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A NEW GENERALIZED CASSINI DETERMINANT

BY

IVICA MARTINJAK and IGOR URBIHA (Zagreb)

Abstract. We extend the notion of Cassini determinant to recently introduced hyper-
fibonacci sequences. We find the Q-matrix for the rth generation hyperfibonacci numbers
and prove an explicit expression of the Cassini determinant for these sequences.

1. Introduction. Given a second order recurrence relation

an+2 = αan+1 + βan,(1.1)

where α and β are constants, a sequence (ak)k≥0 is called a solution of (1.1)
if its terms satisfy this recurrence. The set of all solutions of (1.1) forms
a linear space, meaning that if (ak)k≥0 and (bk)k≥0 are two solutions then
(ak + bk)k≥0 is also a solution, and for any constant c, (cak)k≥0 is a solution.
Using these basic properties one can derive the identity

ambm−1 − am−1bm = (−β)m−1(a1b0 − a0b1),(1.2)

where (ak)k≥0 and (bk)k≥0 are any two solutions of (1.1) [VO]. When α =
β = 1 and the first two initial terms are 0 and 1, relation (1.1) defines the
well known Fibonacci sequence (Fk)k≥0. One can find more on this subject
in the classical reference [VA]. In the case of the Fibonacci sequence, relation
(1.2) with am = Fn+1 and bm = Fn reduces to

Fn−1Fn+1 − F 2
n = (−1)n(1.3)

and it is called Cassini’s identity [GKP, MI, WZ]. This relation can also be
written in matrix form as

det

(
Fn Fn+1

Fn+1 Fn+2

)
= (−1)n.(1.4)

Stakhov [ST] found a generalization of the Cassini identity for the p-Fibonacci
numbers. Krattenthaler and Oller-Marcén [KO] also present a similar result.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.
Key words and phrases: hyperfibonacci numbers, Cassini identity, linear space, integer
sequence, polytopic numbers.
Received 8 September 2015; revised 20 October 2015.
Published online 3 June 2016.

DOI: 10.4064/cm6756-11-2015 [209] c© Instytut Matematyczny PAN, 2016



210 I. MARTINJAK AND I. URBIHA

In this paper we study the hyperfibonacci sequences defined by

F (r)
n =

n∑
k=0

F
(r−1)
k , F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1,(1.5)

where r ∈ N and Fn is the nth Fibonacci number. The number F
(r)
n will be

called the nth hyperfibonacci number of the rth generation. These sequences
were recently introduced by Dill and Mező [DM]. Several interesting number-
theoretical and combinatorial properties of these sequences have already
been proven, e.g. in [CZ].

Here we define the matrix

Ar,n =


F

(r)
n F

(r)
n+1 · · · F

(r)
n+r+1

F
(r)
n+1 F

(r)
n+2 · · · F

(r)
n+r+2

...
...

. . .
...

F
(r)
n+r+1 F

(r)
n+r+2 · · · F

(r)
n+2r+2


and we prove a formula for det(Ar,n) extending (1.4).

2. Q-matrix of the hyperfibonacci sequences. According to defini-
tion (1.5), we have

F
(r)
n+1 = F (r)

n + F
(r−1)
n+1 .(2.1)

In the case r = 1 the second term F
(r−1)
n+1 is determined by the Fibonacci

recurrence relation,

F
(1)
n+3 = F

(1)
n+2 + (F

(1)
n+2 − F

(1)
n+1) + (F

(1)
n+1 − F

(1)
n ),

thus we have

F
(1)
n+3 = 2F

(1)
n+2 − F

(1)
n .(2.2)

Now, iteratively using (2.2) we derive the recurrence relation

F
(1)
n+2 = F

(1)
n+1 + F (1)

n + 1(2.3)

by computing

F
(1)
n+3 = F

(1)
n+2 + 2F

(1)
n+1 − F

(1)
n−1 − F

(1)
n

= F
(1)
n+2 + F

(1)
n+1 + 2F (1)

n − F (1)
n−2 − F

(1)
n−1 − F

(1)
n

= F
(1)
n+2 + F

(1)
n+1 + · · ·+ F

(1)
3 − F (1)

0 − F (1)
1 − · · · − F (1)

n

= F
(1)
n+2 + F

(1)
n+1 + 1.

When r = 2 we use the same approach to get the recurrence for the second
generation of hyperfibonacci numbers,

F
(2)
n+2 = F

(2)
n+1 + F (2)

n + n+ 2.(2.4)
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Namely, in this case the second term in (2.1) is determined by the recurrence
relation (2.3). This means that again we can perform the (n+1)-step iterative
procedure, this time using

F
(2)
n+3 = 2F

(2)
n+2 − F

(2)
n + 1.(2.5)

The fact that terms indexed by 3 through n cancel each other and that n+1
ones remain, completes the proof of (2.4).

Recall that polytopic numbers are a generalization of square and trian-
gular numbers. These numbers can be represented by a regular geometrical

arrangement of equally spaced points. The nth regular r-topic number P
(r)
n

is equal to

P (r)
n =

(
n+ r − 1

r

)
.(2.6)

When r = 3, the ith step of the iterative procedure described above re-
sults in an extra i, which sum to a triangular number

(
n+3
2

)
after the final

(n + 1)st iteration. Furthermore, in the next case we add the ith triangu-
lar number in the ith step of the iteration. According to the properties of
polytopic numbers, these numbers sum to the tetrahedral number

(
n+4
3

)
. In

general, in the ith step of the iteration we add the ith regular (r − 1)-topic
number, and the sum of these numbers after the final step of the procedure
is the regular polytopic number

(
n+r
r−1
)
. Now we collect all this reasoning into

Lemma 2.1. The difference between the nth r-generation hyperfibonacci
number and the sum of its two predecessors is the nth regular (r − 1)-topic
number,

F
(r)
n+2 = F

(r)
n+1 + F (r)

n +

(
n+ r

r − 1

)
.(2.7)

We can also write (2.7) as

F
(r)
n+2 = F

(r)
n+1 + F (r)

n + P
(r−1)
n+2 .

Hyperfibonacci sequences can be defined by the vector recurrence rela-
tion 

F
(r)
n+1

F
(r)
n+2
...

F
(r)
n+r+2

 = Qr+2


F

(r)
n

F
(r)
n+1
...

F
(r)
n+r+1

(2.8)
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where Qr+2 is a square matrix

Qr+2 =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

q1 q2 q3 · · · qr+1 qr+2


.(2.9)

In order to determine q1, . . . , qr+2 we use the fact that terms from −r
through 0 of the rth generation hyperfibonacci numbers take values

0, . . . ,±1, 0, 0, . . . , 0, 1, r + 1, . . . .

This follows from Lemma 2.1 since(
(n− 2) + r

r − 1

)
=
n(n+ 1)(n+ 2) · · · (n+ r − 2)

(r − 1)!
.(2.10)

These expressions are obviously 0 for n = 0,−1, . . . ,−r.
In particular, when n = −r + 2 we get

0

0
...

0

1

F
(r)
2


=



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

q1 q2 q3 · · · qr+1 qr+2





0

0
...

0

0

1


,

meaning that qr+2 = F
(r)
2 . In the same way we obtain relations for all

elements of Qr+2,

qr+2 = F
(r)
2 ,

qr+1 = F
(r)
3 − F (r)

2 qr+2,

qr = F
(r)
4 − F (r)

3 qr+2 − F (r)
2 qr+1,

· · ·
q1 = F

(r)
r+3 − F

(r)
r+2qr+2 − · · · − F (r)

2 q2.

This reasoning gives Theorem 2.2.

Theorem 2.2. For the hypefibonacci sequences we have

Ar,n = Qn
r+2Ar,0,(2.11)

where Ar,n is defined in the introduction.
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Proof. Relation (2.8) in expanded form can be written as Ar,n =
Qr+2Ar,n−1. Now the statement of the theorem follows immediately:

Ar,n = Qr+2Ar,n−1 = Q2
r+2Ar,n−2 = Qn

r+2Ar,0.

The elements q1, . . . , qr+2 can be given explicitly. In particular, expres-
sions for qr, qr+1, qr+2 are

qr+2 = 1 + r, qr+1 = 1−
(
r + 1

2

)
, qr =

r3 − 7r

6
.

As an example, we calculate the hyperfibonacci numbers F
(2)
3 , F

(2)
4 , . . . , F

(2)
9

of the second generation, collected in the matrix A2,3.

For the second generation of the hyperfibonacci sequences we have

A2,0 =


0 1 3 7

1 3 7 14

3 7 14 26

7 14 26 46

 , Q4 =


0 1 0 0

0 0 1 0

0 0 0 1

1 −1 −2 3

 ,

according to (1.5) and (2.9). Now we determine the matrix A2,3 from The-
orem 2.2:

A2,3 =


0 1 0 0

0 0 1 0

0 0 0 1

1 −1 −2 3


3

0 1 3 7

1 3 7 14

3 7 14 26

7 14 26 46

 =


7 14 26 46

14 26 46 79

26 46 79 133

46 79 133 221

 .

Note that the eigenvalues of Q4 are φ, 1, 1, φ̄, where

φ =
1 +
√

5

2
, φ̄ =

1−
√

5

2
.

The class of matrices (2.9) has some further interesting properties. Here
we point out that all these matrices have determinant −1:

Lemma 2.3. For all r ∈ N,

det(Qr+2) = −1.

Proof. We prove this by comparing the determinants ofAr,−r andAr,−r−1,

Ar,−r = Qr+2Ar,−r−1.
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We have

det(Ar,−r−1) = det



(−1)r 0 0 · · · 0

0 0 0 · · · 1
...

...
... . .

. ...

0 0 1 · · · F
(r)
r−2

0 1 r + 1 · · · F
(r)
r−1


r×r

= (−1)r det



0 0 · · · 0 1

0 0 · · · 1 r + 1
...

... . .
. ...

...

0 1 · · · F
(r)
r−3 F

(r)
r−2

1 r + 1 · · · F
(r)
r−2 F

(r)
r−1


(r−1)×(r−1)

= (−1)r+1(−1)b(r−1)/2c+1 = (−1)br/2c.

On the other hand, det(Ar,−r) = (−1)br/2c, which proves that

det(Ar,−r) = −det(Ar,−r−1).(2.12)

Now, the statement follows from the Binet–Cauchy theorem.

It is worth noting that in [LLS], the authors give some properties of the
k-generalized Fibonacci Q-matrix.

3. Cassini’s identity in matrix form

Lemma 3.1.

(3.1) det

 Fn − 1 Fn+1 − 1 Fn+2 − 1

Fn+1 − 1 Fn+2 − 1 Fn+3 − 1

Fn+2 − 1 Fn+3 − 1 Fn+4 − 1

 = (−1)n, n ≥ 0.

Proof. Using the definition of Fibonacci numbers and elementary trans-
formations on rows and columns of determinants we get

det

 Fn − 1 Fn+1 − 1 Fn+2 − 1

Fn+1 − 1 Fn+2 − 1 Fn+3 − 1

Fn+2 − 1 Fn+3 − 1 Fn+4 − 1



= det

 Fn − 1 Fn+1 − 1 Fn+2 − 1

Fn+1 − 1 Fn+2 − 1 Fn+3 − 1

Fn + Fn+1 − 1 Fn+1 + Fn+2 − 1 Fn+2 + Fn+3 − 1
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= det

 Fn − 1 Fn+1 − 1 Fn+2 − 1

Fn+1 − 1 Fn+2 − 1 Fn+3 − 1

1 1 1



= det

 Fn − 1 Fn+1 − 1 Fn + Fn+1 − 1

Fn+1 − 1 Fn+2 − 1 Fn+1 + Fn+2 − 1

1 1 1



= det

 Fn − 1 Fn+1 − 1 1

Fn+1 − 1 Fn+2 − 1 1

1 1 −1

 = det

 Fn Fn+1 0

Fn+1 Fn+2 0

1 1 −1


= −(FnFn+2 − F 2

n+1) = (−1)n.

Lemma 3.2. For the first generation of hyperfibonacci sequences,

(F
(1)
n )n≥0,

det

F
(1)
n F

(1)
n+1 F

(1)
n+2

F
(1)
n+1 F

(1)
n+2 F

(1)
n+3

F
(1)
n+2 F

(1)
n+3 F

(1)
n+4

 = (−1)n.

Proof. By using the relation

F (1)
n = Fn+2 − 1(3.2)

(which follows immediately from the elementary Fibonacci identity
∑n

k=0 Fk

= Fn+2 − 1, n ≥ 0) and Lemma 3.1, we have

det

F
(1)
n F

(1)
n+1 F

(1)
n+2

F
(1)
n+1 F

(1)
n+2 F

(1)
n+3

F
(1)
n+2 F

(1)
n+3 F

(1)
n+4

 = det

Fn+2 − 1 Fn+3 − 1 Fn+4 − 1

Fn+3 − 1 Fn+4 − 1 Fn+5 − 1

Fn+4 − 1 Fn+5 − 1 Fn+6 − 1


= (−1)n.

Theorem 3.3. For all r ∈ N and n ∈ Z,

det(Ar,n) = (−1)n+b(r+3)/2c.(3.3)

Proof. Using elementary transformations on matrices and Lemma 2.3
we get

det(Ar,0) = det



F
(r)
0 F

(r)
1 · · · F

(r)
r−2 F

(r)
r−1

F
(r)
1 F

(r)
2 · · · F

(r)
r−1 F

(r)
r

...
...

...
...

F
(r)
r−2 F

(r)
r−1 · · · F

(r)
2r−4 F

(r)
2r−3

F
(r)
r−1 F

(r)
r · · · F

(r)
2r−3 F

(r)
2r−2
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= −det



0 F
(r)
0 · · · F

(r)
r−3 F

(r)
r−2

F
(r)
0 F

(r)
1 · · · F

(r)
r−2 F

(r)
r−1

...
...

...
...

F
(r)
r−3 F

(r)
r−2 · · · F

(r)
2r−5 F

(r)
2r−4

F
(r)
r−2 F

(r)
r−1 · · · F

(r)
2r−4 F

(r)
2r−3



= (−1)r det



0 0 · · · 0 1

0 0 · · · 1 F
(r)
2

...
... . .

. ...
...

0 1 · · · F
(r)
r−2 F

(r)
r−1

1 F
(r)
2 · · · F

(r)
r−1 F

(r)
r



= (−1)r(−1)b(r+2)/2c det



1 F
(r)
2 · · · F

(r)
r−1 F

(r)
r

0 1 · · · F
(r)
r−2 F

(r)
r−1

...
...

. . .
...

...

0 0 · · · 1 F
(r)
2

0 0 · · · 0 1


= (−1)b(r+3)/2c.

According to Theorem 2.2 we obtain

det(Ar,n) = det(Qr+2)
n det(Ar,0) = (−1)n det(Ar,0)

= (−1)n(−1)b(r+3)/2c = (−1)n+b(r+3)/2c.

Let M = M (m,n,r) be a matrix with Mi,j = F
(r)
n+i+j−2, 1 ≤ i, j ≤ m.

Theorem 3.3 can be restated as

det(M (n,r,r+2)) = (−1)n+b(r+3)/2c.

Finally, let us show that for m > r + 2,

det(M (m,n,r)) = 0.(3.4)

The proof is by performing elementary transformations on M (m,n,r) leading
to a matrix having one column consisting of zeros.

Take a look at the ith row of M (m,n,r):

[F
(r)
n+i−1 F

(r)
n+i F

(r)
n+i+1 · · · F

(r)
n+i+j−2 · · · F

(r)
n+i+m−3 F

(r)
n+i+m−2].

Using (2.1) and subtracting the jth element from the (j + 1)st for j =
m − 1,m − 2, . . . , 2, 1 (thus simulating subtracting column j from column
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j + 1 in M (m,n,r)) we get

[F
(r)
n+i−1 F

(r−1)
n+i F

(r−1)
n+i+1 · · · F

(r−1)
n+i+j−2 · · · F

(r−1)
n+i+m−3 F

(r−1)
n+i+m−2].

We can repeat the process for j = m− 1,m− 2, . . . , 2 to get

[F
(r)
n+i−1 F

(r−1)
n+i F

(r−2)
n+i+1 · · · F

(r−2)
n+i+j−2 · · · F

(r−2)
n+i+m−3 F

(r−2)
n+i+m−2].

After repeating the process r times (for j = m− 1,m− 2, . . . , r), we get

[F
(r)
n+i−1 F

(r−1)
n+i F

(r−2)
n+i+1 · · · F

(1)
n+i+r−2 Fn+i+r−1 · · · Fn+i+m−2].

Since m > r + 2 we have n + i + r − 1 ≤ n + i + m − 4, so the above row
contains

[· · ·Fn+i+r−1 Fn+i+r Fn+i+r+1 · · · ]

at positions r − 1, r and r + 1. Subtracting the first two elements from the
third, we get

[· · ·Fn+i+r−1 Fn+i+r 0 · · · ].

That way we arrive at a matrix with a column consisting of zeros, whose
determinant is therefore zero.
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Bijenička 32
HR-10000 Zagreb, Croatia
E-mail: imartinjak@phy.hr

Igor Urbiha
Polytechnic of Zagreb

Vrbik 8
HR-10000 Zagreb, Croatia
E-mail: igor.urbiha@tvz.hr


	1 Introduction
	2 Q-matrix of the hyperfibonacci sequences
	3 Cassini's identity in matrix form
	REFERENCES

