Sums of squares in rings of integers with 2 inverted

by
GaËl Collinet (Strasbourg)

Introduction. Let K be a number field with ring of integers \mathcal{O}_{K}. In this paper, an element x of K will be said to be totally positive if $\sigma(x)>0$ for any embedding $\sigma: K \rightarrow \mathbb{R}$.

Let A be a subring of K containing \mathcal{O}_{K}. An A-quadratic module $\mathrm{L}=$ (L, q) is the datum of a projective A-module of finite rank together with a quadratic form $q: L \rightarrow A$ such that the K-quadratic space $\mathrm{L} \otimes_{A} K$ is nondegenerate. Such a quadratic module is said to be totally positive definite if $q(x)$ is totally positive for any non-trivial x in L.

A totally positive quadratic module $\mathrm{L}=(L, q)$ over A is said to be absolutely universal if any totally positive element $a \in A$ is represented by L , i.e. $a=q(x)$ for some $x \in L$.

EXAMPLES. For any natural number n, let us denote by I_{n} the \mathbb{Z}-quadratic module \mathbb{Z}^{n} together with its standard euclidean quadratic form

$$
x \mapsto x_{1}^{2}+\cdots+x_{n}^{2}
$$

For any subring A as above, $\mathrm{I}_{n} \otimes A$ is totally positive definite and
(1) as is well known, a theorem of Lagrange says that I_{4} is absolutely universal;
(2) a theorem of Niven [4] says that if m is a prime congruent to 3 modulo 4 , and if K is the number field $\mathbb{Q}[i \sqrt{m}]$, then $\mathrm{I}_{3} \otimes \mathcal{O}_{K}$ is absolutely universal (here, the positiveness conditions are empty).

So (1) above says that any natural integer is a sum of four squares, and (2) says that any integer in the quadratic field $\mathbb{Q}[i \sqrt{m}]($ with $m \equiv 3 \bmod 4)$ is a sum of three such integers squared.

[^0]In a recent work [3], V. Kala, pursuing work with Blomer [2], shows that such phenomena cannot be expected for the case of integers in real quadratic fields:
(3) for any natural number M, there exist infinitely many quadratic number fields K such that no totally positive definite quadratic $\mathcal{O}_{K^{-}}$ module of rank M can be absolutely universal.

In this note, we shall prove the following:
Theorem.
(i) For any number field K, and any subring A of K containing $\mathcal{O}_{K}[1 / 2]$, the quadratic module $\mathrm{I}_{5} \otimes A$ is absolutely universal.
(ii) There exist number fields K such that, for $A:=\mathcal{O}_{K}[1 / 2]$, there exist totally positive elements in A that are not represented by $\mathrm{I}_{4} \otimes A$.
In Section 1, we will prove (i). The method extends and allows us to prove that under the same hypothesis on A, any totally positive integral quadratic A-module of rank k is represented by $\mathrm{I}_{k+4} \otimes A$ (we say a module A is represented by a module B if there exists an injective isometry $A \rightarrow B$). In Section 2, we will prove (ii) by analyzing what appear to be the smallest counter-examples.

The choice of inverting 2 is not arbitrary. It makes $\mathrm{I}_{n} \otimes A$ maximal among the integral A-lattices on $\mathrm{I}_{n} \otimes K$, an important remark in our argument. We could similarly prove that $\mathrm{E}_{8} \otimes A$ is absolutely universal whenever either A strictly contains \mathcal{O}_{K}, or K has a complex place (here E_{8} is the unique unimodular positive definite \mathbb{Z}-quadratic module of rank 8).

1. Constructing universal modules

1.1. (S)-arithmetic rings. Let K be a number field, let \mathcal{O}_{K} be its ring of integers, and let \mathcal{V}_{K} be the set of equivalence classes of valuations (i.e. the set of places) on K.

Ostrowski's theorem tells us that \mathcal{V}_{K} is made up of three parts:
$\mathcal{V}_{\mathbb{R}}$: the finite set of real archimedean places, corresponding to embeddings $K \rightarrow \mathbb{R}$,
$\mathcal{V}_{\mathbb{C}}$: the finite set of complex archimedean places, corresponding to embeddings $K \rightarrow \mathbb{C}$ whose image does not lie in \mathbb{R},
\mathcal{V}_{f} : the infinite set of non-archimedean places, consisting of one place for each prime ideal \mathfrak{p} of \mathcal{O}_{K}, the equivalence class of the \mathfrak{p}-adic valuation $v_{\mathfrak{p}}$.
The union of $\mathcal{V}_{\mathbb{R}}$ and $\mathcal{V}_{\mathbb{C}}$ is written \mathcal{V}_{∞}.
Let S be a subset of \mathcal{V}_{f}. The ring of (S)-integers in K is

$$
A=\left\{x \in K: v_{\mathfrak{p}}(x) \geq 0 \forall \mathfrak{p} \in \mathcal{V}_{f}-S\right\}
$$

The completion of A at an ideal \mathfrak{p} will be denoted by $A_{\mathfrak{p}}$. Its fraction field $K \otimes A_{\mathfrak{p}}$ will be denoted by $K_{\mathfrak{p}}$. This notation is extended to the case of archimedean valuations by allowing \mathfrak{p} to denote an embedding $K \rightarrow \mathbb{C}$. In that case, $A_{\mathfrak{p}}$ and $K_{\mathfrak{p}}$ both denote the completion of $\mathfrak{p}(K)$ (thus either \mathbb{R} or \mathbb{C}).
1.2. A-lattices on quadratic spaces. Let $\mathrm{V}=(V, q)$ be a quadratic space on K. We denote by

$$
(x, y) \mapsto x . y:=q(x+y)-q(x)-q(y)
$$

the associated bilinear form (thus we have $x \cdot x=2 q(x)$ for $x \in V$).
An A-lattice on V is a finitely generated A-submodule of V whose K-span is V.

Let L be an A-lattice on V . Its dual lattice is defined by

$$
L^{\sharp}:=\{v \in \mathrm{~V}: \forall x \in L, v \cdot x \in A\} .
$$

The lattice L is said to be integral when $q(L)$ is contained in A. This implies that L is contained in L^{\sharp}.

The set of integral lattices containing a given integral lattice L is finite, since there is a bijection between those lattices and the submodules of the finitely generated torsion module L^{\sharp} / L that are isotropic for the inherited quadratic form $L^{\sharp} / L \rightarrow K / A$. We note that, in particular:

- any integral lattice L on V is contained in a maximal integral lattice,
- a lattice is maximal integral if and only if $L \otimes A_{\mathfrak{p}}$ is a maximal $A_{\mathfrak{p}}$-lattice on $V \otimes K_{\mathfrak{p}}$ at each place $\mathfrak{p} \in S$.

Lemma 1.1. Let $a \in A$ be represented by the quadratic space V. Then a is represented by a maximal A-lattice on V.

Proof. The case $a=0$ is obvious: if V is isotropic then so is any lattice on V. If $a \neq 0$, let $v_{1} \in V$ be such that $q\left(v_{1}\right)=a$. Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be any orthogonal basis of V. Up to rescaling, we may assume $q\left(v_{2}\right), \ldots, q\left(v_{n}\right)$ are elements of A. The A-lattice generated by this basis is integral, and thus is contained in a maximal integral lattice.
1.3. Genera and spinor genera of A-lattices on V . Two lattices L_{1} and L_{2} on V are said to be in the same genus if at any place \mathfrak{p} there exists an isometry $\sigma_{\mathfrak{p}} \in \mathrm{O}\left(\mathrm{V}_{\mathfrak{p}}\right)$ sending $L_{1} \otimes A_{\mathfrak{p}}$ onto $L_{2} \otimes A_{\mathfrak{p}}$. Note that for all but finitely many \mathfrak{p} one has $L_{1} \otimes A_{\mathfrak{p}}=L_{2} \otimes A_{\mathfrak{p}}$.

The following result shows that when σ_{p} exists, one can assume without loss of generality that it is a rotation:

Proposition R1 ([5, 91.4]). Let $L_{\mathfrak{p}}$ be a lattice on $\mathrm{V}_{\mathfrak{p}}$. Then $\mathrm{O}\left(L_{\mathfrak{p}}\right)$ contains a reflection.

The next observation indicates that maximal integral lattices on V form a single genus:

Proposition R2 ([5, 91.2]). Two maximal lattices on $\mathrm{V}_{\mathfrak{p}}$ are isometric.
A genus splits in spinor genera. Let us recall that there exists a unique morphism $\mathrm{Sp}: \mathrm{O}(\mathrm{V}) \rightarrow K^{\times} / K^{\times 2}$ taking the value $q(x)$ on the reflection

$$
\tau_{x}: y \mapsto y-\frac{\langle x, y\rangle}{q(x)} x
$$

This morphism is called the spinor norm and its kernel on $\mathrm{SO}(\mathrm{V})$ is written $\mathrm{SO}^{\prime}(\mathrm{V})$. Two lattices lying in the same genus are said to lie in the same spinor genus if the isometries $\sigma_{\mathfrak{p}}$ can be chosen in $\mathrm{SO}^{\prime}\left(\mathrm{V}_{\mathfrak{p}}\right)$. The following elementary result will be crucial.

Lemma 1.2. Let L be an A-lattice on V . Let U be a non-degenerate subspace of V . Let W be the orthogonal complement of U in V . Write $D:=$ $L \cap U$. If $\mathrm{W}_{\mathfrak{p}}$ is universal at each finite place $\mathfrak{p} \in S$, then for any spinor genus \mathcal{S} in the genus of L there exists a lattice $L^{\prime} \in \mathcal{S}$ containing D.

Proof. Let M be a representative of a spinor genus in the genus of L. Let T be the set of places \mathfrak{p} where $L_{\mathfrak{p}}$ and $M_{\mathfrak{p}}$ differ. The set T is finite and its intersection with $\mathcal{V}_{\infty} \cup S$ is empty. At any place $\mathfrak{p} \in T$ we have an isometry $\sigma_{\mathfrak{p}}: M_{\mathfrak{p}} \rightarrow L_{\mathfrak{p}}$. Choose any rotation $\rho_{\mathfrak{p}}$ of $W_{\mathfrak{p}}$ such that $\operatorname{Sp}\left(\rho_{\mathfrak{p}}\right)$ and $\operatorname{Sp}\left(\sigma_{\mathfrak{p}}\right)$ coincide, and extend it by the identity on $U_{\mathfrak{p}}$ to obtain a rotation $\theta_{\mathfrak{p}}$ of $V_{\mathfrak{p}}$. Finally, write $L_{\mathfrak{p}}^{\prime}:=\theta_{\mathfrak{p}}\left(L_{\mathfrak{p}}\right)$. Then $L_{\mathfrak{p}}^{\prime}$ contains $D_{\mathfrak{p}}$, and $\operatorname{Sp}\left(\theta_{\mathfrak{p}} \circ \sigma_{\mathfrak{p}}\right)$ is trivial. Putting all these together, we obtain an element L^{\prime} containing D in the same spinor genus as M.

Being members of a common spinor genus is a strong requirement, as the following result, known as Kneser's Strong Approximation Theorem, demonstrates

Proposition R3 ([5, 104.5]). Let L_{1} and L_{2} be lattices on V lying in the same spinor genus. Assume

- V is at least 3-dimensional,
- there exists a place $\mathfrak{p} \in \mathcal{V}_{K}-S$ such that $\mathrm{V} \otimes K_{\mathfrak{p}}$ is isotropic.

Then L_{1} and L_{2} are isometric.
1.4. The proof of (i). If a module D is represented by $\mathrm{I}_{n} \otimes A$, then $\mathrm{D} \otimes K$ is represented by $\mathrm{I}_{n} \otimes K$. Let us first establish a representation result for spaces.

Lemma 1.3. Let P be a totally positive K-space of dimension k. Then P is represented by $\mathrm{I}_{k+3} \otimes K$.

Proof. First we note that any totally positive quadratic space of dimension $r \geq 4$ decomposes as a sum $\mathrm{I}_{r-3} \otimes K \perp \mathrm{~W}$ for some space W . This follows from Witt's Cancellation Theorem and the fact that totally positive spaces of rank 4 are absolutely universal (a well known result, a consequence of the theorem of Hasse-Minkowski [5, 66.4] and the fact that a 4-dimensional space is universal at each ultrametric place \mathfrak{p} [5, 63.18]).

The result is then a consequence of the remark that for any totally positive k-dimensional quadratic module Q , the quadratic spaces $(\mathrm{Q})^{\perp 4}$ and $\mathrm{I}_{4 k}$ are isomorphic (one easily sees that $(\mathrm{L})^{\perp 4}$ is isomorphic to $\mathrm{I}_{4} \otimes K$ for any totally positive quadratic line L over K).

Remark 1.4. Thus any totally positive quadratic A-module is represented by a maximal lattice on $\mathrm{I}_{k+3} \otimes K$. When 2 is invertible in A, these maximal modules form the genus of $\mathrm{I}_{k+3} \otimes A$.

Lemma 1.5. Assume A contains $1 / 2$ and P is a totally positive A quadratic module of rank k. Then P is represented by $\mathrm{I}_{k+4} \otimes A$.

Proof. By Remark 1.4, P is represented by an element in the genus of $\mathrm{I}_{k+4} \otimes A$. Since for any finite place \mathfrak{p} the K-space P^{\perp} is non-degenerate and 4 -dimensional, it is universal, so Lemma 1.2 applies and P is represented by an element in the spinor genus of $\mathrm{I}_{k+4} \otimes A$, say M. Finally, since $\mathrm{I}_{k+4} \otimes K_{\mathfrak{p}}$ is at least 5 -dimensional, it is isotropic at any finite place \mathfrak{p}, in particular at dyadic places, so Proposition R3 applies and M is isometric to $\mathrm{I}_{k+4} \otimes A$.

Remark 1.6. This in particular implies (i). Nevertheless, when P has rank 1, we can do better.

Lemma 1.7. Assume A contains $1 / 2$ and a is a totally positive element of A. Then a is represented by a maximal lattice on $\mathrm{I}_{4} \otimes K$ that belongs to the same spinor genus as $\mathrm{I}_{4} \otimes A$.

Proof. By Lemma 1.2 it is enough to prove that, for any vector v in $\mathrm{V}:=\mathrm{I}_{4} \otimes K$, the orthogonal P of v in V is universal at any non-dyadic place \mathfrak{p}. Now at such a place, V is a sum of two hyperbolic planes. Thus P is non-degenerate and isotropic.

In order to derive a universality result for I_{4}, we need to use the Strong Approximation Theorem. If K has complex places, all the conditions required are satisfied, and this will also be the case if $\mathrm{I}_{4} \otimes K_{\mathfrak{p}}$ is isotropic at some ultrametric place outside of S.

Definition 1.8. Let A be the ring of (S)-integers in a number field K. We say that A is a $b a d$ ring if the following conditions are satisfied:

- S is the union of the archimedean and the dyadic places (thus $A=$ $\left.\mathcal{O}_{K}[1 / 2]\right)$,
- K is totally real,
- for any dyadic prime \mathfrak{p}, the extension $K_{\mathfrak{p}} / \mathbb{Q}_{2}$ has odd degree.

We say A is a good ring if it contains $\mathcal{O}_{K}[1 / 2]$ but is not bad.
Lemma 1.9. If A is a good ring, then any totally positive element of A is represented by $\mathrm{I}_{4} \otimes A$.

Proof. We are just left with verifying that when K is totally real and $A=\mathcal{O}_{K}[1 / 2]$, and at least one of the extensions $K_{\mathfrak{p}} / \mathbb{Q}_{2}$ has even degree, strong approximation applies. But at a dyadic place, $\mathrm{I}_{3} \otimes K_{\mathfrak{p}}$ is isotropic if and only if the Hilbert symbol $\left(\frac{-1,-1}{\mathfrak{p}}\right)$ is trivial. A theorem of Bender [1] says that this happens exactly when the degree $\left[K_{\mathfrak{p}}: \mathbb{Q}_{2}\right]$ is even.
2. Examples of rings A such that $\mathrm{I}_{4} \otimes A$ is not universal. By Lemma 1.9 we have to look for such counterexamples among bad rings.

Proposition R4 ([5, 91.1]). Let K be a field such that $\mathcal{O}_{K}[1 / 2]$ is a bad ring. Let L be a maximal A-lattice on $\mathrm{V}:=\mathrm{I}_{4} \otimes K$. Then the subset $L_{\mathcal{O}_{K}}$ of vectors x in L that satisfy $q(x) \in \mathcal{O}_{K}$ is a (maximal integral) \mathcal{O}_{K}-lattice on V .

The simplest bad ring is $A=\mathbb{Z}[1 / 2]$. Thus let us consider the case when V is the space $\mathrm{I}_{4} \otimes \mathbb{Q}$, whose canonical basis is denoted by $\underline{e}=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$, and L is the A-lattice with basis \underline{e}. The \mathbb{Z}-lattice $L_{\mathbb{Z}}$ is known as the Hurwitz lattice H; setting $u:=\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)$, we see it has $\left(e_{1}, e_{2}, e_{3}, u\right)$ as a basis, in which the Gram matrix of q has the form

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 & 1
\end{array}\right)
$$

In other words, the \mathbb{Z}-quadratic module $\mathrm{H}:=\left(H,\left.q\right|_{H}\right)$ is isometric to $\left(\mathbb{Z}^{4}, q^{\prime}\right)$ with

$$
q^{\prime}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+\left(x_{1} x_{4}+x_{2} x_{4}+x_{3} x_{4}\right)
$$

This module is absolutely universal: it contains the standard lattice I_{4}, which is absolutely universal by Lagrange's theorem.

Therefore let us study the case when $A=\mathbb{Z}[1 / 2, \sqrt{p}]$ where p is a prime. This ring is bad if p is a square in \mathbb{Q}_{2}, i.e. if p is congruent to 1 modulo 8. In the following, we assume that p can be written in the form $p=(2 m+1)^{2}-8$, and we write $\omega=(1+\sqrt{p}) / 2$, so that $\mathcal{O}_{K}=\mathbb{Z}[\omega]$. Here are the first few such primes:

$$
p=17,41,73,113,281,353,433,521,617,953,1217,1361,2017, \ldots
$$

A special case of a conjecture of Bunyakovskiĭ says that there should exist infinitely many such primes.

We write $x \mapsto \bar{x}$ for the Galois automorphism of K. Let $\pi=m+\omega$. We see that π is a totally positive integer whose norm equals 2 and whose trace equals $2 m+1$ (and we have a factorization $(2)=(\pi)(\bar{\pi})$ in the monoid of ideals of \mathcal{O}_{K}).

LEMMA 2.1. The integer π cannot be written as the sum of two totally positive elements of \mathcal{O}_{K}.

Proof. Assume we can write $\pi=x+y$ with x and y totally positive in \mathcal{O}_{K}. We would have the inequalities $x<\pi$ and $\bar{x}<\pi$, and hence we would get

$$
N(x)<N(\pi)=2, \quad \operatorname{Tr}(x)<\operatorname{Tr}(\pi)=2 m+1=\sqrt{p+8}
$$

If we write $x=(a+b \sqrt{p}) / 2$, with a and b rational, these inequalities translate into

$$
a^{2}=4+p b^{2}, \quad a^{2}<p+8
$$

Thus b is an element of $\{0, \pm 1\}$. The case $b=0$ cannot occur: we would have $x=1$, and $\pi-1$ would be totally positive, which it is not, since $\bar{\pi}-1=\frac{\sqrt{p+8}-\sqrt{p}-2}{2}<0$ (recall that $p \geq 17$). The case $b=1$ cannot occur, since it would imply that y is a rational integer. Finally the case $b=-1$ would imply $\bar{\pi} \geq 1$.

Now let us assume there exists an $x \in \mathrm{H} \otimes \mathcal{O}_{K}$ such that $q^{\prime}(x)=\pi$. Then the identity

$$
q^{\prime}(x)=\left(x_{1}+\frac{1}{2} x_{4}\right)^{2}+\left(x_{2}+\frac{1}{2} x_{4}\right)^{2}+\left(x_{3}+\frac{1}{2} x_{4}\right)^{2}+\frac{1}{4} x_{4}^{2}
$$

shows that, up to reindexing, $\left(x_{1}+x_{4} / 2\right)^{2} \leq \pi / 3$. We also have $\left(\overline{x_{1}+x_{4} / 2}\right)^{2}$ $\leq \bar{\pi}$. Thus, writing $y=2 x_{1}+x_{4}$, we obtain

$$
\begin{equation*}
\operatorname{Tr}\left(y^{2}\right) \leq \frac{4}{3}(\pi+3 \bar{\pi}) \quad \text { and } \quad N(y)^{2} \leq \frac{16}{3} N(\pi) \tag{*}
\end{equation*}
$$

Setting $y=\frac{a+b \sqrt{p}}{2}$, with a and b rational integers of the same parity, we can rewrite the first part of $(*)$ as

$$
\begin{equation*}
a^{2}+p b^{2} \leq \frac{16}{3}(\sqrt{p+8}-\sqrt{p}) \tag{1}
\end{equation*}
$$

Since $p \geq 17$, this implies $b=0$. So a is even and y is a rational integer whose fourth power, by the second part of $(*)$, cannot exceed 10 . So y is either 0 or ± 1. For $p \geq 73$, it cannot be ± 1, since this would imply that $\pi-1 / 4$ is a sum of squares, so $\bar{\pi}-1 / 4$ is positive, which is not the case. We deduce that y is zero, x_{4} is a multiple of 2 , and finally π is a sum of four squares in \mathcal{O}_{K}. By Lemma 2.1, this cannot happen.

Thus, for $p \geq 73$, the equation $q^{\prime}(x)=\pi$ has no solution. For $p=17$ and $p=41$, a computer assisted calculation shows that the same holds. In conclusion, we have the following result.

ThEOREM 2.2. Let p be a prime of the form $p=(2 m+1)^{2}-8$. Let A be the $\operatorname{ring} \mathbb{Z}[1 / 2, \sqrt{p}]$. Then $\mathrm{I}_{4} \otimes A$ does not represent the totally positive integer $(2 m+1+\sqrt{p}) / 2$.

Acknowledgements. The author wishes to thank Pete L. Clark for pointing out references [3] and [4], and the referee for valuable remarks.

References

[1] E. A. Bender, A lifting formula for the Hilbert symbol, Proc. Amer. Math. Soc. 40 (1973), 63-65.
[2] V. Blomer and V. Kala, Number fields without n-ary universal quadratic forms, Math. Proc. Cambridge Philos. Soc. 159 (2015), 239-252.
[3] V. Kala, Universal quadratic forms and elements of small norm in real quadratic fields, Bull. Austral. Math. Soc., to appear; arXiv:1507.04237
[4] I. Niven, Integers of quadratic fields as sums of squares, Trans. Amer. Math. Soc. 48 (1940), 405-417.
[5] O. T. O'Meara, Introduction to Quadratic Forms, Classics Math., Springer, Berlin, 2000.

Gaël Collinet
IRMA, Université de Strasbourg et CNRS
7 rue René Descartes
67084 Strasbourg, France
E-mail: collinet@math.unistra.fr

[^0]: 2010 Mathematics Subject Classification: Primary 11E25; Secondary 11P05.
 Key words and phrases: sums of squares, rings of (S)-integers, universal forms.
 Received 25 November 2015; revised 23 February 2016.
 Published online 18 May 2016.

