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Searching for Diophantine quintuples
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Mihai Cipu (Bucureşti) and Tim Trudgian (Canberra)

1. Introduction. Define a Diophantine m-tuple as a set of m positive
integers {a1, . . . , am} with a1 < · · · < am, such that aiaj + 1 is a perfect
square for all 1 ≤ i < j ≤ m. Throughout the rest of this article we fre-
quently refer to them just as m-tuples.

It is conjectured that there are no quintuples—see [2, 15]. Successive au-
thors (see, e.g., [18, Table 1]) have reduced the bound on the possible number
of quintuples. The best such published bound is 2.3 · 1029 by Trudgian [18].
The purpose of this paper is to improve on this in the following theorem.

Theorem 1. There are at most 5.441 · 1026 Diophantine quintuples.

In §2 we collect some ancillary results that aid the computational search
for quintuples. In §3 we obtain bounds on the relative sizes of elements in
a quintuple. We use this in §4 with results on linear forms in logarithms to
obtain upper bounds on the second-largest element in a quintuple. In §5 we
examine some number-theoretic sums, which enable us to bound the total
number of quintuples. We present two new arguments in §6 that enable us
to make a further saving, and ultimately to prove Theorem 1.

2. Discards. It is known that every triple {a, b, c} can be extended to
a quadruple of a certain form. This is dubbed the ‘regular’ quadruple and
is denoted as {a, b, c, d+}. If a double or a triple cannot be extended to a
non-regular quadruple, then it cannot be extended to a quintuple. We call
such doubles or triples discards. The doubles {k, k+ 2} [13] (see also [4]) are
discards for k ≥ 1. For an extensive list of discards, one may see [18, §2.1].
The following result allows us to recognise many discards.
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Lemma 2.1. Let {a, b, c, d} be a Diophantine quadruple with a < b < c <
d+ < d.

• If b < 2a then b > 21000.
• If 2a ≤ b ≤ 12a then b > 130000.
• If b > 12a then b > 4001.

Proof. The only difference between this lemma and [6, Lemma 3.4] is
the exclusion of the value b = 4001 in the last case. Indeed, a pair {a, 4001}
with 12a < 4001 cannot be extended because the equation 4001a + 1 = r2

has a unique integer solution r < 4001, namely r = 4000, which entails
a = 3999.

Lemma 2.2 ([7, Theorems 1.1, 1.2] and [6, Theorem 1.1]). Let {a, b, c, d, e}
be a quintuple with a < b < c < d < e, and set g = gcd(a, b). Then b > 3ag.
If moreover c > a+ b+ 2

√
ab+ 1 then b > max{24ag, 2a3/2g2}.

Lemma 2.3 ([6, Theorem 1.3]). Let {a, b, c, d, e} be a quintuple with
a < b < c < d < e and c = a+ b+ 2

√
ab+ 1. Then b < a3 and gcd(b, c) = 1.

In particular, at least one of a, b is odd.

Examination of the relative size of entries in a quintuple has the following
outcome.

Lemma 2.4. Any quintuple {a, b, c, d, e} with a < b < c < d < e must be
of one of the types listed below:

(A) 4a < b and 4ab+ b+ a < c < b3/2,
(B) 4a < b and c = a+ b+ 2

√
ab+ 1,

(C) 4a < b and c > b3/2,
(D) b < 4a and c = a+ b+ 2

√
ab+ 1.

Proof. According to [12, Lemma 4.2] or [5, Lemma 2.1], a Diophantine
quintuple which is not of the kind described in the present lemma satisfies
either d > b5 or c = 4r(r−a)(b− r) < b3, where r =

√
ab+ 1. The existence

of quintuples of the former type is prohibited by [5, Theorem 1.1], while the
latter type is excluded in [18, Subsection 2.2] with the help of Lemma 2.2
above.

3. Exploiting the connection with Pellian equations. The entries
in a quadruple are severely restricted in that they appear as coefficients
of three generalized Pell equations that must have at least one common
solution in positive integers. Each component of such a solution is obtained
as a common term of two second-order linearly recurrent sequences, giving
rise to relations of the type z = vm = wn for some positive integers m and n.
A key ingredient in the study of Diophantine sets is a relationship between
the parameters m, n, and the values in the set in question.
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Our next result is of this kind. It improves on several versions already
in the literature—see, e.g., [5, 18, 20].

Proposition 3.1. Let {A,B,C,D} be a quadruple with A<B<C<D
for which v2m = w2n has a solution with 2n ≥ m ≥ n ≥ 2, m ≥ 3. Suppose
v0 = w0 = ε, v1 = C+Sv0 and w0 = C+Tw0, where ε = ±1, S =

√
AC + 1

and T =
√
BC + 1. Assume further that A ≥ A0, B ≥ B0, C ≥ C0, B > ρA

for some positive integers A0, B0, C0, and a real number ρ > 1. Then

m > αB−1/2C1/2,

where α is any real number satisfying both inequalities

α2 +
(
1 + 1

2B
−1
0 C−10

)
α ≤ 4,(1)

3α2 +
(
4B0(λ+ ρ−1/2) + 2(λ+ ρ1/2)C−10

)
α ≤ 4B0,(2)

with λ = (A0 + 1)1/2(ρA0 + 1)−1/2.

Moreover, if Cτ ≥ βB for some positive real numbers β and τ then

m > αβ1/2C(1−τ)/2.

Proof. We assume that m ≤ αB−1/2C1/2, and aim at establishing a
contradiction if α is too small. We use a method involving congruences,
which was introduced in [11]. We start from the congruence (see, e.g., [9,
Lemma 4])

(3) εAm2 + Sm ≡ εBn2 + Tn (mod 4C).

Since

|Am2 −Bn2| < max{Am2, Bn2} ≤ Bm2 ≤ α2C

and

|Sm− Tn| < max{Sm, Tn} ≤ Tm ≤ αB−1/2C1/2
√
BC + 1

< αB−1/2C1/2
(
B1/2C1/2 + 1

2B
−1/2C−1/2

)
≤ α

(
1 + 1

2B
−1
0 C−10

)
C,

if α satisfies (1) then (3) becomes the equality Am2 − Bn2 = ε(Tn− Sm).
Multiplication by Tn+Sm followed by rearrangements results in the equality

(4) (Bn2 −Am2)
(
C + ε(Tn+ Sm)

)
= m2 − n2.

Note that Bn2 = Am2 entails m2 = n2, so that A = B, a contradiction.
Hence, for m = n one necessarily has C = Tn + Sm, while for m > n
one finds that Bn2 − Am2 divides the positive integer m2 − n2, so that
m2 − n2 ≥ |Am2 −Bn2|. This gives the inequality

m2

n2
≥ B + 1

A+ 1
.
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Having in view the lower bounds for A and B, we obtain

m2

n2
>
ρA+ 1

A+ 1
≥ ρA0 + 1

A0 + 1
=

1

λ2
.

From (4), m ≤ 2n, and the definitions of S and T , we conclude that

C ≤ Tn+ Sm+m2 − n2 < λm
√
BC + 1 +m

√
AC + 1 + 3

4m
2

≤ 3
4α

2B−1C + αB−1/2C1/2
(
λ
√
BC + 1 +

√
ρ−1BC + 1

)
< 3

4α
2B−1C + αC

(
λ
(
1 + 1

2B
−1C−1

)
+ ρ−1/2

(
1 + 1

2ρB
−1C−1

))
≤ 3

4α
2B−10 C + αC

(
λ
(
1 + 1

2B
−1
0 C−10

)
+ ρ−1/2

(
1 + 1

2ρB
−1
0 C−10

))
.

The last expression is at most C if α satisfies (2), whence the first inequality
in the conclusion of our proposition. The second one is readily obtained from
what we have just proved and the hypothesis Cτ ≥ βB.

Lemma 3.1. If {a, b, c, d, e} is a quintuple with a < b < c < d < e then
the following bounds for m hold:

(A) m > 3.3022d1/4, (B) m > 1.5002d2/7,

(C) m > 2.0604d3/10, (D) m > 1.0080d1/3.

Proof. This is an application of the result just proved for (A,B,C) =
(a, b, d) in cases (A)–(C), and for (A,B,C) = (a, c, d) in the remaining
case. We use Proposition 3.1 with carefully chosen values for parameters in
ranges suggested by Lemmas 2.1–2.3. To do so we first require the existence
of a solution v2m = w2n subject to hypotheses of Proposition 3.1—this was
shown in [14]. It is also known that d > 4abc+ a+ b+ c (see, for instance,
[10, proof of Lemma 6]).

In case (A) Lemma 2.2 hints at considering separately values of a less
than 144, since then B = b > max{24a, 2a3/2} = 24a = 24A. We conduct a
short computer search to find potential triples. For example, after exploring
the domain 1 ≤ a ≤ 143, 4002 ≤ b ≤ 21000 we know that there can be no
triple with a ≤ 143, b ≤ 4094, and 4ab < c < b1.5, but since 4095 + 1 = 642,
139128 + 1 = 3732, 4095 · 139128 + 1 = 238692, and 4 · 4095 + 4095 + 1
< 139128 < 40951.5 we conclude that B0 = 4095. Similarly, we find that
b/a ≥ 4095/8 > 511 in the same domain. For the unexplored region where
b ≥ 21001, the minimum value of the fraction b/a is obviously at least
21001/143 > 146, so that we can safely consider ρ = 146. Clearly we must
set A0 = 1. From

C = d > 4abc+ a+ b+ c > (4ab+ 1)(4ab+ a+ b) > (16a2 + 4a)b2

it follows that τ = 1/2, β = (16A2
0 + 4A0)

1/2, C0 > 3.35 · 108 are admissible
choices. Both inequalities (1) and (2) are satisfied by α = 1.56155.
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Still in case (A), when a ≥ 144 one takes A0 = 144, B0 = 4002 (by
Lemma 2.1), ρ = 24 (see Lemma 2.2), τ = 1/2, β = (16A2

0 + 4A0)
1/2,

whence C0 > 5.32 · 1012 and α = 1.56155.

Having in view Lemma 2.1, in case (B) we first examine the subcase
4a < b ≤ 12a. Then B0 = 130001, which implies A0 = 10834 and ρ = 4.
From

c > b(1 + 12−1 + 2 · 12−1/2) = (1 + 12−1/2)2B and a3 > b,

it follows that

C = d > (4ab+ 1)(a+ b+ 2r) > 4(1 + 12−1/2)2ab2 > 4(1 + 12−1/2)2B7/3,

so that τ = 3/7, β = (2 + 3−1/2)6/7 and C0 = 5.68 · 1012. For these choices
it is readily obtained that α = 0.9999 is permissible.

The other possibility in case (B) is to have b > 12a. Convenient values of
parameters are ρ = 12, A0 = 16 (from a3 > b > 4000), B0 = 4002, τ = 3/7,
β = 26/7 and C0 = 1.01 · 109, for which the same value α = 0.9999 works.

Case (C) is similar to case (A). Now, for a ≤ 143 we see that we can
take A0 = 1, B0 = 4004 and ρ = 28. As

C > 4abc > 4ab5/2 > 4.05 · 109 =: C0,

we further get τ = 2/5 and β = 42/5, whence again α = 1.56155. In the
complementary subcase a ≥ 144, admissible values are A0 = 144, B0 =
4002, ρ = 24, τ = 2/5, β = 5762/5 and C0 = 5.83 · 1011. Plugging these
specializations into Proposition 3.1, we obtain the same value for α.

Finally, in case (D) we have A = a < b/3, B = c = a + b + 2
√
ab+ 1 >

(1 + 31/2)2A, B ≤ a+ b+ 2
√

3−1b(b− 1) + 1 < (1 + 3−1/2)2b, and

C = d > 4abc > b2c > (1 + 3−1/2)−4B3.

Therefore, ρ = (1+31/2)2, τ = 1/3 and β = (1+3−1/2)−4/3. From 130001 ≤
b < 4a, we have A0 = 32501, whence B0 > 292504 and C0 > 4.04 · 1015.
From (1) and (2) we obtain α = 1.3660.

For future reference, the values used in the previous proof are given in
Table 1.

The values of α, and hence the bounds on m in Lemma 3.1, rely on
the computational bounds in Lemma 2.1. While it is tempting to extend
these computations, such an extension would have almost no effect on the
values of α. Consider, for example, case (A): sending B0, C0 to infinity in
(1) gives α2 + α ≤ 4. Therefore the optimal value of α is 1.5615528 . . . ,
whereas we have α = 1.56155. Likewise, in case (D) the optimal value is
1
2(1 +

√
3) = 1.366025 . . . , whereas we have 1.3660. It seems that a new idea

is needed to improve substantially on the lower bounds on m.
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Table 1. Parameter values for various types of Diophantine quintuples

Type A0 B0 C0 ρ β τ

(AI) 1 4095 3.35 · 108 146 201/2 1/2

(AII) 144 4002 5.32 · 1012 24 24 · 5771/2 1/2

(BI) 10834 130001 5.68 · 1012 4 (2 + 3−1/2)6/7 3/7

(BII) 16 4002 1.01 · 109 12 26/7 3/7

(CI) 1 4004 4.05 · 109 28 42/5 2/5

(CII) 144 4002 5.83 · 1011 24 5762/5 2/5

(D) 32501 292504 4.04 · 1015 (1 + 31/2)2 (1 + 3−1/2)−4/3 1/3

4. Employing linear forms in the logarithm. The lower bounds for
the index m given in the previous section can be complemented by inequal-
ities derived from upper bounds for linear forms in logarithms of algebraic
numbers. To this end, we apply a result from [1] that turns out to be the
most convenient in the present context.

Theorem 4.1 (Aleksentsev). Let Λ be a linear form in logarithms of n
multiplicatively independent totally real algebraic numbers α1, . . . , αn, with
rational coefficients b1, . . . , bn. Let h(αj) denote the absolute logarithmic
height of αj for 1 ≤ j ≤ n. Let d be the degree of the number field K =
Q(α1, . . . , αn), and let Aj = max(dh(αj), |logαj |, 1). Finally, let

(5) E = max

(
max

1≤i,j≤n

{
|bi|
Aj

+
|bj |
Ai

}
, 3

)
.

Then

log |Λ| ≥
−5.3n−n+1/2(n+ 1)n+1(n+ 8)2(n+ 5)(31.44)nd2(logE)A1 · · ·An log(3nd).

We have used [1, p. 2, first displayed equation] to define E in (5): this
makes our application easier. We apply Theorem 4.1 for d = 4, n = 3 and

Λ = j logα1 − k logα2 + logα3,

with

α1 = S +
√
AC, α2 = T +

√
BC, α3 =

√
B(
√
C ±

√
A)√

A(
√
C ±

√
B)

,

where the signs coincide. More precisely, we take (A,B,C) = (a, b, d) in
cases (A)–(C), and (A,B,C) = (a, c, d) in case (D). Consequently, by [14]
one has 4 ≤ k = 2n ≤ j = 2m and j ≤ 2k. Moreover, we shall assume that
j ≥ 1000.

For our purposes we do not need the exact values of Aj and E as defined
in Theorem 4.1: decent estimates will suffice. To find these estimates we
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proceed as follows, keeping the notation and hypotheses of Proposition 3.1
and supposing additionally that C ≤ C1 for a certain integer C1.

We begin by noting that

2 logα1 < log(4AC + 4) ≤ log
(
4ρ−1(B − 1)C + 4

)
< log(4ρ−1BC)

< log(4ρ−1β−1C1+τ )

provided that ρA ≤ B − 1. This clearly follows from ρA < B when ρ is an
integer, as in cases (A)–(C). In case (D) we have b ≥ 3a+ 1, so that (cf. the
proof of Lemma 3.1)

B = c = a+ b+ 2
√
ab+ 1 > 1 + (1 + 31/2)2a = 1 + ρA.

In each of cases (A)–(D) we have βρ > 4, whence

A1 < g1(β, ρ, τ, C1) logC

with

g1(β, ρ, τ, C1) := 1 + τ +
log 4− log(βρ)

logC1
.

We readily obtain the following lower bound on A1:

A1 > log(4AC) > g2(A0, C1) logC

with

g2(A0, C1) := 1 +
log 4 + logA0

logC1
.

Similar relations hold for A2, namely

2 logα2 < log(4BC + 4) < log(4β−1C1+τ + 4),

which implies the upper bound

A2 < g3(β, τ, e) logC,

where

g3(β, τ, e) := 1 + τ +
log 4 + log(β−1 + e−1−τ )

log e
,

and e = C0 in cases (B), (CI) and (D) (when β < 4), and e = C1 in the
remaining cases (A) and (CII). An easily-derived lower bound for A2 is

A2 > g4(B0, C1) logC,

with

g4(B0, C1) := 1 +
log 4 + logB0

logC1
.

The inequalities
√
B√
A
·
√
C +

√
A√

C −
√
B
>

√
B√
A
·
√
C +

√
A√

C +
√
B
> 1,

√
B√
A
·
√
C −

√
A√

C −
√
B
> 1
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are obvious. The modulus of the fourth algebraic conjugate of α3 is also
greater than 1 precisely when

√
C(
√
B −

√
A) > 2

√
AB. This inequality

holds whenever

(6) ρB1−τ
0 (ρ1/2 − 1)2τ > 22τ .

It is easy to check that (6) is satisfied in each of cases (A)–(D). One now
obtains

A3 = 4h(α3) = log

(
B2(C −A)2

g

)
,

where g is the content of the polynomial A2(C−B)2X4+4A2B(C−B)X3+
2AB(3AB − AC − BC − C2)X2 + 4AB2(C − A)X + B2(C − A)2. Since g
is at most the smallest of the coefficients, which is 4A2B(C −B), one has

log

(
B(C −A)2

4A2(C −B)

)
≤ A3 ≤ log

(
B2(C −A)2

)
.

Note that B(C −A) < β−1C1+τ readily implies

A3 < g5(β, τ, f) logC

with

g5(β, τ, f) := 2 + 2τ − 2 log β

log f

and f = C1 if β > 1 and f = C0 if β < 1. A lower bound for A3 is obtained
with the help of the inequalities

A3 ≥ log

(
B(C −A)2

4A2(C −B)

)
> log

(
βρ2C1−τ (1−A0C

−1
1 )2

4(1− ρA0C
−1
1 )

)
,

which entail

A3 > g6(β, ρ, τ, A0, C1) logC,

where

g6(β, ρ, τ, A0, C1)

:= 1− τ +
log
(
1
4βρ

2
)

+ 2 log(1−A0C
−1
1 )− log(1− 4C−11 )

logC1
.

On noting that for all relevant values of parameters one has g2(A0, C1) <
g4(B0, C1) and using the inequality g2 > g6 (which follows, for C1 > 1012,

from 16C2τ
1 (1 − β−1) > βρ2 if β > 1, and from 16(1 + 3−1/2)8/3C

2/3
1 (1 −

ρA0C
−1
1 ) > ρ3 in case (D)) as well as the above mentioned relation j ≥

max{k, 1000}, we find that we may take

E ≤ 2j

g6(β, ρ, τ, A0, C1) logC0
.

Note that the right side of this inequality is greater than 3, otherwise from
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this and C0 < 1072 (consequence of [18, Theorem 3]) it would follow that

2j ≤ 3g6(β, ρ, τ, A0, C1) logC0 < 6 logC0 < 6 log 1072 < 995.

Hence, Theorem 4.1 yields the following corollary.

Corollary 4.2.

−logΛ ≤ 1.5013 · 1011g3g5(2 logα1)(log2C) log

(
2j

g6 logC0

)
.

Corollary 4.2 bounds Λ from below; we can bound Λ from above using
[14, Eq. (4.1)], which states that

0 < Λ < 8
3ACα

−2j
1 .

Comparison with Corollary 4.2 gives the main result of this section.

Proposition 4.3.

j < 1.50131 · 1011g3g5(log2C) log

(
2j

g6 logC0

)
.

Set j = 2m in Proposition 4.3 and use Lemma 3.1 with the values given
in Table 1 and C1 = 1072.188 in all cases, as per [5, Theorem 1.2]. We thus
get a new upper bound on d that we take as C1 in a new iteration of this
procedure. Slightly better bounds result by taking much higher C0 (just
below the value for C1 considered in the same iteration). This game makes
sense as long as it decreases the exponent of 10 in the upper bound for d by
at least one thousandth.

For example, in case (D) we start with (C0, C1) = (4.04 · 1015, 1072.188),
which shows that d < 1051.514. Taking this as our new value for C1, we find
that d < 1051.514—that is, there is no noticeable change.

We now increase C0 to 1051.414: thus we are assuming that d ≥ 1051.414

(if not, then we shall settle with d < 1051.414). This shows that d < 1051.416.
Finally, though we may take this number as our new C1 and iterate once
more, we find no noticeable improvement. We therefore conclude that d <
1051.416 < 2.603 ·1051. We continue in this way, and record our computations
in the following theorem.

Theorem 2. If {a, b, c, d, e} is a quintuple with a < b < c < d < e then
the following bounds for d hold:

(A) d < 1067.859 < 7.228 · 1067, (B) d < 1060.057 < 1.141 · 1060,
(C) d < 1056.528 < 3.373 · 1056, (D) d < 1051.416 < 2.603 · 1051.

We close this section with a remark concerning the size of the smallest
entry in a quintuple arising in case (A). Although it has no immediate
bearing on the next section, further improvements on d should enable future
researchers to enumerate all possible triples. Recording the maximal size of
a should aid this goal.
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Proposition 4.4. The only quintuples that could arise from case (A)
are those in which a < 7.4 · 107.

Proof. The triples in case (A) must satisfy b3/2 > c > 4ab + b + a,
so that in particular a < b1/2/4. Some quick computations show that for
A0 = 7.4 · 107 one obtains d < 6.1 · 1050. From d > 4abc > 16a2b2 > (16a2)3

it then follows that a < 7.29 · 107, a contradiction.

5. Bounding the total number of quintuples. In this section we
combine the methods of [5] and [18] in bounding certain arithmetical sums.
We require the following lemma.

Lemma 5.1 ([18, Lemma 13]). For all x ≥ 1,∑
n≤x

2ω(n)

n
≤ 3π−2 log2 x+ 1.3948 log x+ 0.4107 + 3.253x−1/3,

∑
n≤x

2ω(n) ≤ 6π−2x log x+ 0.787x+ 8.14x2/3 − 0.3762.

One can show, using Perron’s formula and calculating residues, that∑
n≤x

2ω(n) ∼ 6

π2
x log x+

6

π4
(
π2(2γ − 1)− 12ζ ′(2)

)
x,

∑
n≤x

2ω(n)

n
∼ 3

π2
x log x+

12

π4
(
π2γ − 6ζ ′(2)

)
x,

where
6

π4
(
π2(2γ − 1)− 12ζ ′(2)

)
= 0.78687 . . . ,

6

π4
(
π2(2γ − 1)− 12ζ ′(2)

)
= 1.39479 . . . .

This shows that up to three decimal places, the bounds in Lemma 5.1 agree
with the asymptotic expansions to the first two terms.

We also require bounds on d(n), the number of divisors of n, and the re-
lated dH(n), which counts the number of divisors of n that do not exceed H.
The function dH(n2 − 1) arises naturally when considering the number of
doubles {a, b} satisfying certain restrictions.

Very recently, Dudek [8] considered partial sums of d(n2−1) and proved

(7)
∑

2≤n≤N
d(n2 − 1) ∼ 6

π2
N log2N.

This improves, asymptotically, on the bound with leading term 9π−2N log2N
as given in [5]. We make Dudek’s result explicit in the following lemma.
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Lemma 5.2. Let dH(n) denote the number of positive integers e such
that e |n and e ≤ H. Then, for any N ≥ 2 and H ≥ 1,

N∑
n=2

dH(n2 − 1) ≤ N
(

6

π2
log2H + 2.369 logH + 6.175 + 12.071H−1/3

)
.

Let g(d) denote the number of solutions to x2 ≡ 1 (mod d) where 0 ≤
x ≤ d − 1. Furthermore, let Q(x, d) denote the number of positive n ≤ x
such that n2 ≡ 1 (mod d). It follows that Q(d, d) = g(d) and that Q(x, d) ≤
g(d)(x/d+ 1). We therefore have∑

2≤n≤N
dH(n2 − 1) = 2

∑
d≤H

∑
d<n≤N

n2≡1 (mod d)

1 = 2
∑
d≤H

(
Q(N, d)−Q(d, d)

)
(8)

≤ 2N
∑
d≤H

g(d)

d
.

To proceed, we need two lemmas. Lemma 5.3 was proved by Berkane,
Bordellès and Ramaré [3]; Lemma 5.4 was proved by Ramaré [17]. We quote
the versions in [18] which correct two small misprints. In what follows we
use the notation f(x) = ϑ(g(x)) to mean |f(x)| ≤ g(x) for all x under
consideration.

Lemma 5.3 ([18, Lemma 13]). For all t > 0,∑
n≤t

d(n)

n
=

1

2
log2 t+ 2γ log t+ γ2 − 2γ1 + ϑ(1.16t−1/3),

where γ is Euler’s constant and γ1 is the second Stieltjes constant, which
satisfies −0.07282 < γ1 < −0.07281.

Lemma 5.4 ([18, Lemma 14]). Let {gn}n≥1, {hn}n≥1 and {kn}n≥1 be
three sequences of complex numbers satisfying g = h ∗ k; that is, g is the
Dirichlet convolution of h and k. Let H(s) =

∑
n≥1 hnn

−s and H∗(s) =∑
n≥1 |hn|n−s, where H∗(s) converges for <(s) ≥ −1/3. If there are four

constants A, B, C and D satisfying∑
n≤t

kn = A log2 t+B log t+ C + ϑ(Dt−1/3) (t > 0),

then ∑
n≤t

gn = u log2 t+ v log t+ w + ϑ(Dt−1/3H∗(−1/3)),

∑
n≤t

ngn = Ut log t+ V t+W + ϑ(2.5Dt2/3H∗(−1/3)),
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where

u = AH(0), v = 2AH ′(0) +BH(0), w = AH ′′(0) +BH ′(0) + CH(0),

U = 2AH(0), V = −2AH(0) + 2AH ′(0) +BH(0),

W = A
(
H ′′(0)− 2H ′(0) + 2H(0)

)
+B(H ′(0)−H(0)) + CH(0).

Let

(9)

F (s) =

∞∑
d=1

g(d)/d

ds
,

H(s) =

(
1 + 1

2s+1 + 2
4s+1 + 4

8s+1−4s+1

)
1−2−(s+1)

1+2−(s+1)

ζ(2(s+ 1))
.

Dudek shows, half-way down page 4 in [8], that

(10) F (s) = ζ2(s+ 1)H(s).

Since
∑∞

n=1 d(n)n−s = ζ2(s), this suggests that we apply Lemma 5.4 with
gn = g(n)/n, kn = d(n)/n and with h(n) the coefficients of the Dirichlet
series H(s) in (9). Since g(d) is multiplicative we can determine its values
at prime powers by [8, Lemma 2.1]. This shows that

(11) g(2) = 1, g(4) = g(pe1) = 2, g(2e2) = 4 (p odd, e1 ≥ 1, e2 ≥ 3).

By (10) we may compare Euler products and use (11) to show that

h(1) = 1, h(p) = 0, h(p2) = −1, h(pe1) = 0 (p odd, e1 ≥ 3),

h(2) = −1, h(4) = h(8) = 1, h(16) = −2, h(2e2) = 0 (e2 ≥ 5).

This shows that

H(s) =
∏
p>2

(
1− 1

p2(s+1)

)(
1− 1

2s+1
+

1

22(s+1)
+

1

23(s+1)
− 2

24(s+1)

)
,

H∗(−1/3) =
∏
p

(
1 +

1

p4/3

)
1 + 1

22/3
+ 1

42/3
+ 1

82/3
+ 2

162/3

1 + 1
24/3

.

Since
∏
p(1 + p−4/3) = ζ(4/3)/ζ(8/3) we conclude that

H∗(−1/3) ≤ 5.203.

We may therefore apply Lemmas 5.3 and 5.4. We find that

(12) H(0) =
6

π2
, 0.4822 ≤ H ′(0) ≤ 0.4823, 4.4784 ≤ H ′′(0) ≤ 4.4785.

Indeed, we have complicated but exact expressions for H ′(0) and H ′′(0)—we
have merely given the decimal approximation in (12). This shows that

(13)
∑
d≤N

g(d)

d
≤ 3

π2
log2N + 1.1842 logN + 3.0871 + 6.0355N−1/3.

Inserting (13) into (8) completes the proof of Lemma 5.2.
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We now proceed to examine the number of quintuples that could arise
from each of the triples (A)–(D).

5.1. Case (A). This is the most damaging case in our considerations.
We have r < (d/16)1/4, whence by Theorem 2 we have r < 4.611·1016 = RA.
Using Lemma 5.2 we find that the number of doubles is at most

1

2

RA∑
r=3

dRA
(r2 − 1) < 2.288 · 1019.

Since b < (d/20)1/2 < 1.9011 · 1033 we find that b could have as many as 23
distinct prime factors. As explained in [5, p. 216], this information allows
one to conclude that there are at most 3 · 4 · 224 possibilities to extend
a Diophantine double {a, b} with b > 4a to a Diophantine quintuple. We
therefore find that the number of quintuples is bounded by

(14) 3 · 4 · 224 · 2.288 · 1019 ≤ 4.605 · 1027.

Since the number of possible quintuples originating from case (A) is by
far the largest, we devote §6 to reducing this number slightly.

5.2. Case (B). Since b > 4a we have b > 2r, whence c > 4r + a. Since
d > 4abc this shows that d > 4(r2 − 1)(4r+ 2) > 16r3. From Theorem 2 we
therefore have r ≤ 4.147 · 1019 = RB. By Lemma 5.2 the number of doubles
{a, b} is at most

1

2

RB∑
r=3

dRB
(r2 − 1) < 2.807 · 1022.

Since there are at most four ways of extending a quadruple to a quintuple,
we find that the total number of quintuples is bounded above by

(15) 1.123 · 1023.

5.3. Case (C). We proceed as in case 2(iii) in [18]. We consider the
cases a > η and a ≤ η and optimise over η. In the former case, we have d >
4abc > 4ηb5/2 so that b < (d/(4η))2/5 := N3a. Hence, by [12, Lemma 3.3],
the number of quintuples is at most

(16)
N3a

6
(logN3a + 2)3 · 8 · 5 · 4.

When a ≤ η, we have b < (d/(4a))2/5 so that r2 = ab+1 < a(d/(4a))2/5 +1.
Thus

r <

√
1 +

(
η3d2

16

)1/5

= N3b.

We apply Lemma 5.2 with H = η and N = N3b. Since b < (d/4)2/5 <
2.35 ·1022 we have ω(b) ≤ 17. Following the proof in [12] we deduce that the
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number of quintuples is at most

(17) 4 · 217 · 5 · 4 ·N3b

(
6

π2
log2 η + 2.369 log η + 6.175 + 12.071η−1/3

)
.

We find that we can minimise the maximum of (16) and (17) at η = 1.51 ·
1011. Hence the number of quintuples is at most

(18) 3.214 · 1024.

5.4. Case (D). We have b < (4d/9)1/3 so that, by Theorem 2, b <
1.05 · 1017 = RD. The number of doubles {a, b} is therefore bounded by

2
∑RD

b=4 2ω(b). We use this and Lemma 5.1 to prove that the number of quin-
tuples is at most

(19) 2.07 · 1019.

6. Improvements to case (A). Here we investigate two methods. The
first, in §6.1, reduces the bound on ω(b) from 23 to 22, thereby saving a factor
of 2 in the estimate recorded in (14). The second, in §6.2, splits up the sum
over b with ω(b) held constant. This saves a factor of about 4.23.

6.1. Removing one prime factor from b. Let (pn)n∈N denote the
sequence of prime numbers, and consider those b satisfying

(20) b0 :=
23∏
i=1

pi ≈ 2.67 · 1032 ≤ b < 1.9011 · 1033, ω(b) = 23.

We aim at enumerating all such b in (20). We shall show that none of these
values of b can appear as the second-smallest element of a quintuple. This
then shows that ω(b) ≤ 22, and leads immediately to a saving of a factor of
2 in (14).

Suppose {a, b, c, d, e} is a quintuple. In case (A), Theorem 2 gives the
bound d < UD := 1067.859. When b is restricted as in (20) we find that 2
divides b, since, if not, the smallest b can be is

∏23
i=1 pi/2 · p24 > 1.18 · 1034.

Continuing in this way we find that 2, 3, 5, 7, 11 must all divide b.

From 4a(4a + 1)b2 < UD it then follows that a ≤ 7. Moreover, as the
corresponding r is odd, ab is a multiple of 8, whence b ≡ 0 (mod 8) for
odd a, and b ≡ 0 (mod 4) for a ≡ 2 (mod 4). Hence, each such b is obtained
from b1 = b1(a) by replacing v of its factors p6, . . . , p23 by other v primes
pk1 , . . . , pkv , where 24 ≤ k1 < · · · < kv, and then multiplying by some
positive integer q such that the result is at most

UB = UB(a, UD) := UD1/2(16a2 + 4a)−1/2.

Here b1(a) = 4b0 if a is odd, b1(a) = 2b0 if a = 2, 6, and b1(a) = b0 otherwise.
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We now present a detailed exposition of the idea sketched above. All
computations have been performed with GP scripts [16]. Clearly, the maxi-
mal v is determined from the condition

p24p25 · · · p23+v
p23p22 · · · p24−v

<
UB

b1
.

A short computer search gives v = 3 for a = 2 or 4; v = 2 for a = 1; v = 0
for the other values a ≤ 7.

Next for each u = 1, . . . , v we look for the largest index K = K(u)
satisfying

p24p25 · · · p23+upK
p23p22 · · · p24−u

<
UB

b1
,

and the smallest J with

p24p25 · · · p23+u
p23p22 · · · p25−upJ

<
UB

b1
.

After that we determined all integers 24 ≤ k1 < · · · < ku ≤ K and 23 ≥
j1 > · · · > ju ≥ J such that

pk1 · · · pku
pj1 · · · pju

<
UB

b1
.

Each such tuple (k1, . . . , ku, j1, . . . , ju) gives rise to⌊
UBpj1 · · · pju
b1pk1 · · · pku

⌋
candidates for the largest entry in a Diophantine couple {a, b}.

Since the bound UD = 1067.859 found in case (A) entails UB(a, UD) <
1033.9295(16a2 + 4a)−1/2, for 1 ≤ a ≤ 7 one has

UB(a, UD)

b1(a)
≤ UB(4, UD)

b1(4)
< 2.

Therefore, the multiplier q mentioned above must be equal to 1.

For each value of b identified using the above method, we are able to show
easily that there is no corresponding quadruple. This shows that ω(b) ≤ 22.
In theory there is nothing stopping us from playing this trick again. However,
when we search for ω(b) = 22 we find that we could have over four thousand
primes dividing b. This appears to be orders of magnitude harder than the
ω(b) = 23 case.

6.2. Bounding b in different ranges. We have ab+1 = r2. Note first
that d(r2− 1) is even (it is odd if and only if r2− 1 = s2, which implies that
(r + s)(r − s) = 1—a contradiction). Since d(r2 − 1) counts the number of
divisors of r2 − 1, it follows that 1

2d(r2 − 1) counts the number of pairs of
divisors {a, b} with a < b. Now each a corresponds to exactly one b (and
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hence one pair corresponds to exactly one value of a): therefore 1
2d(r2 − 1)

is actually counting the divisors a. Furthermore, note that

(21) r2 − 1 = ab > a2.

Therefore 1
2d(r2−1) is actually counting all those a with a <

√
r2 − 1. Hence

for a fixed r we wish to count
1

2
d√r2−1(r

2 − 1).

If r ≤ R then summing over r shows that the number of pairs {a, b} is at
most

(22)
1

2

R∑
r=3

d√r2−1(r
2 − 1) ≤ 1

2

R∑
r=3

dr(r
2 − 1) <

1

2

R∑
r=3

dR(r2 − 1).

Now, we can make a slight improvement on (22). Since for case (A)
quadruples we have b > 4a, we can improve on (21) to show that r2 − 1 =
ab > 4a2. Therefore, we amend (22) to show that the total number of pairs
is at most

1

2

R∑
r=3

dR/2(r
2 − 1).

One can go further than this. Let N(α, β) be the number of quintuples
with αa < b ≤ βa, for some β > α ≥ 4. It then follows that for integers
mi satisfying 4 = m0 < m1 < · · · < mk the total number of quintuples is
bounded above by

N(4,m1) +N(m1,m2) + · · ·+N(mk−1,mk) +N(mk,∞),

where N(mk,∞) counts all those pairs {a, b} such that b > mka. With the
exception of N(mk,∞), each number is of the form N(mj ,mj+1).

Take mja < b ≤ mj+1a. Since d > 4ab(4ab + a + b) > 16a2b2 >
16b4/(mj+1)

2, we have

(23) b < d1/4(mj+1)
1/2/2.

We also have

(24) r2 − 1 = ab > mja
2 ⇒ a < R/

√
mj .

By taking mj large we ensure that the bound on a in (24) is small. We now
look at ω(b) for b satisfying (23). We want to choose mj+1 to be as large as
possible such that we do not increase ω(b). For example, when j = 0 we are
considering 4a < b ≤ m1a. We find, using d ≤ 7.228× 1067, that ω(b) ≤ 14
provided that m1 ≤ 177. Also, for m2 we find that we can take m2 ≤ 499686
and still ensure that ω(b) ≤ 15. We continue in this way, contenting ourselves
with estimates on mj that are accurate to one decimal place. We find, using
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Mathematica [19], that we may take

(m3,m4,m5,m6,m7,m8)

= (1.7 · 109, 6.4 · 1012, 2.9 · 1016, 1.4 · 1020, 7.8 · 1023, 4.8 · 1027).

We know, from §6.1, that there are at most 22 distinct prime factors of b.
Therefore the number of quintuples is at most

3 · 2
(

215
R∑
r=3

dR/2(r
2 − 1) + 216

R∑
r=3

dR/
√
177(r

2 − 1)

+ · · ·+ 223
R∑
r=3

d
R/
√
4.8·1027(r2 − 1)

)
.

We find that the above is no more than

(25) 5.4075 · 1026.

Using (15), (18), (19) and (25) we complete the proof of Theorem 1.
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