
COLLOQU IUM MATHEMAT ICUM
VOL. 145 2016 NO. 1

LEIBNIZ’S RULE ON TWO-STEP NILPOTENT LIE GROUPS

BY

KRYSTIAN BEKAŁA (Wrocław)

Abstract. Let g be a nilpotent Lie algebra which is also regarded as a homogeneous
Lie group with the Campbell–Hausdorff multiplication. This allows us to define a gener-
alized multiplication f # g = (f∨ ∗ g∨)∧ of two functions in the Schwartz class S(g∗),
where ∨ and ∧ are the Abelian Fourier transforms on the Lie algebra g and on the dual g∗

and ∗ is the convolution on the group g.
In the operator analysis on nilpotent Lie groups an important notion is the one of

symbolic calculus which can be viewed as a higher order generalization of the Weyl calculus
for pseudodifferential operators of Hörmander. The idea of such a calculus consists in
describing the product f # g for some classes of symbols.

We find a formula for Dα(f # g) for Schwartz functions f, g in the case of two-step
nilpotent Lie groups, which includes the Heisenberg group. We extend this formula to the
class of functions f, g such that f∨, g∨ are certain distributions acting by convolution on
the Lie group, which includes the usual classes of symbols. In the case of the Abelian
group Rd we have f # g = fg, so Dα(f # g) is given by the Leibniz rule.

1. Statement of the result. Let g be a nilpotent Lie algebra of dimen-
sion d which is endowed with a family (δt)t>0 of dilations. We also regard
the vector space g as a Lie group with the multiplication law given by the
Campbell–Hausdorff formula (see Corwin–Greenleef [2])

x ◦ y = x+ y + r(x, y),

where r(x, y) is the (finite) sum of the commutator terms of order at least 2
in the Campbell–Hausdorff series for g.

This allows us to define a generalized multiplication f # g = (f∨ ∗ g∨)∧
of two functions in the Schwartz class S(g∗), where ∨ and ∧ are the Abelian
Fourier transforms on the Lie algebra g and on the dual g∗. In the case of
the Abelian group Rd, one gets f # g = fg.

In the operator analysis on nilpotent Lie groups an important notion is
the one of symbolic calculus which can be viewed as a higher order generaliza-
tion of the Weyl calculus for pseudodifferential operators of Hörmander [7].
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The calculus was created by Melin [10] and developed by Manchon [9] and
Głowacki [3], [6], [4]. The idea of the calculus consists in describing the prod-
uct f # g for some classes of symbols. One of the obstacles in extending the
Weyl calculus to general nilpotent Lie groups is the lack of a formula allowing
one to calculate the derivatives of f # g.

In the Abelian case, we have the multidimensional Leibniz rule

(1.1) Dα(fg) =
∑

β+γ=α

(
α

β

)
DβfDγg, α ∈ Nd.

Let hn = R2n+1 be the Heisenberg Lie algebra with the commutator
[x, y] = (0, . . . , 0, {x, y}), x, y ∈ hn,

where {x, y} =
∑n

i=1(xiyn+i − xn+iyi)), and the Heisenberg group with the
Campbell–Hausdorff multiplication. In that case there is a simpler form of
f # g (cf. Głowacki [3, Example 3.3]),

(1.2) f # g(w, λ)

= cn
� �
f(w + λ1/2u, λ)g(w + λ1/2v, λ)ei{u,v} du dv, w ∈ R2n, λ > 0.

By the chain rule and integration by parts one gets
D2n+1(f # g) = D2n+1f # g + f #D2n+1g(1.3)

+
1

2

n∑
i=1

(Dif #Dn+ig −Dn+if #Dig).

A general formula for Dα(f # g), α ∈ N2n+1, seems to be more complicated.
The purpose of this note is to find such a “Leibniz formula” in the case

of two-step nilpotent Lie groups, which includes the Heisenberg group. By
the Fourier transform this is equivalent to finding a formula for Tα(f ∗ g),
where Tαf(x) = xαf(x) and ∗ is the convolution on the group g.

In the Abelian case, there is a formula for the convolution product cor-
responding to (1.1),

(1.4) Tα(f ∗0 g) =
∑

β+γ=α

(
α

β

)
T βf ∗0 T γg,

where ∗0 is the standard convolution on Rd.
In the general case of nilpotent Lie groups Głowacki [5] showed that

(1.5) Tα(f ∗ g) = Tαf ∗ g + f ∗ Tαg +
∑

l(β)+l(γ)=l(α)
0<l(β)<l(α)

cβ,γT
βf ∗ T γg

for α 6= 0 and for any Schwartz functions f , g on g. Here, cβ,γ are real
constants and l(α) is the homogeneous length of the multiindex α (see Sec-
tion 2). Notice that this formula does not give exact values of cβ,γ , and the
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condition l(β) + l(γ) = l(α) does not characterize precisely the pairs (β, γ)
which appear in (1.5) with a nonzero constant coefficient cβ,γ .

In order to formulate the main result we introduce some notation. Let
X1, . . . , Xd be a base of the vector space g. Suppose that A = (ai,j,k)i,j,k is
the matrix of the structure constants of g which are given by

[Xi, Xj ] =

d∑
k=1

ai,j,kXk, 1 ≤ i, j ≤ d.

Let D = {(i, j, k) : ai,j,k 6= 0} and σ ∈ ND. We denote by σ[0], σ[1], σ[2],∈ Nd
the multiindices

σ[0],k =
∑
i,j

σ(i,j,k), σ[1],i =
∑
j,k

σ(i,j,k), σ[2],j =
∑
i,k

σ(i,j,k).

For α, β ∈ Nd, σ ∈ ND and β+σ[0] ≤ α we define the generalized multinomial
coefficient

(1.6)
(
α

β

)
σ

=
α!

β!σ!(α− β − σ[0])!
.

Note that for an Abelian group we have σ[0] = σ[1] = σ[2] = 0 and
(
α
β

)
σ
=
(
α
β

)
.

Our main result is the following.

Theorem 1.1. Suppose that g is a two-step nilpotent Lie group with the
Campbell–Hausdorff multiplication. For any Schwartz functions f , g on g
and every multiindex α ∈ Nd,

(1.7) Tα(f ∗ g) =
∑

β+γ+σ[0]=α

(
α

β

)
σ

cσT
β+σ[1]f ∗ T γ+σ[2]g,

where the (nonzero) constants cσ are given by

cσ = 2−
∑
i,j,k σ(i,j,k)

∏
i,j,k

a
σ(i,j,k)
i,j,k , σ ∈ ND.

An analogous formula for more than two functions is given in Proposi-
tion 3.4 below. Moreover, in Corollary 3.10 we show that the above formula is
still valid for tempered distributions whose convolution with Schwartz class
functions is in the Schwartz class.

Applying the Fourier transform to (1.7) we get an equivalent formula
for Dα(f # g) for Schwartz functions f, g on g∗. We extend this formula to
a certain class of functions that includes the classes of symbols Sm(g∗,g)
which are admissible in Głowacki’s calculus [6] (see Subsection 3.4).

In Subsection 3.5 we illustrate our results in the case of the Heisenberg
group.
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2. Two-step nilpotent Lie groups. Let g be a Lie algebra of dimension
d endowed with a one-parameter family (δt)t>0 of group automorphisms,
called dilations. Let p1 = 1 and p2 = 2 be the exponents of homogeneity of
the dilations. Let

g1 = {x ∈ g : δt(x) = tp1x}, g2 = {x ∈ g : δt(x) = tp2x}.
Then g = g1⊕ g2 and g is a two-step nilpotent Lie algebra. Let d1 = dim g1.

The vector space g is also regarded as a Lie group with the multiplication

x ◦ y = x+ y + 1
2 [x, y].

The exponential map is then the identity map. From antisymmetry and the
Jacobi identity,

ai,j,k + aj,i,k = 0,
∑
k

(ai,j,kak,l,m + aj,l,kal,i,m + al,i,kak,j,m) = 0.

Moreover, the homogeneous structure of g gives ai,j,k = 0 if any of the
conditions i = j, max(i, j) ≥ k, max(i, j) > d1, k ≤ d1 is satisfied. For every
k > d1 we have (x ◦ y)k = xk + yk + rk(x, y), where

rk(x, y) =
1

2

d∑
i=1

d∑
j=1

ai,j,kxiyj .

Let Tjf(x) = xjf(x), Djf(x) = i∂jf(x) and

Tαf(x) = xα1
1 · · ·x

αd
d f(x), Dαf(x) = Dα1

1 · · ·D
αd
d f(x).

Let |α| =
∑d

i=1 αi be the length of α ∈ Nd. Denote by l(α) the homogeneous
length of α, i.e.

l(α) = p1(α1 + · · ·+ αd1) + p2(αd1+1 + · · ·+ αd).

The Schwartz space is denoted by S(g). Let Lebesgue measures dx, dξ on
g and g∗ be normalized so that the relationship between a function f ∈ S(g)
and its Abelian Fourier transform f̂ ∈ S(g∗) is given by

f̂(ξ) =
�

g

e−ixξf(x) dx, f(x) =
�

g∗

eixξ f̂(ξ) dξ.

The Fourier transform extends by duality to the space of tempered distribu-
tions.

The normalized Lebesgue measure on the vector space g is a Haar mea-
sure on the group g. The convolution ∗ on g is given by

(2.1) f ∗ g(x) =
�

g

f(x ◦ y−1)g(y) dy.

Recall some notation that we have already introduced in Section 1.
For the group g and σ ∈ ND we defined the d-dimensional multiindices
σ[0], σ[1], σ[2] ∈ Nd. We also defined the generalized multinomial coefficient
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(
α
β

)
σ
for α, β ∈ Nd and σ ∈ ND. Let us also denote by cσ the constants which

appeared in (1.7), i.e.

(2.2) cσ = 2−
∑
i,j,k σ(i,j,k)

∏
i,j,k

a
σ(i,j,k)
i,j,k , σ ∈ ND.

3. Leibniz’s rule

3.1. Multinomial theorem. The following proposition is a generaliza-
tion of the multinomial theorem on Rd. This will be crucial in the proof of
Theorem 1.1.

Proposition 3.1. For any x, y ∈ g and every multiindex α ∈ Nd,

(3.1) (x ◦ y)α =
∑

β+γ+σ[0]=α

(
α

β

)
σ

cσx
β+σ[1]yγ+σ[2]g,

where the (nonzero) constants cσ are given by (2.2).

Proof. Let α ∈ Nd. Then

(3.2) (x ◦ y)α =
d∏

k=1

(x ◦ y)αkk =

d1∏
l=1

(xl + yl)
αl

d∏
k=d1+1

(xk + yk + rk(x, y))
αk

=

d1∏
l=1

∑
βl+γl=αl

(
αl
βl

)
xβll y

γl
l

d∏
k=d1+1

∑
βk+γk+τk=αk

(
αk

βkγkτk

)
xβkk y

γk
k rk(x, y)

τk

=
∑

βl+γl=αl
1≤l≤d1

∑
βk+γk+τk=αk
d1+1≤k≤d

d1∏
l=1

(
αl
βl

) d∏
k=d1+1

(
αk

βkγkτk

)

×
d1∏
l=1

xβll

d∏
k=d1+1

xβkk

d1∏
l=1

yγll

d∏
k=d1+1

yγkk

d∏
k=d1+1

rk(x, y)
τk .

Let Dk = {(i, j) : (i, j, k) ∈ D}. Clearly, (i, j) ∈ Dk if ai,j,k 6= 0. Thus,

(3.3) rk(x, y)
τk =

(
1

2

∑
(i,j)∈Dk

ai,j,kxiyj

)τk
= 2−τk

∑
∑

(i,j)∈Dk
τk,i,j=τk

(
τk

. . . τk,i,j . . .

) ∏
(i,j)∈Dk

(ai,j,kxiyj)
τk,i,j

= 2−τk
∑

∑
(i,j)∈Dk

τk,i,j=τk

(
τk

. . . τk,i,j . . .

) ∏
(i,j)∈Dk

a
τk,i,j
i,j,k

∏
(i,j)∈Dk

x
τk,i,j
i y

τk,i,j
j .
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Here,
(

τk
...τk,i,j ...

)
denotes the multinomial coefficient(

τk
. . . τk,i,j . . .

)
=

τk!∏
(i,j)∈Dk τk,i,j !

.

By using (3.3), the expression (3.2) is equal to

(3.4)
∑

βl+γl=αl
1≤l≤d1

∑
βk+γk+τk=αk
d1+1≤k≤d

∑
∑

(i,j)∈Dk
τk,i,j=τk

d1∏
l=1

(
αl
βl

) d∏
k=d1+1

((
αk

βkγkτk

)(
τk

· · · τk,i,j · · ·

)
2−τk

∏
(i,j)∈Dk

a
τk,i,j
i,j,k

)

×
d1∏
l=1

xβll

d∏
k=d1+1

(
xβkk

∏
(i,j)∈Dk

x
τk,i,j
i

) d1∏
l=1

yγll

d∏
k=d1+1

(
yγkk

∏
(i,j)∈Dk

y
τk,i,j
j

)
.

If we denote σ(i,j,k) = τk,i,j , then σ ∈ ND. Moreover,
d1∏
l=1

(
αl
βl

) d∏
k=d1+1

(
αk

βkγkσk

)(
σk

· · ·σ(i,j,k) · · ·

)
=

α!

β!γ!σ!
=

(
α

β

)
σ

.

The conditions βl + γl = αl, l = 1, . . . , d1, and
∑

(i,j)∈Dk τk,i,j = τk, βk +
γk + τk = αk, k = d1 + 1, . . . , d, can be simply written as β + γ + σ[0] = α.
Recall that the numbers cσ are given by (2.2). Thus, (3.4) is equal to∑
β+γ+σ[0]=α

(
α

β

)
σ

cσ

d∏
k=1

(
xβkk

∏
(i,j)∈Dk

x
σ(i,j,k)
i

) d∏
k=1

(
yγkk

∏
(i,j)∈Dk

y
σ(i,j,k)
j

)

=
∑

β+γ+σ[0]=α

(
α

β

)
σ

cσ

d∏
i=1

x
βi+

∑
j,k:(i,j)∈Dk

σ(i,j,k)
i

d∏
j=1

y
γj+

∑
i,k:(i,j)∈Dk

σ(i,j,k)
j

=
∑

β+γ+σ[0]=α

(
α

β

)
σ

cσx
β+σ[1]yγ+σ[2] .

3.2. Convolution rule

Proof of Theorem 1.1. By (2.1) we have

(3.5) Tα(f ∗ g)(x) = xα(f ∗ g)(x) =
�

g

xαf(x ◦ y−1)g(y) dy.

Applying (3.1) we get

(3.6) xα = ((x ◦ y−1) ◦ y)α =
∑

β+γ+σ[0]=α

(
α

β

)
σ

cσ(x ◦ y−1)β+σ[1]yγ+σ[2] .

The conclusion follows from combining (3.6) and (3.5).
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As a consequence, we get a relationship between the exponents β + σ[1]
and γ + σ[2] on the right hand side in (1.7) in terms of homogeneous length,
as in (1.5).

Corollary 3.2. Formula (1.5) holds.

Proof. Let β + γ + σ[0] = α, where α, β, γ ∈ Nd and σ ∈ ND. By a direct
calculation,

l(β + σ[1]) + l(γ + σ[2]) =

d1∑
i=1

(
βi +

∑
j,k

σ(i,j,k)

)
+ 2

d∑
k=d1+1

βk

+

d1∑
j=1

(
γj +

∑
i,k

σ(i,j,k)

)
+ 2

d∑
k=d1+1

γk =

d1∑
i=k

αk + 2

d∑
i=d1+1

αk = l(α).

If we compare the coefficients on both sides of Tα
1+α2

(f ∗ g) =
Tα1(Tα2(f ∗ g)), obtained from Theorem 1.1, we get the following identity.

Corollary 3.3. For any α1, α2, β ∈ Nd and σ ∈ ND,

(3.7)
(
α1 + α2

β

)
σ

=
∑

b(α1,α2,β,σ)

(
α1

β1

)
σ1

(
α2

β2

)
σ2

,

where b(α1, α2, β, σ) is the set

{(β1, β2, σ1, σ2) : β1 + β2 = β, σ1 + σ2 = σ, β1 + σ1[0] ≤ α
1, β2 + σ2[0] ≤ α

2}.
Notice that this is the analogue of the combinatorial identity(

n1 + n2
k

)
=

∑
k1+k2=k

k1≤n1, k2≤n2

(
n1
k1

)(
n2
k2

)
, n1, n2, k ∈ N.

As in Theorem 1.1, we can find a convolution rule for more than two
functions. First, we extend our notation a little. For n ∈ N let

D(n) = {(i, j, k, r, s) : ai,j,k 6= 0, 1 ≤ r < s ≤ n}.

Notice that if n = 2, then D(2) is essentially the same as D. For τ ∈ ND(n)

we consider the following multiindices in Nd:

τ[0],k =
∑
i,j,r,s

τ(i,j,k,r,s), k = 1, . . . , d,

τ[m],l =
∑
j,k,s

τ(l,j,k,m,s) +
∑
i,k,r

τ(i,l,k,r,m), m = 1, . . . , n, l = 1, . . . , d.

For α, β1, . . . , βn ∈ Nd, τ ∈ ND(n) and
∑n

m=1 β
m + τ[0] = α we also denote(

α

β1 · · ·βn

)
τ

=
α!

β1! · · ·βn!τ !
, c̃τ = 2−

∑
i,j,k,r,s τ(i,j,k,r,s)

∏
i,j,k,r,s

a
τ(i,j,k,r,s)
i,j,k .
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Proposition 3.4. Let f1, . . . , fn be Schwartz functions on g. For every
α ∈ Nd,

(3.8) Tα(f1 ∗ · · · ∗ fn)

=
∑

β1+···+βn+τ[0]=α

(
α

β1 · · ·βn

)
τ

c̃τT
β1+τ[1]f1 ∗ · · · ∗ T β

n+τ[n]fn.

Proof. As in the proof of Proposition 3.1, we find a formula for (y1 ◦ · · · ◦
yn)α, where y1, . . . , yn ∈ g. We get

(3.9) (y1 ◦ · · · ◦ yn)α =
d∏

k=1

(
y1k + · · ·+ ynk +

1

2

∑
ai,j,k 6=0

ai,j,k
∑
r<s

yri y
s
j

)αk
=

∑
β1+···+βn+τ[0]=α

(
α

β1 · · ·βn

)
τ

c̃τ (y
1)β

1+τ[1] · · · (yn)βn+τ[n] .

If we apply (3.9) to y1 = x1 ◦ (x2)−1, . . . , yn−1 = xn−1 ◦ (xn)−1, yn = xn,
where x1, . . . , xn are integral variables in the convolution, we get the conclu-
sion.

3.3. S-convolvers. Let A be a tempered distribution on g, i.e. a con-
tinuous linear functional on S(g). The convolution of a Schwartz function f
on g on the right with a tempered distribution A is defined by

f ∗A(x) = 〈A, f̃x〉,
where f̃x(y) = f(xy−1). Let Ã denote the distribution given by 〈Ã, f〉 =
〈A, f̃〉. We say that a distribution A ∈ S ′(g) is a right S-convolver on a
nilpotent Lie group g if f ∗ A ∈ S(g) whenever f ∈ S(g). We define left
S-convolvers in a similar way. A is called an S-convolver if it is both a
left and right S-convolver. By Proposition 2.5 in Corwin [1], the space of
S-convolvers is closed under convolution and multiplication by polynomials.
We have

f ∗ (A ∗B) = (f ∗A) ∗B, 〈A ∗B, f〉 = 〈B, Ã ∗ f〉.
Formula (1.7) is also valid for S-convolvers in place of Schwartz functions

on a two-step nilpotent Lie group.
Corollary 3.5. If A, B are S-convolvers on g, then

(3.10) Tα(A ∗B) =
∑

β+γ+σ[0]=α

(
α

β

)
σ

cσT
β+σ[1]A ∗ T γ+σ[2]B.

Proof. We prove (3.10) by induction on the length of α. Let T ek = Tk,
k = 1, . . . , d1. Suppose first that A is a Schwartz function. Then

〈Tk(A ∗B), f〉 = 〈A ∗B, Tkf〉 = 〈B, Ã ∗ Tkf〉.
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By (1.7), this is equal to

〈B, Tk(Ã ∗ f)− TkÃ ∗ f〉 = 〈TkB, Ã ∗ f〉 − 〈B, TkÃ ∗ f〉.

As T̃kÃ = −TkA, the base step is done when A is a Schwartz function. If
A is an S-convolver, then we can repeat the same reasoning using the just
proven formula

Tk(f ∗A) = Tkf ∗A+ f ∗ TkA, f ∈ S(h),

instead of the case α = ek in (1.7).
Now, let T ek = Tk, k = d1 + 1, . . . , d. If A is a Schwartz function, then

〈Tk(A ∗B), f〉 = 〈A ∗B, Tkf〉 = 〈B, Ã ∗ Tkf〉

= 〈B, Tk(Ã ∗ f)− TkÃ ∗ f −
1

2

∑
(i,j)∈Dk

ai,j,kTiÃ ∗ Tjf〉

= 〈TkB, Ã ∗ f〉+ 〈TkA ∗B〉+
1

2

∑
(i,j)∈Dk

ai,j,k〈TiA ∗B, Tjf〉.

We get
∑

(i,j)∈Dk ai,j,kTjTiA = 0 from the antisymmetry of the structure
constants on g, and so

(3.11) Tk(A ∗B) = TkA ∗B +A ∗ TkB +
1

2

∑
(i,j)∈Dk

ai,j,kTiA ∗ TjB

whenever A is a Schwartz function. Similarly to the case of T ek for k =
1, . . . , d1, we find that (3.11) also holds when A is an S-convolver.

Now, assume that (3.10) holds for a multiindex α. The inductive step
follows from (3.7).

3.4. Leibniz’s rule for f # g. Applying the Fourier transform to (1.7)
we get an equivalent formula for the derivatives of f # g.

Corollary 3.6. If α ∈ Nd and f, g ∈ S(g∗), then

(3.12) Dα(f # g) =
∑

β+γ+σ[0]=α

(
α

β

)
σ

cσD
β+σ[1]f #Dγ+σ[2]g,

where the constants cσ are given by (2.2).

The above formula is valid under some weaker smoothness conditions
for functions, which is essential for applying these results and for a better
understanding of symbolic calculus on two-step nilpotent Lie groups.

Let m1, m2 be g-weights on g∗ (for more details see Głowacki [6]) and

Sm(g∗,g) = {a ∈ C∞(g∗) : |Dαa(x)| ≤m(x)ρ(x)−l(α)},
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where ρ(x) = 1 + ‖x‖, ‖ · ‖ being the homogeneous norm on g∗. A typical
example of weight is m(x) = ρ(x)N , N ∈ R. Notice that if a distribution A
satisfies Â ∈ Sm(g∗,g) for some weight m, then one can write A as a sum
of a tempered distribution with compact support and a Schwartz function.
Thus A is an S-convolver on g. If a ∈ Sm1(g∗,g) and b ∈ Sm2(g∗,g), then,
by the calculus of Głowacki [6], we have a# b ∈ Sm1m2(g∗,g) and a certain
continuity of the product #, which is sufficient to deduce from Corollary 3.5
the following.

Corollary 3.7. Formula (3.12) holds for functions a and b such that
a∨ and b∨ are S-convolvers on g. In particular, if a ∈ Sm1(g∗,g) and
b ∈ Sm2(g∗,g), then Dα(a # b) is given by (3.12), which can also be un-
derstood pointwise.

3.5. Heisenberg group. The Heisenberg group/algebra hn was intro-
duced in Section 1. Let us recall that multiplication on hn is given by

(3.13) x ◦ y =
(
x1 + y1, . . . , x2n + y2n, x2n+1 + y2n+1 +

1
2{x, y}

)
.

There is a remarkable relationship between the convolution structure of
the Heisenberg group and the Weyl calculus for pseudodifferential operators,
which was explained e.g. in Howe [8]. For λ = 1 in (1.2) one obtains the Weyl
formula for the symbol of the composition of two pseudodifferential operators
(cf. Głowacki [3, Example 3.3])

a#W b(ξ) =
� �
a(ξ + u)b(ξ + v)ei{u,v} du dv.

It is easy to see that Dα(a#W b) is given by the (noncommutative) Leibniz
rule

(3.14) Dα(a#W b) =
∑

β+γ=α

(
α

β

)
Dαa#W Dγb.

Let f, g ∈ S(hn). It is directly checked that for i = 1, . . . , 2n,

Ti(f ∗ g) = Tif ∗ g + f ∗ Tig.

If α ∈ N2n+1 and α2n+1 = 0, then

Tα(f ∗ g) =
∑

β+γ=α

(
α

β

)
Tαf ∗ T γg,

which corresponds to (3.14). On the other hand, by the relation

x2n+1 = (x ◦ y−1)2n+1 + y2n+1 +
1

2

n∑
i=1

(
(x ◦ y−1)iyn+i − (x ◦ y−1)n+iyi

)
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we also get (cf. (1.3))

T2n+1(f ∗ g) = T2n+1f ∗ g + f ∗ T2n+1g +
1

2

n∑
i=1

(Tif ∗ Tn+ig − Tn+if ∗ Tig).

Higher order formulas are more complicated, for instance

T 2
2n+1(f ∗ g) = T 2

2n+1f ∗ g + f ∗ T 2
2n+1g + 2T2n+1f ∗ T2n+1g

+
n∑
i=1

(T2n+1Tif ∗ Tn+ig + Tif ∗ T2n+1Tn+ig

− T2n+1Tn+if ∗ Tig − Tn+if ∗ T2n+1Tig)

+
1

4

n∑
i=1

n∑
j=1

(TjTif ∗ Tn+jTn+ig − Tn+jTif ∗ TjTn+ig

− TjTn+if ∗ Tn+jTig + Tn+jTn+if ∗ TjTig).

We find a general formula for T k2n+1(f ∗ g), k ∈ N, as a corollary of
Theorem 1.1. Let us first illustrate the notation by using it in the case of the
Heisenberg group. The matrix A is given by

ai,n+i,2n+1 = 1, an+i,i,2n+1 = −1, i = 1, . . . , n,

and ai,j,k = 0 otherwise. We have

D = {(1, n+1, 2n+1), . . . , (n, 2n, 2n+1), (n+1, 1, 2n+1), . . . , (2n, n, 2n+1)}.

Let σ ∈ ND. Then σ[1], σ[2], σ[0] are given by

σ[1] = (σ(1,n+1,2n+1), . . . , σ(2n,n,2n+1), 0),

σ[2] = (σ(n+1,1,2n+1), . . . , σ(n,2n,2n+1), 0),

σ[0] =
(
0, . . . , 0,

n∑
i=1

(σ(i,n+i,2n+1) + σ(n+i,i,2n+1))
)
.

If σc = σ[0],2n+1, then T k2n+1(f ∗ g), k ∈ N, is given by

T k2n+1(f ∗ g) =
∑

{l,m∈N,σ∈ND:
l+m+σc=k}

k!

l!m!σ!
2−σc(−1)

∑n
i=1 σ(n+i,i,2n+1)

· T σ(1,n+1,2n+1)

1 · · ·T σ(2n,n,2n+1)

2n T l2n+1f ∗ T
σ(n+1,1,2n+1)

1 · · ·T σ(n,2n,2n+1)

2n Tm2n+1g.

As in the procedure described in Subsection 3.4, one gets an extension
of the rule for S-convolvers on hn and a formula for the derivatives of the
product a# b.
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