_{r=0}^{\lfloor p / 3\rfloor}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r+j} \equiv_{p} \sum_{j=1}^{i} \alpha_{j}(i) \cdot 0=0
\end{array}
$$

where $\alpha_{j}(i)=(-1)^{i-j}\binom{3 j-1}{i-1}\binom{i-1}{j-1} \in \mathbb{Z}$. We have enough reason to conclude the proof.
4. The reduction on the sequence $a_{0}(n)$. Our proof of Conjecture 1.1 requires a slightly more delicate analysis than what has been demonstrated in the previous sections for the sequences $a_{i}(n)$, where $i>0$. As a first major step forward, we prove the following somewhat stronger result. This will be crucial in scaling down a double sum, which emerges (see proof below) as an expression for the sequence $a_{0}(p n)$, to a single sum.

TheOrem 4.1. If p is a prime, then the congruence

$$
\begin{align*}
& \sum_{r=1}^{p-1}(-1)^{r}\binom{3 p m+3 r}{p m+r}\binom{2 p m+2 r}{p m+r}\binom{p n}{3 p m+3 r}\binom{p(n+m)+r}{p m+r} 3^{-3 r} \tag{4.1}\\
& \equiv_{p^{3}} p\binom{3 m}{m}\binom{2 m}{m}\binom{n}{3 m}\binom{n+m}{m} q_{p}\left(3^{-(n-3 m)}\right)
\end{align*}
$$

implies $a_{0}(p n) \equiv p^{3} a_{0}(n)$.
Proof. In (1.1), replace n by $p n$ and $k=p m+r$ for $0 \leq r \leq p-1$ and some $m \in \mathbb{Z}$. Using these new parameters, we write

$$
a_{0}(p n)=\sum_{m=0}^{n-1} 3^{p(n-3 m)}(-1)^{n-m} \sum_{r=0}^{p-1}(-1)^{r}\binom{3 p m+3 r}{p m+r}\binom{2 p m+2 r}{p m+r}
$$

$$
\cdot\binom{p n}{3 p m+3 r}\binom{p(n+m)+r}{p m+r} 3^{-3 r}
$$

Let us isolate the case $r=0$; then, from $\binom{p b}{p c} \equiv{ }_{p^{3}}\binom{b}{c}$ and the hypothesis we get

$$
\begin{aligned}
& a_{0}(p n) \equiv{ }_{p^{3}} \sum_{m=0}^{n-1} 3^{p(n-3 m)}(-1)^{n-m}\binom{3 m}{m}\binom{2 m}{m}\binom{n}{3 m}\binom{n+m}{m} \\
& \cdot\left[1+p q_{p}\left(3^{-(n-3 m)}\right)\right] \\
& \equiv p_{p^{3}} \sum_{m=0}^{n-1}(-1)^{n-m}\binom{3 m}{m}\binom{2 m}{m}\binom{n}{3 m}\binom{n+m}{m} 3^{(n-3 m)}=a_{0}(n) .
\end{aligned}
$$

5. Further preliminary results. In this section, we build a few valuable results aiming at the proof of (4.1) and hence of Conjecture 1.1.

LEMmA 5.1. Let $m, n \in \mathbb{N}^{+}$. For $p>3$ a prime and an integer $0 \leq r<p$, we have

$$
\begin{equation*}
\binom{p(n+m)+r}{p m+r} \equiv_{p^{2}}\binom{n+m}{m}\left[1+p n H_{r}\right] \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{p n}{3 p m+3 r} \equiv{ }_{p^{3}}\left(\frac{p}{3 r}-\frac{p^{2} m}{3 r^{2}}\right)(-1)^{r}\binom{n}{3 m}(n-3 m) B_{r}(p, n, m) \tag{5.2}
\end{equation*}
$$

where
$B_{r}(p, n, m)= \begin{cases}\begin{array}{l}-1+p n H_{3 r-1} \\ \frac{(n-3 m-1)\left(1-p n H_{3 r-1-p}\right)}{3 m+1}\end{array} & \text { if } 0<r<p / 3, \\ \frac{(n-3 m-1)(n-3 m-2)\left(-1+p n H_{3 r-1-2 p}\right)}{(3 m+1)(3 m+2)} & \text { if } 2 p / 3<r<2 p / 3, \\ & \text { is } 2<p .\end{cases}$
Proof. We revive a result found in [9, (27)], which is stated as follows. If $n=n_{1} p+n_{0}$ and $k=k_{1} p+k_{0}$ where $0<n_{0}, k_{0}<p$ then

$$
\begin{equation*}
\binom{n}{k} \equiv \equiv_{p^{2}}\binom{n_{1}}{k_{1}}\left[\left(n_{1}+1\right)\binom{n_{0}}{k_{0}}-\left(n_{1}+k_{1}\right)\binom{n_{0}-p}{k_{0}}-k_{1}\binom{n_{0}-p}{k_{0}+p}\right] \tag{5.3}
\end{equation*}
$$

For (5.1), apply (5.3) with $n_{1}=n+m, n_{0}=r=k_{0}, k_{1}=m$. So,

$$
\begin{aligned}
&\binom{p(n+m)+r}{p m+r} \equiv_{p^{2}}\binom{n+m}{m}\left[(1+m+n)\binom{r}{r}\right. \\
&\left.-(n+2 m)\binom{r-p}{r}-m\binom{r-p}{r+p}\right]
\end{aligned}
$$

Now apply (5.3) to $\binom{p+r}{r} \equiv{ }_{p^{2}} 2-\binom{r-p}{p}\left(\right.$ with $\left.n_{1}=1, n_{0}=k_{0}=r, k_{1}=0\right)$, and to $\binom{r-p}{r+p}=\binom{-p+r}{-2 p} \equiv_{p^{2}}-3+2\binom{r-p}{r}\left(\right.$ with $n_{1}=-1, n_{0}=r, k_{1}=-2$,
$\left.k_{0}=0\right)$. After substitution and simplifications, we obtain

$$
\binom{p(n+m)+r}{p m+r} \equiv_{p^{2}}\binom{n+m}{m}\left(1+n\left(\binom{p+r}{r}-1\right)\right)
$$

The desired result is reached as soon as we note that

$$
\binom{p+r}{r}=\frac{1}{r!} \prod_{j=1}^{r}(p+j) \equiv_{p^{2}} 1+p H_{r}
$$

The congruence 5.2 demands a careful analysis. The setup begins by expressing $3 r=\epsilon p+d$ where $0<d<p$ and $\epsilon=\lfloor 3 r / p\rfloor \in\{0,1,2\}$ which correspond to $0<3 r<p, p<3 r<2 p$ and $2 p<3 r<3 p$, respectively. Apply (5.3) with $n_{1}=n-1, n_{0}=p-1, k_{1}=3 m+\epsilon, k_{0}=d-1$. Follow this through using $\binom{-1}{j}=(-1)^{j}$. The outcome is

$$
\begin{aligned}
\binom{p n}{3 p m+3 r} & =\frac{p n}{3 p m+3 r}\binom{p(n-1)+p-1}{p(3 m+\epsilon)+d-1} \\
& \equiv{ }_{p^{3}} \frac{p n}{3 p m+3 r}\binom{n-1}{3 m+\epsilon}\left[n\binom{p-1}{3 r-1-\epsilon p}+(-1)^{r-\epsilon}(n-1)\right] .
\end{aligned}
$$

Combining this step and the easy facts

$$
\frac{1}{3 p m+3 r} \equiv_{p^{2}} \frac{1}{3 r}-\frac{p m}{3 r^{2}}, \quad\binom{p-1}{j} \equiv_{p^{2}}(-1)^{j}\left[1-p H_{j}\right]
$$

we reach the conclusion.
Also the next congruence can be deduced from (5.3). However, here we offer a more direct approach.

Lemma 5.2. Let $m \in \mathbb{N}^{+}$. For $p>3$ a prime and an integer $0 \leq r<p$, we have

$$
\begin{equation*}
\binom{3 p m+3 r}{p m+r}\binom{2 p m+2 r}{p m+r} \equiv_{p^{2}}\binom{3 m}{m, m, m}\binom{3 r}{r, r, r}\left[1+3 p m\left(H_{3 r}-H_{r}\right)\right] . \tag{5.4}
\end{equation*}
$$

Proof. Since $(p m+k)^{-1} \equiv_{p^{2}} \frac{1}{k}\left(1-\frac{p m}{k}\right)$, we obtain

$$
(p m+k)^{-3} \equiv_{p^{2}} \frac{1}{k^{3}}\left(1-\frac{p m}{k}\right)^{3} \equiv_{p^{2}} \frac{1}{k^{3}}\left(1-\frac{3 p m}{k}\right)=\frac{k-3 p m}{k^{4}}
$$

For notational simplicity, denote $\binom{3 j}{j, j, j}=\binom{3 j}{j}\binom{2 j}{j}$ by $\binom{3 j}{j^{3}}$. We consider the expansion $\prod_{i=1}^{n}\left(\lambda_{i}+x\right)=\sum_{j=0}^{n} e_{j}(\lambda) x^{n-j}$ as our running theme, where e_{j} is the j th elementary symmetric function in the parameters $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. In particular, $e_{n}=1$ and $e_{n-1}(1, \ldots, n)=n!H_{n}$. The claim then follows
from

$$
\begin{aligned}
\binom{3 p m+3 r}{(p m+r)^{3}} & =\binom{3 p m}{(p m)^{3}} \prod_{j=1}^{3 r}(j+3 p m) \prod_{k=1}^{r}(p m+k)^{-3} \\
& \equiv_{p^{2}}\binom{3 p m}{(p m)^{3}} \frac{1}{r!^{4}} \prod_{j=1}^{3 r}(j+3 p m) \prod_{k=1}^{r}(k-3 p m) \\
& \equiv_{p^{2}}\binom{3 p m}{(p m)^{3}} \frac{1}{r!^{4}}(3 r)!r!\left[1+3 p m H_{3 r}-3 p m H_{r}\right]
\end{aligned}
$$

REMARK 5.3. This fact is even more general as stated below but the proof is left to the interested reader. If $A, n \in \mathbb{N}^{+}, 0 \leq r<p$ are integers and $p>3$ a prime, then

$$
\frac{(A p m+A r)!}{(p m+r)!^{A}} \equiv_{p^{2}}\binom{A m}{m, \ldots, m}\binom{A r}{r, \ldots, r}\left[1+\operatorname{Apm}\left(H_{A r}-H_{r}\right)\right]
$$

Lemma 5.4. If $p>3$ is a prime then

$$
\begin{align*}
& \sum_{r=1}^{p-1}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r} \equiv_{p^{2}}-3 q_{p}(1 / 3)+\frac{3 p}{2} q_{p}(1 / 3)^{2} \tag{5.5}\\
& \sum_{r=1}^{p-1}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r^{2}} \equiv_{p}-\frac{9}{2} q_{p}(1 / 3)^{2} \tag{5.6}\\
& \sum_{r=1}^{p-1}\binom{3 r}{r, r, r} \frac{\left(H_{3 r}-H_{r}\right) 3^{-3 r}}{r} \equiv_{p} 0 \tag{5.7}
\end{align*}
$$

Proof. By (2.1), $q_{p}(1 / 27) \equiv{ }_{p^{2}} 3 q_{p}(1 / 3)+3 p q_{p}(1 / 3)^{2}$. Therefore, by (5) in [11, Theorem 4],

$$
\begin{aligned}
\sum_{r=1}^{p-1}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r} & =\sum_{r=1}^{p-1} \frac{(1 / 3)_{r}(2 / 3)_{r}}{(1)_{r}^{2}} \cdot \frac{1}{r} \equiv_{p^{2}}-q_{p}(1 / 27)+\frac{p}{2} q_{p}(1 / 27)^{2} \\
& \equiv{ }_{p^{2}}-3 q_{p}(1 / 3)+\frac{3 p}{2} q_{p}(1 / 3)^{2}
\end{aligned}
$$

In a similar way, by (6) in [11, Theorem 4],

$$
\sum_{r=1}^{p-1}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r^{2}}=\sum_{r=1}^{p-1} \frac{(1 / 3)_{r}(2 / 3)_{r}}{(1)_{r}^{2}} \cdot \frac{1}{r^{2}} \equiv_{p}-\frac{1}{2} q_{p}(1 / 27)^{2} \equiv_{p}-\frac{9}{2} q_{p}(1 / 3)^{2} .
$$

By (1) in [11, Theorem 1],

$$
\frac{(1 / 3)_{r}(2 / 3)_{r}}{(1)_{r}^{2}} \sum_{j=0}^{r-1}\left(\frac{1}{1 / 3+j}+\frac{1}{2 / 3+j}\right)=\sum_{k=0}^{r-1} \frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}} \cdot \frac{1}{r-k}
$$

Hence (5.7) is implied by

$$
\begin{aligned}
& \sum_{r=1}^{p-1}\binom{3 r}{r,} \\
& \quad=\sum_{r=1}^{p-1} \frac{\left(3 H_{3 r}-H_{r}\right) 3^{-3 r}}{r} \\
& \left.\quad=\sum_{r=1}^{p-1} \frac{(1 / 3)_{r}(2 / 3)_{r}}{()_{r}^{2}} \cdot \frac{1}{r} \cdot \sum_{j=0}^{r-1} \frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}} \cdot \frac{1}{r-k}=\sum_{k=0}^{p-2} \frac{1}{1 / 3+j}+\frac{1}{2 / 3+j}\right) \\
& \quad=\sum_{r=1}^{p-1} \frac{1}{r^{2}}+\sum_{k=1}^{p-2} \frac{(1 / 3)_{k}^{2}(2 / 3)_{k}}{(1)_{k}^{2}} \sum_{r=k+1}^{p-1} \frac{1}{r(r-k)}\left(\frac{1}{k} \sum_{r=k+1}^{p-1}\left(\frac{1}{r-k}-\frac{1}{r}\right)\right) \\
& \quad \equiv{ }_{p} \sum_{k=1}^{p-2} \frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}} \cdot \frac{1}{k}\left(H_{p-1-k}-H_{p-1}+H_{k}\right) \\
& \quad \equiv_{p} \sum_{k=1}^{p-1}\binom{3 k}{k, k, k} \frac{2 H_{k} 3^{-3 k}}{k}
\end{aligned}
$$

because $H_{p-1-k} \equiv_{p} H_{k}$ and $H_{p-1} \equiv_{p} \sum_{r=1}^{p-1} \frac{1}{r^{2}} \equiv_{p} \sum_{j=1}^{p-1} j \equiv_{p} 0$ as $p \neq 2$.
6. Proof of Conjecture 1.1. In this section, we combine the results from the preceding sections to arrive at a proof of 4.1) (restated here for the reader's convenience) and therefore of Conjecture 1.1.

Theorem 6.1. For a prime $p>3$ and $m, n \in \mathbb{N}^{+}$, we have

$$
\begin{array}{r}
\sum_{r=1}^{p-1}(-1)^{r}\binom{3 p m+3 r}{p m+r}\binom{2 p m+2 r}{p m+r}\binom{p n}{3 p m+3 r}\binom{p(n+m)+r}{p m+r} 3^{-3 r} \\
\equiv_{p^{3}} p\binom{3 m}{m}\binom{2 m}{m}\binom{n}{3 m}\binom{n+m}{m} q_{p}\left(3^{-(n-3 m)}\right)
\end{array}
$$

Proof. Based on congruences (2.1), (5.1), (5.2), and (5.4), the assertion is equivalent to

$$
\begin{align*}
\sum_{r=1}^{p-1}\binom{3 r}{r, r, r}\left(1+3 p m\left(H_{3 r}-H_{r}\right)\right)(1+ & \left.p n H_{r}\right)\left(\frac{1}{3 r}-\frac{p m}{3 r^{2}}\right) B_{r}(p, n, m) 3^{-3 r} \tag{6.1}\\
& \equiv_{p^{2}} q_{p}(1 / 3)+\frac{p(n-3 m-1)}{2} q_{p}(1 / 3)^{2}
\end{align*}
$$

Now we split the sum on the left-hand side of 6.1 into three pieces,

$$
S_{1}=\sum_{r=1}^{\lfloor p / 3\rfloor}(\cdot), \quad S_{2}=\sum_{r=\lceil p / 3\rceil}^{\lfloor 2 p / 3\rfloor}(\cdot), \quad \text { and } \quad S_{3}=\sum_{r=\lceil 2 p / 3\rceil}^{p-1}(\cdot) .
$$

As regards S_{1},

$$
S_{1} \equiv_{p^{2}} \frac{1}{3} \sum_{r=1}^{\lfloor p / 3\rfloor}\binom{3 r}{r, r, r}\left(-\frac{1}{r}-\frac{p(n-3 m)}{3 r^{2}}+\frac{p(n-3 m)\left(H_{3 r}-H_{r}\right)}{r}\right) 3^{-3 r}
$$

If $p / 3<r<2 p / 3$ then $\binom{3 r}{r, r, r} \equiv{ }_{p} 0$ and $1+3 p m\left(H_{3 r}-H_{r}\right) \equiv{ }_{p} 1+3 m$ with $B_{r}(p, n, m) \equiv_{p}(n-3 m-1) /(3 m+1)$. These imply that

$$
\begin{aligned}
& S_{2} \equiv{ }_{p^{2}} \sum_{r=\lceil p / 3\rceil}^{\lfloor 2 p / 3\rfloor}\binom{3 r}{r, r, r}\left(1+3 p m\left(H_{3 r}-H_{r}\right)\right)\left(1+p n H_{r}\right) \\
& \equiv_{p^{2}} \sum_{r=\lceil p / 3\rceil}^{\lfloor 2 p / 3\rfloor}\binom{3 r}{r, r, r}(1+3 m)\left(\frac{1}{3 r}-\frac{p m}{3 r^{2}}\right) B_{r}(p, n, m) 3^{-3 r} \\
& \equiv_{p^{2}} \frac{n-3 m-1}{3 m-1} 3^{-3 r} \\
& \sum_{r=\lceil p / 3\rceil}^{\lfloor 2 p / 3\rfloor}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r} .
\end{aligned}
$$

Finally, $S_{3} \equiv_{p^{2}} 0$ because obviously $\binom{3 r}{r, r, r} \equiv{ }_{p^{2}} 0$ as long as $2 p / 3<r<p$.
Again $\binom{3 r}{r, r, r} \equiv{ }_{p} 0$ if $p / 3<r<2 p / 3$, and $\binom{3 r}{r, r, r} \equiv_{p^{2}} 0$ if $2 p / 3<r<p$. So, from 5.5 and 5.6 we know that

$$
\begin{aligned}
& \sum_{r=1}^{\lfloor 2 p / 3\rfloor}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r} \equiv_{p^{2}} \sum_{r=1}^{p-1}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r} \equiv_{p^{2}}-3 q_{p}(1 / 3)+\frac{3 p}{2} q_{p}(1 / 3)^{2} \\
& p \sum_{r=1}^{\lfloor p / 3\rfloor}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r^{2}} \equiv_{p^{2}} p \sum_{r=1}^{p-1}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r^{2}} \equiv_{p^{2}}-\frac{9 p}{2} q_{p}(1 / 3)^{2}
\end{aligned}
$$

As before, $\binom{3 r}{r, r, r} \equiv_{p^{2}} 0$ for $2 p / 3<r<p$. Moreover, we have $\binom{3 r}{r, r, r} \equiv{ }_{p} 0$ and $p H_{3 r}-p H_{r} \equiv_{p} 1$ for $p / 3<r<2 p / 3$. Therefore, by (5.7),

$$
\begin{aligned}
0 & \equiv_{p^{2}} p \sum_{r=1}^{p-1}\binom{3 r}{r, r, r} \frac{\left(H_{3 r}-H_{r}\right) 3^{-3 r}}{r} \equiv_{p^{2}} p \sum_{r=1}^{\lfloor 2 p / 3\rfloor}\binom{3 r}{r, r, r} \frac{\left(H_{3 r}-H_{r}\right) 3^{-3 r}}{r} \\
& \equiv_{p^{2}} p \sum_{r=1}^{\lfloor p / 3\rfloor}\binom{3 r}{r, r, r} \frac{\left(H_{3 r}-H_{r}\right) 3^{-3 r}}{r}+\sum_{r=\lceil p / 3\rceil}^{\lfloor 2 p / 3\rfloor}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r} .
\end{aligned}
$$

Putting all these together, we conclude that
$S_{1}+S_{2}+S_{3}$

$$
\begin{aligned}
\equiv & { }_{p^{2}} \frac{1}{3} \sum_{r=1}^{\lfloor p / 3\rfloor}\binom{3 r}{r, r, r}\left(-\frac{1}{r}-\frac{p(n-3 m)}{3 r^{2}}+\frac{p(n-3 m)\left(H_{3 r}-H_{r}\right)}{r}\right) 3^{-3 r} \\
& +\frac{n-3 m-1}{3} \sum_{r=\lceil p / 3\rceil}^{\lfloor 2 p / 3\rfloor}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r}+0 \\
\equiv_{p^{2}} & -\frac{1}{3} \sum_{r=1}^{\lfloor 2 p / 3\rfloor}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r} \\
& -\frac{n-3 m}{9} \sum_{r=1}^{\lfloor p / 3\rfloor}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r^{2}}+\frac{n-3 m}{3} \cdot 0 \\
\equiv_{p^{2}} & -\frac{1}{3}\left(-3 q_{p}(1 / 3)+\frac{3 p}{2} q_{p}(1 / 3)^{2}\right)-\frac{n-3 m}{9}\left(-\frac{9 p}{2} q_{p}(1 / 3)^{2}\right) \\
& \equiv_{p^{2}} q_{p}(1 / 3)+\frac{p(n-3 m-1)}{2} q_{p}(1 / 3)^{2},
\end{aligned}
$$

which is exactly what we expect. The proof is complete.
7. Conclusions and remarks. In this final section, we extend the congruence on $a_{i}(n)$ (for $i>0$), discussed in the earlier sections, from modulo p^{2} to modulo p^{3}. While stating our claim in its generality, we only exhibit proof outlines for $i=1$ as a prototypical example. For $i>1$, the details are similar and hence omitted. We believe the curious researcher would be able to account for these remaining cases.

Theorem 7.1. For $n, i \in \mathbb{N}^{+}$and a prime $p>2 i$,

$$
a_{i}(p n) \equiv_{p^{3}}(-1)^{i-1} \frac{a_{1}(p n)}{i^{2}\binom{2 i-1}{i-1}} \equiv_{p^{3}} \frac{(-1)^{i-1} p^{2}\binom{n+2}{2} a_{1}(n)}{i^{2}\binom{2 i-1}{i-1}} .
$$

Proof (the case $i=1$; ingredients for $\left.a_{1}(p n) \equiv_{p^{3}} p^{2}\binom{n+2}{2} a_{1}(n)\right)$.
(A) By partial fraction decomposition,

$$
\begin{aligned}
a_{i}(n) & =\frac{1}{3^{i}} \sum_{k=0}^{n-1}(-1)^{n-k}\binom{3 k}{k}\binom{2 k}{k}\binom{n}{3 k}\binom{n+k}{k} \frac{\binom{n-3 k}{i} 3^{n-3 k}}{\binom{k+i}{i}} \\
& =(-1)^{i} a_{0}(n)+\frac{i}{3^{i}} \sum_{j=1}^{i}(-1)^{j-1}\binom{i-1}{j-1}\binom{n+3 j}{i} b_{j}(n),
\end{aligned}
$$

where for $j \in \mathbb{N}^{+}$,

$$
b_{j}(n):=\sum_{k=0}^{n-1}(-1)^{n-k}(n-3 k)\binom{3 k}{k}\binom{2 k}{k}\binom{n}{3 k}\binom{n+k}{k} \frac{3^{n-3 k}}{k+j}
$$

Thus, $a_{0}(n p) \equiv{ }_{p^{3}} a_{0}(n)$ implies

$$
\begin{aligned}
a_{1}(n p) & =-a_{0}(n p)+\frac{n p+3}{3} b_{1}(n p) \\
& \equiv p^{3}-a_{0}(n)+\frac{n p+3}{3} b_{1}(n p) \\
& \equiv{ }_{p^{3}} a_{1}(n)+\frac{n p+3}{3} b_{1}(n p)-\frac{p+3}{3} b_{1}(p) .
\end{aligned}
$$

(B) Hence, it suffices to show that

$$
b_{1}(n p) \equiv{ }_{p^{3}} \frac{3}{n p+3}\left(p^{2}\binom{n+2}{2}-1\right) a_{1}(n)+\frac{n+3}{n p+3} b_{1}(n)
$$

or, since $a_{1}(n)=-a_{0}(n)+(n+3) b_{1}(n) / 3$,

$$
\begin{equation*}
b_{1}(n p) \equiv_{p^{3}} p^{2}\binom{n+3}{3} b_{1}(n)+\left(1-\frac{p n}{3}-\frac{p^{2}(n+3)(7 n+6)}{18}\right) a_{0}(n) \tag{7.1}
\end{equation*}
$$

(C) The above congruence follows from

$$
\begin{array}{r}
\sum_{r=0}^{p-1}\binom{3 p m+3 r}{p m+r}\binom{2 p m+2 r}{p m+r}\binom{p n}{3 p m+3 r}\binom{p(n+m)+r}{p m+r} \frac{(-1)^{r} 3^{-3 r}}{p m+r+1} \tag{7.2}\\
\equiv_{p^{3}}\left(\frac{p^{2}}{m+1}\binom{n+3}{3}+1-\frac{p n}{3}-\frac{p^{2}(n+3)(7 n+6)}{18}\right) \\
\\
\cdot\binom{3 m}{m}\binom{2 m}{m}\binom{n}{3 m}\binom{n+m}{m} 3^{-(n-3 m)(p-1)}
\end{array}
$$

By summing over m, it is immediate to recover 7.1.
(D) In order to prove $\sqrt{7.2}$, we have the old machinery,

$$
\frac{1}{p m+r+1} \equiv_{p^{2}} \frac{1}{r+1}-\frac{m p}{(r+1)^{2}}
$$

and

$$
\begin{aligned}
& \sum_{r=0}^{p-1}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{r+1}=\frac{9 p}{2}\binom{3 p}{p, p, p} 3^{-3 p} \equiv_{p^{2}} p-3 p^{2} q_{p}(1 / 3) \\
& \sum_{r=0}^{p-1}\binom{3 r}{r, r, r} \frac{3^{-3 r}}{(r+1)^{2}}=\frac{9(9 p+2)}{4}\binom{3 p}{p, p, p} 3^{-3 p}-\frac{9}{2} \equiv_{p}-\frac{7}{2}
\end{aligned}
$$

(E) Finally, we can modify the previous proof as follows:

$$
\begin{aligned}
\sum_{r=0}^{p-1}\binom{3 r}{r, r, r} & \frac{\left(3 H_{3 r}-H_{r}\right) 3^{-3 r}}{r+1} \\
& =\sum_{r=1}^{p-1} \frac{(1 / 3)_{r}(2 / 3)_{r}}{(1)_{r}^{2}} \cdot \frac{1}{r+1} \cdot \sum_{j=0}^{r-1}\left(\frac{1}{1 / 3+j}+\frac{1}{2 / 3+j}\right) \\
& =\sum_{r=1}^{p-1} \frac{1}{r+1} \sum_{k=0}^{r-1} \frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}} \cdot \frac{1}{r-k} \\
& =\sum_{k=0}^{p-2} \frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}} \sum_{r=k+1}^{p-1} \frac{1}{(r+1)(r-k)} \\
& =\sum_{k=0}^{p-2} \frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}}\left(\frac{1}{k+1} \sum_{r=k+1}^{p-1}\left(\frac{1}{r-k}-\frac{1}{r+1}\right)\right) \\
& =\sum_{k=0}^{p-2} \frac{(1 / 3)_{k}(2 / 3)_{k}}{(1)_{k}^{2}} \cdot \frac{H_{p-1-k}-H_{p}+H_{k+1}}{k+1} \\
& \equiv p \sum_{k=0}^{p-1}\binom{3 k}{k, k, k} \frac{\left(H_{k}-H_{p}+H_{k+1}\right) 3^{-3 k}}{k+1}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\sum_{r=0}^{p-1}\binom{3 r}{r, r, r} \frac{\left(H_{3 r}-H_{r}\right) 3^{-3 r}}{r+1} & \equiv p \frac{1}{3} \sum_{k=0}^{p-1}\binom{3 k}{k, k, k} \frac{(-1 / p+1 /(k+1)) 3^{-3 k}}{k+1} \\
& \equiv p \frac{1}{3}\left(-1-\frac{7}{2}\right)=-\frac{3}{2}
\end{aligned}
$$

REMARK 7.2. We showed that the conjecture $a_{0}(p n) \equiv_{p^{3}} a_{0}(n)$ holds true. If one combines the techniques established in this paper with the existing literature on supercongruences (see references below) for binomials of the type $\binom{p^{r} n+k}{p^{t} m+j}$, there is enough reliable verity to believe that $a_{0}\left(p^{r} n\right) \equiv_{p^{3 r}}$ $a_{0}\left(p^{r-1} n\right)$ might be approachable. However, at present we are unsure of the details.

Acknowledgments. The first-named author is grateful to A. Straub for bringing the conjecture on the Almkvist-Zudilin numbers to his attention. The authors are grateful to the referee(s) for a careful review of this paper.

References

[1] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11-13.
[2] F. Beukers, Some congruences for the Apéry numbers, J. Number Theory 21 (1985), 141-155.
[3] H. H. Chan, S. Cooper, and F. Sica, Congruences satisfied by Apéry-like numbers, Int. J. Number Theory 6 (2010), 89-97.
[4] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360.
[5] E. Mortenson, Supercongruences between truncated ${ }_{2} F_{1}$ hypergeometric functions and their Gaussian analogs, Trans. Amer. Math. Soc. 355 (2003), 987-1007.
[6] R. Osburn and B. Sahu, Congruences via modular forms, Proc. Amer. Math. Soc. 139 (2011), 2375-2381.
[7] R. Osburn, B. Sahu, and A. Straub, Supercongruences for sporadic sequences, Proc. Edinburgh Math. Soc. 59 (2016), 503-518.
[8] P. Ribenboim, Thirteen Lectures on Fermat's Last Theorem, Springer, New York, 1979.
[9] B. Sagan, Congruences via Abelian groups, J. Number Theory 20 (1983), 210-237.
[10] A. Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra Number Theory 8 (2014), 1985-2007.
[11] R. Tauraso, Supercongruences for a truncated hypergeometric series, Integers 12 (2012), A45, 12 pp .

Tewodros Amdeberhan
Department of Mathematics
Tulane University
New Orleans, LA 70118, U.S.A.
E-mail: tamdeber@tulane.edu
Roberto Tauraso
Dipartimento di Matematica
Università di Roma "Tor Vergata"
00133 Roma, Italy
E-mail: tauraso@mat.uniroma2.it

Dipartimento di Matematica
00133 Roma, Italy
E-mail: tauraso@mat.uniroma2.it

[^0]: 2010 Mathematics Subject Classification: Primary 11A07; Secondary 11B65.
 Key words and phrases: congruences, Fermat quotients, binomial coefficients, harmonic numbers.
 Received 3 July 2015; revised 26 February 2016.
 Published online 11 May 2016.

