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Strong Chang’s Conjecture, Semi-Stationary Reflection,
the Strong Tree Property and two-cardinal square principles

by

Victor Torres-Pérez (Wien) and Liuzhen Wu (Beijing)

Abstract. We prove that a strong version of Chang’s Conjecture implies both the
Strong Tree Property for w2 and the negation of the square principle O(A,w) for every
regular cardinal A > wa.

1. Introduction. In these notes we consider two equivalent principles:
a strong version of Chang’s Conjecture and the Semi-Stationary Reflection
Principle. Given two sets x,y, we write x C y whenever x C y and x Nwy =
Yy MNwi.

DEFINITION 1.1. The principle CC* asserts that for every regular car-
dinal k > w9, there are arbitrary large 6 such that the following statement
CC(k, 6) holds: For every countable M < Hy and every a € [k]“!, there is a
countable M* < Hy and a* € M* N [k]“? such that a* D a and M* J M.

A first generalization of Chang’s Conjecture of this kind was given by
Shelah (see [2I, Theorem 1.3, p. 398]). Similar general versions were studied
in [25] and [5]. The Semi-Stationary Reflection Principle (SSR) was intro-
duced by Shelah [22] Chapter XIII, Definition 1.5]. Given an ordinal A and
a set X C [A]Y, we say X is semi-stationary in [\ if its C-upward closure
is stationary, i.e. the set {y € [A\]¥ : 3z € X (x C y)} is stationary. It is clear
that every stationary set is semi-stationary.

DEFINITION 1.2. The principle SSR asserts that the following statement
SSR(A) holds for every ordinal A > ws: for every semi-stationary subset
X C [NY, there is W € [A]“" with W D w; such that X N [W]“ is semi-
stationary in [W]“.
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Débler and Schindler proved that CC* and SSR are equivalent (see [5]
Theorem 5.7]). Shelah showed that SSR is equivalent to the following state-
ment:

(f) Every poset preserving stationary subsets of wy is semiproper

(see [22, Chapter XIII, 1.7]). Although these principles are consequences
of the Weak Reflection Principle (see for example [I7]) or Rado’s Conjec-
ture [4], they have many important consequences of their own: In [9], it
was already shown that () implies that the ideal NS, is precipitous. It
was shown that under a weaker version of CC*, the existence of a special
Ng-Aronszajn tree is equivalent to CH (see [26]), and that SSR implies the
Singular Cardinal Hypothesis [19] and the negation of (J(A) for all regular
cardinals A > wy. The present authors [28] showed recently that under a
weak version of CC*, the negation of CH entails the Tree Property for wo.

In Section (3, we discuss the relationship between CC* and the Strong
Tree Property. Looking for sufficient conditions for a tree to have a cofinal
branch has led to many interesting combinatorial results. We recall that
an infinite regular cardinal x has the Tree Property (TP(k)) if for every
tree of height x with levels of size < &, there is a cofinal branch. Koénig’s
Lemma states that TP(w) holds [14], while Aronszajn showed that there is
a tree of height w; with each level at most countable and with no cofinal
branches (see [15, Theorem 6, p. 96]). Baumgartner [I] proved that the
Proper Forcing Axiom PFA implies TP(w2). However, TP(w3) turned out
to be equiconsistent with the existence of a weakly compact cardinal ([16]
Theorem 5.9] and [0]).

Jech introduced a strengthening of the Tree Property, now called the
Strong Tree Property (see Section [3| for the definition). He noticed that
an inaccessible cardinal x has the Strong Tree Property if and only if & is
strongly compact (see [12), p. 174]). Weif [31] showed that PFA implies Ry
has the Strong Tree Property. Sakai and Velickovié¢ [19] proved that SSR,
together with MA,, (Cohen), implies the Strong Tree Property at ws.

In this note, we show that it is enough to assume SSR and —CH for wy
to have the Strong Tree Property. We remark that SSR is consistent with
both CH and —=CH, and that CH implies =TP(w2). Therefore, our result is
in certain sense optimal.

In Section 4], we study the relationship between SSR and the square prin-
ciple O(\, w) for every regular cardinal A > ws. The original square principle
O was introduced by Jensen [13]. He showed that [y holds in L for every un-
countable cardinal A. Schimmerling [20] generalized this square principle to
weaker versions of the form [, . These two-cardinal versions have been ex-
tensively studied so far. For example, after the works of Cummings—Magidor
and Baumgartner, we have a complete picture of the relationship between



CC*, SSR, Strong Tree Property and square principles 249

MM and square principles of the form O, x ([2], [3]). Some partial results
were also given on relations between Rado’s Conjecture (RC) and O, » ([26],
[27]). Sakai established in unpublished notes [18] a rather complete picture
of relations between SSR and the square principles U, .

The square principle () (see Definition has also been studied in
several instances. Jensen showed that in L, if A > w is regular and O(\)
holds, then A is not weakly compact (see [I3, Theorem 6.1]). It has been
proven that the negation of (J(\) for all regular cardinal A > ws is implied by
the Proper Forcing Axiom (Todorcevi¢ [24]), the Weak Reflection Principle
(Velickovi¢ [29]), Rado’s Conjecture (Todorcevi¢ [25]) and more recently
by SSR (Sakai-Velickovi¢ [19]). Regarding a two-cardinal version O(k, \)
(see Definition and its relation to other combinatorial principles, some
results have been already established, for example in [23] and [27]. In this
paper, we prove that SSR. is enough to have the negation of (A, w) for every
regular cardinal A > ws.

2. Preliminaries. In these notes we will consider several types of sta-
tionary sets.

Given a limit ordinal -, a subset A C « is unbounded in ~ if sup(A) = v,
and closed in ~y if for every limit ordinal 8 < =, if AN S is unbounded in 5,
then 8 € A. A set A C « is often called a club set in ~y if it is closed and
unbounded in v. A set S C v is stationary if SN A # () for every A club
in 7.

The following result involving stationary sets is known as Fodor’s Lemma
or the Pressing Down Lemma for ordinals.

LEMMA 2.1 (Fodor [7]). Let k be a regular uncountable cardinal. Then
for every stationary S C k, and for every f : S — k such that f(a) < « for
every a € S, there is £ < Kk such that f=1({¢}) is stationary.

A general version of a stationary set was given originally by Jech. We will
also use an equivalent version due to Kueker (see for example [10, Theorem
8.28]). Given an infinite set A and a regular cardinal u, we denote by [A]<H
the collection of subsets of A of size < p. Similarly, let [A]* denote the
collection of all subsets of A of size u. We say that a set § C [A]¥ is
stationary in [A]¥ if for every function F : [A]<¥ — A, there is X € S such
that F(e) € X for every e € [X]<¥.

The following lemma is a generalized version of the Pressing Down
Lemma (see [10, Theorem 8.24)).

LEMMA 2.2 (Jech). For every stationary set S C [A]* and every f: S — A
such that f(X) € X for every X € S, there is a € A such that f~1({a}) is
stationary.
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In general, we say that a set S C [A]* is weakly stationary if for every
F : [A]<¥ — A, thereis X € S such that F(e) € X for every e € [X]|<“. Note
that by Kueker’s Theorem mentioned above, weakly stationary is the same
as stationary when p = w. However, it is not so for u > w: see, for example,
the discussion [I1], end of Section 4.1]. This generalization of stationary set
is due probably to Foreman, Magidor and Shelah [9], and used prominently
by Woodin.

The Pressing Down Lemma for this kind of stationary sets is folklore,
but we include a reference for completeness.

LEMMA 2.3 (Folklore). Given a set X and a regular cardinal p, for every
weakly stationary set S C [X]|* and any regressive function f : S — X, there
is a weakly stationary set S’ C S such that f|g is constant.

Proof. See for example [8, p. 912, Lemma 3.3]. =

All along these notes we only use the notion of weakly stationary. Since
for 4 = w weakly stationary and stationary coincide, we make an abuse of
language and call both just stationary, even when p > w;.

3. Semi-Stationary Reflection Principle and the Strong Tree
Property for wy. We give the definitions regarding the Strong Tree Prop-
erty.

DEFINITION 3.1. Let A > w; be a regular cardinal and let x > A.
A (K, \)-tree is a system {.%, € P(2%) : a € [s]<*} such that

(1) for every a, 1 < |.%,| < A,
(2) for a,b € K]}, a Cb—=Vfe€.FpAge Fu (fla=g).

Given a (k, \)-tree .#, we order its elements in the following way: for
frg € F, f <z gif and only if glgom(s) = f. Observe that if f <z g,
then in particular dom(f) C dom(g). Note that <z is transitive, but it is
not necessarily a tree order. We say that f,g € .% are compatible if there
is h € % such that h >4 f,g (note that in a tree order, compatible is
equivalent to comparable). For A, B C .7 we write A L B if for every f € A
and every g € B, f and g are incompatible. Similarly, for f,g € % and
A C F, we write f L g and f L A whenever {f} L {g} and {f} L A
respectively. A cofinal branch through % is a function B : k — 2 such that
Bl € .F for every a € [k]<.

DEFINITION 3.2. We say that A has the Strong Tree Property if every
(k, A)-tree has a cofinal branch for every x > A.

In this section, we prove that CC* together with the negation of CH im-
plies w9 has the Strong Tree Property. The proofs are based on the techniques
of [26] and [28]: compare, for example, our Proposition Lemma and
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Lemma with Proposition 2.3, Lemma 2.4 and Lemma 2.5 in [26] and
Proposition 3.1, Lemma 3.1 and Lemma 3.2 in [2§] respectively.

Let K > we and fix a (k,ws)-tree .#. Fix a level enumeration surjective
function e : [k]“! x w1 — F such that e(d, ) € Fy.

We have the following:

PROPOSITION 3.1. Given a (k,wa)-tree .F, let (Ag : d € [k]*') be a
sequence of collections of nodes such that Ag € [Fy]“ for every d € [k]“.
Then there are b € [k]“' and E stationary in [k]“" such that for every g € %
and every d € E, if g has an extension in %4, this extension is unique.

Proof. Let 6 be large enough such that {% e, k,...} and all relevant
parameters belong to Hy.
We remark the following;:

REMARK 3.1. There are stationary many M < Hy with |[M| = Ny such
that for every A € [M|%, there is B € M N [M]“ such that B 2 A.

Proof. For any g : Hy“ — Hy, build a C-continuous chain (Mg : £ < wy)
of countable elementary submodels of Hy such that for any { € wy, M is
closed under g and Mg € M¢i . Let M = U§<w1 M. It is easy to check that
M is closed under g and |M| = w;. Then if A € [M]“, there is £ € w; such
that A C M, and so Mg € M¢y 1 C M. u

Let S C [Hp|“" be the stationary set of M’s of Remark For any
M € S, let dyy = M N k. For g, h € F4,, with g # h, choose oy ), € dyr such
that g(ag ) # h(agy). Since Ag,, is countable, we can apply Remark [3.1] to
the set {agp 1 g,h € Ag,, } € [M]* to find By O {agp : g,h € Ag,, } with
By € MN[M]“. Using the Pressing Down Lemma, find B € Hy and S’ C S
stationary such that By, = B for all M € S’. By Menas’ Lemma, the set
E ={dy : M € S'} is stationary in [k]“!. Let b = B N k. Then for every
f € %, if f has an extension in .%, for d € E, this extension is unique. m

PROPOSITION 3.2. Let % be a (k,ws)-tree with no cofinal branches. Let
(Ag = d € [K]“") be a sequence of collections of nodes such that Ag € [F4]“ for
every d € [k]*'. Let 0 be large enough such that {.F# e, k, ...} and all relevant
parameters belong to Hy, and let N < Hy be such that |[N| =Ry and N D wy.
Then for every f € % with dom(f) D N Nk, there is d € N N [k]“T such
that ffd ¢ Ad.

Proof. Suppose otherwise. Fix f € % with dom(f) O N Nk such that
fla € Aq for every d € N N [k]“t. Apply Proposition to find b € [k]*?
and a stationary set E' C [k]“! such that one can define for every g € .7} a
function F, : E — %, where Fy(d) is the unique extension in .%, of ¢ if the
extension exists, or the empty set otherwise. Observe that by elementarity,
we can take F,b € N such that Fj is defined in IV for every g € %, N N.
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Furthermore, since N is closed under the level enumeration function, and
wi U {b} C N, we get %, C N. In particular f[, € N, and therefore Fy,
is defined in N. To simplify notation, let F' = Fy},, and let B = |J cp F(d)
(which is also defined in N).

Observe that for any d € E, we get F(d) # (), since F(d) = f[4. Also
for d,d € E, F(d) and F(d') are <gz-comparable since F(d) = f[; and
F(d") = fl4, By our initial supposition of the proof, for every d € [k]“* NN,
Bla(= fla) € #. Therefore, by elementarity, B defines in N a cofinal branch
in .%, a contradiction. m

LEmMMA 3.1. (CC*) Let .F be a (k,ws)-tree with no cofinal branches.
Then there are arbitrarily large 6 such that for every countable M < Hy
there are Mo, My < Hy countable and ag € My N [k]*Y, a1 € My N [K]“" with

(1) MNw = MyNwi = M Nwi,
(2) 9(10 ﬂMoLyal N M.

Proof. Apply CC* to find 6 sufficiently large such that all relevant pa-
rameters belong to Hy and such that CC(k,#) holds. Take M < Hy count-
able. Our goal is to find ag, a1, Mo, M; such that (1) and (2) of the present
lemma hold.

Let ¢/ > 0 be sufficiently large such that M,.%, e, Hy and all relevant
parameters are members of Hy and such that CC(k, 6) holds in Hy.. Take
N < Hy of size Ny with w; € N and containing all relevant parameters
such as M and .%. Let a = N N k. To build a; and M, simply apply CC*
(outside N) to find M; < Hy and a; € M; N [k]*! such that a; 2 a and
My 3 M. We will show later that Mi,a; are the ones that we are looking
for. To find ap and My we need a little more. First we prove the following:

CraM 3.1. Let K be a countable elementary submodel of Hy with K € N
and let b € [k]*Y with b O a. Then for every f € Fy, there is K* J K with
K* € N and c € K* N [k]“" such that f L K* N .Z,.

Proof. Assume otherwise. Take f € %, such that for any K* € N with
K* 1 K and for all ¢ € K*N[k]“!, there is g. € K*N.Z, compatible with f.

REMARK 3.2. For every c € K*N[k]“1, f and g. are not only compatible,
but indeed f > g..

Proof. This follows directly by showing that ¢ C a (C b) for every ¢ €
K* N [k]“1. Since K* € N and K* is countable, we have K* C N. So if
c € K*N[k]“!, in particular ¢ € N. Since w3 C N, we also have ¢ C N, and
therefore cC NNk =a. n

Working in N and using the fact that CC* holds in N, build a sequence
((Kg,d) : d € [k]**) such that K is a countable submodel of Hy, K; J K,
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d D dand d € KyN|[k]“* for every d € [k]“!. For d € [k]“!, define
Ag = {heﬁd :dg € KgN Fy (g >z h)}

Observe that whenever d C d', if hg, hy € 4 and g € Fy with hg, h1 <z g,
then ho = hy (since ho = glaom(ho) = 9ld = 9ldom(n,) = h1). Therefore the
cardinality of A, is at most the cardinality of K4, which is countable. We can
now apply Proposition 3.2/to N, f and (A, : d € [k]“") to find d € NN [k]“!
such that

(1) fla ¢ Aa.

By our assumption at the beginning of the proof of this claim, and by
Remark there is g € KgN F¢ with g <z f. By definition of Ay, we
have glq € Ag. But glq = (fla/)[a = fla, contradicting . .

We now continue with the proof of Lemma Let {fn : n € w} be an
enumeration of M; N .%,,. Then, applying Claim build a C-increasing
sequence (M(n) : n € w) and a sequence (c(n) : n € w) such that for every
n € w, we have M(n) 3 M, ¢(n) € M(n) N [k]*! and

Using CC*, find Mo 3 U, ¢, M (n) with My < Hg and ag € Mo N [k]“
such that ag 2 (J,,¢,, ¢n- We claim that (2) of Lemmaholds for ag, a1, My
and My, i.e. F,,NMy L Z, NM. To see that, take n € w and g € MoN.Z,;
we will show that f,, L g. Observe that

(3) M(n) N Feny = Mo N F ey,
since ¢(n) € M(n) C My, MyNw; = M (n)Nw; and the enumeration function
e is in both My and M (n). Since g € My N .%,, and c¢(n) € M(n) C My, we
have g[.n) € Mo N F (). Therefore, by , we get glen) € M(n) N Fep).-
Using , we obtain f, L glc), and therefore f, L g. m

We have the following:

LEMMA 3.2. (CC*) Let .Z be a (k,wa)-tree with no cofinal branches. For
A sufficiently large, if the set

Sg={Mec[H\”:IE [ VfeFdacMNb (flo ¢ M)}
is nonstationary, then CH holds.

Proof. Suppose Sz is nonstationary, and let F : [H)]<¥ — H) be a
function such that if M € [H,]“ is closed under F, then M ¢ Sz. As
before, let e : [k]“! x w1 — F be a surjective function such that e(a,§) € %,
for every £ € wy. Let 0 be sufficiently large such that .#,Sz, F,e and all
relevant parameters are in Hy and the conclusion of Lemma holds.

Using Lemma build a binary tree (My),co<w of countable elementary
submodels of Hy with the property that for every o € 2<%,
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(1) My Nwy = My—~Nwy = My—~1 Nwy, and
(2) there exist ag € My~ N [k]* and a3 € My~ N [k]“" such that
yag NMy—~o L 9}1 N M.

For every r € 2%, let M, = J,,c,, Mrn- Let b € []** be such that b 2 a
for every a € M, N [ |“1 and every o E 2<“’. Since M, < Hy and F € M,,
M, is closed under F', we have M, Nk ¢ Sz. So we can choose f, € %, such
that f,[, € M, for every a € M, N [b]“

CrAM 3.2. The map r — f, is an injection from 2% to %y (and therefore
CH holds).

Proof. Let rg,r; € 2% with ro # r1 and denote by f; the node f;, for i €
{0,1}. We will find two predecessors of fy and f; that are incompatible. Let
n € w be such that ro[, = r1[, = o, and rg[n+1 F# 71 [n+1. Without loss of
generality, suppose r;(n) = i for i € {0, 1}. By the construction of our binary
tree, we can take ag € My, , and a1 € M,y such that .F,, N M, .,
Fay N M, ), ., - However, observe that for i € {0,1}, a; € M,,;, ., C Mr,,
and so f;lq; € My,
are fo and f1. =

Therefore, folq, and fi[,, are incompatible, and so
This finishes the proof of Lemma .
We are ready to prove the main theorem of this section.

THEOREM 3.1. (CC*) If CH does not hold, then wy has the Strong Tree
Property.

Proof. Assume CH does not hold, but there is a (k,ws)-tree .# with
no cofinal branches. From Lemma for A sufficiently large, the set Sg
is stationary in [H,]“, and in particular it is semi-stationary. Without loss
of generality, we can assume that every set in Sz is closed under e. Since
CC* and SSR are equivalent [5, Theorem 5.7], we can apply SSR to obtain
X € [H)] with X D w; such that [X]* NSz is semi-stationary. Let

S={ze[X]|*:3M, € SzN[X]* (z 2 M,)},
which is stationary by definition of semi-stationary set. Take a stationary set
S" C S of size wq @ For z € S’, using the definition of S, choose b, € [k]“*
such that for every f € %, there is a € My, N [by]*" with f|, ¢ M,. Let

b= U,ecs bz (and so |b] = w1). Fix f € #,. Then for x € S’, we can choose
ay € My N [by]“" such that

(4) (f[bx)[az = f[az ¢ M.

Apply the Pressing Down Lemma to find a € [k]“? and a stationary
set S” C S’ such that a, = a for every x € S”. Observe that since S” is

7 n+1

(*) For example, let h : X — w; be a bijection. So the set {h™[a] : @ € w1 \ w} is a
club of size w1, and take its intersection with S.
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stationary in [X]%, it is in particular cofinal in [X]¥, and since X D wy, we
have |J,cg/( Mwi) = wi. Therefore we can fix x € S” and £ € x such that
e(a,&) = fla. However, M, is closed under e, and M, Nw; = z Nw; (since
x J M), and so e(§,a) € M, contradicting (4)). =

4. Square sequences. Given a set A of ordinals, we denote by Lim(A)
the collection of limit points of A, i.e. a € Lim(A) if & > 0 and sup(ANa) =
a (so in particular, « is a limit ordinal). Observe also that if A C B, we
have Lim(A) C Lim(B).

We recall a two-cardinal version (A, ) of the square principle.

DEFINITION 4.1. Given a regular cardinal A and a cardinal u < A, (64 :
a € Lim(\)) is a (A, u)-square sequence or a (A, p)-sequence if

(1) 1<|Ca] < p,
(2) for every C € %,, C is a closed and unbounded subset of «,
(3) for every C € 63, if o € Lim(C'), then C N« € 63.

Given a set C' C \, we say that C trivializes a (A, p1)-square sequence (%, :
a € Lim(\)) if CNa € 6, for every o € Lim(C).

We say that the principle O(\, u) holds if there is a (A, )-square sequence
(o : a € Lim(\)) that is trivialized by no club.

We first give some lemmas which describe some properties of square
sequences of the form O(A, p).

LEMMA 4.1. For a (X, p)-square sequence (6, : o € Lim(X)) the follow-
g are equivalent:

(1) There is a club D C X trivializing the sequence.

(2) There is C C X such that Lim(C') is unbounded in A and a sequence
(Cy : v € Lim(C)) such that for every v € Lim(C), C, € €, and
for o, B € Lim(C), if « < B then Co = CgNa.

Proof. (1)=(2). Just set C = D and C, = DN~ for every v € Lim(D).

(2)=(1). Take C' as in the assumption, and set D = {Jyepim(c) Ca- We
will show that D N« € 4, for every a € Lim(D).

Take a € Lim(D) and 8 € Lim(C) such that a € Cg. Using the prop-
erties of the sequence (C, : v € Lim(C)), it is not difficult to show that o
is also a limit point of Cg, and so Cz N a € €. Therefore, it is enough to
show that D Na = Cg N a. Note that already Cz € D. So CgNa C DNa.
Therefore, it remains to show that D Na € Cg N a. Observe that by the
properties of (Cy : v € Lim(C)), we can easily verify C, N a € Cg N« for
every v € Lim(C'), and therefore D Nav = Cg N av.

We show that if Lim (C') is unbounded, then D is a club: To show that
D is unbounded, take 5 < A. Since Lim(C') is unbounded in A, there is a > 3
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with a € Lim(C)(C Lim(\)) and C, unbounded in «. To show that D is
closed, take an increasing sequence (¢ : & < ) of elements of D with v < .
Let 8 = sup{f¢ : £ < v}. We wish to show that 5 € D. For every £ < 7, there
is ag € Lim(C) such that B¢ € Cy,. Let a = sup{ag : £ < v} < A. Since
Lim(C) is unbounded in A, let n € Lim(C') with > «. By the properties
of C, we have Gy Nag = Cy, for every § < v, and so {f¢ : £ < v} C Cy.
Since C}, is closed, sup{fs : £ €7} € C, C D. =

REMARK 4.1. Let X\ be a regular uncountable cardinal, and let (€3 :
B € Lim()\)) be a O(\, u)-sequence with A > cof(u)*. For 8 < pu, let
Cs = {Cg : & < p}. Then for every g € AN Cof(>p), there is ag < B such
that for every C¢, C;, € €3, if Ce # Oy, then Ce Nag # C,) N ag.

Proof. For C¢,Cy € 65 with C¢ # Oy, choose aye,n < [ such that
Ce Nagey # Cp Naye gy I Ce = Oy, let aye )y be just any a below . Let
ag = sup{agey : {&n} € [u]*}. Since cof(B) > p, we have ag < 3, and
therefore C¢ Nag # Cy N ag for every {&,n} € [1]? with Ce#Cy. m

LEMMA 4.2. Let X\ be a regular uncountable cardinal, and let (€3 :
B € Lim (\)) be a O(\, p)-sequence with X > cof(u)* such that no club
trivializes this sequence. For B < p, let €5 = {C’g 2 & < p}. For any set
X C X such that X N Cof(>pu) is stationary, and for every M < Hy with 0
sufficiently large and {X,(€p : B € Lim(\))} Upu C M, if 6 = sup(M N N),
then for every € € u, the set

{ae XNM:a¢ Lim(C5)}
is unbounded in 9.

Proof. Suppose it is not the case. Then there are £* € ypand v € M N A
such that X N M \ v C Lim(Cg*). Let Xo = X \ 7, so in particular Xy € M,
and similarly Lim(Xy) € M. Observe also that Xy N Cof(>p) is stationary.
Applying Fodor’s Lemma and Remark there is « € A and a stationary

subset X; C Xo N Cof(>u) such that ag = a for every 8 € Xj. Since
Xo € M, by elementarity we can take o, X7 € M.

REMARK 4.2. Cg* Nae M.

Proof. Pick any 8 € Lim(X;) N M \ a. As Lim(X;) N M C XonNM C
Lim(Cg*), thereis {5 € u (C M) such that C’g* NG = Cgﬁ, But then C’g* Na =
Cg* NBNa)= (Cg* NA)Na= CEB Na. Since «, 3,£3 € M, the set C’gﬁ is
defined in M, and so Cg* Nae M. n

To simplify notation, write C* = Cg* N «, so by Remark C*e M.

CrAM 4.1. For every f € Lim(Xy), there is a unique g such that
¥ na=c.
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Proof. By the elementarity of M, it suffices to prove that Claim[£.1holds
in M. To show existence, using Lim(X;)NM C Lirn(Cg*), pick &g such that
CS NP =CY. Then C5 Na = (C§ NB)Na = C N(BNa) = C5 Na = C*.
To show uniqueness, take £g,ng € p such that Cgﬁ #* C’gﬁ . Since § € X1, we
have CgB Na # Cgﬁ N «, so both cannot be equal to C*. u

Define now Cg = C’gﬁ for 8 € Xi. Then the sequence (Cg : f € Lim(X1))
is in M. Observe that for every 7,8 € M N Lim(X;), if v < 8 we have
CsNy= (Cg Ne)N~y = Cg N~ = C,, contradicting Lemma .

In this section, we prove that assuming SSR, we can have the negation
of O(\,w) for every regular cardinal A > ws.

For a set A of ordinals, define sup*(A4) = sup{a +1: a € A}. We will
use the following useful implications of SSR given by Sakai—Velickovié. Fix
a regular cardinal A > ws. For countable sets of ordinals x and y, we write
x C*yif

«xCy,

o sup’(z) = sup’(y),

e sup™(zNv) =supt(yn~) for all y € E} Na.

Given X C [A]“ for some A > wi, we say that X is weakly full if X is
upward closed under C*.

LEMMA 4.3 ([19, Lemma 2.2]). Let A > wy. Suppose there is a weakly
full stationary X C [A]¥ such that for every I € [A\]“* with wy C I, there is
J C X such that I C J, sup™(J) = sup™ (1) and X N [J]¥ is nonstationary.
Then SSR() fails.

Sakai and Velickovi¢ also present a game which will be used to construct
a weakly full stationary set. Let A be a regular cardinal > ws. For a function
F: [N]<¥ = X let G1(\, F) be the following game of length w:

I a v a1 m -+ an T

11 Bo B1 .- Bn

T and IT in turn choose ordinals < A. In the nth stage, first I chooses «,, then
II chooses ,, and then I again chooses v, > (,, with v, of cofinality w;.
I wins if

cdpr({ym :n € w})Nlam,vm) =0
for every m € w, where clp(A) denotes the closure of the set A under F.
Otherwise, II wins.

LEMMA 4.4 ([19, Lemma 2.3]). Let X be a regular cardinal > wy and let
F : A< = \. Then I has a winning strategy in the game G1(\, F).
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Now we state our theorem.

THEOREM 4.1. For every regular cardinal A > wa, SSR(\) implies the
negation of (A, w).

Proof. Assuming that (J(\,w) holds, we will show that SSR(\) fails.

Let (¢, : o € Lim(\)) be a (A, w)-square sequence that is trivialized by
no club subset of A. Without loss of generality, we can assume |%,| = w for
every a € Lim(A). Let (C? : n < w) enumerate %,.

Let X be the set of all z € [A] which have limit order type and there is
a sequence (£F : n < w) of ordinals below sup(x) such that for all n € w,

(1) sup(xn C;lpﬂx)) <¢&r,
(2) cof(min(z \ 8)) = w; for all B € C} ) \ &F.

upt(z
It is not hard to check that X is weakly full. We have the following.
LEMMA 4.5. X is stationary in [A]“.

Proof. Let F : [A]<¥ — X. We will find 2 € X closed under F. By
Lemma fix a winning strategy 7 of I for G1(A, F'). Moreover let C' be
the set of all limit ordinals < A closed under 7 and F'. Note that C is club
in A.

Let 6 be sufficiently large such that Hy has all the relevant parameters.
We are going to build inductively a sequence (M, : n € w) of structures
of Hy as follows: Fix a well-order < of Hyp, let My = (Hy;€,<,(6n : o €
Lim(\)), F,C,...), let <M§0 : & < A) be a strictly continuous C-increasing
sequence of elementary submodels of My of size < A, and define Dy =
{sup(Mg NA) : & < A}. Observe that Dy is a club in A and Dy € Hy.
Suppose we have defined a structure 9M,, of Hy and a strictly continuous
C-increasing sequence <M§” : &€ < \) of elementary submodels of 9, of size
< A. Define Dy, = {sup(M N A) : £ < A}, so that Dy is a club in A with
D,, € Hy. Let My41 = (Hp; €,<,(%n : « € Lim(N\)), F,C,Dg,...,Dp,...).

Let

M = (Hp, €,<,(€n : « € Lim(N)), F,C,{D,, : n € w},...).

Take again a strictly C-increasing continuous sequence (Mg : & < \) of
elementary submodels of 91 such that [M| < A and M¢ N A is transitive for
every & < A. Then the set {M N A : ¢ < A} is aclub in ), and since E)) is
stationary in A\, we can fix M <9, with M N X transitive and M N\ € E‘i‘
Let 6 = M N A. We have the following:

CLAM 4.2. There is an increasing sequence (0, : n < w) of ordinals
such that

(1) 4, € C\ U<, Lim(C3),

(2) sup{d, :n € w} =9.
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Proof. Fix a strictly increasing sequence (¢, : n < w) € M of limit .
We proceed by induction. To find &g, apply directly Lemma to find
8o € [€0,6) with &g € C'\ Lim(CY). Fix n € w, and suppose we have already
built §,, above €,.

SUBCLAIM 4.1. There is a sequence of intervals [, 04) 2 -+ 2 [BF, 6F)

AR
D - D BRON) with By > max{dn,€nt1} and &) < 0, and there is a
sequence (M]* < 9M,_; : i < n) of elementary submodels such that for every

1 <n,

o O =sup(M]* N ),
o 3 e M, '
o [BI,6M)NCY =0 for every j < i.

177
Proof. Since D, € M, apply Lemma to D, M, Lim(C{) and
max{0y, €,+1} to find 0§ > max{dy,, €pt1} with 6§ € D, " M \ Lim(Cg).
Let Mg =< 9, be such that 6§ = sup(M N A). Take 7 € M N A with
B8 > max{d,, €41} and such that [BF,d5) N CY = 0.
Observe that for n = 0 we are already done, so we can assume n > 1.
For i < n, suppose that we have found a sequence of intervals [5, dg) 2
-2 (B, 6)) with BF > max{dy, €,41} and 0 < ¢ and a sequence (M =

M,—j : j < i) of elementary submodels such that for every j <,
e §7 =sup(M}NA),

o S e MP?
j Ik
| ?75?)00(];”:@f0reveryk§j,

Since ¢ < n, the set D,,_;_1 is well-defined, and since M < IM,,_;, we
have D,,_;_1 € Mln

CASE 1: 67 ¢ Lim(Cy™"). Choose S, € M N A with 4, > f}' and
such that [8} ;,d;") N C’g“ = (). Since D,_;_1 is unbounded in A, by el-
ementarity we can find 07y € Dp—y—1 N M with 67, > B, and thus
(B4, 0% 1) N Cy=0 for every j < i+ 1. Let M" | < M,_;_; be such that
0y = sup(M-’fH NA).

i

CASE 2: 67 € Lim(Cit). Take k € w such that Ci™' N6 = Ck,. Apply
Lemma to M, Lim(Cfin), Dy—i—1 and B} to find 67, € M FW A with
67y > B and 674 ¢ Lim(CF.). Let M, < 9M,—;—1 be such that 67, =
sup(M\; ). Take 574, € M7} such that 574, > 57 and [7,,.87,,) N Ch
= . Then [B,,07,)NC] =0 for every j <i+1.m

Observe that we have defined 5, M and J; with 0" = sup(M,} N A).
To finish our construction, we again have two cases.
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CASE 1: 07 ¢ Lim(Cy*h). Choose 87, € M? N\ with 87, ; > 87 and
such that [ 1 ,’}) N ngrl = (). Since C' € M), by elementarity we can
choose 0,11 € [B)1,1,6;) N C, and so d,,41 is as needed.

CASE 2: 07 € Lim(CJ™). Take k € w such that Cj ' no? = C%,. Apply
Lemma [4.2) to M2, Lim(C%,), 87 and C to find 8,41 € M? N C \ 57 with
5n+1 §é le(C(I;ﬁ) n

Now let 8, < &, such that [B,,8,) N U<, Ci = 0. Then let (an,vn :
n € w) be a sequence of I’s moves according to 7 against (3, : n € w).
Moreover let x = clp({y, : n € w}). It suffices to prove that z € X.
To see this, first note that sup™(z) = § because ¢ is closed under F. We
are going to check that setting & = ¢, will witness x € X. Fix n € w.
Observe that for m > n, we have C§ N d,, € By € v, by the choice
of B. Also note that a,,+1 < dp,, because B, € d,, and 9, is closed
under 7 (since 6,, € C). Hence C§ N [0, 0m+1) € [Qunt1, Ym1) for every
m > n. Note that x N [aky1,Vkr1) = @ for each k € w because I wins with
the play (o, Bi, v : k € w). Thus 2 N C§ C §,. Moreover for m > n,
min(z \ ) = ym+1 for all B € C§ N [0, dm+1), and cof (Ym41) = wi by the
rule of G1(A, F). Therefore, §,, = £ witnesses x € X.

This finishes the proof of Subclaim .

CrAM 4.3. The hypothesis of Lemma [£.3] holds for X.

Proof. The proof is the same as in [19, proof of Claim 2], by fixing just
one C§ for some i € w. m

This completes the proof of Lemma 4.5. »

5. Final remarks and open questions. Strong Chang’s Conjecture is
a consequence of the Weak Reflection Principle and Rado’s Conjecture. Sakai
and Velickovié¢ showed that WRP, together with MA,, (Cohen), implies that
N9 has the Super Tree Property. However, they also showed that SSR and
MA,,, (Cohen) together do not imply wy has the Super Tree Property (see
[19, Theorem 3.5]). Some natural questions arise:

QUESTION 5.1. Is WRP + =CH enough to have the Super Tree Property
for wy ?

QUESTION 5.2. Does Rado’s Conjecture, together with —CH, imply wo
has the Super Tree Property?

For example, it is known that if a strongly compact cardinal is Levy
collapsed to we, then Rado’s Conjecture holds. If starting from a model with
a strongly compact cardinal x, we can force Rado’s Conjecture together with
the negation of CH by a proper forcing which is an iteration of length x
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of small forcings, then this would answer this question negatively by [30,
Corollary 6.10]. We thank the referee for pointing this out.

The following question is also still open:

QUESTION 5.3. Is WRP(ws) enough to prove that the game G(w?) has

a winning strategy, so we can get WRP(w2) + -CH — TP (w2q) ?
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