A NEW GENERALIZED CASSINI DETERMINANT
 By
 IVICA MARTINJAK and IGOR URBIHA (Zagreb)

Abstract

We extend the notion of Cassini determinant to recently introduced hyperfibonacci sequences. We find the Q-matrix for the r th generation hyperfibonacci numbers and prove an explicit expression of the Cassini determinant for these sequences.

1. Introduction. Given a second order recurrence relation

$$
\begin{equation*}
a_{n+2}=\alpha a_{n+1}+\beta a_{n} \tag{1.1}
\end{equation*}
$$

where α and β are constants, a sequence $\left(a_{k}\right)_{k \geq 0}$ is called a solution of (1.1) if its terms satisfy this recurrence. The set of all solutions of (1.1) forms a linear space, meaning that if $\left(a_{k}\right)_{k \geq 0}$ and $\left(b_{k}\right)_{k \geq 0}$ are two solutions then $\left(a_{k}+b_{k}\right)_{k \geq 0}$ is also a solution, and for any constant $c,\left(c a_{k}\right)_{k \geq 0}$ is a solution. Using these basic properties one can derive the identity

$$
\begin{equation*}
a_{m} b_{m-1}-a_{m-1} b_{m}=(-\beta)^{m-1}\left(a_{1} b_{0}-a_{0} b_{1}\right) \tag{1.2}
\end{equation*}
$$

where $\left(a_{k}\right)_{k \geq 0}$ and $\left(b_{k}\right)_{k \geq 0}$ are any two solutions of 1.1) VO. When $\alpha=$ $\beta=1$ and the first two initial terms are 0 and 1, relation (1.1) defines the well known Fibonacci sequence $\left(F_{k}\right)_{k \geq 0}$. One can find more on this subject in the classical reference [VA. In the case of the Fibonacci sequence, relation (1.2) with $a_{m}=F_{n+1}$ and $b_{m}=F_{n}$ reduces to

$$
\begin{equation*}
F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n} \tag{1.3}
\end{equation*}
$$

and it is called Cassini's identity [GKP, MI, WZ]. This relation can also be written in matrix form as

$$
\operatorname{det}\left(\begin{array}{cc}
F_{n} & F_{n+1} \tag{1.4}\\
F_{n+1} & F_{n+2}
\end{array}\right)=(-1)^{n} .
$$

Stakhov [ST] found a generalization of the Cassini identity for the p-Fibonacci numbers. Krattenthaler and Oller-Marcén [KO] also present a similar result.

[^0]In this paper we study the hyperfibonacci sequences defined by

$$
\begin{equation*}
F_{n}^{(r)}=\sum_{k=0}^{n} F_{k}^{(r-1)}, \quad F_{n}^{(0)}=F_{n}, \quad F_{0}^{(r)}=0, \quad F_{1}^{(r)}=1 \tag{1.5}
\end{equation*}
$$

where $r \in \mathbb{N}$ and F_{n} is the nth Fibonacci number. The number $F_{n}^{(r)}$ will be called the nth hyperfibonacci number of the r th generation. These sequences were recently introduced by Dill and Mező (DM). Several interesting numbertheoretical and combinatorial properties of these sequences have already been proven, e.g. in [ZZ.

Here we define the matrix

$$
A_{r, n}=\left(\begin{array}{cccc}
F_{n}^{(r)} & F_{n+1}^{(r)} & \cdots & F_{n+r+1}^{(r)} \\
F_{n+1}^{(r)} & F_{n+2}^{(r)} & \cdots & F_{n+r+2}^{(r)} \\
\vdots & \vdots & \ddots & \vdots \\
F_{n+r+1}^{(r)} & F_{n+r+2}^{(r)} & \cdots & F_{n+2 r+2}^{(r)}
\end{array}\right)
$$

and we prove a formula for $\operatorname{det}\left(A_{r, n}\right)$ extending (1.4).
2. Q-matrix of the hyperfibonacci sequences. According to definition 1.5, we have

$$
\begin{equation*}
F_{n+1}^{(r)}=F_{n}^{(r)}+F_{n+1}^{(r-1)} \tag{2.1}
\end{equation*}
$$

In the case $r=1$ the second term $F_{n+1}^{(r-1)}$ is determined by the Fibonacci recurrence relation,

$$
F_{n+3}^{(1)}=F_{n+2}^{(1)}+\left(F_{n+2}^{(1)}-F_{n+1}^{(1)}\right)+\left(F_{n+1}^{(1)}-F_{n}^{(1)}\right)
$$

thus we have

$$
\begin{equation*}
F_{n+3}^{(1)}=2 F_{n+2}^{(1)}-F_{n}^{(1)} . \tag{2.2}
\end{equation*}
$$

Now, iteratively using 2.2 we derive the recurrence relation

$$
\begin{equation*}
F_{n+2}^{(1)}=F_{n+1}^{(1)}+F_{n}^{(1)}+1 \tag{2.3}
\end{equation*}
$$

by computing

$$
\begin{aligned}
F_{n+3}^{(1)} & =F_{n+2}^{(1)}+2 F_{n+1}^{(1)}-F_{n-1}^{(1)}-F_{n}^{(1)} \\
& =F_{n+2}^{(1)}+F_{n+1}^{(1)}+2 F_{n}^{(1)}-F_{n-2}^{(1)}-F_{n-1}^{(1)}-F_{n}^{(1)} \\
& =F_{n+2}^{(1)}+F_{n+1}^{(1)}+\cdots+F_{3}^{(1)}-F_{0}^{(1)}-F_{1}^{(1)}-\cdots-F_{n}^{(1)} \\
& =F_{n+2}^{(1)}+F_{n+1}^{(1)}+1
\end{aligned}
$$

When $r=2$ we use the same approach to get the recurrence for the second generation of hyperfibonacci numbers,

$$
\begin{equation*}
F_{n+2}^{(2)}=F_{n+1}^{(2)}+F_{n}^{(2)}+n+2 . \tag{2.4}
\end{equation*}
$$

Namely, in this case the second term in 2.1 is determined by the recurrence relation (2.3). This means that again we can perform the $(n+1)$-step iterative procedure, this time using

$$
\begin{equation*}
F_{n+3}^{(2)}=2 F_{n+2}^{(2)}-F_{n}^{(2)}+1 . \tag{2.5}
\end{equation*}
$$

The fact that terms indexed by 3 through n cancel each other and that $n+1$ ones remain, completes the proof of (2.4).

Recall that polytopic numbers are a generalization of square and triangular numbers. These numbers can be represented by a regular geometrical arrangement of equally spaced points. The nth regular r-topic number $P_{n}^{(r)}$ is equal to

$$
\begin{equation*}
P_{n}^{(r)}=\binom{n+r-1}{r} . \tag{2.6}
\end{equation*}
$$

When $r=3$, the i th step of the iterative procedure described above results in an extra i, which sum to a triangular number $\binom{n+3}{2}$ after the final $(n+1)$ st iteration. Furthermore, in the next case we add the i th triangular number in the i th step of the iteration. According to the properties of polytopic numbers, these numbers sum to the tetrahedral number $\binom{n+4}{3}$. In general, in the i th step of the iteration we add the i th regular $(r-1)$-topic number, and the sum of these numbers after the final step of the procedure is the regular polytopic number $\binom{n+r}{r-1}$. Now we collect all this reasoning into

Lemma 2.1. The difference between the nth r-generation hyperfibonacci number and the sum of its two predecessors is the nth regular $(r-1)$-topic number,

$$
\begin{equation*}
F_{n+2}^{(r)}=F_{n+1}^{(r)}+F_{n}^{(r)}+\binom{n+r}{r-1} . \tag{2.7}
\end{equation*}
$$

We can also write 2.7) as

$$
F_{n+2}^{(r)}=F_{n+1}^{(r)}+F_{n}^{(r)}+P_{n+2}^{(r-1)} .
$$

Hyperfibonacci sequences can be defined by the vector recurrence relation

$$
\left(\begin{array}{c}
F_{n+1}^{(r)} \tag{2.8}\\
F_{n+2}^{(r)} \\
\vdots \\
F_{n+r+2}^{(r)}
\end{array}\right)=Q_{r+2}\left(\begin{array}{c}
F_{n}^{(r)} \\
F_{n+1}^{(r)} \\
\vdots \\
F_{n+r+1}^{(r)}
\end{array}\right)
$$

where Q_{r+2} is a square matrix

$$
Q_{r+2}=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \tag{2.9}\\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
q_{1} & q_{2} & q_{3} & \cdots & q_{r+1} & q_{r+2}
\end{array}\right)
$$

In order to determine q_{1}, \ldots, q_{r+2} we use the fact that terms from $-r$ through 0 of the r th generation hyperfibonacci numbers take values

$$
0, \ldots, \pm 1,0,0, \ldots, 0,1, r+1, \ldots
$$

This follows from Lemma 2.1 since

$$
\begin{equation*}
\binom{(n-2)+r}{r-1}=\frac{n(n+1)(n+2) \cdots(n+r-2)}{(r-1)!} \tag{2.10}
\end{equation*}
$$

These expressions are obviously 0 for $n=0,-1, \ldots,-r$.
In particular, when $n=-r+2$ we get

$$
\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
F_{2}^{(r)}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
q_{1} & q_{2} & q_{3} & \cdots & q_{r+1} & q_{r+2}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
1
\end{array}\right)
$$

meaning that $q_{r+2}=F_{2}^{(r)}$. In the same way we obtain relations for all elements of Q_{r+2},

$$
\begin{aligned}
q_{r+2}= & F_{2}^{(r)} \\
q_{r+1}= & F_{3}^{(r)}-F_{2}^{(r)} q_{r+2} \\
q_{r}= & F_{4}^{(r)}-F_{3}^{(r)} q_{r+2}-F_{2}^{(r)} q_{r+1} \\
& \cdots \\
q_{1}= & F_{r+3}^{(r)}-F_{r+2}^{(r)} q_{r+2}-\cdots-F_{2}^{(r)} q_{2}
\end{aligned}
$$

This reasoning gives Theorem 2.2.
Theorem 2.2. For the hypefibonacci sequences we have

$$
\begin{equation*}
A_{r, n}=Q_{r+2}^{n} A_{r, 0} \tag{2.11}
\end{equation*}
$$

where $A_{r, n}$ is defined in the introduction.

Proof. Relation 2.8 in expanded form can be written as $A_{r, n}=$ $Q_{r+2} A_{r, n-1}$. Now the statement of the theorem follows immediately:

$$
A_{r, n}=Q_{r+2} A_{r, n-1}=Q_{r+2}^{2} A_{r, n-2}=Q_{r+2}^{n} A_{r, 0}
$$

The elements q_{1}, \ldots, q_{r+2} can be given explicitly. In particular, expressions for q_{r}, q_{r+1}, q_{r+2} are

$$
q_{r+2}=1+r, \quad q_{r+1}=1-\binom{r+1}{2}, \quad q_{r}=\frac{r^{3}-7 r}{6} .
$$

As an example, we calculate the hyperfibonacci numbers $F_{3}^{(2)}, F_{4}^{(2)}, \ldots, F_{9}^{(2)}$ of the second generation, collected in the matrix $A_{2,3}$.

For the second generation of the hyperfibonacci sequences we have

$$
A_{2,0}=\left(\begin{array}{cccc}
0 & 1 & 3 & 7 \\
1 & 3 & 7 & 14 \\
3 & 7 & 14 & 26 \\
7 & 14 & 26 & 46
\end{array}\right), \quad Q_{4}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & -1 & -2 & 3
\end{array}\right),
$$

according to (1.5) and (2.9). Now we determine the matrix $A_{2,3}$ from Theorem 2.2:

$$
A_{2,3}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & -1 & -2 & 3
\end{array}\right)^{3}\left(\begin{array}{cccc}
0 & 1 & 3 & 7 \\
1 & 3 & 7 & 14 \\
3 & 7 & 14 & 26 \\
7 & 14 & 26 & 46
\end{array}\right)=\left(\begin{array}{cccc}
7 & 14 & 26 & 46 \\
14 & 26 & 46 & 79 \\
26 & 46 & 79 & 133 \\
46 & 79 & 133 & 221
\end{array}\right) .
$$

Note that the eigenvalues of Q_{4} are $\phi, 1,1, \bar{\phi}$, where

$$
\phi=\frac{1+\sqrt{5}}{2}, \quad \bar{\phi}=\frac{1-\sqrt{5}}{2} .
$$

The class of matrices 2.9 has some further interesting properties. Here we point out that all these matrices have determinant -1 :

Lemma 2.3. For all $r \in \mathbb{N}$,

$$
\operatorname{det}\left(Q_{r+2}\right)=-1 .
$$

Proof. We prove this by comparing the determinants of $A_{r,-r}$ and $A_{r,-r-1}$,

$$
A_{r,-r}=Q_{r+2} A_{r,-r-1} .
$$

We have

$$
\begin{aligned}
\operatorname{det}\left(A_{r,-r-1}\right) & =\operatorname{det}\left(\begin{array}{ccccc}
(-1)^{r} & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & . & \vdots \\
0 & 0 & 1 & \cdots & F_{r-2}^{(r)} \\
0 & 1 & r+1 & \cdots & F_{r-1}^{(r)}
\end{array}\right)_{r \times r} \\
& =(-1)^{r} \operatorname{det}\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & r+1 \\
\vdots & \vdots & . & \vdots & \vdots \\
0 & 1 & \cdots & F_{r-3}^{(r)} & F_{r-2}^{(r)} \\
1 & r+1 & \cdots & F_{r-2}^{(r)} & F_{r-1}^{(r)}
\end{array}\right)_{(r-1) \times(r-1)} \\
& =(-1)^{r+1}(-1)^{\lfloor(r-1) / 2\rfloor+1}=(-1)^{\lfloor r / 2\rfloor}
\end{aligned}
$$

On the other hand, $\operatorname{det}\left(A_{r,-r}\right)=(-1)^{\lfloor r / 2\rfloor}$, which proves that

$$
\begin{equation*}
\operatorname{det}\left(A_{r,-r}\right)=-\operatorname{det}\left(A_{r,-r-1}\right) \tag{2.12}
\end{equation*}
$$

Now, the statement follows from the Binet-Cauchy theorem.
It is worth noting that in [LLS], the authors give some properties of the k-generalized Fibonacci Q-matrix.

3. Cassini's identity in matrix form

Lemma 3.1.

(3.1) $\quad \operatorname{det}\left(\begin{array}{ccc}F_{n}-1 & F_{n+1}-1 & F_{n+2}-1 \\ F_{n+1}-1 & F_{n+2}-1 & F_{n+3}-1 \\ F_{n+2}-1 & F_{n+3}-1 & F_{n+4}-1\end{array}\right)=(-1)^{n}, \quad n \geq 0$.

Proof. Using the definition of Fibonacci numbers and elementary transformations on rows and columns of determinants we get

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
F_{n}-1 & F_{n+1}-1 & F_{n+2}-1 \\
F_{n+1}-1 & F_{n+2}-1 & F_{n+3}-1 \\
F_{n+2}-1 & F_{n+3}-1 & F_{n+4}-1
\end{array}\right) \\
& \quad=\operatorname{det}\left(\begin{array}{ccc}
F_{n}-1 & F_{n+1}-1 & F_{n+2}-1 \\
F_{n+1}-1 & F_{n+2}-1 & F_{n+3}-1 \\
F_{n}+F_{n+1}-1 & F_{n+1}+F_{n+2}-1 & F_{n+2}+F_{n+3}-1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}\left(\begin{array}{ccc}
F_{n}-1 & F_{n+1}-1 & F_{n+2}-1 \\
F_{n+1}-1 & F_{n+2}-1 & F_{n+3}-1 \\
1 & 1 & 1
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
F_{n}-1 & F_{n+1}-1 & F_{n}+F_{n+1}-1 \\
F_{n+1}-1 & F_{n+2}-1 & F_{n+1}+F_{n+2}-1 \\
1 & 1 & 1
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
F_{n}-1 & F_{n+1}-1 & 1 \\
F_{n+1}-1 & F_{n+2}-1 & 1 \\
1 & 1 & -1
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
F_{n} & F_{n+1} & 0 \\
F_{n+1} & F_{n+2} & 0 \\
1 & 1 & -1
\end{array}\right) \\
& =-\left(F_{n} F_{n+2}-F_{n+1}^{2}\right)=(-1)^{n} .
\end{aligned}
$$

Lemma 3.2. For the first generation of hyperfibonacci sequences, $\left(F_{n}^{(1)}\right)_{n \geq 0}$,

$$
\operatorname{det}\left(\begin{array}{lll}
F_{n}^{(1)} & F_{n+1}^{(1)} & F_{n+2}^{(1)} \\
F_{n+1}^{(1)} & F_{n+2}^{(1)} & F_{n+3}^{(1)} \\
F_{n+2}^{(1)} & F_{n+3}^{(1)} & F_{n+4}^{(1)}
\end{array}\right)=(-1)^{n} .
$$

Proof. By using the relation

$$
\begin{equation*}
F_{n}^{(1)}=F_{n+2}-1 \tag{3.2}
\end{equation*}
$$

(which follows immediately from the elementary Fibonacci identity $\sum_{k=0}^{n} F_{k}$ $=F_{n+2}-1, n \geq 0$) and Lemma 3.1, we have

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
F_{n}^{(1)} & F_{n+1}^{(1)} & F_{n+2}^{(1)} \\
F_{n+1}^{(1)} & F_{n+2}^{(1)} & F_{n+3}^{(1)} \\
F_{n+2}^{(1)} & F_{n+3}^{(1)} & F_{n+4}^{(1)}
\end{array}\right) & =\operatorname{det}\left(\begin{array}{lll}
F_{n+2}-1 & F_{n+3}-1 & F_{n+4}-1 \\
F_{n+3}-1 & F_{n+4}-1 & F_{n+5}-1 \\
F_{n+4}-1 & F_{n+5}-1 & F_{n+6}-1
\end{array}\right) \\
& =(-1)^{n} .
\end{aligned}
$$

Theorem 3.3. For all $r \in \mathbb{N}$ and $n \in \mathbb{Z}$,

$$
\begin{equation*}
\operatorname{det}\left(A_{r, n}\right)=(-1)^{n+\lfloor(r+3) / 2\rfloor} \tag{3.3}
\end{equation*}
$$

Proof. Using elementary transformations on matrices and Lemma 2.3 we get

$$
\operatorname{det}\left(A_{r, 0}\right)=\operatorname{det}\left(\begin{array}{ccccc}
F_{0}^{(r)} & F_{1}^{(r)} & \ldots & F_{r-2}^{(r)} & F_{r-1}^{(r)} \\
F_{1}^{(r)} & F_{2}^{(r)} & \cdots & F_{r-1}^{(r)} & F_{r}^{(r)} \\
\vdots & \vdots & & \vdots & \vdots \\
F_{r-2}^{(r)} & F_{r-1}^{(r)} & \cdots & F_{2 r-4}^{(r)} & F_{2 r-3}^{(r)} \\
F_{r-1}^{(r)} & F_{r}^{(r)} & \cdots & F_{2 r-3}^{(r)} & F_{2 r-2}^{(r)}
\end{array}\right)
$$

$$
\begin{aligned}
& =-\operatorname{det}\left(\begin{array}{ccccc}
0 & F_{0}^{(r)} & \cdots & F_{r-3}^{(r)} & F_{r-2}^{(r)} \\
F_{0}^{(r)} & F_{1}^{(r)} & \cdots & F_{r-2}^{(r)} & F_{r-1}^{(r)} \\
\vdots & \vdots & & \vdots & \vdots \\
F_{r-3}^{(r)} & F_{r-2}^{(r)} & \cdots & F_{2 r-5}^{(r)} & F_{2 r-4}^{(r)} \\
F_{r-2}^{(r)} & F_{r-1}^{(r)} & \cdots & F_{2 r-4}^{(r)} & F_{2 r-3}^{(r)}
\end{array}\right) \\
& =(-1)^{r} \operatorname{det}\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & F_{2}^{(r)} \\
\vdots & \vdots & . & \vdots & \vdots \\
0 & 1 & \cdots & F_{r-2}^{(r)} & F_{r-1}^{(r)} \\
1 & F_{2}^{(r)} & \cdots & F_{r-1}^{(r)} & F_{r}^{(r)}
\end{array}\right) \\
& =(-1)^{r}(-1)^{\lfloor(r+2) / 2\rfloor} \operatorname{det}\left(\begin{array}{ccccc}
1 & F_{2}^{(r)} & \cdots & F_{r-1}^{(r)} & F_{r}^{(r)} \\
0 & 1 & \cdots & F_{r-2}^{(r)} & F_{r-1}^{(r)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & F_{2}^{(r)} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)=(-1)^{\lfloor(r+3) / 2\rfloor} .
\end{aligned}
$$

According to Theorem 2.2 we obtain

$$
\begin{aligned}
\operatorname{det}\left(A_{r, n}\right) & =\operatorname{det}\left(Q_{r+2}\right)^{n} \operatorname{det}\left(A_{r, 0}\right)=(-1)^{n} \operatorname{det}\left(A_{r, 0}\right) \\
& =(-1)^{n}(-1)^{\lfloor(r+3) / 2\rfloor}=(-1)^{n+\lfloor(r+3) / 2\rfloor}
\end{aligned}
$$

Let $M=M^{(m, n, r)}$ be a matrix with $M_{i, j}=F_{n+i+j-2}^{(r)}, 1 \leq i, j \leq m$. Theorem 3.3 can be restated as

$$
\operatorname{det}\left(M^{(n, r, r+2)}\right)=(-1)^{n+\lfloor(r+3) / 2\rfloor}
$$

Finally, let us show that for $m>r+2$,

$$
\begin{equation*}
\operatorname{det}\left(M^{(m, n, r)}\right)=0 \tag{3.4}
\end{equation*}
$$

The proof is by performing elementary transformations on $M^{(m, n, r)}$ leading to a matrix having one column consisting of zeros.

Take a look at the i th row of $M^{(m, n, r)}$:

$$
\left[\begin{array}{lllll}
F_{n+i-1}^{(r)} & F_{n+i}^{(r)} & F_{n+i+1}^{(r)} & \cdots & F_{n+i+j-2}^{(r)}
\end{array} \cdots F_{n+i+m-3}^{(r)} F_{n+i+m-2}^{(r)}\right]
$$

Using (2.1) and subtracting the j th element from the $(j+1)$ st for $j=$ $m-1, m-2, \ldots, 2,1$ (thus simulating subtracting column j from column
$j+1$ in $\left.M^{(m, n, r)}\right)$ we get

$$
\left[F_{n+i-1}^{(r)} F_{n+i}^{(r-1)} F_{n+i+1}^{(r-1)} \cdots F_{n+i+j-2}^{(r-1)} \cdots F_{n+i+m-3}^{(r-1)} F_{n+i+m-2}^{(r-1)}\right]
$$

We can repeat the process for $j=m-1, m-2, \ldots, 2$ to get

$$
\left[F_{n+i-1}^{(r)} F_{n+i}^{(r-1)} F_{n+i+1}^{(r-2)} \cdots F_{n+i+j-2}^{(r-2)} \cdots F_{n+i+m-3}^{(r-2)} F_{n+i+m-2}^{(r-2)}\right]
$$

After repeating the process r times (for $j=m-1, m-2, \ldots, r$), we get

$$
\left[F_{n+i-1}^{(r)} F_{n+i}^{(r-1)} F_{n+i+1}^{(r-2)} \cdots F_{n+i+r-2}^{(1)} F_{n+i+r-1} \cdots F_{n+i+m-2}\right]
$$

Since $m>r+2$ we have $n+i+r-1 \leq n+i+m-4$, so the above row contains

$$
\left[\cdots F_{n+i+r-1} F_{n+i+r} F_{n+i+r+1} \cdots\right]
$$

at positions $r-1, r$ and $r+1$. Subtracting the first two elements from the third, we get

$$
\left[\cdots F_{n+i+r-1} F_{n+i+r} 0 \cdots\right]
$$

That way we arrive at a matrix with a column consisting of zeros, whose determinant is therefore zero.

Acknowledgements. The authors thank the anonymous referee for careful reading of the manuscript as well as valuable comments and suggestions.

REFERENCES

[CZ] N. N. Cao and F. Z. Zhao, Some properties of hyperfibonacci and hyperlucas numbers, J. Integer Sequences 13 (2010), no. 8, art. 10.8.8, 11 pp.
[DM] A. Dill and I. Mező, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput. 206 (2008), 942-951.
[GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, AddisonWesley, 1994.
[KO] C. Krattenthaler and A. M. Oller-Marcén, A determinant of generalized Fibonacci numbers, J. Combin. Number Theory 5 (2013), 95-102.
$[\mathrm{LLS}]$ G. Y. Lee, S. G. Lee and H. G. Shin, On the k-generalized Fibonacci matrix Q_{k}^{*}, Linear Algebra Appl. 251 (1997), 73-88.
[MI] E. Miles, Generalized Fibonacci numbers and related matrices, Amer. Math. Monthly 67 (1960), 745-752.
[ST] A. P. Stakhov, Fibonacci matrices, a generalization of the Cassini formula and a new coding theory, Chaos Solitons Fractals 30 (2006), 55-66.
[VO] N. G. Voll, The Cassini identity and its relatives, Fibonacci Quart. 48 (2010), 197-201.
[VA] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Wiley, New York, 1989.
[WZ] M. Werman and D. Zeilberger, A bijective proof of Cassini's Fibonacci identity, Discrete Math. 58 (1986), 109.

Ivica Martinjak
Faculty of Science
University of Zagreb
Bijenička 32
HR-10000 Zagreb, Croatia
E-mail: imartinjak@phy.hr

Igor Urbiha
Polytechnic of Zagreb
Vrbik 8
HR-10000 Zagreb, Croatia
E-mail: igor.urbiha@tvz.hr

[^0]: 2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.
 Key words and phrases: hyperfibonacci numbers, Cassini identity, linear space, integer sequence, polytopic numbers.
 Received 8 September 2015; revised 20 October 2015.
 Published online 3 June 2016.

