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1. Introduction. The Apéry numbers A(n) = 7o (7) ("}")" were
valuable to R. Apéry in his celebrated proof [I] that ((3) is an irrational
number. Since then these numbers have been a subject of much research.
For example, they stand among a host of other sequences with the property

A(p'n) =psr A(pr_ln),
now known as supercongruence, a term dubbed by F. Beukers [2].

At the heart of many of these congruences sits the classical example
(ilc’) =3 (lc’) which is a stronger variant of the famous congruence (ilg) =, (lc’)
of Lucas. For a compendium of references on Apéry-type sequences, see [10].

Let us begin by fixing notational conventions. Denote the set of positive
integers by N*. For m € NT, let =,, represent congruence modulo m.

In this paper, we aim to investigate a similar type of supercongruences
for the following family of sequences. For integers ¢ > 0 and n > 1, define

(1) L(n=i)/3] NN . |
o= T () W)

k=0
whose generating function is

00 0 : 3k+i

> ai(n)z" = (1) <k: ;k;jk: Z) a +zz)4k+1+{.

n=0 k=0 B
In recent literature, ag(n) are referred to as the Almkvist—Zudilin numbers.
Our motivation for the present work emanates from the following claim

found in [6] (see also [3], [7]).
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CONJECTURE 1.1. For a prime p and n € NT, the Almkvist-Zudilin
numbers satisfy
ao(pn) =3 ao(n).
Our main results can be summed up as:

If pis a prime and n,i € N*, then ag(pn) =, ao(n) and a;(pn) =,2 0.

The organization of the paper is as follows. Section 2 lays down some
preparatory results to show the vanishing of a;(pn) modulo p? for i > 0.
Section 3 sees the completion of the proof. Sections 4 and 5 exhibit its
elaborate execution. The reduction brings in a tighter claim, and it also
offers an advantage in allowing to work with a single sum instead of a double
sum. In Section 6, we complete the proof for Conjecture The paper
concludes with Section 7 where we declare an improvement on the results
from Section 3, which states a congruence for the family of sequences a;(pn)
modulo p? when i > 0.

2. Preliminary results. Fermat quotients are numbers of the form

P11
Pp(r) = ——,
i p

and they played a useful role in the study of cyclotomic fields and Fermat’s
Last Theorem (see [§]). The next three lemmas are known, but we give their
proofs for completeness.

LEMMA 2.1. If p is a prime and a %, 0 then for d € Z,

(2.1) qp(ad) =2 dqp(a) +p<;l> qp(a)z.

Proof. Since by Fermat’s Little Theorem a?~! =, 1, it follows that
d
(@ =1+ (@' —1)=p 1+da! 1)+ (2> (P! —1)% u

LEMMA 2.2. Let H, = 377, 1/j be the nth harmonic number. Then,
for n € Nt we have

(2.2) ;(—1)"5 (Z) <" Z k); — 2H,.

Proof. For an indeterminate y, a simple partial fraction decomposition
shows the identity (see [5, Lemma 3.1])

I S O e L T

k=0 j=
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Now, subtract 1/y from both sides and take the limit as y — 0. The right-
hand side takes the form
n . n . n
(=) =TT (f +
1 Gy -1+ 2y 1
n! y—0 Yy — k

The conclusion is clear.

LEMMA 2.3. Suppose p is a prime and 0 < k < p/3. Then

(_1)1@(LP£3J> <U9/3li + k) =, <k73k;]i k>3—3k‘

Proof. We observe that (7) (”zk) = (Qkk) (”22’“) If p=3 1, then |§]| = %1
and hence

1 —1/p-1 E—1
(szFk):pa(paJrk) <p—1ij>

2% @k 3
1)@k —1) 1)k (3k)!
= g L0+ 0 = i

Therefore,

(D)) ()T =

The case p =3 —1 runs analogously. =

COROLLARY 2.4. For a prime p and an integer 0 < i < p/3, we have

pi 3k \37% _ %%J V3, 5
kkk) kP \kkE) R W)

k=1

s N N
2= =0

Z(kkk>k+z P Z (kkk>k+z P

k=0 k=0

Proof. For the first assertion, we combine (2.2, Lemma and the
congruence [4, p. 358]

lp/3]
_ 1 30(03)
r=1

The second congruence follows from ([2.3) with y = ¢ and Lemma "

3. Main results on the sequences a;(n) for i > 0

THEOREM 3.1. For a prime p and n,i € Nt with i < p/3, we have

a; (pn) =p2 0.
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Proof. In (1.1]), replace n by pn and k = pm +r for 0 <r < p— 1 and
some m € Z (note: 3k + i = 3pm + 3r + i < pn) so that
[n/3] p—1

— n—pm—r [ 3P+ 3r + 9\ (2pm + 21 4+ ¢
apn) = 3 3 (1) ( )( )
0

pm—+r pm—+r

. pn pn+pm+r 3pn—3pm—37°—i
3pm +3r+i pm+r '

Ift:=3r+i>p+1, it is easy to show that the following terms vanish
modulo p?:

3pm+t\ (2pm +2r + 1 pn
pm+r pm—+r 3pm +t

_ 3pm +t pn
\pm+rpm4r,pm+r+i) \3pm+t)

Therefore, we may restrict to the remaining sum with 3r +¢ < p:

R (3pm 3 i\ (2pm + 2 + i
ai(pn) = Z Z (=1) pm+r pm+r

m=0 r=0
' pn PR P T apn—3pm—3r—i
3pm + 3r + 1 pm+r '

We need Lucas’s congruence (5212) =, (Z) (g) to arrive at

e B ()

m T
i pn n+m 3pn—3pm—3r—1
3pm +3r+i m '

Again by Lucas’s congruence and using (pgl) =, (—1)7 for 0<j <p, we get
pn _ pn pn—1)+p—1
3pm+3r+i)  3pm+3r+i\3pm+3r+i—1

_ pn (n—1 p—1 =, (—1)riL pn (n-—1
P31\ 3m J\3r+i-1) 7 3r+i\ 3m )’

which leads to

- Ln/3] L(p—1)/3) o (3mY (37 40\ [2m)\ [2r +i
ai(pn) =p2 pn (=1) m r m r

m=0 r=0
. (_I)T—H_l n—1 n+m 3pn—3pm—37'—i
3r+1 3m m ’

m=0 r=
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Next, we use Fermat’s Little Theorem and decouple the double sum to obtain

[n/3]

n—m-+i—1lon—3m—i 3m 2m n—1 nAm
o= ot () O (5, ()
m=0
pzl):/?’J 3r+d\ (2r 44\ 37
b r 3r+i

It suffices to verify that the sum over r vamshes modulo p. To achieve this,

apply partial fraction decomposition and Corollary (upgrading the sum
to |p/3] is harmless here). Thus,

i—1 %

LPE/%J <3r:i> <2r:¢> ;—jz B lpz/%J (T g T) 5 [+ ) [[0r+ )"

r=0 j=1 j=1

: ,W’J 3\ 373 :
S () o

r=0

where a;(i) = (—=1)"7 (31?‘:11) (J 1) € Z. We have enough reason to conclude
the proof. u

4. The reduction on the sequence agp(n). Our proof of Conjec-
ture requires a slightly more delicate analysis than what has been demon-
strated in the previous sections for the sequences a;(n), where i > 0. As a
first major step forward, we prove the following somewhat stronger result.
This will be crucial in scaling down a double sum, which emerges (see proof
below) as an expression for the sequence ag(pn), to a single sum.

THEOREM 4.1. If p is a prime, then the congruence
-1
(41) u (—1) 3pm—+3r\ (2pm+2r pn p(n+m)+r 4=3r
- pm—+r pm+r 3pm+3r pm+r

IR [ S G

implies ag(pn) =,3 ao(n).

Proof. In (1.1)), replace n by pn and k = pm +r for 0 <r <p—1 and
some m € Z. Using these new parameters, we write

pm T pm r

. pn p(n + m) +r 3—37’
3pm + 3r pm+r ’
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pb

pc) = (lc’) and the hypothesis we

Let us isolate the case r = 0; then, from (
get

ap(pn) =ps ”Z:l 3p("3m)(_1)nm< ) < ) < ) (n + m>

m=0
- [1 + pgy(3~(=3m)]

o S () G ) (5 =

m=

5. Further preliminary results. In this section, we build a few valu-
able results aiming at the proof of (4.1]) and hence of Conjecture

LEMMA 5.1. Let m,n € N*. Forp > 3 a prime and an integer 0 < r < p,
we have

p(n+m)+r\ _ (n+m
(5.1) < A > =2 < . )[1 + pnH,],
and

pn p p°m n

52 (0 ) = (L2 ) 1y (o ) o 3m)Butpnam)
where

—1+pnHs,—_1 if O<’I”<p/3,

n—3m—1)(1—pnHs_1_ .

( 3)T§L+1 3r-1-p) if p/3<r<2p/3,

B’r‘(pun7m) =
(n—3m—1)(n—3m —2)(—1+ pnHs,_1-2p)

(3m +1)(3m + 2)
\ if 2p/3 <r <p.

Proof. We revive a result found in [9, (27)], which is stated as follows.
If n =nip+ng and k = k1p + ko where 0 < ng, kg < p then

n n1 no no—p no—p
5.3 = 1 — k —k .
(53) (k> v <k1> [(n1+ )<k0> (o + 1)< ko ) 1<ko+p>]
For (5.1)), apply (5.3)) with ny =n + m, ng =r = ko, k1 = m. So,
<p(n+m)+r> _, <n+m> [(1+m+n)<r>
pm—+r m T
() ()
r r+p
Now apply (5:3) to ("1") =2 2 = (",7) (with ny =1, ng = ko =7, k1 = 0),

and to (:IZ) = (f’;;f) =2 —3+ Q(T;p) (with ny = =1, ng = r, ky = —2,
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ko = 0). After substitution and simplifications, we obtain

<p(n+m)+r> _ <n+m) <1+n<<p+r> B 1))
pm—+r m T
The desired result is reached as soon as we note that

p+rT 1+ .
( >—T!H(p+])zp2 1+ pH,.
7j=1

r

The congruence demands a careful analysis. The setup begins by
expressing 3r = ep + d where 0 < d < p and € = |3r/p| € {0,1,2} which
correspond to 0 < 3r < p, p < 3r < 2p and 2p < 3r < 3p, respectively.
Apply withny =n—-1,ng=p—1, k1 =3m+e¢, kg = d— 1. Follow
this through using (_]1) = (—1)/. The outcome is

pn _pn pn—1)+p-1
3pm+3r)  3pm+3r\pBm4e)+d—1

pn n—1 p—1 e
=, P . ~ 1.
P 3pm+3r(3m+e>[n<3r—1—ep>+( 7 =)

Combining this step and the easy facts
1 1 pm p—1\ ;
Er e L i 2 ( ; )=p2 (~1)°[1 - pH)

we reach the conclusion. =

Also the next congruence can be deduced from (5.3)). However, here we
offer a more direct approach.

LEMMA 5.2. Let m € NT. For p > 3 a prime and an integer 0 < r < p,
we have

(5.4)
3 3 2 2 3 3
<pm+ T)(]?m—{- r> Ep2< m )( r>[1+3pm(H3r—Hr).
pm—+r pm+r m,m,m,) \r,r,r
Proof. Since (pm + k)™! =2 (1 — B2), we obtain

_ 1 pm 3 1 3pm k — 3pm
3 _ — —

: smlic 35\ _ (34) (2 3j :

For notational simplicity, denote (j’j’j) = (]. ) (J) by (j3). We consider the
expansion [ [}, (Ai+2) = 37 e;(A)z" "/ as our running theme, where ¢; is
the jth elementary symmetric function in the parameters A = (\q,..., \,).

In particular, e, = 1 and e,—1(1,...,n) = n!H,. The claim then follows
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from
((?fn?ij;) - ((ifnm > Jf:[ j+ 3pm) ﬁ(pm + k)73

= k=1

3pm \ 1 il
( >4H]—|—3pmnk—3pm)

k=1

. 3pm \ 1
=2 <(pm)3> wr (3r)!r![1 + 3pmHs, — 3pmH,|. =

REMARK 5.3. This fact is even more general as stated below but the
proof is left to the interested reader. If A,n € NT, 0 < r < p are integers
and p > 3 a prime, then

(Apm + Ar)! =, (m’Am > (7”7 AT’T> 14+ Apm(Ha, — H,)).

(pm + r)14 So,m
LEMMA 5.4. If p > 3 is a prime then
p—1 —3r
3r \3 3p 9
5.9 =2 —3qp(1/3) + —qp(1/3
( ) ;<T,T,T> r »? Qp( / )+ 2 Qp( / ) ’
p—1 —3r
3\ 3 9 )
5.6 — =, —=q»(1/3
I N B L
s S )
' A\ r B

Proof. By [2.1)), q5(1/27) =,2 3¢,(1/3) + 3pgp(1/3)?. Therefore, by (5)
n [II, Theorem 4],

p—1 ” 3r Pl
Z( 3 >3 =y U2, 1/3 2/3 .%EPQ _qp(1/27)Jrgqp(l/ﬂ)2

r,r,v
r=1 r=1

%rwmm+%%ww.

In a similar way, by (6) in [I1, Theorem 4],
p—1

p—1 r —3r —

r,r,r
r= » r=1

By (1) in [II, Theorem 1],

(1/3),(2/3), = 1 1\ /323 1
(1)2 Z<1/3+j+2/3+j>_ 12 -k

B
Il
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Hence ([5.7)) is implied by

r! (3Hs, — H,)375"
1 r,r, T

r=

(1/3)( 2/3 1 & 1
Z (1)2 r FO<1/3+3 2/3+j)
1“113 23 1 ”‘213 (2/3), %2
ZTZ (1/3) / R SONCT S
=1 k=0 k=0 k ekl
1 =2 1/3 2/3 L1
_|_ —_
Tz_;r ; (kr§rl<r—/~c 7“))

[\

p—
1/3)k 2/3 1
p Z ( %(prlfk — Hp—1+ Hy)
k

k
R/ 3 2H, 373
P Lo\ k kK ko

k=

Il Il
Il
>—A =

[y

because H,_i_j =, H}, and H), 1—pzr1725p ?;%jpoaSp;&Q.-

6. Proof of Conjecture In this section, we combine the results
from the preceding sections to arrive at a proof of (4.1) (restated here for
the reader’s convenience) and therefore of Conjecture

THEOREM 6.1. For a prime p > 3 and m,n € NT, we have
pil(_l)"’ 3pm + 3r\ [2pm + 2r pn p(n+m)+r —
- pm+r pm+r 3pm + 3r pm+r

o))

Proof. Based on congruences ([2.1)), (5.1)), (5.2), and (5.4)), the assertion

is equivalent to

(6.1)
Ly 1 pm
-3
; <,,47 T, T) (1 + 3pm(H3r - Hr))(]. + pTLHr) <3r — 37‘2) Br(p’ n, m)3 T
p(n —3m —1)

=p2 qp(1/3) + 5 QP(1/3)2-
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Now we split the sum on the left-hand side of (6.1)) into three pieces,

Lp/3] [2p/3] p—1
5122(.)7 Sy = Z (), and S3= Z ().
r=1 r=[p/3] r=[2p/3]
As regards Sy,
6o LSY (Y (L1 pn3m) | pln 3m)(Fye — H) )
L= 3 — \rrr r 3r2 r )

If p/3 <r < 2p/3 then ( sr ) =p 0 and 1+ 3pm(Hs, — H,) =, 1 + 3m with

r,r,"r

B,(p,n,m) =, (n —3m —1)/(3m + 1). These imply that

23] o
S2 =p2 Z <T r T) (1 +3pm(Hs, — H;))(1+ pnH,)

r=[p/3] .
N —3r
<3’I" 3T2)Br(p,n7m)3

[2p/3]

. 3r I1\n-3m—-1__s,

7 Z <r,r,r)(1+3m)<3r> 3m+1 3

r=[p/3]

_ n—3m—1L2piﬂ 3\ 378"

S 3 rorr) o

r=[p/3]
Finally, S3 =2 0 because obviously (Mr) »2 0 as long as 2p/3 < r < p.
Again (T3rrr) = 0 1f p/3 < r < 2p/3, and (TM) =2 0if 2p/3 <7 < p.

So, from ([5.5)) and (| we know that
[2p/3] 3r p—1 3r

3~ 3~ 3p 9
> (o) 5 = X () 5 = 19+ F 97

r=1

lp/3] 3r 3
3” 3r \ 3~ 9p 9
pZ(TT‘T) r2 _p2p2<rrr> r2 :p2_?qp(1/3>'

As before, ( sr ) =,2 0 for 2p/3 < r < p. Moreover, we have ( sr ) =, 0

T T

and pHs, — pH, =, 1 for p/3 < r < 2p/3. Therefore, by (5.7),

1

~ _ 12p/3] _
3r \ (Hs, — H,)37%" 3r \ (Hs, — H,)373"
0=y () T s () et

r,r,r r 1 r,r,Tr T
r=

%?i 8\ (Hay — H)3™% LQ”Z/S’J 3\ 3%
=P r, T r r,e,r) o
r=[p/3]
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Putting all these together, we conclude that

S1+ S22+ .53
1 lp/3] 3
=, = Z T 1 p(n—3m) N p(n—3m)(Hs, — H,) g
=p2 3 p— T, T r 37“2 r
[2p/3] _3
n—3m-—1 3r \ 373"
RETEES (r,m) L
r=[p/3]

—p’ 3T1 r,r,r) T
Lp/3 —3r o
— \",7,T 3

= (1/3) + p("‘?;”“” w1/

which is exactly what we expect. The proof is complete. =

7. Conclusions and remarks. In this final section, we extend the con-
gruence on a;(n) (for i > 0), discussed in the earlier sections, from modulo
p? to modulo p?. While stating our claim in its generality, we only exhibit
proof outlines for ¢ = 1 as a prototypical example. For ¢ > 1, the details are
similar and hence omitted. We believe the curious researcher would be able
to account for these remaining cases.

THEOREM 7.1. For n,i € NT and a prime p > 2i,

; ai(pn —1)i—1y2 n+2 ar(n
o) =p ()7 Gy = 25(35 11>) -

Proof (the case i = 1; ingredients for ai(pn) =, p (n+2) 1(n)).
(A) By partial fraction decomposition,

-3 (R

- et + 30 () (7

i=1 i1
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where for j € NT,

n—1

- Sore-(2) GRS

Thus, ag(np) =3 ao(n) implies

np+ 3
aj(np) = —ap(np) +

bl (np)
by (np)

bi(np) —

np + 3

3
np+ 3

3
(B) Hence, it suffices to show that

3 n+2 n+3
b = 2 -1 b
) =p 2 (("57) - e + 25 )

or, since aj(n) = —ag(n) + (n+ 3)b1(n)/3,

n m 2 n n
(71)  bi(np) =, p2( ;3)b1(n) + <1 -Br ( “’1);7 +6)>a0(n).

(C) The above congruence follows from

(7.2)
— (3pm + 3r\ [2pm + 2r pn p(n4+m)+r\ (—=1)7373"
pm 4+ pm—+r 3pm + 3r pm—+r pm—+1r+1

_ p? (n+3 +1_@_p2(n+3)(7n+6)
P \m+1\ 3 3 18

() G () (" e

By summing over m, it is immediate to recover (|7.1)).
(D) In order to prove (7.2)), we have the old machinery,

1 o 1 mp
pm+r+1_p2r—|—1 (r+1)%’

p—1 —3r
3r 3 9p ([ 3p —3p 2
= = — 1
(r,r,r)r—i—l 2 <p,p,p>3 p2 P =307 p(1/3),

T
L/ 3\ 3% _909p+2)( 3p g 9_ T
e \rr,r) (r+1)? 4 \ppp 277 2

Ep3 —ag (n) +

Ep3 ai (n) +

r=

and
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(E) Finally, we can modify the previous proof as follows:

P 1( 3r > (3Hs, — H,)37%"
0 r,Tr

r+1

r—
r—1

= 1/3 2/3 1 1
Tl JZ<1/3+3 2/3+j>

ﬁ
Il
—

M

|
”G
,_.
—_
3
(]
|_|
~
w
~
W‘
[\3
\
CJO
—_

r:lr+1k:0 (1 r—k

p—2 p—1
_ N A/3)k(2/3)k 1
a o (D7 rzk;-:&-l (r+1)(r—k)

p—2 p—1
e (/3)(2/3)k (1 11
_kZ:O (1)2 <k+1r§+1<r—k r+1)>
— - (1/3) (2/3)k . prlfk - Hp +Hk+1

k=0 (1)k k+1

-1
X (Hy, — Hy + Hyy1)373F
:‘”Z:O<kkk> k+1+1 ’

which implies that

—_

1

3r \ (Hsr — Hy)373" pz (—1/p+1/(k+1))373*
T r+1 - k, k: k k+1

0

i) 4

REMARK 7.2. We showed that the conjecture ag(pn) =, ao(n) holds
true. If one combines the techniques established in this paper with the ex-
isting literature on supercongruences (see references below) for binomials of

p—

i

the type (ﬁzgiﬁ), there is enough reliable verity to believe that ag(p™n) =3

ao(p"~'n) might be approachable. However, at present we are unsure of the
details.
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