
ANNALES

POLONICI MATHEMATICI

117.1 (2016)

Blow-up of a nonlocal p-Laplacian evolution equation
with critical initial energy
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Abstract. This paper is concerned with the initial boundary value problem for a
nonlocal p-Laplacian evolution equation with critical initial energy. In the framework of
the energy method, we construct an unstable set and establish its invariance. Finally, the
finite time blow-up of solutions is derived by a combination of the unstable set and the
concavity method.

1. Introduction. In this paper, we study the following initial boundary
value problem for a nonlocal p-Laplacian evolution equation:

ut −∆pu = |u|q−1u− 1

|Ω|

�

Ω

|u|q−1u dx, x ∈ Ω, t > 0,(1.1)

u(x, 0) = u0(x) 6≡ 0,
�

Ω

u0 dx = 0, x ∈ Ω,(1.2)

|∇u|p−2 ∂u
∂n

= 0, x ∈ ∂Ω, t > 0,(1.3)

where Ω is a bounded domain of RN with a smooth boundary ∂Ω, |Ω|
denotes the Lebesgue measure of Ω, ∆pu = div(|∇u|p−2∇u), and p and q
satisfy

(A) p ≥ 2, p− 1 < q <∞ if N ≤ p, p− 1 < q <
Np

N − p
− 1 if N > p.

Equation (1.1) arises in fluid mechanics, biology, population dynamics,
and combustion theory (see [2, 3, 8, 20, 26]). In fluid mechanics, (1.1) is
a slow diffusion equation and can be used to describe the slow diffusion of
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concentration of non-Newtonian flow in a porous medium. So it is also called
a non-Newtonian filtration equation.

In [7], it was shown that certain solutions of problem (1.1)–(1.3) with
E(u0) < d (where E(u0) is the initial energy) blow up in finite time, where

(1.4) d =
q + 1− p
p(q + 1)

C
− p(q+1)

q+1−p ,

and C is the best Sobolev embedding constant from W 1,p(Ω) into Lq+1(Ω).

In addition, many equations related to (1.1) have been investigated.
In [9], the nonlocal semilinear parabolic equation

(1.5) ut −∆u = |u|q−1u− 1

|Ω|

�

Ω

|u|q−1u dx

with the homogeneous Neumann boundary condition was studied, and a
blow-up result for certain solutions with E(u0) < d was established, where
d is defined by (1.4) and C is the best Sobolev embedding constant from
W 1,2(Ω) into Lq+1(Ω).

In [18], Niculescu and Roventa investigated a nonlocal parabolic equation
with general nonlinearities f ,

(1.6) ut −∆u = f(|u|)− 1

|Ω|

�

Ω

f(|u|) dx,

and obtained the finite time blow-up of solutions, but restricted toE(u0) ≤ 0.
Niculescu and Roventa [19] also considered blow-up of solutions for a non-
local p-Laplacian evolution equation with general nonlinearities f ,

(1.7) ut −∆pu = f(|u|)− 1

|Ω|

�

Ω

f(|u|) dx

under the same constraint that E(u0) ≤ 0.

Obviously, although (1.6) and (1.7) are generalizations of (1.5) and (1.1)
respectively, the energy range for blow-up of solutions to (1.5) and (1.1)
is wider. The main results of [7, 9] mentioned above describe the finite
time blow-up of solutions with E(u0) < d, that is, with subcritical initial
energy. In contrast, we are here mainly interested in the finite time blow-up
of solutions for problem (1.1)–(1.3) with E(u0) = d, that is, with critical
initial energy. To our knowledge, much less effort has been devoted to this
case.

The definition and local existence of weak solutions for problem (1.1)–(1.3)
were stated in [7]. Our main results in this paper are the following

Theorem 1.1. Let u(t) be a solution of problem (1.1)–(1.3) with p and q
satisfying (A). Assume that E(u0) = d and u0 ∈ U , where d and U will be
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stated later. Then the solution u(t) of problem (1.1)–(1.3) blows up in finite
time.

Theorem 1.1 shows that the solutions of problem (1.1)–(1.3) with critical
initial energy also blow up in finite time.

Corollary 1.2. If in Theorem 1.1, E(u0) = d is replaced by E(u0) ≤ d,
then the conclusion still holds.

Thus, the blow-up result of [7] is extended to the case E(u0) ≤ d. In other
words, the energy range for blow-up of solutions to problem (1.1)–(1.3) is
extended to E(u0) ≤ d.

This paper is organized as follows. In Section 2 we recall some basic facts
and obtain the energy identity associated to problem (1.1)–(1.3). Moreover,
by calculating the mountain pass level d, we modify the unstable set U
developed by Payne and Sattinger [21] and establish its invariance under the
flow of problem (1.1)–(1.3) with critical initial energy, which is a technical
innovation of this paper and plays an essential role in the proofs of our main
results. In Section 3 we prove the main results by the concavity method
[12, 13, 23, 30]. The relationship between initial energy and finite time
blow-up of solutions is further showed in the proofs.

2. Preliminary results. We start by introducing some notation that
will be used throughout this paper. For the standard Lp(Ω) space we write
‖u‖p = ‖u‖Lp(Ω), ‖u‖ = ‖u‖L2(Ω), and (u, v) =

	
Ω uv dx.

Noting that the nonlocal source term

1

|Ω|

�

Ω

|u|q−1u dx

is equivalent to a constant, we find that the integral on the right hand side
of (1.1) is zero. Hence,

d

dt

�

Ω

u dx =
�

Ω

ut dx =
�

Ω

∆pu dx = 0,

that is, the integral of u overΩ is conserved. Therefore, by the initial condition
(1.2), we conclude that each solution u of problem (1.1)–(1.3) satisfies�

Ω

u dx = 0.

We now consider the energy functional E : W 1,p(Ω)→ R defined by

E(u) =
1

p
‖∇u‖pp −

1

q + 1
‖u‖q+1

q+1.

Clearly, E is of class C1 over W 1,p(Ω), and critical points of E are solutions
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of the following stationary problem associated to problem (1.1)–(1.3):

(2.1)


−∆pu = |u|q−1u− 1

|Ω|

�

Ω

|u|q−1u dx in Ω,

|∇u|p−2 ∂u
∂n

= 0 on ∂Ω.

Note that assumption (A) is a compactness condition for the embedding
W 1,p(Ω) ↪→ Lq+1(Ω). According to the critical point theory, it is a necessary
and sufficient condition for the validity of the Palais–Smale condition. In
view of the Mountain Pass Theorem of Ambrosetti and Rabinowitz [1],
problem (2.1) admits a positive mountain pass solution whose energy d can
be characterized by

d = inf
u∈W 1,p(Ω)\{0}

sup
λ>0

E(λu).

The number d is called the mountain pass level; it is generally estimated
by constructing the variational problem in order to investigate the global
well-posedness of solutions for various nonlinear evolution equations (see
e.g. ([4–6, 10, 11, 14–17, 21, 22, 24, 27–29]). Indeed, once the value of d is
obtained, the problem concerned will be simplified. This is also inspired by
the above-mentioned papers.

Now we are in a position to obtain the expression of d by applying the
idea of Vitillaro [25] where a different purpose was achieved.

Definition 2.1.
d = max

y∈[0,∞)
g(y),

where

y = ‖∇u‖p, g(y) =
1

p
yp − Cq+1

q + 1
yq+1,

and C is the best Sobolev constant for the embedding inequality ‖u‖q+1 ≤
C‖∇u‖p, i.e.

C = sup
u∈W 1,p(Ω)\{0}

‖u‖q+1

‖∇u‖p
.

Lemma 2.2.

d =
q + 1− p
p(q + 1)

C
− p(q+1)

q+1−p .

Proof. Let g′(y0) = 0. By Definition 2.1 we get

y0 = C
− q+1

q+1−p .

It is easy to see that g(y) is strictly increasing for 0 ≤ y < y0, strictly
decreasing for y > y0, limy→∞ g(y) = −∞, and

d = g(y0) =
q + 1− p
p(q + 1)

C
− p(q+1)

q+1−p .
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Next, we define the following unstable set by using d.

Definition 2.3.

U =

{
u ∈W 1,p(Ω)

∣∣∣∣ ‖∇u‖p > ( p(q + 1)

q + 1− p
d

)1/p}
.

Clearly, W 1,p(Ω) = U ∪ Uc, where

Uc =

{
u ∈W 1,p(Ω)

∣∣∣∣ ‖∇u‖p ≤ ( p(q + 1)

q + 1− p
d

)1/p}
and

∂U = ∂Uc =

{
u ∈W 1,p(Ω)

∣∣∣∣ ‖∇u‖p =

(
p(q + 1)

q + 1− p
d

)1/p}
.

Here we mention that the unstable set as defined in this paper is different
from those appearing in previous work [5, 6, 10, 11, 15, 16, 21, 27–29]
Definition 2.3 makes it easy to understand the structure of the unstable set.

Lemma 2.4. Let p and q satisfy (A).

(i) If ‖∇u‖p = (p(q + 1)d/(q + 1− p))1/p, then ‖∇u‖pp ≥ ‖u‖q+1
q+1.

(ii) If ‖∇u‖pp < ‖u‖q+1
q+1, then ‖∇u‖p > (p(q + 1)d/(q + 1− p))1/p.

Proof. (i) From Lemma 2.2 and

‖∇u‖p =

(
p(q + 1)

q + 1− p
d

)1/p

,

we obtain

‖∇u‖p = C
− q+1

q+1−p .

Noting that ‖∇u‖p 6= 0, we have

‖∇u‖pp = Cq+1‖∇u‖q+1
p .

Hence, ‖∇u‖pp ≥ ‖u‖q+1
q+1.

(ii) From ‖∇u‖pp < ‖u‖q+1
q+1, it follows that ‖∇u‖p 6= 0 and

‖∇u‖pp < ‖u‖
q+1
q+1 ≤ C

q+1‖∇u‖q+1
p .

A simple calculation yields

‖∇u‖p > C
− q+1

q+1−p .

Furthermore, by Lemma 2.2 we obtain

‖∇u‖p >
(
p(q + 1)

q + 1− p
d

)1/p

.
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Let u(t) be a solution of problem (1.1)–(1.3) with u0 ∈ W 1,p(Ω). From
Green’s formula and the Neumann–Robin boundary condition (1.3) we obtain

dE(u(t))

dt
= (|∇u|p−2∇u,∇ut)− (|u|q−1u, ut)

=
�

∂Ω

∂u

∂n
|∇u|p−2ut ds− (∆pu, ut)− (|u|q−1u, ut)

= −(∆pu+ |u|q−1u, ut)

= −
(
ut +

1

|Ω|

�

Ω

|u|q−1u dx, ut
)

= −‖ut‖2 −
1

|Ω|

�

Ω

|u|q−1u dx
�

Ω

ut dx = −‖ut‖2.

Therefore, E(u) is decreasing in time. Moreover, by integrating both sides
of the above equality over [0, t], for all t we have the identity

(2.2)

t�

0

‖ut(τ)‖2 dτ + E(u(t)) = E(u0).

Lemma 2.5. Let u(t) be a solution of problem (1.1)–(1.3) with p and q satis-

fying (A). Assume that u0 ∈W 1,p(Ω) and E(u0) ≤ d. Then ‖∇u‖pp < ‖u‖q+1
q+1

if and only if ‖∇u‖p > (p(q + 1)d/(q + 1− p))1/p, for all 0 ≤ t <∞.

Proof. From E(u0) ≤ d, (2.2) and

E(u) =
1

p
‖∇u‖pp −

1

q + 1
‖u‖q+1

q+1

=
q + 1− p
p(q + 1)

‖∇u‖pp +
1

q + 1
(‖∇u‖pp − ‖u‖

q+1
q+1),

it follows that

(2.3)
q + 1− p
p(q + 1)

‖∇u‖pp +
1

q + 1
(‖∇u‖pp − ‖u‖

q+1
q+1) ≤ d,

for all 0 ≤ t <∞. If ‖∇u‖p > (p(q+ 1)d/(q+ 1−p))1/p, then by (2.3) we get

‖∇u‖pp < ‖u‖q+1
q+1. On the other hand, if ‖∇u‖pp < ‖u‖q+1

q+1, then we conclude

from Lemma 2.4(ii) that ‖∇u‖p > (p(q + 1)d/(q + 1− p))1/p.

Lemma 2.6. Let u(t) be a solution of problem (1.1)–(1.3) with p and q
satisfying (A). Assume that u0 ∈ U and E(u0) = d. Then u(t) ∈ U for all
0 < t <∞.

Proof. Suppose that u(t) /∈ U for some 0 < t < ∞. Then from u0 ∈ U
and the continuity of u(t), we see that there exists the first time t0 ∈ (0,∞)
such that u(t0) ∈ ∂U and u(t) ∈ U for all 0 ≤ t < t0. Hence, by recalling
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Definition 2.3, we get

(2.4) ‖∇u(t0)‖p =

(
p(q + 1)

q + 1− p
d

)1/p

,

and for all 0 ≤ t < t0 we have

(2.5) ‖∇u(t)‖p >
(
p(q + 1)

q + 1− p
d

)1/p

.

From (2.4) and Lemma 2.4(i) we obtain ‖∇u(t0)‖pp ≥ ‖u(t0)‖q+1
q+1. Conse-

quently,

E(u(t0)) =
1

p
‖∇u(t0)‖pp −

1

q + 1
‖u(t0)‖q+1

q+1(2.6)

≥ q + 1− p
p(q + 1)

‖∇u(t0)‖pp = d.

On the other hand, for 0 ≤ t <∞, let

M(t) =
1

2

t�

0

‖u(τ)‖2 dτ.

Then M ′(t) = 1
2‖u(t)‖2 and

M ′′(t) = (u, ut) =

(
u,∆pu+ |u|q−1u− 1

|Ω|

�

Ω

|u|q−1u dx
)

= (u,∆pu) + (u, |u|q−1u)− 1

|Ω|

�

Ω

|u|q−1u dx
�

Ω

u dx

= −‖∇u‖pp + ‖u‖q+1
q+1.

Combining this with (2.5) and Lemma 2.5, we conclude that M ′′(t) > 0 for
0 ≤ t < t0. As a consequence,

M ′(t) > M ′(0) = 1
2‖u0‖

2 ≥ 0

for 0 < t < t0. Finally, M(t0) > M(0) = 0, i.e.

(2.7)

t0�

0

‖u(τ)‖2 dτ > 0,

which together with
t0�

0

‖u(τ)‖2 dτ + E(u(t0)) = E(u0) = d

gives E(u(t0)) < d. Obviously, this contradicts (2.6).

Clearly, Lemma 2.6 shows the invariance of U under the flow of problem
(1.1)–(1.3) with critical initial energy.
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Corollary 2.7. If in Lemma 2.6, E(u0) = d is replaced by E(u0) ≤ d,
then the conclusion still holds.

Proof. In view of the proof of Lemma 2.6, it is easy to obtain (2.6).
Moreover, by considering the same auxiliary function M(t) we get (2.7) and

t0�

0

‖u(τ)‖2 dτ + E(u(t0)) = E(u0) ≤ d.

Consequently, E(u(t0)) < d, which contradicts (2.6).

3. Proofs of main results

Proof of Theorem 1.1. Let T be the maximal existence time of u(t). We
will prove T <∞. Indeed, suppose T =∞. Let

M(t) =
1

2

t�

0

‖u(τ)‖2 dτ.

Then M ′(t) = 1
2‖u(t)‖2 and

M ′′(t) = (u, ut) = −‖∇u‖pp + ‖u‖q+1
q+1.(3.1)

From (2.2) and

E(u(t)) =
q + 1− p
p(q + 1)

‖∇u‖pp +
1

q + 1
(‖∇u‖pp − ‖u‖

q+1
q+1),

it follows that

‖∇u‖pp − ‖u‖
q+1
q+1 = −q + 1− p

p
‖∇u‖pp + (q + 1)E(u0)− (q + 1)

t�

0

‖ut(τ)‖2 dτ.

Combining this with (3.1), we get

(3.2) M ′′(t) =
q + 1− p

p
‖∇u‖pp − (q + 1)E(u0) + (q + 1)

t�

0

‖ut(τ)‖2 dτ.

From u0 ∈ U , Lemma 2.6 and Definition 2.3, for all 0 < t <∞ we may write

‖∇u‖p >
(
p(q + 1)

q + 1− p
d

)1/p

,

which together with (3.2) and E(u0) = d yields

(3.3) M ′′(t) > (q + 1)

t�

0

‖ut(τ)‖2 dτ

for all 0 < t <∞. Hence, there exists a t0 > 0 such that M ′(t) ≥M ′(t0) > 0
and M(t) ≥M ′(t0)(t− t0) +M(t0) for t ≥ t0. Consequently,

lim
t→∞

M(t) =∞.
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On the other hand, from (3.3) and the Cauchy–Schwarz inequality we
deduce that

M(t)M ′′(t) >
q + 1

p

t�

0

‖u(τ)‖2 dτ
t�

0

‖ut(τ)‖2 dτ

≥ q + 1

p

(t�
0

(u, ut) dτ
)2

=
q + 1

p
(M ′(t)−M ′(0))2.

Thus, there exists an α > 0 such that

M(t)M ′′(t) > (1 + α)(M ′(t))2, t ≥ t0.
Therefore,M−α(t) is concave on [t0,∞),M−α(t)> 0, and limt→∞M(t) =∞.
This is a contradiction.

Proof of Corollary 1.2. According to the proof of Theorem 1.1, it is easy
to get (3.2). We conclude from u0 ∈ U and Corollary 2.7 that u(t) ∈ U for
all 0 < t <∞. Combining this with Definition 2.3, (3.2) and E(u0) ≤ d, we
obtain (3.3). The remainder of the proof is the same as that of Theorem 1.1.

Remark 3.1. Note that (1.5) could be regarded as the special case
of (1.1) when p = 2. Therefore, the idea of this paper can also be utilized to
consider blow-up of (1.5) with critical initial energy.
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[3] A. Calsina, C. Perelló and J. Saldaña, Non-local reaction-diffusion equations model-
ling predator-prey coevolution, Publ. Mat. 38 (1994), 315–325.

[4] M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, Existence and
decay rate estimates for the wave equation with nonlinear boundary damping and
source term, J. Differential Equations 203 (2004), 119–158.

[5] J. A. Esquivel-Avila, The dynamics of a nonlinear wave equation, J. Math. Anal.
Appl. 279 (2003), 135–150.

[6] J. A. Esquivel-Avila, Qualitative analysis of a nonlinear wave equation, Discrete
Contin. Dynam. Systems 10 (2004), 787–804.

[7] Z. B. Fang, L. Sun and C. J. Li, A note on blow-up of solutions for the nonlocal
quasilinear parabolic equation with positive initial energy, Bound. Value Probl. 2013,
2013:181, 8 pp.

http://dx.doi.org/10.1016/0022-1236(73)90051-7
http://dx.doi.org/10.5565/PUBLMAT_38294_04
http://dx.doi.org/10.1016/j.jde.2004.04.011
http://dx.doi.org/10.1016/S0022-247X(02)00701-1
http://dx.doi.org/10.3934/dcds.2004.10.787


98 Y. Liu et al.

[8] J. Furter and M. Grinfeld, Local vs. non-local interactions in population dynamics,
J. Math. Biol. 27 (1989), 65–80.

[9] W. J. Gao and Y. Z. Han, Blow-up of a nonlocal semilinear parabolic equation with
positive initial energy, Appl. Math. Lett. 24 (2011), 784–788.

[10] F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped
semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006),
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