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Gδ and co-meager semifilters
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Abstract. The ultrafilters on the partial order ([ω]ω,⊆∗) are the free ultrafilters
on ω, which constitute the space ω∗, the Stone–Čech remainder of ω. If U is an upperset
of this partial order (i.e., a semifilter), then ultrafilters on U correspond to closed subsets
of ω∗ via Stone duality.

If U is large enough, then it is possible to get combinatorially nice ultrafilters on U
by generalizing the corresponding constructions for [ω]ω. In particular, if U is co-meager
then there are ultrafilters on U that are weak P -filters (extending a result of Kunen). If
U is Gδ (and hence also co-meager) and d = c, then there are ultrafilters on U that are
P -filters (extending a result of Ketonen).

For certain choices of U , these constructions have applications in dynamics, algebra,
and combinatorics. Most notably, we give a new proof of the fact that there are minimal-
maximal idempotents in (ω∗,+). This was an outstanding open problem solved only re-
cently by Zelenyuk.

1. Introduction. The two main theorems in this paper are extensions
of two well-established theorems about special points in ω∗: Ketonen’s proof
that P -points exist under d = c, and Kunen’s proof that weak P -points exist
under ZFC. We show that each of these proofs can be carried out in a much
more general setting. We also show how the extended results can be used to
give a relatively easy proof that the semigroup (ω∗,+) contains idempotents
that are both minimal and maximal.

Our starting point is the simple observation that certain semifilters be-
have very similarly to [ω]ω with respect to the ⊆∗ relation. Since the the-
orems of Ketonen and Kunen can be interpreted as theorems about the
partial order ([ω]ω,⊆∗), these theorems naturally extend to partial orders of
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the form (S,⊆∗) for certain nice semifilters S. Specifically, in Section 3, we
show that if d = c then every Gδ semifilter admits an ultrafilter that is also
a P -filter, and in Section 4, we show that every co-meager semifilter admits
an ultrafilter that is a weak P -filter.

In the final Section 5, we show how these results can be used to give
an alternative proof of Zelenyuk’s result from [16], which answered a long-
standing open question of Hindman and Strauss, namely whether (ω∗,+)
contains left-maximal idempotents. Actually, our proof gives a strengthen-
ing of his result: we show that (ω∗,+) contains a minimal left ideal that is
also a weak P -set. Any such ideal is prime, and the idempotents it contains
are both minimal and left-maximal.

2. Preliminaries. A semifilter on ω is a subset S of P(ω) such that
∅ 6= S 6= P(ω) and S is closed upwards in ⊆∗ (as usual, A ⊆∗ B means A\B
is finite). We think of semifilters as partial orders, naturally ordered by ⊆∗.
The largest possible semifilter is [ω]ω, the set of all infinite subsets of ω.

A partial order is antisymmetric if a ≤ b and b ≤ a implies a = b; some
authors even include this in the definition of a partial order. We note that
our partial orders do not enjoy this property. However, each one has an
antisymmetric quotient, namely the set of equivalence classes of the form
[X] = {Y ⊆ ω : X ⊆∗ Y ⊆∗ X}. For example, the antisymmetric quotient
of [ω]ω is the familiar order P(ω)/fin (without the bottom element). In what
follows, we have no need (and no desire) to work with equivalence classes,
and will not need to use the antisymmetry axiom anywhere. Therefore we
choose to work with subsets of ω rather than equivalence classes thereof.
It is worth pointing out, though, that all of our proofs and constructions
“factor through” the antisymmetric quotient, and can be interpreted as
results about P(ω)/fin and its uppersets.

If S is a semifilter, then a filter on S is a filter on the partial order
(S,⊆∗). Specifically, F ⊆ S is a filter on S whenever

• F 6= ∅;
• A ∈ F and A ⊆∗ B implies B ∈ F ;
• A,B ∈ F implies A ∩B ∈ F .

An ultrafilter on S is a maximal filter on S. We say B ⊆ S is a filter base
on S if {A ⊆ N : B ⊆∗ A for some B ∈ B} is a filter on S. A set is centered
in S if it is contained in some filter base.

The collection of all ultrafilters on [ω]ω is denoted ω∗. This set has a nat-
ural topology as the Stone–Čech remainder of ω, with basic open sets of the
form A∗ = {F ∈ ω∗ : A ∈ F}. Every filter F on [ω]ω corresponds to a closed

subset of ω∗, namely F̂ =
⋂
A∈F A

∗. The set F̂ is called the Stone dual of F .
For more on Stone duality and the topology of ω∗, we refer the reader to [12].
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If F is a filter on some semifilter S, then F is also a filter on [ω]ω, although
an ultrafilter on S may not be an ultrafilter on [ω]ω. Thus (ultra)filters on
a semifilter S correspond to closed subsets of ω∗. For certain choices of S,
these closed sets may have interesting algebraic/dynamical/combinatorial
properties, and for certain choices of the ultrafilter they may also have in-
teresting topological properties. The interplay between these two choices
will give rise to our applications in Section 5.

A subset X of ω∗ is a P -set if, whenever 〈Un : n < ω〉 is a sequence of
open sets each of which contains X, X is in the interior of

⋂
n<ω Un. We say

X is a weak P -set if the closure of each countable D ⊆ ω∗ \ X is disjoint
from X. We call F a (weak) P -filter if F̂ is a (weak) P -set.

We will also consider semifilters as subsets of the topological space 2ω

(identifying sets with their characteristic functions). The basic open neigh-
borhoods of 2ω are of the form

[[A�F ]] = {X ∈ 2ω : X ∩ F = A ∩ F}
for A ⊆ ω and finite F ⊆ ω. If s ⊆ [0, n], we will write [[s]] for [[s�[0, n]]].

We mention here a special semifilter that will appear in several places
throughout this paper. A set A ⊆ ω is thick if A contains arbitrarily long
intervals, and we let Θ denote the semifilter of thick sets. The ultrafilters
on Θ correspond (via Stone duality) precisely to the minimal left ideals of
(ω∗,+) (see [4, Lemma 3.2]). It was this observation that first motivated the
study of ultrafilters on Θ, and this in turn motivated our work here.

We end this section by mentioning some results on the descriptive com-
plexity of semifilters considered as subsets of 2ω. Recall that a set has the
Baire property if it differs from an open set by a meager set. All Borel sets as
well as analytic and co-analytic sets have the Baire property. The following
proposition (stated for semifilters in [1]) shows that definable semifilters are
either very small or very large:

Proposition 2.1. If a semifilter has the Baire property then it is either
meager or co-meager.

Proof. Because semifilters are closed under making finite modifications,
this follows from the “topological 0-1 law” (see, e.g., [8, Theorem 8.47]).

Meager (or co-meager) filters have a very convenient characterization due
to Talagrand and, independently, Jalaili-Naini (see [14], [7]). It was noticed
in [1] that it applies to semifilters as well. Given two semifilters S,G we say
that S is Rudin–Blass above G (and write S ≥RB G) if there is a finite-to-one
function f : ω → ω such that A ∈ G if and only if f−1[A] ∈ S (this is the
standard Rudin–Blass ordering extended to semifilters).

Proposition 2.2. A semifilter is co-meager iff it is Rudin–Blass
above [ω]ω. It is meager iff it is Rudin–Blass above the Fréchet filter.
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In what follows, the semifilters we work with will be either co-meager
or Gδ. As one might expect, the latter property is strictly stronger than the
former:

Corollary 2.3. A semifilter S is co-meager if and only if it contains
a Gδ semifilter.

Proof. Because semifilters are closed under making finite modifications,
every semifilter is dense in 2ω. The “if” direction follows. For the “only if”
direction, let S be a co-meager semifilter and, using the first part of Propo-
sition 2.2, let f : ω → ω be a finite-to-one function such that f−1[A] ∈ S for
any infinite A ⊆ ω.

For each n, let

Un =
{
X ∈ 2ω : ∃ distinct m1, . . . ,mn with

⋃
1≤k≤n f

−1(mk) ⊆ X
}
.

Then Un is open and upwards closed with respect to ⊆. Hence G =
⋂
n∈ω Un

is Gδ, and is easily seen to be upwards closed with respect to ⊆∗. In other
words, G is a Gδ semifilter, and G ⊆ S by construction.

3. P -filters from d = c. If f, g ∈ ωω, we say g dominates f , and write
f ≤∗ g, whenever {n ∈ ω : f(n) ≥ g(n)} is finite. The dominating number
d is the smallest size of some D ⊆ ωω such that every f ∈ ωω is dominated
by some g ∈ D.

In this section we show that if d = c then every Gδ semifilter admits a
P -ultrafilter. This extends a result of Ketonen, who first proved that d = c
implies the existence of P -points in ω∗.

Lemma 3.1. Let S be a semifilter, and let U be an open subset of 2ω

with S ⊆ U . For each X ∈ S, there is a function fX : ω → ω such that, for
every m ∈ ω, [[X�[m, fX(m))]] ⊆ U .

Proof. Fix m ∈ ω and X ∈ S. Let {Mi : i < 2m} enumerate the subsets
of m. For each i < 2m, let Xi = Mi∪ (X \m) and let ni be the least natural
number satisfying [[Xi�ni]] ⊆ U . Then Xi is a finite modification of X ∈ S,
so Xi ∈ S ⊆ U ; therefore some such ni must exist. Let fX(m) = max{ni :
i < 2m}. If Y ∈ [[X�[m, fX(m))]], then for some i we have Y ∩ m = Mi,
which gives Y ∈ [[Xi�fX(m)]] ⊆ [[Xi�ni]] ⊆ U .

The following lemma generalizes [9, Proposition 1.3]; see also [3, Propo-
sition 6.24].

Lemma 3.2. Let G be a Gδ semifilter. Suppose {An : n ∈ ω} is a de-
creasing sequence in G; also, suppose B ⊆ G, |B| < d, and for each B ∈ B,
{B} ∪ {An : n ∈ ω} is centered in G. Then {An : n ∈ ω} has a bound A ∈ G
such that, for any B ∈ B, A and B have a common bound in G.
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Proof. Replacing An with
⋂
m≤nAm if necessary, we may assume that

the An are decreasing. This only changes An finitely, and does not affect
the other hypotheses or the conclusion of the lemma. Let 〈Un : n < ω〉 be
a sequence of open subsets of 2ω with G =

⋂
n∈ω Un. Replacing Un with⋂

m≤n Um if necessary, we may assume that the Un are also decreasing.

For each B ∈ B, let gB(n) = fAn∩B(n), where fAn∩B is the function
described in Lemma 3.1. This is well-defined since An ∩ B ∈ G (because
{An : n ∈ ω} ∪ {B} is centered in G). As |B| < d, there is some h ∈ ωω that
is not dominated by any gB.

Let A =
⋃
n∈ω(An ∩ h(n)). We claim that this A satisfies the conclu-

sions of the lemma. There are two things to check: that A is a bound for
{An : n ∈ ω}, and that A and B have a common bound in G for any B ∈ B.

Because the An are decreasing, A \An ⊆
⋃
m<n(Am ∩ h(m)), which is a

finite set. Thus A ⊆∗ An for every n, and A is a bound for {An : n ∈ ω}.
It remains to show that for any B ∈ B, A and B have a common lower

bound in G.

Since h is not dominated by gB, there is an infinite C ⊆ ω such that
gB(n) < h(n) for all n ∈ C. By induction, find an infinite increasing sequence
〈ni : i ∈ ω〉 of elements of C such that, for each i, h(ni) < ni+1. Then

set Ã =
⋃
i∈ω([ni, h(ni)) ∩ B ∩ Ani). By our requirements on the ni, the

intervals [ni, h(ni)) are disjoint. Clearly, Ã ⊆ A ∩ B, and it remains to
show Ã ∈ G. For any i, we have fAni∩B(ni) = gB(ni) < h(ni), so that

Ã ∩ [ni, fAni∩B(ni)) = Ani ∩ B ∩ [ni, fAni∩B(ni)). By the definition of the

function fAni∩B, this means Ã ⊆ Uni . This is true for all the ni, so Ã is in

infinitely many of the Um. As the Um are decreasing, Ã ∈
⋂
m∈ω Um = G.

The following theorem extends to Gδ semifilters the classical result of
Ketonen about [ω]ω (see [9, Theorem 1.2 and Proposition 1.4] or [3, Theo-
rem 9.25]).

Theorem 3.3. Let G be a Gδ semifilter. If d= c, then there is a P -ultra-
filter on G. In fact,

(1) If d = c, then every filter on G that is generated by fewer than c sets
is included in some P -ultrafilter on G.

(2) Every ultrafilter on G that is generated by fewer than d sets is a
P -ultrafilter.

Proof. For (1), let F0 be a basis for a filter on G with |F0| < d, and
let {〈Xα

n : n < ω〉 : α ∈ c} be an enumeration of all countable decreasing
sequences in G. To avoid trivialities, we assume F0 contains the Fréchet
filter. We construct by recursion an increasing sequence 〈Fα : α < c〉 of
filter bases such that |Fα| = ℵ0 · |α|.
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For limit α, we set Fα =
⋃
β<αFβ. Given that Fα has already been

constructed, we obtain Fα+1 as follows. If there is some n < ω such that
Fα ∪ {Xα

n } is not centered in G, then we set Fα+1 = Fα. If this is not the
case, Fα ∪ {Xα

n : n ∈ ω} is centered in G. Since |Fα| < d, we may apply
Lemma 3.2 to find a lower bound Xα

ω for 〈Xα
n : n < ω〉 such that, for any

B ∈ Fα, we have Xα
ω ∩ B ∈ G. In particular, Fα ∪ {Xα

ω ∩ B : B ∈ Fα} is a
filter base, and we define this to be Fα+1. Clearly |Fα+1| = ℵ0 · |Fα|, and
this completes the recursive construction. Let F be the filter generated by⋃
α<cFα.

We must prove that F is a P -ultrafilter on G. It is obvious that
⋃
α<cFα

is a filter basis in G, so F is a filter in G. To see that F is an ultrafilter
in G, let A ∈ G. There is some α < c such that 〈Xα

n : n < ω〉 is the constant
sequence Xα

n = A. If {A} ∪ F is centered, so is {A} ∪ Fα, and at step α of
our construction we found a set Xα

ω ⊆∗ A and let Xα
ω ∈ Fα+1. This implies

A ∈ F (recall that F contains the Fréchet filter). Thus, for every A ∈ G,
either A ∈ F or {A}∪F is not centered in G. Hence F is an ultrafilter on G.

To see that F is a P -filter, let 〈An : n < ω〉 be a decreasing sequence
of elements of F . For some α, we have Xα

n = An for all n. At stage α of
our construction, we added some set Xα

ω to F that is a lower bound for this
sequence.

For (2), let F be an ultrafilter on G, and let B be a basis for F such that
|B| < d. If 〈An : n < ω〉 is a decreasing sequence in F , then {An : n ∈ ω}∪B
is centered. By Lemma 3.2, there is some Aω ∈ G that is a lower bound
for {An : n < ω} and that, for every B ∈ B, satisfies Aω ∩ B ∈ G. Then
{Aω} ∪ B is centered in G. Since B is a basis for the ultrafilter F on G, this
implies Aω ∈ F . Thus an arbitrary decreasing sequence of elements of F
has a lower bound in F , that is, F is a P -filter.

4. Weak P -filters from ZFC. In this section we show that there
are weak P -ultrafilters on any co-meager semifilter, in particular on the
semifilter of thick sets. This will then be used in Section 5.

To construct an ultrafilter with nice combinatorial properties, one usually
uses recursion. We first divide the combinatorial property into a large set of
requirements, and then at step α of the construction the filter constructed
so far is extended in such a way that the αth requirement is met. There are
two main problems.

The first is that the recursive construction might stop before all of the
requirements are met. To avoid this problem, one can use an idea going back
to Posṕı̌sil [13]: start with an independent system and make sure that at
each step a large enough part of this system remains independent modulo
the filter constructed so far. This guarantees, in particular, that the filter is
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not an ultrafilter. Since there are independent systems of size c, this typically
allows one to take care of c-many requirements.

The second problem is coming up with the requirements. For example,
to get a weak P -point, the natural requirement would be given by a single
countable sequence of ultrafilters and it would require that the constructed
ultrafilter is not in the closure of this sequence. Unfortunately, there are
far too many countable sequences of ultrafilters—we would need to meet
2c-many requirements, but our construction only has c-many steps. To over-
come this problem Kunen [10] did something counterintuitive: he replaced
the easier problem of constructing a weak P -point by a harder problem of
constructing c-O.K. points. The clever part was that the combinatorial prop-
erty of being a c-O.K. point, while decidedly uglier, can actually be divided
into c-many requirements, thus leaving hope for our recursive construction.

We modify Kunen’s proof and show that it allows us to construct weak
P -ultrafilters on semifilters. First we need Kunen’s definition (see [10]) of
an O.K.-set: A (closed) subset X ⊆ ω∗ is κ-O.K. if for each sequence
〈Un : n < ω〉 of open neighborhoods of X there is a family {Vγ : γ < κ}
of neighborhoods of X such that for each finite Γ ∈ [κ]<ω,⋂

γ∈Γ
Vγ ⊆ U|Γ |.

A filter F is κ-O.K. if the corresponding closed set {p ∈ ω∗ : F ⊆ p} ⊆ ω∗

is κ-O.K.

Note that if κ ≤ λ, then every λ-O.K. set is also κ-O.K. The following
lemma, also due to Kunen, shows that κ-O.K. sets (with κ uncountable) are
weak P -sets:

Lemma 4.1. A closed ω1-O.K. set is a weak P -set.

Proof. Let F be a closed ω1-O.K. set and D = {pn : n < ω} a countable
set disjoint from F . Fix a descending sequence 〈Un : n < ω〉 of neighborhoods
of F such that pn is not contained in any Um for m > n. For this sequence,
choose open neighborhoods {Vα : α < ω1} of F witnessing that it is ω1-O.K.
It is easy to see that pn can only be an element of at most n + 1 Vα’s,
so we can fix αn < ω1 such that pn is not contained in any Vβ for β ≥ αn.
Let β = sup{αn : n < ω} < ω1. Then Vβ is a neighborhood of F disjoint
from D.

Remark 4.2. Later van Mill [11] generalized this lemma to show that a
closed ω1-O.K. subset of X∗ = βX \X for any locally compact σ-compact
X is actually disjoint even from the closure of any ccc subset of X∗ disjoint
from it.
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Lemma 4.3. A filter F on ω is 2ω-O.K. if for each sequence 〈Fn : n < ω〉
of elements of F there are {Vγ : γ < 2ω} ⊆ F such that for each n < ω and
γ1, . . . , γn < 2ω the set

Vγ1 ∩ · · · ∩ Vγn \ Fn
is finite.

Theorem 4.4. If S is a co-meager semifilter then there is an ultrafilter
on S which is a 2ω-O.K. set (and hence a weak P -set).

The proof uses large independent linked systems. For our purposes we
will slightly modify the relevant defition.

Given a filter F and a semifilter S we say that a family A(C,R) =

{Xβ
α,n : α ∈ C, n < ω, β ∈ R} of sets is a C × R-independent linked matrix

modulo (F ,S) if

(1) for each α ∈ C, β ∈ R the sequence 〈Xβ
α,n : n < ω〉 is increasing in ⊆;

(2) for each F ∈ F , each finite set R0 ∈ [R]<ω of rows, each choice N :
R0 → ω of natural numbers and each choice C0 : R0 → [C]<ω of sets
of columns such that |C0(β)| ≤ N(β) for each β ∈ R0 the intersection

F ∩
⋂
β∈R0

⋂
α∈C0(β)

Xβ
α,N(β)

is in S;
(3) for each row β ∈ R and any n+ 1 columns C0 ∈ [C]n+1 the intersec-

tion ⋂
α∈C0

Xβ
α,n

is finite.

If A(C,R) is an independent matrix and R0 ⊆ R are some rows, we will
use A(C,R\R0) to denote the matrix constructed from A(C,R) by deleting
the rows (with indices) in R0.

Lemma 4.5 (Kunen). There is a 2ω×2ω-independent linked matrix mod-
ulo (Fr, [ω]ω).

Kunen employed an elaborate recursive construction using trees. The
following simple proof is due to P. Simon.

Proof of Lemma 4.5. We shall construct such a family consisting of sub-
sets of the countable set S = {(k, f) : k ∈ ω, f ∈ P(k)PP(k)}. Given
A,B ⊆ ω and n < ω let

XB
A,n = {(k, f) ∈ S : |f(B ∩ k)| ≤ n & A ∩ k ∈ f(B ∩ k)}.

It is routine, if perhaps somewhat involved, to check that {XB
A,n : n < ω,

A,B ⊆ ω} is a 2ω × 2ω-independent linked family modulo (Fr, [ω]ω).

Corollary 4.6. If S co-meager, then there is a 2ω × 2ω-independent
linked matrix modulo (Fr,S).
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Proof. By Proposition 2.2, there is a finite-to-one function f : ω → ω
such that for each X ⊆ ω we have X ∈ [ω]ω ⇔ f−1[X] ∈ S. Let X =

{Xβ
α,n : α, β ∈ 2ω, n < ω} be the matrix given by Lemma 4.5. Let Y β

α,n =

f−1[Xβ
α,n]. It is easy to check that the Y ’s form the required independent

matrix Y. First notice that if A ⊆ B then f−1[A] ⊆ f−1[B]. Condition (1)
for Y now immediately follows from condition (1) for X . Moreover, if A
is infinite then f−1[A] is in S and condition (2) for Y now immediately
follows from condition (2) for X . Finally, if A is finite, then so is f−1[A] and
condition (3) for Y follows from condition (3) for X .

We are now ready to prove the main Theorem 4.4. The proof constructs
the maximal filter by a recursion which is kept going by a large independent
linked matrix.

There will be two kinds of requirements that we will need to meet. One
type takes care of a single countable sequence of neighborhoods that poten-
tially comes into play in the definition of 2ω-O.K. sets, the other type will
take care of a single set in our semifilter to guarantee that the resulting filter
is maximal.

The following two lemmas say that the requirements can be met at the
cost of sacrificing at most countably many rows from our matrix. In both of
these lemmas, S is some co-meager semifilter and, if H is a family of sets,
〈H〉 is the filter generated by H.

Lemma 4.7. Let A(C,R) be an independent linked matrix modulo (F ,S)
and 〈Yn : n < ω〉 a sequence of elements of F . Fix any row β ∈ R. Then
there are {Vγ : γ < 2ω} such that A(C,R\{β}) is independent linked modulo
(〈F ∪ {Vγ : γ < 2ω}〉,S), and for any finite set Γ ∈ [2ω]<ω of indices the set⋂

γ∈Γ
Vγ \ Y|Γ |

is finite.

Proof. Write Y ′n =
⋂
i≤n Yi and let

Vγ =
⋃
n<ω

Y ′n ∩Xβ
γ,n.

We first check that the system remains independent modulo the larger filter.
Conditions (1) and (3) are clearly satisfied. We check condition (2): Fix an
element F ∈ F , Γ ∈ [2ω]<ω a finite set R0 ∈ [R \ {β}]<ω of rows, a sequence
N : R0 → ω of natural numbers and a sequence C0 : R0 → [C]<ω of sets of
columns satisfying |C0(δ)| ≤ N(δ) for each δ ∈ R0. We need to verify that
the intersection

S = F ∩
⋂
γ∈Γ

Vγ ∩
⋂
δ∈R0

⋂
α∈C0(δ)

Xδ
α,N(δ)
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is in S. Let R′0 = R0∪{β}, and extendN and C0 to R′0 as follows:N(β) = |Γ |
and C0(β) = Γ . Let H = F ∩

⋂
i≤|Γ | Yi. Then

H ∩
⋂
δ∈R′0

⋂
α∈C0(δ)

Xδ
α,N(δ)

is in S by assumption and is contained in S. Since S is upwards closed, we
have S ∈ S.

We now verify the second conclusion of the lemma. Let Γ ∈ [2ω]<ω. Since

Y ′n ⊇ Y ′n+1 and Xβ
γ,n ⊆ Xβ

γ,n+1, it follows that

Vγ \ Y|Γ | ⊆
⋃
i<|Γ |

Y ′i ∩X
β
γ,i ⊆ X

β
γ,|Γ |−1.

In particular ⋂
γ∈Γ

Vγ \ Y|Γ | ⊆
⋂
γ∈Γ

Xβ
γ,|Γ |−1

where the second intersection is finite by the assumption on A(C,R).

Lemma 4.8. Let A(C,R) be an independent linked matrix modulo (F ,S)
and X ∈ S. Then there is a finite set R′ of rows and an extension F ′ of F
such that A(C,R \R′) is an independent linked matrix modulo (F ′,S), and
either X or ω \X is in F ′, or there is F ∈ F ′ such that neither F ∩X nor
F \X is in S.

Proof. If A(C,R) is not independent modulo (F ∪ {X},S) then there
are an F0 ∈ F , a finite set R0 of rows, sizes N0 : R0 → ω, and finite sets
C0 : R0 → 2ω of columns each of size given by N0 such that

X ∩ F0 ∩
⋂
β∈R0

⋂
α∈C0(β)

Xβ
α,N0(β)

is not in S. If A(C,R\R0) is not independent modulo (F ∪{ω \X},S) then
there are an F1 ∈ F , a finite set R1 ⊆ R \ R0 of rows, sizes N1 : R1 → ω,
and finite sets C1 : R1 → 2ω of columns each of size given by N1 such that

(ω \X) ∩ F1 ∩
⋂
β∈R1

⋂
α∈C1(β)

Xβ
α,N1(β)

is not in S. Then let

Z = F0 ∩
⋂
β∈R0

⋂
α∈C0(β)

Xβ
α,N0(β)

∩ F1 ∩
⋂
β∈R1

⋂
α∈C1(β)

Xβ
α,N1(β)

and R′ = R0∪R1. By construction Z ∩X and Z \X are not in S. We check
that A(C,R \ R′) is an independent linked matrix modulo (〈F ∪ {Z}〉,S).
Conditions (1) and (3) are again clearly satisfied. To verify (2) fix F2 ∈ F ,
a finite set R2 ∈ [R \ R′]<ω of rows, a sequence N2 : R2 → ω of natural
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numbers and a sequence C2 : R2 → [C]<ω of finite sets of columns satisfying
|C2(β)| ≤ N(β) for each β ∈ R2. We need to show that the intersection

F ∩ Z ∩
⋂
β∈R2

⋂
α∈C2(β)

Xβ
α,N2(β)

is in S. Since R0, R1 and R3 are disjoint, we can let R3 = R2 ∪ R1 ∪ R0,
N3 = N0 ∪N1 ∪N2 and C3 = C0 ∪ C1 ∪ C2. The above intersection is then
equal to

F0 ∩ F1 ∩ F2 ∩
⋂
β∈R3

⋂
α∈C3(β)

Xβ
α,N3(β)

,

which is in S by the assumption on A(C,R).

The proof of the theorem is now a routine recursive construction.

Proof of Theorem 4.4. Let A(2ω, 2ω) be an independent linked matrix
modulo (Fr,S) given by Corollary 4.6.

Enumerate S as {Xα : α ∈ 2ω}, and all countable sequences of sets from
S as {〈Yα,n : n < ω〉 : α < 2ω}. Using the two lemmas we shall recursively
construct a sequence 〈Fα : α < 2ω〉 of filters putting the used rows into Rα
along the way so that the following conditions are satisfied:

(1) |Rα| ≤ ω · |α| for each α < 2ω;
(2) Fα ⊆ Fβ and Rα ⊆ Rβ for each α < β < 2ω;
(3) A(2ω, 2ω \ Rα) is an independent linked matrix modulo (Fα,S) for

each α < 2ω;
(4) if the sequence 〈Yα,n : n < ω〉 is contained in Fα then there are
{Vγ : γ < 2ω} ⊆ Fα+1 such that for each finite set Γ ∈ [2ω]<ω of
indices the intersection

⋂
γ∈Γ Vγ \ Yα,|Γ | is finite;

(5) either Xα ∈ Fα+1 or ω \Xα ∈ Fα+1 or there is a set F ∈ Fα+1 such
that both F ∩Xα 6∈ S and F ∩ (ω \Xα) 6∈ S.

We start by letting F0 = Fr and R0 = ∅. At limit stages we take
unions, and at successor stages we use the previous lemmas to guarantee
conditions (3) and (4). Finally, we let

F =
⋃
α<2ω

Fα.

Condition (5) ensures that F is an ultrafilter on S, while condition (4)
guarantees that F is an 2ω-O.K. set.

5. Applications to algebra and combinatorics. Prior to this sec-
tion, we have focused our attention on building certain kinds of ultrafilters
in large semifilters. We now turn to applications in algebra and dynamics.

For p ∈ ω∗, recall that σ(p) is the unique ultrafilter generated by {A+1 :
A ∈ p}. Equivalently, σ is the restriction to ω∗ of the unique continuous
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extension to βω of the successor map on ω. This function σ, called the shift
map, provides the canonical dynamical structure for ω∗.

Related to the shift map on ω∗ is the standard additive semigroup struc-
ture on ω∗ (or, at least, it is standard up to a left-right switch; we fol-
low the conventions of [5]). Addition in ω∗ is defined by setting p + q =
p-limn∈ω σ

n(q) for every p, q ∈ ω∗. Here, “p-limn∈ω σ
n(q)” has its usual

meaning: r = p-limn∈ω σ
n(q) if and only if, for every neighborhood U of r,

{n ∈ ω : σn(q) ∈ U} ∈ p.
Recall that, if (X, f) is a dynamical system, then Y ⊆ X is a minimal

subsystem if Y is closed under f and closed topologically, and no proper
nonempty subset of Y has these properties. If (X,+) is a semigroup, then
Y ⊆ X is a minimal left ideal if X+Y = Y , and no proper nonempty subset
of Y has this property.

These core notions from dynamics and algebra are, for ω∗, related to
each other and to the notion of ultrafilters on semifilters:

Lemma 5.1. Let F be any filter on [ω]ω. The following are equivalent:

(1) F is an ultrafilter on Θ.
(2) F̂ is a minimal dynamical subsystem of (ω∗, σ).
(3) F̂ is a minimal left ideal of (ω∗,+).

Proof. The equivalence of (2) and (3) is well-known, and a proof can be
found, e.g., in [2]. For the equivalence of these and (1), see [4, Lemma 3.2].

Recall that an idempotent ultrafilter is any p ∈ ω∗ such that p + p = p.
The idempotents of ω∗ (indeed, any semigroup) admit a natural partial
order as follows: if p and q are idempotent, then p ≤ q if and only if
p+ q = q + p = p. If q + p = p (but not necessarily p + q = p), we write
p ≤L q.

It is known (see, e.g., [5, Theorem 1.38]) that an idempotent p is minimal
with respect to ≤ if and only if p belongs to some minimal left ideal. Such
ultrafilters are called minimal idempotents. It is also known that if q is any
idempotent then there is a minimal idempotent p with p ≤ q.

For many years it was a stubborn open question whether ω∗ contains any
≤L-maximal idempotents, and a good deal of work was done on this question
(see [5, Questions 9.25 and 9.26], [6, Questions 5.5(2), (3)], [4, Problems 4.6
and 4.7], and [15]). In [16], Zelenyuk finally answered this question in the
affirmative. The following application of Theorem 4.4 provides an alternative
proof of Zelenyuk’s result, and strengthens the result by showing that some
minimal left ideal is a weak P -set.

Theorem 5.2. There is a minimal left ideal of ω∗ that is also a weak
P -set. It follows that:
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(1) There is an idempotent ultrafilter that is both minimal and ≤L-
maximal.

(2) There is a minimal left ideal L ⊆ ω∗ such that, for any p, q ∈ ω∗,
p+ q ∈ L if and only if q ∈ L.

(3) The minimal left ideals are not homeomorphically embedded in ω∗.

For (3), recall that Y,Z ⊆ X are homeomorphically embedded in X if
there is some homeomorphism h : X → X such that h(Y ) = Z. It is well-
known that the minimal left ideals of ω∗ are all homeomorphic, and in fact
the homeomorphisms between them arise naturally from the algebraic struc-
ture (they are shifts of each other). This result says that the minimal left
ideals are nonetheless topologically distinguishable, and the natural homeo-
morphisms between them cannot be extended to homeomorphisms of ω∗.

Proof of Theorem 5.2. To prove the main assertion of the theorem, first
note that, by Lemma 5.1, it suffices to find an ultrafilter on Θ that is also
a weak P -filter. This follows directly from Theorem 4.4 and the fact that Θ
is Gδ. To see that Θ is Gδ, let

Un = {A ∈ 2ω : A contains an interval of length n};

then note that each Un is open and Θ =
⋂
n∈N Un.

For (2), let L be a weak P -set and a minimal left ideal. If q ∈ I, then
p + q ∈ L because L is a left ideal. Since L is closed under σ and σ−1 by
Lemma 5.1, we have {σn(q) : n ∈ N}∩L = ∅. As L is a weak P -set it follows

that {σn(q) : n ∈ N} ∩ L = ∅. If q /∈ L, then p + q = p-limn∈ω σ
n(q) is an

element of {σn(q) : n ∈ N}, so p+ q /∈ L.

For (1), let L be a minimal left ideal that is a weak P -set, and let q ∈ L
be idempotent. Since q ∈ L and L is a minimal left ideal, q is minimal.
Let p be any idempotent other than q. If p ∈ L then p is ≤-minimal, hence
≤L-minimal (see [5, Proposition 1.36]), so q 6≤L p. If p /∈ L then p + q /∈ L
by (1), in which case q 6≤L p. Thus q is ≤L-maximal.

For (3), it suffices to note that some minimal left ideal is not a weak
P -set. This is well-known and easy to prove: simply take some p ∈ ω∗ that
is not in any minimal left ideal, and note that ω∗ + p = ω + p contains a
minimal left ideal.

Further applications of Section 4 and related ideas to the theory of semi-
groups would take us too far afield here, but these will be explored in a
forthcoming sequel to this paper.
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GAČR grant no. I 1921-N25, “The continuum, forcing, and large cardinals”
and a postdoctoral fellowship at the Faculty of Arts, Charles University.

References

[1] T. Banakh and L. Zdomskyy, Selection principles and infinite games on multicovered
spaces, in: Selection Principles and Covering Properties in Topology, Quad. Mat. 18,
Dip. Mat., Seconda Univ. Napoli, Caserta, 2006, 1–51.

[2] V. Bergelson, Minimal idempotents and ergodic Ramsey theory , in: Topics in Dy-
namics and Ergodic Theory, London Math. Soc. Lecture Note Ser. 310, Cambridge
Univ. Press, Cambridge, 2003, 8–39.

[3] A. Blass, Combinatorial cardinal characteristics of the continuum, in: Handbook of
Set Theory, M. Foreman and A. Kanamori (eds.), Springer, 2010, Vol. 1, 395–489.

[4] W. R. Brian, P -sets and minimal right ideals in N∗, Fund. Math. 229 (2015),
277–293.

[5] N. Hindman and D. Strauss, Algebra in the Stone–Čech Compactification, de Gruyter,
Berlin, 1998.

[6] N. Hindman and D. Strauss, and Y. Zelenyuk, Longer chains of idempotents in βG,
Fund. Math. 220 (2013), 243–261.

[7] S. A. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set
theory , PhD thesis, Univ. of Oxford, 1976.

[8] A. S. Kechris, Classical Descriptive Set Theory , Grad. Texts in Math. 156, Springer,
1995.

[9] J. Ketonen, On the existence of P -points in the Stone–Čech compactification of
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