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On the Bishop–Phelps–Bollobás theorem for operators and
numerical radius

by

Sun Kwang Kim (Suwon), Han Ju Lee (Seoul) and
Miguel Mart́ın (Granada)

Abstract. We study the Bishop–Phelps–Bollobás property for numerical radius (for
short, BPBp-nu) of operators on `1-sums and `∞-sums of Banach spaces. More precisely,
we introduce a property of Banach spaces, which we call strongly lush. We find that if X
is strongly lush and X ⊕1 Y has the weak BPBp-nu, then (X,Y ) has the Bishop–Phelps–
Bollobás property (BPBp). On the other hand, if Y is strongly lush and X ⊕∞ Y has the
weak BPBp-nu, then (X,Y ) has the BPBp. Examples of strongly lush spaces are C(K)
spaces, L1(µ) spaces, and finite-codimensional subspaces of C[0, 1].

1. Introduction. Let X be a (real or complex) Banach space and X∗

be its dual space. The unit sphere of X will be denoted by SX and the
closed unit ball by BX . We write L(X) for the space of all bounded linear
operators on X. The numerical radius of T ∈ L(X) is defined by

v(T ) = sup{|x∗(Tx)| : (x, x∗) ∈ Π(X)},
where Π(X) := {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}. It is clear that v is
a seminorm on L(X) with v(T ) ≤ ‖T‖ for every T ∈ L(X). We refer the
reader to the classical monographs [10, 11] for background. An operator
T ∈ L(X) attains its numerical radius if there exists (x0, x

∗
0) ∈ Π(X) such

that v(T ) = |x∗0(Tx0)|. A lot of attention has been paid to the study of the
denseness of numerical radius attaining operators [1, 3, 6, 8, 14, 15, 16, 27].

Motivated by the work [4] of M. Acosta, R. Aron, D. Garćıa and
M. Maestre on the Bishop–Phelps–Bollobás property for operators, A. Guirao
and O. Kozhushkina [19] introduced the notion of Bishop–Phelps–Bollobás
property for numerical radius, which is a quantitative way to study the
denseness of numerical radius attaining operators.
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Definition 1.1 ([22]). A Banach space X is said to have the weak
Bishop–Phelps–Bollobás property for numerical radius (for short, weak
BPBp-nu) if for every 0 < ε < 1, there exists η(ε) > 0 such that whenever
T ∈ L(X) and (x, x∗) ∈ Π(X) satisfy v(T ) = 1 and |x∗(Tx)| > 1 − η(ε),
there exist S ∈ L(X) and (y, y∗) ∈ Π(X) such that

v(S) = |y∗(Sy)|, ‖T − S‖ < ε, ‖x− y‖ < ε, ‖x∗ − y∗‖ < ε.

A pair (X,Y ) of Banach spaces is said to have the Bishop–Phelps–
Bollobas property for numerical radius (for short, BPBP-nu) if together with
all requirements of Definition 1.1, also v(S) = |y∗(Sy)| = 1. From the def-
initions, it is clear that the BPBp-nu implies the weak BPBp-nu, while in
[22] some conditions are given ensuring that the converse also holds.

Let X, Y be Banach spaces and denote by L(X,Y ) the Banach space of
all bounded linear operators from X to Y . We recall that T ∈ L(X,Y ) is
said to be norm attaining if there is x ∈ BX such that ‖T‖ = ‖Tx‖. A pair
(X,Y ) is said to have the Bishop–Phelps–Bollobás property for operators (for
short, BPBp) [4] if, given ε > 0, there exists η(ε) > 0 such that whenever
T ∈ L(X,Y ) with ‖T‖ = 1 and x ∈ SX satisfy ‖Tx‖ > 1− η(ε), there exist
S ∈ L(X,Y ) with ‖S‖ = 1 and y ∈ SX such that

‖Sy‖ = 1, ‖T − S‖ < ε, ‖x− y‖ < ε.

It is shown in [19] that the real or complex spaces c0 and `1 have the
BPBp-nu. The result on `1 has been extended to the real space L1(R) by
J. Falcó [18]. For the result on c0, A. Avilés, A. J. Guirao and J. Rodŕıguez
[7] gave sufficient conditions on a compact space K for the real space C(K)
to have the BPBp-nu, which, in particular, include all metrizable compact
spaces. In [22] the BPBp-nu is studied for more general spaces. For instance,
it is shown that finite-dimensional spaces and general L1(µ) spaces have the
BPBp-nu. It is also shown that Lp(µ) has the BPBp-nu for every measure µ
when 1 < p <∞, p 6= 2. It has been shown very recently [23] that every real
Hilbert space has the BPBp-nu. As for negative results, it is shown in [22]
that every separable infinite-dimensional Banach space can be equivalently
renormed to fail the BPBp-nu, even though for reflexive spaces (actually for
spaces with the Radon–Nikodým property [6]) the set of numerical radius
attaining operators is always dense. To get this result, it is shown in [22] that
there is a relation between the BPBp-nu and the Bishop–Phelps–Bollobás
property for operators. More precisely, if L1(µ)⊕1 Y has the BPBp-nu, then
(L1(µ), Y ) has the BPBp [22, Theorem 15].

In this paper, we generalize this fact as follows. Let X,Y be Banach
spaces. If X is strongly lush (see the definition below) and X ⊕1 Y has
the weak BPBp-nu, then (X,Y ) has the BPBp. On the other hand, if Y
is strongly lush and X ⊕∞ Y has the weak BPBp-nu, then (X,Y ) has
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the BPBp. It is also shown that none of the converses of these results holds.
More precisely, there exist strongly lush spaces X and Y such that (X,Y )
has the BPBp, but the set of numerical radius attaining operators is dense
in neither L(X ⊕1 Y ) nor L(X ⊕∞ Y ).

We need some notation. Given a subset F of a Banach space X, we
denote the absolutely closed convex hull of F by aconv(F ). For C ⊂ X∗,
aconvw∗(C) denotes the absolutely weak-∗ closed convex hull of C. We write
NA(X) to denote the subset of those elements inX∗ which attain their norm.
Note that this set is dense by the classical Bishop–Phelps theorem [9]. Given
x∗ ∈ NA(X)∩SX∗ , we write F (x∗) to denote the (non-empty) face generated
by x∗, i.e. F (x∗) = {x ∈ BX : x∗(x) = 1}.

Definition 1.2. We say that a Banach space X is strongly lush if there
is a subset C of SX∗ such that BX∗ = aconvw∗(C) and BX = aconv(F (x∗))
for every x∗ ∈ C.

This definition appeared, without name, in some papers, including [21,
Corollary 4.5] or [24, Proposition 2.1]. There are many examples of spaces
with this property, the easiest ones being the almost-CL-spaces [26, §2].
We recall that a Banach space is an almost-CL-space if its unit ball is the
absolutely closed convex hull of every maximal face. L1(µ) spaces and their
isometric preduals (in particular, C(K) spaces), the disk algebra etc. are
examples of almost-CL-spaces (see [17, 21, 26] and references therein for
background).

Moreover, separable lush spaces are strongly lush. We recall that a Ba-
nach space X is lush [13] if given x, y ∈ SX and ε > 0, there is y∗ ∈ SX∗
such that Re y∗(y) > 1− ε and the distance from x to

aconv({z ∈ BX : Re y∗(z) > 1− ε})
is less than ε. We refer to [12, 13, 21, 24] and references therein for back-
ground. Almost-CL-spaces are lush, but the converse is not true [13]. As com-
mented before, separable lush spaces are strongly lush ([21, Corollary 4.5]
for the real case, [24, Proposition 2.1] for the complex case). This implies, in
particular, that finite-codimensional subspaces of C[0, 1] are strongly lush.

Let us also mention that there is a reformulation of strong lushness in
terms of extreme points of the bidual ball: A Banach space X is strongly lush
if and only if there exists a subset C ⊂ SX∗ with BX∗ = aconvw∗(C) such
that |x∗∗(x∗)| = 1 for every x∗ ∈ C and every extreme point x∗∗ of BX∗∗ .
Indeed, Milman’s theorem shows that the necessity holds. The converse is
shown by [5, Corollary 3.5].

2. The results. Let us present first the result for `1-sums, which gen-
eralizes [22, Theorem 15].
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Theorem 2.1. Let X and Y be Banach spaces and suppose that X is
strongly lush. If X ⊕1 Y has the weak BPBp-nu, then (X,Y ) has the BPBp.

Proof. Suppose that X ⊕1 Y has the weak BPBp-nu with a function η;
we will show that (X,Y ) has the BPBp with the function ε 7→ η

(
ε

2+ε

)
. Fix

0 < ε < 1 and let ε̃ = ε/(ε+ 2). Let T ∈ L(X,Y ) with ‖T‖ = 1 and x0 ∈ SX
satisfying ‖Tx0‖ > 1− η(ε̃). We pick y∗0 ∈ SY ∗ such that

|y∗0(Tx0)| = ‖Tx0‖ > 1− η(ε̃).

We consider the extension T̃ of T from X ⊕1 Y to X ⊕1 Y given by

T̃ (x, y) = (0, Tx) ((x, y) ∈ X ⊕1 Y ).

We claim that v(T̃ ) = ‖T̃‖ = 1. Indeed, v(T̃ ) ≤ ‖T̃‖ = ‖T‖ = 1. On the
other hand,

v(T̃ ) = sup
{
|(x∗, y∗)T̃ (x, y)| : max{‖x∗‖, ‖y∗‖} = 1, ‖x‖+ ‖y‖ = 1,

x∗(x) + y∗(y) = 1
}

= sup
{
|(x∗, y∗)T̃ (x, y)| : (x∗, y∗) ∈ BX∗ ×BY ∗ , ‖x‖+ ‖y‖ = 1,

x∗(x) = ‖x‖, y∗(y) = ‖y‖
}

≥ sup{|(x∗, y∗)T̃ (x, 0)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1, y∗ ∈ SY ∗}
= sup{|y∗(Tx)| : y∗ ∈ SY ∗ , x ∈ SX} = ‖T‖.

Now, pick any x∗0 ∈ SX∗ with x∗0(x0) = 1 and observe that

((x0, 0), (x∗0, y
∗
0)) ∈ Π(X ⊕1 Y )

and
|(x∗0, y∗0)T̃ (x0, 0)| = |y∗0(Tx0)| = ‖Tx0‖ > 1− η(ε̃).

Since X ⊕1 Y has the weak BPBp-nu with the function η, there exist
(x1, y1) ∈ SX⊕1Y , (x∗1, y

∗
1) ∈ SX∗⊕∞Y ∗ and S′ ∈ L(X ⊕1 Y ) satisfying

x∗1(x1) + y∗1(y1) = 1, v(S′) = |(x∗1, y∗1)S′(x1, y1)|
and

‖S′ − T̃‖ < ε̃, ‖x1 − x0‖+ ‖y1‖ < ε, max{‖x∗1 − x∗0‖, ‖y∗1 − y∗0‖} < ε.

So |v(S′)− 1| < ε̃ and
∣∣‖S′‖ − 1

∣∣ < ε̃. Hence∥∥∥∥ S′

v(S′)
− T̃

∥∥∥∥ ≤ ∥∥∥∥ S′

v(S′)
− S′

∥∥∥∥ + ‖S′ − T̃‖

<
‖S′‖ · |v(S′)− 1|

v(S′)
+ ε̃ ≤ (1 + ε̃)ε̃

1− ε̃
+ ε̃ = ε.

Write S̃ = S′/v(S′) and observe that

v(S̃) = 1 =
∣∣(x∗1, y∗1)S̃(x1, y1)

∣∣, ‖S̃ − T̃‖ < ε.

It follows that x∗1(x1) = ‖x1‖ and y∗1(y1) = ‖y1‖.
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We claim that y1 = 0. Otherwise,∥∥∥∥S̃(0,
y1
‖y1‖

)
− T̃

(
0,

y1
‖y1‖

)∥∥∥∥ =

∥∥∥∥S̃(0,
y1
‖y1‖

)∥∥∥∥ < ε.

If x1 6= 0, then

1 = |(x∗1, y∗1)S̃(x1, y1)|

≤
∣∣∣∣(x∗1, y∗1)S̃

(
x1
‖x1‖

, 0

)∣∣∣∣‖x1‖+

∣∣∣∣(x∗1, y∗1)S̃

(
0,

y1
‖y1‖

)∣∣∣∣‖y1‖
≤ ‖x1‖+ ε‖y1‖ < ‖x1‖+ ‖y1‖ = 1,

a contradiction. The case x1 = 0 is even easier.
By the claim, we have x∗1(x1) = ‖x1‖ = 1. Next, write S̃(x, y) =

(S̃1(x, y), S̃2(x, y)) and define S1 ∈ L(X,X) and S2 ∈ L(X,Y ) by

S1x = S̃1(x, 0), S2x = S̃2(x, 0) (x ∈ X).

Observe that

1 = v(S̃) = |(x∗1, y∗1)S̃(x1, 0)| = |x∗1(S1x1) + y∗1(S2x1)|
≤ ‖S1x1‖+ ‖S2x1‖ ≤ sup{‖S1x‖+ ‖S2x‖ : x ∈ BX}
= sup{|x∗(S1x)|+ |y∗(S2x)| : x ∈ BX , x

∗ ∈ C, y∗ ∈ SY ∗}
= sup{|x∗(S1x) + y∗(S2x)| : x ∈ BX , x

∗ ∈ C, y∗ ∈ SY ∗}

where we have used the fact that aconvw∗(C) = BX∗ . For x∗ ∈ C, we have
BX = aconv(F (x∗)) and the function x 7→ |x∗(S1x) + y∗(S2x)| is convex, so
we may continue the previous chain of inequalities as follows:

= sup{|x∗(S1x) + y∗(S2x)| : x∗ ∈ C, x ∈ F (x∗), y∗ ∈ SY ∗}
= sup{|(x∗, y∗)S̃(x, 0)| : x∗ ∈ C, x ∈ F (x∗), y∗ ∈ SY ∗}
≤ sup{|(x∗, y∗)S̃(x, y)| : ((x, y), (x∗, y∗)) ∈ Π(X ⊕1 Y )} = v(S̃) = 1.

We conclude that

sup{‖S1x‖+ ‖S2x‖ : x ∈ BX} = ‖S1x1‖+ ‖S2x1‖
= |x∗1(S1x1) + y∗1(S2x1)| = 1,

and it follows in particular that there exists ω ∈ SK such that

‖S1x1‖ = ωx∗1(S1x1) and ‖S2x1‖ = ωy∗1(S2x1).

We now claim that S2x1 6= 0. Indeed, for all x ∈ SX ,

ε > ‖S̃ − T̃‖ ≥ ‖S1x‖+ ‖S2x− Tx‖.
So ‖S1‖ ≤ ε and ‖S2 − T‖ < ε. If S2x1 = 0, then

1 = ‖S1x1‖+ ‖S2x1‖ = ‖S1x1‖ ≤ ‖S1‖ < ε,

a contradiction.
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Finally, define R ∈ L(X,Y ) by

Rx = S2x+ ω
S2x1
‖S2x1‖

x∗1(S1x)
(
x ∈ X

)
.

Observe that

|y∗1(Rx1)| =
∣∣∣∣y∗1(S2x1) + ω

y∗1(S2x1)

‖S2x1‖
x∗1(S1x1)

∣∣∣∣
= |x∗1(S1x1) + y∗1(S2x1)| = 1

and ‖Rx‖ ≤ ‖S2x‖+ ‖S1x‖ ≤ 1. Therefore, ‖R‖ = 1 = ‖Rx1‖ and

‖R− T‖ ≤ ‖S2 − T‖+ ‖S1‖ ≤ ‖S̃ − T̃‖ < ε.

Notice also that ‖x1 − x0‖ < ε. This completes the proof.

As mentioned in the introduction, almost-CL-spaces and separable lush
spaces are strongly lush. Therefore, we have the following corollary.

Corollary 2.2. Let X be an almost-CL-space or a separable lush space
and let Y be a Banach space. If X⊕1 Y has the weak BPBp-nu, then (X,Y )
has the BPBp.

Concerning `∞-sums, we have the following result in which a condition
has to be imposed on the range space instead of on the domain space.

Theorem 2.3. Let X and Y be Banach spaces and suppose that Y is
strongly lush. If X⊕∞Y has the weak BPBp-nu, then (X,Y ) has the BPBp.

Proof. Suppose that X ⊕∞ Y has the BPBp-nu with a function η; we
will show that (X,Y ) has the BPBp with the function ε 7→ η

(
ε

4+ε

)
. Fix

0 < ε < 1 and let ε̃ = ε/(4 + ε). Let T ∈ L(X,Y ) with ‖T‖ = 1 and
x0 ∈ SX satisfying ‖Tx0‖ > 1− η(ε̃). Then, by the Bishop–Phelps theorem,
there exists y∗0 ∈ SY ∗ ∩NA(Y ) such that

|y∗0(Tx0)| = ‖Tx0‖ > 1− η(ε̃).

We pick y0 ∈ SY such that y∗0(y0) = 1. Now, we consider the extension
T̃ of T from X ⊕∞ Y to X ⊕∞ Y defined by T̃ (x, y) = (0, Tx) for every
(x, y) ∈ X ⊕∞ Y . Clearly, v(T̃ ) ≤ ‖T̃‖ = ‖T‖ = 1 and, on the other hand,

v(T̃ ) ≥ sup
{
|(x∗, y∗)T̃ (x, y)| : (x, y) ∈ SX × SY , ‖x∗‖+ ‖y∗‖ = 1,

x∗(x) = ‖x∗‖, y∗(y) = ‖y∗‖
}

≥ sup{|y∗(Tx)| : y∗ ∈ SY ∗ ∩NA(Y ), x ∈ SX} = ‖T‖ = 1.

So v(T̃ ) = ‖T̃‖ = 1. As |(0, y∗0)T̃ (x0, y0)| = |y∗0(Tx0)| > 1−η(ε̃) and X⊕∞Y
has the weak BPBp-nu with the function η, there exist S′ ∈ L(X ⊕∞ Y ),
(x1, y1) ∈ SX⊕∞Y and (x∗1, y

∗
1) ∈ SX∗⊕1Y ∗ such that

x∗1(x1) + y∗1(y1) = 1, v(S′) = |(x∗1, y∗1)S′(x1, y1)|
and
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‖T̃ −S′‖ < ε̃, max{‖x1−x0‖, ‖y0−y1‖} < ε/2, ‖x∗1‖+‖y∗0−y∗1‖ < ε/2.

So |v(S′)− 1| < ε̃ and
∣∣‖S′‖ − 1

∣∣ < ε̃. Hence∥∥∥∥ S′

v(S′)
− T̃

∥∥∥∥ ≤ ∥∥∥∥ S′

v(S′)
− S′

∥∥∥∥ + ‖S′ − T̃‖ < ‖S
′‖ · |v(S′)− 1|
v(S′)

+ ε̃

≤ (1 + ε̃)ε̃

1− ε̃
+ ε̃ = ε/2.

Now, for S̃ = S′/v(S′) we have

v(S̃) = 1 = |(x∗1, y∗1)S̃(x1, y1)|, ‖S̃ − T̃‖ < ε/2.

Observe that

x∗1(x1) = ‖x∗1‖, y∗1(y1) = ‖y∗1‖, ‖x∗1‖+ ‖y∗1‖ = 1.

We claim that x∗1 = 0. Otherwise,∥∥∥∥( x∗1
‖x∗1‖

, 0

)
S̃(x1, y1)

∥∥∥∥ =

∥∥∥∥( x∗1
‖x∗1‖

, 0

)
S̃(x1, y1)−

(
x∗1
‖x∗1‖

, 0

)
T̃ (x1, y1)

∥∥∥∥
≤ ‖S̃ − T̃‖ < ε.

Hence, if y∗1 6= 0, then

1 = |(x∗1, y∗1)S̃(x1, y1)|

≤
∣∣∣∣( x∗1
‖x∗1‖

, 0

)
S̃(x1, y1)

∣∣∣∣‖x∗1‖+

∣∣∣∣(0,
y∗1
‖y∗1‖

)
S̃(x1, y1)

∣∣∣∣‖y∗1‖
≤ ε‖x∗1‖+ ‖y∗1‖ < ‖x∗1‖+ ‖y∗1‖ = 1,

a contradiction. The case y∗1 = 0 is similar.
By the claim, we get y∗1(y1) = ‖y1‖ = 1. Write T̃ (x, y) = (0, T̃2(x, y))

and S̃(x, y) = (S̃1(x, y), S̃2(x, y)) for every (x, y) ∈ X ⊕∞ Y .
We claim that ‖S̃2‖ = 1 = ‖S̃2(x1, y1)‖. Indeed,

1 = v(S̃) = |(0, y∗1)S̃(x1, y1)| = |y∗1(S̃2(x1, y1))| ≤ ‖S̃2(x1, y1)‖
≤ sup{‖S̃2(x, y)‖ : x ∈ BX , y ∈ BY }
= sup{|y∗(S̃2(x, y))| : x ∈ BX , y ∈ BY , y

∗ ∈ C}

where we have used the fact that aconvw∗(C) = BX∗ . For y∗ ∈ C, the
function y 7→ |y∗(S̃2(x, y))| is convex and BY = aconv(F (y∗)), so we may
continue the previous chain of inequalities as follows:

= sup{|y∗(S̃2(x, y))| : x ∈ BX , y
∗ ∈ C, y ∈ F (y∗)}

= sup{|(0, y∗)S̃(x, y)| : x ∈ BX , y
∗ ∈ C, y ∈ F (y∗)}

≤ v(S̃) = 1,

which proves the claim.
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As ‖x0‖ = 1 and ‖x0 − x1‖ < ε/2, it follows that ‖x1‖ > 1− ε/2 (so, in
particular, x1 6= 0), and x̄1 = x1/‖x1‖ satisfies∥∥x̄1 − x0‖ < ε.

Next, we claim that ‖S̃2(x̄1, y1)‖ = 1. Otherwise,

‖S̃2(x1, y1)‖ ≤ ‖x1‖ ‖S2(x̄1, y1)‖+ (1− ‖x1‖)‖S2(0, y1)‖
< ‖x1‖+ (1− ‖x1‖) = 1,

a contradiction.
Finally, choose x∗2 ∈ SX∗ with x∗2(x̄1) = 1 and define R ∈ L(X,Y ) by

Rx = S̃2(x, x
∗
2(x)y1) (x ∈ X).

We clearly have ‖R‖ ≤ ‖S̃2‖ ≤ 1 and

‖Rx̄1‖ = ‖S̃2(x̄1, y1)‖ = 1.

So it is enough to show that ‖R−T‖ < ε. Note that for x ∈ BX and y ∈ BY ,

‖S̃2(x, y)− Tx‖ = ‖S̃2(x, y)− T̃2(x, y)‖ ≤ ‖S̃2 − T̃2‖ ≤ ‖S̃ − T̃‖ < ε/2.

In particular, for all x ∈ BX ,

‖Rx− Tx‖ = ‖S̃2(x, x2(x)y1)− Tx‖ < ε/2.

This completes the proof.

As for the `1-sum, we obtain the following consequence.

Corollary 2.4. Let Y be an almost-CL-space or a separable lush space
and let X be a Banach space. If X⊕∞Y has the weak BPBp-nu, then (X,Y )
has the BPBp.

The proofs of Theorems 2.1 and 2.3 can be easily adapted to get analo-
gous results for norm and numerical radius attaining operators:

Remark 2.5. Let X and Y be Banach spaces.

(a) Suppose that X is strongly lush and the set of numerical radius at-
taining operators is dense in L(X ⊕1 Y ). Then the set of norm at-
taining operators is dense in L(X,Y ).

(b) Suppose that Y is strongly lush and that the set of numerical radius
attaining operators is dense in L(X ⊕∞ Y ). Then the set of norm
attaining operators is dense in L(X,Y ).

R. Payá [27] showed that there exists a strictly convex space X isomor-
phic to c0 such that the set of numerical radius attaining operators is not
dense in L(X ⊕∞ c0). Remark 2.5 allows us to give a similar example, with
an easy proof.

Example 2.6. Let Y be any strictly convex space containing a copy
of c0. Then the set of numerical radius attaining operators is not dense
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in L(c0 ⊕1 Y ). Indeed, otherwise Remark 2.5 implies that the set of norm
attaining operators is dense in L(c0, Y ) (since c0 is an almost-CL-space).
However, this is not the case, as was shown by J. Lindenstrauss [25, Proposi-
tion 4].

As a final remark, we show that none of the converses to Theorem 2.1
and Theorem 2.3 (or even Corollaries 2.2 and 2.4) holds.

Remark 2.7. There exist almost-CL-spaces X and Y such that (X,Y )
has the BPBp, but the set of numerical radius attaining operators is dense
in neither L(X ⊕1 Y ) nor L(X ⊕∞ Y ).

Indeed, J. Johnson and J. Wolfe [20] proved in 1982 that there is a
compact metric space S such that the set of norm attaining operators is
not dense in L(L1[0, 1], C(S)). The proof was given for real spaces, but it is
not difficult to check that it is also valid in the complex case. Now, let X
and Y be the complex spaces C(S) and L1[0, 1], respectively. Then X and
Y are almost-CL-spaces, and M. Acosta has recently shown [2] that (X,Y )
has the BPBp. However, the set of numerical radius attaining operators
is dense in neither L(X ⊕1 Y ) nor L(X ⊕∞ Y ). Otherwise, Remark 2.5
would imply that the set of norm attaining operators is dense in L(Y,X),
which is not the case due to the above mentioned result of J. Johnson and
J. Wolfe.
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Banach spaces, arXiv:1604.06198 (2016).

[24] H. J. Lee and M. Mart́ın, Polynomial numerical indices of Banach spaces with
1-unconditional bases, Linear Algebra Appl. 437 (2012), 2001–2008.

[25] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963),
139–148.
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