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Dynamics of annulus maps II: Periodic points for coverings

by
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Abstract. Let f be a covering map of the open annulus A = S1 × (0, 1) of degree d,
|d| > 1. Assume that f preserves an essential (i.e not contained in a disk of A) compact
subset K. We show that f has at least the same number of periodic points in each period
as the map zd on S1.

1. Introduction. Existence of periodic orbits for orientation preserving
annulus homeomorphisms has been extensively studied. One of the moti-
vations is a celebrated theorem of dynamical systems, the so-called “last
geometric theorem of Poincaré”. Roughly this result says that an area-
preserving homeomorphism of the closed annulus which rotates one bound-
ary component clockwise and the other counterclockwise possesses at least
two fixed points. This result was conjectured and proved in special cases
by Poincaré [P], and was finally proved by Birkhoff [Bi]. This problem has
been considered by many authors and actually triggered a great deal of
research (see the paper [DR] for a historical review). Since Franks’ paper
[Fr1], who generalized and proved the statement for homeomorphisms of the
open annulus, the interest in the problem of existence of periodic orbits for
non-compact surface homeomorphisms arose (see, for example, [Fr2], [Fr3],
[FH], [LC2]).

More recently, in [PS] the problem of existence and growth rate of pe-
riodic orbits for degree two surface endomorphisms was considered. In that
paper, Pugh and Shub deal with a particular case of Problem 3 posed in [S]:
let S be the 2-sphere, and f : S → S a continuous map of degree 2; is the
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growth rate inequality

lim sup
n→∞

1

n
ln(#{Fix(fn)}) ≥ ln(2)

true? The answer is no, as the map (r, θ) 7→ (2r, 2θ) has only the poles
as periodic points. However, in [PS] it is shown that the growth inequality
holds in a particular case: if f is C1 and preserves the latitude foliation,
then for each n, fn has at least 2n fixed points.

In this paper, we study the existence of periodic orbits for covering maps
of the open annulus f : A → A of degree d, |d| > 1. Note that the growth
inequality holds trivially for the closed annulus A as each connected compo-
nent of the boundary of the annulus must be invariant by f or f2, and we
are assuming |d| > 1. On the other hand, the covering map (r, θ) 7→ (2r, 2θ)
provides a periodic point free example in the open annulus C \ {0}. Our
result relates both to the theory of annulus homeomorphisms, and to work
in [PS].

Let us introduce some preliminary definitions. If f : A→ A is a continu-
ous function, then the homomorphism f∗ induced by f on the first homology
group H1(A,Z) ' Z is n 7→ dn, for some integer d. This number d is called
the degree of f .

We say that an open subset U ⊂ A is essential if i∗(H1(U,Z)) =
H1(A,Z) = Z, where i∗ : H1(U,Z) → H1(A,Z) is the map induced in
homology by the inclusion i : U → A. We say that a subset X ⊂ A is es-
sential if any neighbourhood of X in A is essential. We say that a subset is
inessential if it is not essential, or equivalently, if it is contained in a disk
of A. If x is a periodic point for f , its period is min{n ≥ 1 : fn(x) = x}. We
write Pern(f) for the set of periodic points of period n of a given map f ,
and Fix(f) = Per1(f).

Let A∗ be the compactification of the annulus A with two points so that
A∗ is homeomorphic to the two-sphere. Each connected component of A∗\A
is called an end of A. Note that if f is a proper mapping, then f extends
continuously to A∗, and either fixes both ends or interchanges them.

We need one last definition: what it means for f to be complete; we
postpone this until Section 2 because the definition involves some Nielsen
theory. We recall that x, y ∈ Fix(f) are Nielsen equivalent if there exists an
arc γ joining x and y such that γ is homotopic to f(γ) with endpoints fixed.
If f is complete then for each n, fn has exactly |dn − 1| Nielsen classes of
fixed points (see Lemma 3 in Section 3).

We prove the following:

Theorem 1. Let f : A → A be a covering map of degree d, |d| > 1.
Suppose there exists an essential continuum K ⊂ A such that f(K) ⊂ K.
Then f is complete.
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As explained above, the growth rate inequality holds for annulus maps
under the standing hypothesis.

Note that this result is strictly a consequence of degree; an irrational
rotation of the open annulus has no periodic points, and has every essential
circle as a compact invariant subset. Results along the same lines have been
obtained by Boronski [Bo1], [Bo2].

The periodic points given by Theorem 1 do not necessarily belong to K
(see Subsection 5.1). The problem of whether or not the fixed points of a
given map with a compact invariant set K belong to K is known in the liter-
ature as Cartwright–Littlewood theory. In a seminal paper, M. Cartwright
and J. Littlewood [CL] proved that if K is a nonseparating continuum of the
plane, invariant under an orientation preserving homeomorphism h, then h
has a fixed point in K. Existence of a fixed point under that hypothesis was
already known on account of Brouwer’s plane translation theorem [Brou],
the novelty being that the fixed point must belong to K. An easy proof
of Cartwright–Littlewood’s theorem can be found in the extraordinary one-
page paper of M. Brown [Brow]. H. Bell [Be] proved Cartwright–Littlewood’s
theorem for orientation reversing plane homeomorphisms, and his results
were later generalized by K. Kuperberg [K] to arbitrary plane continua (not
necessarily nonseparating). In Subsection 5.1, we construct a degree two
covering map f of the annulus with a totally invariant essential continuum
K (f−1(K) = K) such that Fix(f) ∩K = ∅. However, K is not filled, that
is, its complement has bounded connected components. If K ⊂ A is any
compact set, the set Fill(K) is defined as the union of K with the bounded
connected components of its complement. The definition of Nielsen classes
of periodic points is given in Section 2. We prove the following:

Theorem 2. Let f : A → A be a covering map of degree d, |d| > 1.
Suppose there exists an essential continuum K ⊂ A such that f(K) ⊂ K.
Then there exists a representative x ∈ Fill(K) for each Nielsen class of
periodic points of f .

Notation. Throughout, A = S1 × (0, 1) is the open annulus, Ã = R ×
(0, 1) its universal covering space, and π : Ã → A the universal covering
projection. We will denote by F any lift of f : A → A to the universal
covering, that is, F is a map satisfying fπ = πF . Note that F (x + 1, y) =
F (x, y) + (d, 0) if f has degree d. To lighten notation, if z ∈ Ã, we write
z + k for the point z + (k, 0), k ∈ Z. The map md : S1 → S1 is defined as
md(z) = zd.

2. Nielsen theory background. In this section, we gather the nec-
essary information on Nielsen theory. In what follows, f : A → A is any
continuous map. If p, q ∈ Fix(f), then p and q are said to be Nielsen equiva-
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lent if there exists a curve γ from p to q such that f(γ) and γ are homotopic
with endpoints fixed. If p and q are periodic points of f , then p and q are
Nielsen equivalent if they are equivalent as fixed points of some fk, k ≥ 1.
The definition of Nielsen equivalence does not depend on the choice of k:

Lemma 1. Let p, q ∈ Fix(f) and let γ be a curve from p to q. If γ ∼ fkγ
for some k > 1, then γ ∼ fγ.

Proof. Let p̃ be a lift of p and let F be the lift of f that fixes p̃. Let γ̃
be the lift of γ starting at p̃, and let q̃ be the endpoint of γ̃. Assume that
γ is not homotopic to f(γ). This implies that F (q̃) 6= q̃, and so there exists

l ∈ Z, l 6= 0 such that F (q̃) = q̃ + l. Then F k(q̃) = q̃ +
∑k−1

i=0 d
il 6= q̃, and so

fkγ is not homotopic to γ.

Lemma 2. Let p and q be fixed points of f . The following conditions are
equivalent:

(1) p and q are Nielsen equivalent.
(2) If F is any lift of f , and p̃ is a lift of p, there exists a lift q̃ of q such

that F (p̃)− p̃ = F (q̃)− q̃.
Proof. (1)⇒(2): Let F be a lift of f , and p̃ any lift of p. Then, as p ∈

Fix(f), there exists l ∈ Z such that F (p̃) = p̃+ l. Let q̃ be the endpoint of γ̃,
the lift of γ starting at p̃, where γ is the arc given by the Nielsen equivalence.
As γ ∼ f(γ), the lift of f(γ) starting at p̃+ l must end at q̃+ l. On the other
hand, this lift must coincide with F (γ̃), which gives F (q̃) = q̃ + l.

(2)⇒(1): Let p̃ be a lift of p, and let F be the lift of f such that F (p̃) = p̃.
There exists a lift q̃ of q such that F (q̃) = q̃. Take any arc γ̃ joining p̃ and q̃.
Then F (γ̃) is obviously homotopic to γ̃. So, γ = π(γ̃) realizes the Nielsen
equivalence between p and q.

Note that the number of Nielsen classes of fixed points for the map md

coincides with its number of fixed points, which is |d − 1|. We will give a
simple proof of the following fact:

Theorem 3. If f is a map of degree d, |d|>1, of the annulus, then the
number of equivalence classes of fixed points of f is less than or equal to |d−1|.

Proof. Let f be a degree d map of the annulus, let F be a lift of f and
p ∈ Fix(f). If p̃ is any lift of p then there exists an integer l such that
F (p̃) = p̃ + l. Moreover, as F (x + 1) = F (x) + d, one can choose p̃ so that
l is an integer between 1 and |d − 1|. To see this, note that if j ∈ Z, then
F (p̃+ j) = F (p̃) + dj = p̃+ l + dj = p̃+ j + j(d− 1) + l. So, there exists a
unique j ∈ Z such that F (p̃+ j) = p̃+ j + L with 1 ≤ L ≤ |d− 1|.

This number L = `p is uniquely determined by p and the lift F . The
previous lemma implies that p and q are equivalent iff `p = `q, which clearly
implies the assertion.
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The previous result also follows from the fact that the number of all
classes is a homotopy type invariant and that Theorem 3 holds for the circle
(see [J, pp. 618 and 630]).

The period of a Nielsen class is defined as the minimum of the periods
of periodic points of f in the class. Let Nk(f) be the number of different
Nielsen classes of period k of the map f .

Definition 1. A degree d map f of the annulus is said to be complete
if Nk(f) = Nk(md) for each positive integer k.

Note that Theorem 3 implies that a complete map has the maximum
possible number of Nielsen classes in each period.

The following two results will be used in the proof of Theorem 1.

Lemma 3. A map f is complete iff N1(f
k) = N1(m

k
d) for every posi-

tive k.

Proof. It is clear that f complete implies that condition. For the con-
verse, we proceed by induction to prove that Nk(f) = Nk(md) for all k; for
k = 1 it is obvious by hypothesis.

Now assume that Nk′(f) = Nk′(md) for every k′ < k. Then

|dk − 1| = N1(f
k) = Nk(f) +

∑
k′|k

Nk′(f),

where k′ | k means k is a multiple of k′ and k′ < k. On the other hand,
the same equality holds with md in place of f , and using the induction
hypothesis, we obtain Nk(f) = Nk(md).

Lemma 4. Suppose that Fix(F ) 6= ∅ for every lift F : Ã→ Ã of f . Then
f has |d− 1| different Nielsen classes of fixed points.

Proof. Fix a lift F0 = F of f , and for k ∈ Z define Fk(x) = F (x) + k.
Note that every lift of f belongs to the family (Fk)k∈Z. For every k ∈ Z, let
xk ∈ Ã be such that Fk(xk) = xk. We want to show that there are |d − 1|
different Nielsen classes of fixed points.

Suppose there exists i 6= 0 such that π(xi) is Nielsen equivalent to π(x0).
As F (x0) = x0, by Lemma 2 there exists l ∈ Z such that F (xi + l) = xi + l.

As Fi(xi) = xi and Fi(xi) = F (xi) + i, we have F (xi) = xi − i. So,

xi + l = F (xi + l) = F (xi) + ld = xi − i+ ld.

Thus i = l(d−1). As i 6= 0, it follows that l 6= 0 and the points π(x0), π(x1),
. . . , π(x|d−1|−1) are all in different Nielsen classes. So, there are at least
|d− 1| different Nielsen classes, and by Theorem 3 there are exactly |d− 1|
of them.

In most cases we will prove completeness by means of the following corol-
lary:
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Corollary 1. If for every k every lift of fk has a fixed point, then f
is complete.

Remarks. (1) Note that the fact that some lift of f has fixed points
does not imply that every lift does (see Subsection 5.3).

(2) The definition of completeness can also be applied to circle maps.
If f is a degree d map of the circle, then whether it is a covering or not,
the number of Nielsen classes of fixed points of f is |d − 1|. In general,
Nk(f) = Nk(md) for every k. It follows that every circle map is complete.

(3) Theorem 3 implies that N1(f) ≤ |d − 1|, and obviously N1(f
k) ≤

|dk − 1|. However, it is not true in general that Nj(f) ≤ Nj(md) as the
example in Figure 1 shows. It is a map of degree −2 that has two fixed
points r1 and r2, the rays S1 and S2 satisfy f(S1) = S2, f(S2) = S1 and
{p, q} is a two-periodic cycle. The open invariant region bounded by S1 and
S2 contains no fixed point. Note that f has two fixed points (against three
of m−2) and has one two-periodic cycle formed by p and q (against zero
of m−2).

Here f2 has exactly four fixed points, but just three Nielsen classes, one
of them contains the two-periodic cycle. According to our definition, this
map is not complete and consequently it cannot leave invariant an essential
compact set.

r1

r2

S1

S2

p

q

Fig. 1

3. Proof of completeness. In this section we prove Theorem 1. To find
periodic orbits we proceed in the standard fashion: we lift to the universal
covering space R × (0, 1) ∼ R2 and try to use some fixed point theorems
for self-maps of the plane. If f happens to be an orientation preserving
covering map, then the lift F : R2 → R2 is an orientation preserving plane
homeomorphism, and existence of fixed points is guaranteed by any kind of
recurrence:

Theorem 4 ([Brou]). If F : R2 → R2 is a fixed point free orientation
preserving homeomorphism, then every point is wandering.
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For a modern exposition of this theorem in its maximum expression,
see [LC1].

Although this technique is quite useful when f is isotopic to the identity,
recurrence in the lift for maps of degree d, |d| > 1, is not easy to get. Indeed,
the lifted map F satisfies F (x+1, y) = F (x, y)+d and so every point wants to
escape to infinity exponentially fast. Of course we may impose some strong
hypothesis immediately implying recurrence for the lift:

Lemma 5. If f : A → A is an orientation preserving covering map of
degree d 6= 0 preserving an inessential continuum K ⊂ A, then Fix(f) 6= ∅.

A continuum is inessential if it is contained in a disk of A. The proof is
immediate from Brouwer’s Theorem 4, as the hypothesis implies that there
exists a lift of f that preserves a compact subset of the plane (namely, a
connected component of the preimage of K by the covering projection).

However, if K is essential, no connected component of its lift to the
universal covering space is compact. The proof of Theorem 1 in the orien-
tation preserving case is based on a simple (though key) observation that
was already made in [IPRX]. If f : A→ A is a continuous map of degree d,
|d| > 1, and K ⊂ A is a compact set such that f(K) ⊂ K, then f |K is
semiconjugate to the restriction of md to an invariant subset. Existence
and properties of the semiconjugacy h : K → S1 are stated in Lemma 6.
Using Brouwer’s Theorem, existence of fixed points is proved in Lemma 8
if h−1(1) 6= ∅, as this guarantees existence of a compact invariant set for
the lift. We prove completeness of f using standard Nielsen theory if K is
essential (note that Lemma 5 only gives a fixed point, not completeness);
this is done in Lemmas 4 and 9.

If f reverses orientation, we use Kuperberg’s theorem [K] to find fixed
points for orientation reversing plane homeomorphisms.

Theorem 5 ([K]). Let f be an orientation reversing homeomorphism of
the plane, and X a continuum of the plane invariant under f . Then f has
at least one fixed point in X.

The following lemma, which is esentially the Shadowing Lemma for ex-
panding maps, is key for the purposes of this paper. See [IPRX, Lemmas 1
and 2].

Lemma 6. Let f : A→ A be a continuous map of degree d, |d| > 1, and
let F : Ã → Ã be a lift of f . Let K be a compact f -invariant (f(K) ⊂ K)
subset of the annulus, and K̃ = π−1(K). Then there exists a continuous
map HF : K̃ → R such that:

(1) HF (x+ 1, y) = HF (x, y) + 1,
(2) HFF = dHF ,
(3) |HF (x, y)− x| is bounded on K̃,
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(4) HF (x) = limn→∞ (Fn(x))1/d
n, where ()1 denotes projection over the

first coordinate.

The function HF appears as a fixed point of the contracting operator
H 7→ 1

dHF acting on the space of continuous functions H : K̃ → R that
satisfy (1).

Let h be the quotient function of HF . It is well defined because of (1).
The previous lemma gives:

Corollary 2. Let f : A→ A be a continuous map of degree d, |d| > 1,
and K ⊂ A be compact and forward invariant. Then the function h : A→S1,
projection of HF , is a semiconjugacy from the restriction of f to K to the
restriction of md to an invariant subset.

Remark 1. Note that we have not yet assumed that f is a covering and
thus Lemma 6 and Corollary 2 are valid for all continuous maps of degree d,
|d| > 1.

There is still one preliminary result needed in the proof of the theorem.

Lemma 7. Let g be a covering map of the open annulus A, and K a
compact subset of A. Then there exists a covering g′ of the closed annulus
such that g′ = g on K.

Proof. The proof is given in the case that g fixes the ends of A; in the
other case the proof is analogous.

Let G be a lift of g and let Vε = {(x, y) ∈ R × (0, 1) : ε < y < 1 − ε}
be a neighbourhood of K̃ = π−1(K). It is claimed that there exists a hom-
eomorphism G′ of R× [0, 1] satisfying G′(x, y) = (dx, y) for y = 0 and y = 1,
G′ = G on Vε and G′(x+ 1, y) = G′(x, y) + (d, 0) for every (x, y), where d is
the degree of g.

To see this, let R be the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ ε. Note that the
above requirements already define G′ on the horizontal sides of R. Choose
a simple arc s in A joining G′(0, 0) to G′(0, ε) and disjoint from G(y = ε).
Next, define G′ on the segment x = 0, 0 ≤ y ≤ ε as a homeomorphism onto s.
Then define G′ on x = 1, 0 ≤ y ≤ ε so as to satisfy the condition G′(1, y) =
G′(0, y)+ (d, 0). Until now, a map G′ was defined on the boundary of R and
is a homeomorphism from the boundary of R to a simple closed curve α. By
the Jordan–Schoenflies theorem, G′ can be extended to a homeomorphism
from R to the closure of the bounded component of the complement of α.
Once G′ is defined in R, extend it to the whole horizontal strip 0 ≤ y ≤ ε
so as to satisfy G′(x+ 1, y) = G′(x, y) + (d, 0).

Repeat the construction in the horizontal strip between y = 1 − ε and
y = 1. The map G′ obtained is a homeomorphism from the closure of Ã
onto itself and satisfies the claim. Then project G′ to the annulus, giving
the required map g′.
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For the remainder of this section, we assume that f is a covering map
and that K ⊂ A is a compact subset such that f(K) ⊂ K. If F : Ã → Ã
is any lift of f , HF is the map given by Lemma 6. Note that HF 6= HF ′ if
F and F ′ are different lifts of f . If no confusion can arise, we will write H
instead of HF .

The proof of Theorem 1 will be divided into two cases.

3.1. The orientation preserving case

Lemma 8. If f preserves orientation, and there exists a lift F : Ã→ Ã
of f such that H−1(0) 6= ∅, then Fix(F ) 6= ∅ (and so Fix(f) 6= ∅).

Proof. Note that as f : A → A is a covering, F : Ã → Ã is a homeo-
morphism. Moreover, Ã is homeomorphic to R2 and F preserves orientation
because f does. So, by Brouwer’s Theorem 4 it is enough to prove that
H−1(0) is a compact F -invariant set. The invariance follows from the equal-
ity HF = dH (Lemma 6(2)). To see the compactness, recall from Lemma 6
that the function (x, y) 7→ H(x, y)−x defined on K̃ is bounded. So, we may
take C ∈ R such that |H(x, y)−x| < C on K̃. Then (x, y) ∈ H−1(0) implies
x ∈ [−C,C], proving that H−1(0) is compact.

Remark 2. The fixed point found in the previous lemma does not nec-
essarily belong to K (see Subsection 5.1).

The following remark resembles rotation theory for surface homeomor-
phisms.

Remark 3. The previous lemma can be restated as follows: if there
exists x ∈ K and a lift F of f such that limn→∞ (Fn(x̃))1/d

n = 0 for a lift
x̃ of x, then Fix(F ) 6= ∅ (see Lemmas 6(4) and 8).

Note, however, that the mere existence of a point x̃ ∈ Ã such that
limn→∞ (Fn(x̃))1/d

n = 0 for some lift F of f does not imply the existence
of a fixed point; the set K is key. An example is given in Subsection 5.2.

The following is [IPRX, Lemma 3].

Lemma 9. If K is an essential subset of A, then for any lift F of f , the
function HF : K̃ → R is surjective.

Lemma 10. Let g : A → A be an orientation preserving covering map
of degree d, |d| > 1, and let K ⊂ A be an essential continuum such that
g(K) ⊂ K. Then every lift of g has a fixed point.

Proof. Lemma 9 states that HG is surjective for any lift G of g. In
particular, H−1G (0) 6= ∅ for any lift G of g. Then Lemma 8 implies that
Fix(G) 6= ∅.
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3.2. The orientation reversing case

Lemma 11. Let g : A → A be an orientation reversing covering map
of degree d, |d| > 1, and let K ⊂ A be an essential continuum such that
g(K) ⊂ K. Then every lift of g to the universal covering Ã has a fixed
point.

Proof. There are two options:

Case 1: g has negative degree and fixes both ends of A. Let G be a lift
of g and note that by Lemma 7, the map G can be modified without changing
its restriction to π−1(K) so as to obtain a map that extends to the closure
of R × (0, 1). This extension (also denoted G) induces a homeomorphism
of the compactification of R × [0, 1] with two points {−∞,∞}. Note that
G carries −∞ to ∞ and vice versa. The map G is a homeomorphism of a
closed ball, and it can be extended to the whole plane. Theorem 5 implies
that G has a fixed point in π−1(K) ∪ {−∞,∞}, as this set is connected
(even if π−1(K) is not; see Figure 2). Note that this fixed point cannot be
−∞ or∞, as {−∞,∞} is a two-periodic orbit. So, every lift of g has a fixed
point. Note moreover that in this case the fixed point belongs to π−1(K).

Case 2: g has positive degree and interchanges the two ends of A. Then
Lemma 7 can be used to modify the map g so that it can be extended to a
covering of the closed annulus, and as g reverts the ends, the modification
can be performed without changing the fixed point set.

So, by Corollary 2 with K = A, we may assume that g is semiconjugate
to md. This in its turn implies that g has an invariant connector, meaning
an inessential continuum of the closed annulus connecting the two boundary
components (see [IPRX, Corollary 9]). Moreover, g has an invariant connec-
tor contained in each of the preimages under the semiconjugacy of a fixed
point of md. Then any lift G of g must fix one of the lifts of these invariant
connectors. Then extend G as a homeomorphism of the whole plane and
apply Kuperberg’s theorem to conclude that G has a fixed point in that
invariant connector.

Proof of Theorem 1. By Corollary 1, it is enough to prove that for all n,
every lift of fn has a fixed point. Note that fn(K) ⊂ K for all n. If f is
orientation preserving, so is fn for all n, and applying Lemma 10 we obtain
the result. If f is orientation reversing, we obtain the result by applying
Lemma 10 to even powers of f , and Lemma 11 to odd powers.

4. Location of periodic orbits. In this section, we prove Theorem 2,
that is, that the periodic points given by Theorem 1 can be found in Fill(K).
We assume throughout this section that K is an essential continuum such
that f(K) ⊂ K. Recall that f is complete in view of Theorem 1.
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We will denote π−1(Fill (K)) = K̂. Note that K̂ is not necessarily con-
nected (see Figure 2). However, if K ′ denotes the closure of K̂ in D, then
K ′ is a connected subset of D, the two-point compactification of R× [0, 1],
as there are no bounded connected components of K̂ and because K is
essential. Also, the set K ′ ⊂ D is filled.

K

(a)

Ã

K̂

(b)

Fig. 2

To prove Theorem 2 it is enough to prove that for all n ∈ N, every lift
of fn has a fixed point in K̂ (see Corollary 1).

Lemma 12. Let g : A → A be a covering map of degree d, |d| > 1, and
let K ⊂ A be an essential continuum such that g(K) ⊂ K. Then every lift
of g to the universal covering Ã has a fixed point in K̂.

Proof. The proof will be divided into three cases.

Case 1: g is orientation preserving. Let G : R2 → R2 be a lift of g and let
HG : K̂ → R be the map given by Lemma 6. LetK0 = H−1G (0) and recall from

Lemmas 6 and 9 that K0 6= ∅, K0 ⊂ K̂, G(K0) ⊂ K0 and K0 is a compact
subset of R2. Suppose for a contradiction that Fix(G)∩ K̂ = ∅. Let D be the
compactification of R× [0, 1] with two points −∞ and ∞. Note that D is a
closed disk and that we may assume that G extends to the boundary of D, by
Lemma 7. Moreover, the closure K ′ of K̂ is a connected subset of D. Let P be
the set of fixed points ofG in the interior ofD. Note thatP does not accumulate
at −∞ or∞. Define U as the connected component of D \P containing K ′,
and let (Ũ , p) be the universal covering of U . Note that U is G-invariant, and
we claim that there exists a lift G̃ : Ũ → Ũ ofG|U having a compact invariant
set in the interior of Ũ . To see this, take an open, connected and simply
connected neighbourhood V ⊂ U of K ′ (whose existence is guaranteed as the
set is filled), and note that each connected component of p−1(V ) is mapped
homeomorphically onto V by p. Moreover, as K ′ is connected, there is only
one connected component of p−1(K ′) in each connected component of p−1(V ).
Fix a connected component K ′′ of p−1(K ′) and take the lift G̃ of G such
that G̃(K ′′) = K ′′. Note that p−1(H−1G (0))∩K ′′ is G̃-invariant, compact and

contained in the interior of Ũ . So, as G̃ is orientation preserving, Brouwer’s
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theorem gives a fixed point of G̃ in the interior of Ũ . This is a contradiction
because by definition, there are no fixed points in the interior of U .

Case 2: g is orientation reversing and d < −1. This has already been
proved in Case 1 of the proof of Theorem 1.

Case 3: g is orientation reversing and d > 1. Let U1 and U2 be the
connected components of Ã \ K̂. Note that our hypothesis implies that
G(Ui) ∩ Ui = ∅, i = 1, 2. So, Fix(G) ⊂ K̂. It is then enough to prove
that Fix(G) 6= ∅. This has already been proved in Case 2 of the proof of
Theorem 1.

5. Examples. In this section we exhibit a series of examples illustrating
all the ideas in this article. Examples in Subsections 5.1, 5.4 and 5.6 are
particularly interesting, regardless of their connection to the theorems of
this paper.

5.1. Location of periodic orbits. Our first example shows that the
periodic points given by Theorem 1 do not necessarily belong to K.

We will show that there exists a degree two covering map f of the annulus
having an essential continuum K, totally invariant, which contains no fixed
points of f .

We construct an isotopy from f0 = p2, p2(z) = z2, to f1 = f in the
annulus A = C \ {0}. For every t, ft(z) = f0(z) for every z outside a
neighbourhood V of the fixed point 1. Every ft will be a homeomorphism
from V to f0(V ). For points in V , the restriction of ft to V will have a
unique fixed point at 1. Around this point ft performs a Hopf bifurcation
(see Figure 3). That is, for t close to 0, the eigenvalues at the fixed point 1 of

Fig. 3
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ft have nonzero imaginary part; the modulus is decreasing, and for t equal to
1/2 the Hopf bifurcation takes place: the modulus of the eigenvalues is equal
to 1, while the imaginary part is different from 0. Then let ft for t > 1/2
be a generic family through the Hopf bifurcation. The following facts hold
for f1: 1 is an attracting fixed point, there is a repeller simple closed curve
C where f is conjugate to a rotation with nonzero rotation number, and
every point z ∈ V \ {1} has a preorbit in V which converges to C.

Now let K be the boundary of the basin of ∞. Then K is a totally
invariant essential continuum. It is clear that K contains no fixed point of
f = f1.

5.2. A fixed point free example having a point with zero rota-
tion number. It may happen that limn→∞ (Fn(x))1/d

n = 0 for some lift
F of f and x ∈ Ã, but Fix(F ) = Fix(f) = ∅. Just consider a degree 2 map
preserving a ray of the annulus in which the dynamics is north-south, and
lift it preserving a lift of that ray.

5.3. Changing the lift. This example shows that the map f may have
a lift with fixed points and another lift which is fixed point free.

Let f : [0, 2π]× (0, 1)→ [0, 2π]× (0, 1) with f(θ, r) = (3θ, φ(r, θ)), where
φ fixes the rays θ = 0 and θ = π. On the ray θ = 0, the dynamics of φ is as
in Figure 4(a), and on the ray θ = π, φ is as in Figure 4(b). So, (0, 1/2) is
fixed by f and one can lift f by fixing any of the lifts of (0, 1/2). However,
if you take a lift F of f fixing any preimage of θ = π, then Fix(F ) = ∅.

10 1
2

(a)

10

(b)

Fig. 4

5.4. Recurrence and periodic orbits. As in the fixed point free de-
gree 2 covering example (r, θ) 7→ (2r, 2θ) every point is wandering, one may
ask if the existence of a nonwandering point is enough to ensure the existence
of a fixed point. The next example shows that this is not the case.

We will construct a degree 2 covering f : (0,∞) × S1 → (0,∞) × S1

such that there is a compact set K satisfying f(K) = K and Per(f) = ∅.
Of course, K must be inessential and disconnected (see Theorem 1 and
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Lemma 5). In fact, in this example K is a Cantor set. We recall that in
[IPRX] we showed that for a degree d > 1 covering g of the circle, Per(g) =
Ω(g). This example also shows that this is no longer the case for annulus
coverings.

We start with a degree 2 circle covering having a wandering interval. Let
g1 : S1 → S1 be a Denjoy homeomorphism with a wandering interval I.
Take an open interval I0 ( I and an increasing function h : I → S1 such
that h(I0) = S1 and h|I\I0 ≡ g1 (see Figure 5(a)). Let g : S1 → S1 be the
map

g(x) =

{
g1(x) if x /∈ I,

h(x) if x ∈ I.

So, g is a degree 2 covering of the circle and g1(I) is a wandering interval
for g. Moreover, if x0 ∈ g1(I) then K1 = ωg(x0) is a Cantor set and K1 ∩
Per(g) = ∅.

Our example f : (0,∞) × S1 → (0,∞) × S1 has the form f(r, θ) =
(φ(r, θ), g(θ)), where φ is to be constructed. Let ψ : S1 → R, ψ(θ) =
dist(θ,K1), and let ϕ : (0,∞) → (0,∞) be as in Figure 5(b). Define
φ(r, θ) = ϕ(r) + rψ(θ).

0 1I

h
g1

(a)

y = x

1

ϕ

(b)

Fig. 5

Note that f has the following properties:

(1) For fixed θ, let φθ(r) = φ(r, θ). Then φθ has fixed points if and only
if θ ∈ K1, and for θ ∈ K1, φθ has a unique fixed point at r = 1.

(2) K = {1} ×K1 is compact and f(K) = K.

Furthermore, Per(f) = ∅. Indeed, if (r0, θ0) is f -periodic, then θ0 must
be g-periodic. So, θ0 /∈ K1. But this is imposible, as dynamics in the lines
{(r, θ) : r > 0, θ /∈ K1} is wandering.

Note also that this example can be made C1 if we use the square of the
distance in the definition of ψ, and other functions sufficiently regular.
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5.5. Inessential totally invariant subset. We give an example of
a degree 2 covering of the annulus with a Cantor set K ⊂ A such that
f−1(K) = K. This implies, by Proposition 1(4) in the next section, that f
is complete.

Let g : S1 → S1 be as in Figure 6(a). Note that Ω(g) = {0} ∪ K1

where 0 is an attracting fixed point and K1 is an expanding Cantor set with
g−1(K1) = K1. Let f : (0, 1)×S1 → (0, 1)×S1, f(r, θ) = (ϕ(r), g(θ)), where
ϕ is as in Figure 6(b). Then K = 1/2×K1 is a Cantor set and f−1(K) = K.

0 1

g

(a)

0 1

ϕ

1
2

(b)

Fig. 6

5.6. Failure of Brouwer’s theory. We construct a map F : R2 → R2

of Brouwer degree 1 such that Ω(F ) 6= ∅ and Per(F ) = ∅ (compare with
Brouwer’s Theorem 4).

Let g : S1 → S1 be the degree 2 covering map of Subsection 5.4 (Figure
5(a)) and let K be the Cantor set such that g(K) = K and K ∩Per(g) = ∅.
For any degree d, |d| > 1, covering g : S1 → S1 there exists an increasing
semiconjugacy h1 between g and q(z) = z2, that is, h1g = qh1 [IPRX,
Prop. 1].

Then h1(K) is compact, q-invariant and Per(q) ∩ h1(K) = ∅. Now, con-
sider the maps h2 : S1 → [−2, 2], h2(z) = z + 1/z, and p : [−2, 2]→ [−2, 2],
p(z) = z2 − 2. Note that h2 is continuous, surjective and h2q = ph2. More-
over:

• K1 = h2(h1(K)) is compact and p(K1) ⊂ K1.
• Per(p) ∩K1 = ∅.

We need one more auxiliary function to make our example F : R2 → R2

have degree 1. Let f : R→ R be as in Figure 7(a), so that f |[−2,2] = z2 − 2.
Now we proceed in the same fashion as in Subsection 5.4. Let ψ : R → R,
ψ(x) = dist(x,K1), and let ϕ : R→ R be as in Figure 7(b).

Define φ(x, y) = ϕ(y) + ψ(x) and F : R2 → R2 by

F (x, y) = (f(x), φ(x, y)).
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−2

−2

2

2

f

(a)

ϕ

(b)

Fig. 7

Note that K2 = K1×{0} is compact and F -invariant, so Ω(F ) 6= ∅. However,
Per(f) = ∅ as the lines {(x, y) : x /∈ K1} have wandering dynamics, and no
line {(x, y) : x ∈ K1} is periodic.

5.7. Another example without periodic points. There are essen-
tially two examples of covering maps of the annulus without periodic points:
The first one, given in the introduction, is conjugate to pd(z) = zd acting
in the punctured unit disk. The second one was given in Subsection 5.4, in
this case the map has nonempty nonwandering set. As in Subsection 5.3,
examples with any finite number of periodic points can be constructed; the
question is if there exist examples of covering maps which are not complete
but satisfy the growth rate inequality for periodic points. Note also that if
both ends are attracting or both repelling, then the map is complete. In
all the examples of noncomplete maps, one end is attracting and the other
repelling. Is this necessary? For example, consider the following concrete
question: Let f : S1× (0, 1) 3 (z, x) 7→ (z3, ϕz(x)), where ϕz is an increasing
homeomorphism of the interval (0, 1) for each z, such that ϕn1 (x) → 1 and
ϕn−1(x)→ 0 for every x. This implies that the ends are neither attracting nor
repelling and that the map is not complete (it has no fixed points). It will
be shown here that a map like f can be constructed without any periodic
point. This example was communicated to us by the referee.

Let A = S1 × R and assume that the map is given by

f(z, x) = (z3, x+ tz)

where tz varies continuously with z and the set of numbers {tp} with p
periodic of m3 is rationally independent. This means that f has no periodic
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points, because if {p1, . . . , pn} is a periodic orbit of z3, then fn(p1, x) =
(p1, x+

∑
i tpi), but by assumption

∑
i tpi 6= 0. To construct the function tz

choose a rationally independent sequence {ai : i ≥ 0} of positive numbers
and enumerate the periodic points of m3 as {pn : n ≥ 0}, with p0 = 1,
p1 = −1. Define by induction a sequence of functions z 7→ tnz beginning with
any continuous function t0z such that t0p0 = a0 and t0p1 = 0. Given n > 0

define tnz as follows: tnz = tn−1z outside a neighbourhood of pn not containing
any pi for i < n, 0 ≤ tn−1z − tnz < 2−n and tnpn ∈ anQ. The sequence of
functions z 7→ tnz converges uniformly to a function z 7→ tz satisfying the
required properties.

6. Applications. We devote this section to applications of Theorem 1
and Lemma 8 to dynamics. Throughout this section, f : A→ A is a degree
d, |d| > 1, covering.

By attracting set we mean a proper open subset U such that f(U) ⊂ U .
A subset X ⊂ A is totally invariant if f−1(X) = X.

Proposition 1. Any of the following hypotheses implies that f is com-
plete.

(1) There is an essential attracting set.
(2) Each end of A is attracting.
(3) f extends to a map of the two-point compactification of A in such a

way that it is C1 at the poles.
(4) f preserves orientation and there exists a compact totally invariant

(not necessarily connected) subset.
(5) f preserves orientation and there exists an invariant continuum K

such that h(K) is not reduced to a point (h was defined in Corol-
lary 2).

Proof. (1) Let U ⊂ A be an essential open set such that f(U) ⊂ U .
Then K =

⋂
n≥0 f

n(U) is an invariant continuum. Moreover, it is essential,
because fn(U) is essential for each n as |d| > 1. The result now follows from
Theorem 1.

(2) If both ends are attracting, then the complement of both basins of
attraction is an essential invariant continuum, and we may apply Theorem 1.

(3) Note that in this case both ends must be attracting, as the derivative
in the compactification must be 0 at the poles. Indeed, note that f is a d : 1
branched covering in a neighbourhood of the pole. So the winding number
Ifγ(p) is d whenever γ is a small circle with centre p. On the other hand, if a
map g has a fixed point at p isolated in g−1(p) and nonvanishing differential
at p, then |Igγ(p)| ≤ 1 for a small curve γ such that Iγ(p) = 1.

(4) Let X be a compact set such that f−1(X) = X. It is enough to show
that m−1d (h(X)) = h(X). Indeed, h(X) is then dense in S1. As h(X) is also
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compact, h(X) = S1. So, HF (from Lemma 6) is surjective for any lift F
of f . The same argument shows that HG is surjective for any lift G of fn,
and we are done by Lemma 8 and Corollary 1.

To prove that m−1d (h(X)) = h(X) we first claim that if x 6= y and
f(x) = f(y), then h(x) 6= h(y). Let F be a lift of f and x̃ a lift of x. Define

ỹj = F−1(x̃+ j), j = 0, . . . , |d| − 1. Then π(
⋃|d|−1
j=0 ỹj) = f−1(x). Moreover,

dH(ỹj) = HF (ỹj) = H(x̃ + j) = H(x̃) + j, and so H(ỹj) = H(x̃)/d + j/d.
This proves the claim, because πH(ỹj) = hπ(ỹj) and {πH(ỹj) : 0 ≤ j ≤
|d| − 1} has |d| different elements by the above computation.

It is obvious that h(X) ⊂ m−1d (h(X)) by the semiconjugacy equation.

Conversely, let z ∈ h(X); we will prove that m−1d (z) ⊂ h(X). We have
z = h(x) for some x ∈ X. Let f−1(x) = {x1, . . . , xd}. By hypothesis xi ∈ X
for all i = 1, . . . , d. Now,

mdh(xi) = hf(xi) = h(x) = z.

So, h(x1), . . . , h(xd) ∈ m−1d (z). As m−1d (z) has exactly d elements, and
h(x1), . . . , h(xd) are distinct by the claim, we have

m−1d (z) = {h(x1), . . . , h(xd)}.
(5) Note that h(K) is an invariant interval that is not reduced to a point,

and so h(K) = S1, which implies that HF is surjective for any lift F of f ,
and we conclude as in the previous item.

The following application shows how the existence of a periodic orbit can
imply existence of infinitely many of them. The proof is immediate from item
(3) in the previous proposition.

Corollary 3. Let f : S2 → S2 be a C1 degree d map, |d| > 1, and
p, q a two-periodic totally invariant orbit (f−1({p, q}) = {p, q}, f(p) = q,
f(q) = p). If f : S2 \ {p, q} → S2 \ {p, q} is a covering, then f has periodic
points of arbitrarily large period.

We will make some calculations that will be used in the following lemma.
Fix a lift F = F0 of f , and for any k ∈ Z, define the maps Fk(x) =

F (x) + k. Then, for any m ∈ N and x ∈ Ã,

(1) Fmk (x) = Fm(x) +

m−1∑
i=0

kdi = Fm(x) +
k(1− dm)

1− d
.

This is a straightforward consequence of the fact that F (x+k) = F (x) +dk
for any k ∈ Z and x ∈ Ã.

Lemma 13. Suppose that there exists a compact set K ⊂ A such that
f(K) ⊂ K. If there exists x ∈ K and a lift F of f such that

lim
m→∞

(Fm(x̃))1/d
m = k/(dn − 1)
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for some k ∈ Z and n ≥ 1, for a lift x̃ of x, then there exists z ∈ Ã such
that Fn(z) = z + k. In particular, Per(f) 6= ∅.

Proof. We have to show that the map Fn − k has a fixed point. By
Remark 3, it is enough to show that limm→∞ (Gm(x̃))1/(d

n)m = 0, where
G = Fn − k (see Remark 3 and note that G is a lift of fn). Indeed

lim
m→∞

(Gm(x̃))1
(dn)m

= lim
m→∞

((Fn − k)m(x̃))1
dnm

(1)
= lim

m→∞

(Fnm(x̃))1 −
∑m−1

i=0 kdni

dnm

=
k

dn − 1
− lim
m→∞

k

dnm

m−1∑
i=0

dni.

Now,

lim
m→∞

k

dnm

m−1∑
i=0

dni = lim
m→∞

k

dnm
1− dnm

1− dn
=

k

dn − 1
.

Proposition 2. Any of the following hypotheses implies that f has pe-
riodic points.

(1) There exists x ∈ A with bounded forward orbit such that
limm→∞ (Fm(x̃))1/d

m = k/(dn − 1) for some lift x̃ of x and some
k ∈ Z and n ≥ 1.

(2) There exists an invariant continuum.

Proof. (1) Let K be the closure of the forward orbit of x. Then K is
compact, f(K) ⊂ K, and limm→∞ (Fm(x̃))1/d

m = k/(dn − 1) for a lift x̃
of x and some k ∈ Z and n ≥ 1. Then Per(f) 6= ∅ by Lemma 13.

(2) If the continuum happens to be essential, then f is complete by
Theorem 1. Otherwise, if f preserves orientation, this follows from Lem-
ma 5. If f reverses orientation, one applies Kuperberg’s theorem [K].

We finish this paper with an open question: if the covering assumption
is dropped, so f is just a degree d map of the annulus (|d| > 1), and if K is
an invariant essential continuum, is f necessarily complete?

Acknowledgments. We thank the referee for many useful observations
and providing the proof of the example given in 5.7.
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Montevideo, Uruguay
E-mail: jorgei@fing.edu.uy

aldo@fing.edu.uy
jxavier@fing.edu.uy

Alvaro Rovella
CMAT, Facultad de Ciencias

Montevideo, Uruguay
E-mail: leva@cmat.edu.uy

http://dx.doi.org/10.1080/10236198.2012.757011
http://dx.doi.org/10.1007/BF01456888
http://dx.doi.org/10.2307/1969308
http://dx.doi.org/10.2307/1971464
http://dx.doi.org/10.1090/S0002-9947-96-01502-4
http://dx.doi.org/10.2140/gt.2003.7.713
http://arxiv.org/abs/1402.2317
http://dx.doi.org/10.1090/S0002-9939-1991-1064906-X
http://dx.doi.org/10.1007/s10240-005-0034-1
http://dx.doi.org/10.1215/S0012-7094-06-13311-2
http://dx.doi.org/10.1007/BF03015314

	1 Introduction
	2 Nielsen theory background
	3 Proof of completeness
	3.1 The orientation preserving case
	3.2 The orientation reversing case

	4 Location of periodic orbits
	5 Examples
	5.1 Location of periodic orbits
	5.2 A fixed point free example having a point with zero rotation number
	5.3 Changing the lift
	5.4 Recurrence and periodic orbits
	5.5 Inessential totally invariant subset
	5.6 Failure of Brouwer's theory
	5.7 Another example without periodic points

	6 Applications
	References

