Sums of squares in rings of integers with 2 inverted

by

GAËL COLLINET (Strasbourg)

Introduction. Let K be a number field with ring of integers \mathcal{O}_K . In this paper, an element x of K will be said to be *totally positive* if $\sigma(x) > 0$ for any embedding $\sigma: K \to \mathbb{R}$.

Let A be a subring of K containing \mathcal{O}_K . An A-quadratic module $\mathcal{L} = (L,q)$ is the datum of a projective A-module of finite rank together with a quadratic form $q: L \to A$ such that the K-quadratic space $\mathcal{L} \otimes_A K$ is non-degenerate. Such a quadratic module is said to be *totally positive definite* if q(x) is totally positive for any *non-trivial* x in L.

A totally positive quadratic module L = (L, q) over A is said to be absolutely universal if any totally positive element $a \in A$ is represented by L, i.e. a = q(x) for some $x \in L$.

EXAMPLES. For any natural number n, let us denote by I_n the \mathbb{Z} -quadratic module \mathbb{Z}^n together with its standard euclidean quadratic form

$$x \mapsto x_1^2 + \dots + x_n^2.$$

For any subring A as above, $I_n \otimes A$ is totally positive definite and

- (1) as is well known, a theorem of Lagrange says that I_4 is absolutely universal;
- (2) a theorem of Niven [4] says that if m is a prime congruent to 3 modulo 4, and if K is the number field $\mathbb{Q}[i\sqrt{m}]$, then $I_3 \otimes \mathcal{O}_K$ is absolutely universal (here, the positiveness conditions are empty).

So (1) above says that any natural integer is a sum of four squares, and (2) says that any integer in the quadratic field $\mathbb{Q}[i\sqrt{m}]$ (with $m \equiv 3 \mod 4$) is a sum of three such integers squared.

Published online 18 May 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 11E25; Secondary 11P05.

Key words and phrases: sums of squares, rings of (S)-integers, universal forms.

Received 25 November 2015; revised 23 February 2016.

G. Collinet

In a recent work [3], V. Kala, pursuing work with Blomer [2], shows that such phenomena cannot be expected for the case of integers in real quadratic fields:

(3) for any natural number M, there exist infinitely many quadratic number fields K such that no totally positive definite quadratic $\mathcal{O}_{K^{-}}$ module of rank M can be absolutely universal.

In this note, we shall prove the following:

THEOREM.

- (i) For any number field K, and any subring A of K containing $\mathcal{O}_K[1/2]$, the quadratic module $I_5 \otimes A$ is absolutely universal.
- (ii) There exist number fields K such that, for A := O_K[1/2], there exist totally positive elements in A that are not represented by I₄ ⊗ A.

In Section 1, we will prove (i). The method extends and allows us to prove that under the same hypothesis on A, any totally positive integral quadratic A-module of rank k is represented by $I_{k+4} \otimes A$ (we say a module Ais *represented* by a module B if there exists an injective isometry $A \to B$). In Section 2, we will prove (ii) by analyzing what appear to be the smallest counter-examples.

The choice of inverting 2 is not arbitrary. It makes $I_n \otimes A$ maximal among the integral A-lattices on $I_n \otimes K$, an important remark in our argument. We could similarly prove that $E_8 \otimes A$ is absolutely universal whenever either A strictly contains \mathcal{O}_K , or K has a complex place (here E_8 is the unique unimodular positive definite \mathbb{Z} -quadratic module of rank 8).

1. Constructing universal modules

1.1. (S)-arithmetic rings. Let K be a number field, let \mathcal{O}_K be its ring of integers, and let \mathcal{V}_K be the set of equivalence classes of valuations (i.e. the set of places) on K.

Ostrowski's theorem tells us that \mathcal{V}_K is made up of three parts:

- $\mathcal{V}_{\mathbb{R}}$: the finite set of real archimedean places, corresponding to embeddings $K \to \mathbb{R}$,
- $\mathcal{V}_{\mathbb{C}}$: the finite set of complex archimedean places, corresponding to embeddings $K \to \mathbb{C}$ whose image does not lie in \mathbb{R} ,
- \mathcal{V}_f : the infinite set of non-archimedean places, consisting of one place for each prime ideal \mathfrak{p} of \mathcal{O}_K , the equivalence class of the \mathfrak{p} -adic valuation $v_{\mathfrak{p}}$.

The union of $\mathcal{V}_{\mathbb{R}}$ and $\mathcal{V}_{\mathbb{C}}$ is written \mathcal{V}_{∞} .

Let S be a subset of
$$\mathcal{V}_f$$
. The ring of (S)-integers in K is

$$A = \{ x \in K : v_{\mathfrak{p}}(x) \ge 0 \ \forall \mathfrak{p} \in \mathcal{V}_f - S \}.$$

The completion of A at an ideal \mathfrak{p} will be denoted by $A_{\mathfrak{p}}$. Its fraction field $K \otimes A_{\mathfrak{p}}$ will be denoted by $K_{\mathfrak{p}}$. This notation is extended to the case of archimedean valuations by allowing \mathfrak{p} to denote an embedding $K \to \mathbb{C}$. In that case, $A_{\mathfrak{p}}$ and $K_{\mathfrak{p}}$ both denote the completion of $\mathfrak{p}(K)$ (thus either \mathbb{R} or \mathbb{C}).

1.2. A-lattices on quadratic spaces. Let V = (V,q) be a quadratic space on K. We denote by

$$(x,y) \mapsto x.y := q(x+y) - q(x) - q(y)$$

the associated bilinear form (thus we have $x \cdot x = 2q(x)$ for $x \in V$).

An A-lattice on V is a finitely generated A-submodule of V whose K-span is V.

Let L be an A-lattice on V. Its dual lattice is defined by

$$L^{\sharp} := \{ v \in \mathcal{V} : \forall x \in L, v \cdot x \in A \}.$$

The lattice L is said to be *integral* when q(L) is contained in A. This implies that L is contained in L^{\sharp} .

The set of integral lattices containing a given integral lattice L is finite, since there is a bijection between those lattices and the submodules of the finitely generated torsion module L^{\sharp}/L that are isotropic for the inherited quadratic form $L^{\sharp}/L \to K/A$. We note that, in particular:

- any integral lattice L on V is contained in a maximal integral lattice,
- a lattice is maximal integral if and only if L⊗A_p is a maximal A_p-lattice on V ⊗ K_p at each place p ∈ S.

LEMMA 1.1. Let $a \in A$ be represented by the quadratic space V. Then a is represented by a maximal A-lattice on V.

Proof. The case a = 0 is obvious: if V is isotropic then so is any lattice on V. If $a \neq 0$, let $v_1 \in V$ be such that $q(v_1) = a$. Let (v_1, v_2, \ldots, v_n) be any orthogonal basis of V. Up to rescaling, we may assume $q(v_2), \ldots, q(v_n)$ are elements of A. The A-lattice generated by this basis is integral, and thus is contained in a maximal integral lattice.

1.3. Genera and spinor genera of A-lattices on V. Two lattices L_1 and L_2 on V are said to be *in the same genus* if at any place \mathfrak{p} there exists an isometry $\sigma_{\mathfrak{p}} \in O(V_{\mathfrak{p}})$ sending $L_1 \otimes A_{\mathfrak{p}}$ onto $L_2 \otimes A_{\mathfrak{p}}$. Note that for all but finitely many \mathfrak{p} one has $L_1 \otimes A_{\mathfrak{p}} = L_2 \otimes A_{\mathfrak{p}}$.

The following result shows that when σ_p exists, one can assume without loss of generality that it is a rotation:

PROPOSITION R1 ([5, 91.4]). Let $L_{\mathfrak{p}}$ be a lattice on $V_{\mathfrak{p}}$. Then $O(L_{\mathfrak{p}})$ contains a reflection.

The next observation indicates that maximal integral lattices on V form a single genus:

PROPOSITION R2 ([5, 91.2]). Two maximal lattices on V_p are isometric.

A genus splits in spinor genera. Let us recall that there exists a unique morphism $\text{Sp}: O(V) \to K^{\times}/K^{\times 2}$ taking the value q(x) on the reflection

$$\tau_x: y \mapsto y - \frac{\langle x, y \rangle}{q(x)} x.$$

This morphism is called the *spinor norm* and its kernel on SO(V) is written SO'(V). Two lattices lying in the same genus are said to lie in the same *spinor genus* if the isometries $\sigma_{\mathfrak{p}}$ can be chosen in SO'(V_p). The following elementary result will be crucial.

LEMMA 1.2. Let L be an A-lattice on V. Let U be a non-degenerate subspace of V. Let W be the orthogonal complement of U in V. Write $D := L \cap U$. If $W_{\mathfrak{p}}$ is universal at each finite place $\mathfrak{p} \in S$, then for any spinor genus S in the genus of L there exists a lattice $L' \in S$ containing D.

Proof. Let M be a representative of a spinor genus in the genus of L. Let T be the set of places \mathfrak{p} where $L_{\mathfrak{p}}$ and $M_{\mathfrak{p}}$ differ. The set T is finite and its intersection with $\mathcal{V}_{\infty} \cup S$ is empty. At any place $\mathfrak{p} \in T$ we have an isometry $\sigma_{\mathfrak{p}} : M_{\mathfrak{p}} \to L_{\mathfrak{p}}$. Choose any rotation $\rho_{\mathfrak{p}}$ of $W_{\mathfrak{p}}$ such that $\operatorname{Sp}(\rho_{\mathfrak{p}})$ and $\operatorname{Sp}(\sigma_{\mathfrak{p}})$ coincide, and extend it by the identity on $U_{\mathfrak{p}}$ to obtain a rotation $\theta_{\mathfrak{p}}$ of $V_{\mathfrak{p}}$. Finally, write $L'_{\mathfrak{p}} := \theta_{\mathfrak{p}}(L_{\mathfrak{p}})$. Then $L'_{\mathfrak{p}}$ contains $D_{\mathfrak{p}}$, and $\operatorname{Sp}(\theta_{\mathfrak{p}} \circ \sigma_{\mathfrak{p}})$ is trivial. Putting all these together, we obtain an element L' containing D in the same spinor genus as M.

Being members of a common spinor genus is a strong requirement, as the following result, known as Kneser's Strong Approximation Theorem, demonstrates

PROPOSITION R3 ([5, 104.5]). Let L_1 and L_2 be lattices on V lying in the same spinor genus. Assume

- V is at least 3-dimensional,
- there exists a place $\mathfrak{p} \in \mathcal{V}_K S$ such that $V \otimes K_{\mathfrak{p}}$ is isotropic.

Then L_1 and L_2 are isometric.

1.4. The proof of (i). If a module D is represented by $I_n \otimes A$, then $D \otimes K$ is represented by $I_n \otimes K$. Let us first establish a representation result for spaces.

LEMMA 1.3. Let P be a totally positive K-space of dimension k. Then P is represented by $I_{k+3} \otimes K$.

386

Proof. First we note that any totally positive quadratic space of dimension $r \geq 4$ decomposes as a sum $I_{r-3} \otimes K \perp W$ for some space W. This follows from Witt's Cancellation Theorem and the fact that totally positive spaces of rank 4 are absolutely universal (a well known result, a consequence of the theorem of Hasse–Minkowski [5, 66.4] and the fact that a 4-dimensional space is universal at each ultrametric place \mathfrak{p} [5, 63.18]).

The result is then a consequence of the remark that for any totally positive k-dimensional quadratic module Q, the quadratic spaces $(Q)^{\perp 4}$ and I_{4k} are isomorphic (one easily sees that $(L)^{\perp 4}$ is isomorphic to $I_4 \otimes K$ for any totally positive quadratic line L over K).

REMARK 1.4. Thus any totally positive quadratic A-module is represented by a maximal lattice on $I_{k+3} \otimes K$. When 2 is invertible in A, these maximal modules form the genus of $I_{k+3} \otimes A$.

LEMMA 1.5. Assume A contains 1/2 and P is a totally positive Aquadratic module of rank k. Then P is represented by $I_{k+4} \otimes A$.

Proof. By Remark 1.4, P is represented by an element in the genus of $I_{k+4} \otimes A$. Since for any finite place \mathfrak{p} the K-space P^{\perp} is non-degenerate and 4-dimensional, it is universal, so Lemma 1.2 applies and P is represented by an element in the spinor genus of $I_{k+4} \otimes A$, say M. Finally, since $I_{k+4} \otimes K_{\mathfrak{p}}$ is at least 5-dimensional, it is isotropic at any finite place \mathfrak{p} , in particular at dyadic places, so Proposition R3 applies and M is isometric to $I_{k+4} \otimes A$.

REMARK 1.6. This in particular implies (i). Nevertheless, when P has rank 1, we can do better.

LEMMA 1.7. Assume A contains 1/2 and a is a totally positive element of A. Then a is represented by a maximal lattice on $I_4 \otimes K$ that belongs to the same spinor genus as $I_4 \otimes A$.

Proof. By Lemma 1.2 it is enough to prove that, for any vector v in $V := I_4 \otimes K$, the orthogonal P of v in V is universal at any non-dyadic place \mathfrak{p} . Now at such a place, V is a sum of two hyperbolic planes. Thus P is non-degenerate and isotropic.

In order to derive a universality result for I₄, we need to use the Strong Approximation Theorem. If K has complex places, all the conditions required are satisfied, and this will also be the case if I₄ \otimes K_p is isotropic at some ultrametric place outside of S.

DEFINITION 1.8. Let A be the ring of (S)-integers in a number field K. We say that A is a *bad* ring if the following conditions are satisfied:

• S is the union of the archimedean and the dyadic places (thus $A = \mathcal{O}_K[1/2]$),

- K is totally real,
- for any dyadic prime \mathfrak{p} , the extension $K_{\mathfrak{p}}/\mathbb{Q}_2$ has odd degree.

We say A is a good ring if it contains $\mathcal{O}_K[1/2]$ but is not bad.

LEMMA 1.9. If A is a good ring, then any totally positive element of A is represented by $I_4 \otimes A$.

Proof. We are just left with verifying that when K is totally real and $A = \mathcal{O}_K[1/2]$, and at least one of the extensions $K_{\mathfrak{p}}/\mathbb{Q}_2$ has even degree, strong approximation applies. But at a dyadic place, $I_3 \otimes K_{\mathfrak{p}}$ is isotropic if and only if the Hilbert symbol $\left(\frac{-1,-1}{\mathfrak{p}}\right)$ is trivial. A theorem of Bender [1] says that this happens exactly when the degree $[K_{\mathfrak{p}}:\mathbb{Q}_2]$ is even.

2. Examples of rings A such that $I_4 \otimes A$ is not universal. By Lemma 1.9 we have to look for such counterexamples among bad rings.

PROPOSITION R4 ([5, 91.1]). Let K be a field such that $\mathcal{O}_K[1/2]$ is a bad ring. Let L be a maximal A-lattice on $V := I_4 \otimes K$. Then the subset $L_{\mathcal{O}_K}$ of vectors x in L that satisfy $q(x) \in \mathcal{O}_K$ is a (maximal integral) \mathcal{O}_K -lattice on V.

The simplest bad ring is $A = \mathbb{Z}[1/2]$. Thus let us consider the case when V is the space $I_4 \otimes \mathbb{Q}$, whose canonical basis is denoted by $\underline{e} = (e_1, e_2, e_3, e_4)$, and L is the A-lattice with basis \underline{e} . The \mathbb{Z} -lattice $L_{\mathbb{Z}}$ is known as the Hurwitz lattice H; setting $u := \frac{1}{2}(e_1 + e_2 + e_3 + e_4)$, we see it has (e_1, e_2, e_3, u) as a basis, in which the Gram matrix of q has the form

$$\begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \\ 1/2 & 1/2 & 1/2 & 1 \end{pmatrix}.$$

In other words, the \mathbb{Z} -quadratic module $\mathcal{H} := (H, q|_H)$ is isometric to (\mathbb{Z}^4, q') with

 $q'(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + (x_1x_4 + x_2x_4 + x_3x_4).$

This module is absolutely universal: it contains the standard lattice I_4 , which is absolutely universal by Lagrange's theorem.

Therefore let us study the case when $A = \mathbb{Z}[1/2, \sqrt{p}]$ where p is a prime. This ring is bad if p is a square in \mathbb{Q}_2 , i.e. if p is congruent to 1 modulo 8. In the following, we assume that p can be written in the form $p = (2m+1)^2 - 8$, and we write $\omega = (1 + \sqrt{p})/2$, so that $\mathcal{O}_K = \mathbb{Z}[\omega]$. Here are the first few such primes:

 $p = 17, 41, 73, 113, 281, 353, 433, 521, 617, 953, 1217, 1361, 2017, \ldots$

A special case of a conjecture of Bunyakovskiĭ says that there should exist infinitely many such primes.

We write $x \mapsto \bar{x}$ for the Galois automorphism of K. Let $\pi = m + \omega$. We see that π is a totally positive integer whose norm equals 2 and whose trace equals 2m + 1 (and we have a factorization $(2) = (\pi)(\bar{\pi})$ in the monoid of ideals of \mathcal{O}_K).

LEMMA 2.1. The integer π cannot be written as the sum of two totally positive elements of \mathcal{O}_K .

Proof. Assume we can write $\pi = x + y$ with x and y totally positive in \mathcal{O}_K . We would have the inequalities $x < \pi$ and $\bar{x} < \pi$, and hence we would get

$$N(x) < N(\pi) = 2$$
, $\operatorname{Tr}(x) < \operatorname{Tr}(\pi) = 2m + 1 = \sqrt{p+8}$.

If we write $x = (a + b\sqrt{p})/2$, with a and b rational, these inequalities translate into

$$a^2 = 4 + pb^2$$
, $a^2 .$

Thus b is an element of $\{0, \pm 1\}$. The case b = 0 cannot occur: we would have x = 1, and $\pi - 1$ would be totally positive, which it is not, since $\bar{\pi} - 1 = \frac{\sqrt{p+8} - \sqrt{p-2}}{2} < 0$ (recall that $p \ge 17$). The case b = 1 cannot occur, since it would imply that y is a rational integer. Finally the case b = -1 would imply $\bar{\pi} \ge 1$.

Now let us assume there exists an $x \in H \otimes \mathcal{O}_K$ such that $q'(x) = \pi$. Then the identity

$$q'(x) = \left(x_1 + \frac{1}{2}x_4\right)^2 + \left(x_2 + \frac{1}{2}x_4\right)^2 + \left(x_3 + \frac{1}{2}x_4\right)^2 + \frac{1}{4}x_4^2$$

shows that, up to reindexing, $(x_1 + x_4/2)^2 \le \pi/3$. We also have $(\overline{x_1 + x_4/2})^2 \le \bar{\pi}$. Thus, writing $y = 2x_1 + x_4$, we obtain

(*)
$$\operatorname{Tr}(y^2) \le \frac{4}{3}(\pi + 3\bar{\pi}) \text{ and } N(y)^2 \le \frac{16}{3}N(\pi).$$

Setting $y = \frac{a+b\sqrt{p}}{2}$, with a and b rational integers of the same parity, we can rewrite the first part of (*) as

(1)
$$a^2 + pb^2 \le \frac{16}{3}(\sqrt{p+8} - \sqrt{p}).$$

Since $p \ge 17$, this implies b = 0. So *a* is even and *y* is a rational integer whose fourth power, by the second part of (*), cannot exceed 10. So *y* is either 0 or ± 1 . For $p \ge 73$, it cannot be ± 1 , since this would imply that $\pi - 1/4$ is a sum of squares, so $\bar{\pi} - 1/4$ is positive, which is not the case. We deduce that *y* is zero, x_4 is a multiple of 2, and finally π is a sum of four squares in \mathcal{O}_K . By Lemma 2.1, this cannot happen. Thus, for $p \ge 73$, the equation $q'(x) = \pi$ has no solution. For p = 17 and p = 41, a computer assisted calculation shows that the same holds. In conclusion, we have the following result.

THEOREM 2.2. Let p be a prime of the form $p = (2m + 1)^2 - 8$. Let A be the ring $\mathbb{Z}[1/2, \sqrt{p}]$. Then $I_4 \otimes A$ does not represent the totally positive integer $(2m + 1 + \sqrt{p})/2$.

Acknowledgements. The author wishes to thank Pete L. Clark for pointing out references [3] and [4], and the referee for valuable remarks.

References

- E. A. Bender, A lifting formula for the Hilbert symbol, Proc. Amer. Math. Soc. 40 (1973), 63–65.
- [2] V. Blomer and V. Kala, Number fields without n-ary universal quadratic forms, Math. Proc. Cambridge Philos. Soc. 159 (2015), 239–252.
- [3] V. Kala, Universal quadratic forms and elements of small norm in real quadratic fields, Bull. Austral. Math. Soc., to appear; arXiv:1507.04237.
- [4] I. Niven, Integers of quadratic fields as sums of squares, Trans. Amer. Math. Soc. 48 (1940), 405–417.
- [5] O. T. O'Meara, Introduction to Quadratic Forms, Classics Math., Springer, Berlin, 2000.

Gaël Collinet IRMA, Université de Strasbourg et CNRS 7 rue René Descartes 67084 Strasbourg, France E-mail: collinet@math.unistra.fr