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Abstract

The symbol (XI)κ (with κ ≥ ω) denotes the space XI :=
∏
i∈I Xi with the κ-box topology; this

has as base all sets of the form U =
∏
i∈I Ui with Ui open in Xi and with |{i ∈ I : Ui 6= Xi}| < κ.

The symbols w, d and S denote respectively the weight, density character and Suslin number.
Generalizing familiar classical results, the authors show inter alia:

Theorem 3.1.10(b). If κ ≤ α+, |I| = α and each Xi contains the discrete space {0, 1} and
satisfies w(Xi) ≤ α, then w(Xκ) = α<κ.

Theorem 4.3.2. If ω ≤ κ ≤ |I| ≤ 2α and X = (D(α))I with D(α) discrete, |D(α)| = α, then
d((XI)κ) = α<κ.

Corollaries 5.2.32(a) and 5.2.33. Let α ≥ 3 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a
set of spaces such that |I|+ ≥ κ.
(a) If α+ ≥ κ and α ≤ S(Xi) ≤ α+ for each i ∈ I, then α<κ ≤ S((XI)κ) ≤ (2α)+; and
(b) if α+ ≤ κ and 3 ≤ S(Xi) ≤ α+ for each i ∈ I, then S((XI)κ) = (2<κ)+.
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1. Historical context

The most prominent, most useful, and most-studied cardinal invariants associated with
topological spaces are the weight, density character, and Suslin number. Countless papers
and monographs over the decades have given estimates, in some cases even precise eval-
uations, of the value of these invariants for the usual Tychonoff product XI =

∏
i∈I Xi

of a set of spaces (Xi)i∈I in terms of the values for the initial spaces Xi. But in the case
of κ-box topologies (defined in Chapter 2 below) on spaces of the form XI , very little is
known, and that is fragmentary and nowhere systematically assembled.

In this paper we study with considerable thoroughness those three cardinal invariants
for these modified box products, in each case seeking (as usual) estimates for the product
in terms of the values for the initial spaces. Our methods are largely topological and set-
theoretic, although as expected certain computations are made precise only when ZFC is
enhanced with appropriate additional (consistent) axioms.

Our work draws upon, and in some cases extends, published theorems of R. Engelking
and M. Karłowicz [9], W. W. Comfort and S. Negrepontis [3], [4], [5], F. S. Cater, P. Erdős
and F. Galvin [1], W. W. Comfort and L. C. Robertson [6], and M. Gitik and S. Shelah
[17]. We give details at appropriate points in the paper.

Announcements. (a) We have presented our findings at the following conferences:
(1) Conference on Ramsey Theory and Topological Algebra in honor of Neil Hindman,
Miami University, Oxford, Ohio, July, 2008; (2) In honor of the 75th birthday of Dona
Strauss, University of Cambridge, Cambridge, UK, July, 2009; (3) Algebra Meets Topol-
ogy: Advances and Applications, Barcelona, Spain, July, 2010; (4) 45th Spring Topology
and Dynamics Conference, University of Texas, Tyler, Texas, March, 2011.

(b) A version of this work is available at arxiv.org (see [2]).

2. Introduction

2.1. Notation. Hypothesized topological spaces here are not subjected to standing sep-
aration properties. Special hypotheses are imposed locally, as required.

α, β, γ and λ are cardinals, κ is usually an infinite cardinal, ω is the least infinite
cardinal, and c is the cardinality of the interval [0, 1]. As usual, for α ≥ ω we write
α+ := min{β : β > α}.

η and ξ are ordinals.
The symbols w(X) and d(X) denote respectively the weight and density character of

the space X. A cellular family in a space X is a family of pairwise disjoint nonempty

[5]



6 W. W. Comfort and I. S. Gotchev

open subsets of X; and S(X), the Suslin number of X, is the cardinal number

min{λ : no cellular family A in X satisfies |A| = λ}.
We here follow many authors [4], [5], though not all [8], [21], [22], in allowing w, d

and S to assume finite values. If for example X is a discrete space of cardinality 17, then
w(X) = d(X) = 17 and S(X) = 17+ = 18.

For I a set, we write [I]λ := {J ⊆ I : |J | = λ}; [I]<λ, [I]≤λ are defined analogously.
It is clear that if λ > |I| then (a) [I]λ = ∅ and (b) [I]<λ is the full power set P(I).

For a set {Xi : i ∈ I} of sets we write XI :=
∏
i∈I Xi. For A =

∏
i∈I Ai ⊆ XI the

restriction set of A is the set R(A) := {i ∈ I : Ai 6= Xi}. When each Xi = (Xi, Ti) is a
space, we use the symbol (XI)κ to denote XI with the κ-box topology; this is the topology
for which the set

U :=
{∏
i∈I

Ui : Ui ∈ Ti, |R(U)| < κ
}

is a base. (The ω-box topology on XI , then, is the usual product topology.) We refer to
U as the canonical base for (XI)κ, and to the elements of U as canonical open sets. By
way of caution to the reader, we note that even when κ is regular, the intersection of
fewer than κ-many sets, each open in (XI)κ, may fail to be open in (XI)κ. (Indeed, each
space Xi embeds homeomorphically as a (closed) subspace of (XI)κ, so if some Xi lacks
that intersection property then so does (XI)κ.)

For simplicity we denote by 2 the discrete space of cardinality 2, and for cardinals
α ≥ 2 we denote by D(α) the discrete space of cardinality α.

For spaces X and Y , the symbol Y =h X means that Y and X are homeomorphic;
the symbol Y ⊆h X means that X contains a homeomorphic copy of the space Y .

2.2. Elementary considerations

Definition 2.2.1. A cardinal κ is a strong limit cardinal if λ < κ⇒ 2λ < κ.

In 2.2.2–2.2.6 we cite the basic tools and facts we need from the elementary theory of
cardinal arithmetic. For motivation, discussion and proofs where appropriate, see [4, §1],
[5, Appendix A] or [20].

The familiar beth cardinals iξ(α) are defined recursively as follows.

Definition 2.2.2. Let α ≥ 2 be a cardinal. Then

(a) i0(α) := α;
(b) iξ+1(α) := 2iξ(α) for each ordinal ξ; and
(c) iξ(α) :=

∑
η<ξ 2iη(α) for limit ordinals ξ > 0.

Remarks 2.2.3. Let ξ be a limit ordinal and let α ≥ 2 and λ ≥ ω be cardinals. Then

(a) a set S ⊆ ξ is cofinal in ξ if and only if {iη(α) : η ∈ S} is cofinal in iξ(α); hence
(b) cf(iλ(α)) = cf(λ).

Definition 2.2.4. For α ≥ ω, log(α) is the cardinal number

log(α) := min{β : 2β ≥ α}.
Notation 2.2.5. Let κ ≥ ω and α ≥ 2. Then α<κ :=

∑
λ<κ α

λ.
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It is well known and easy to prove that |[α]λ| = αλ when λ ≤ α, so |[α]<κ| =
∑
λ<κ α

λ

when κ ≤ α+. For ease of reference later, we build some redundancy into the statement
of Theorem 2.2.6.

Theorem 2.2.6. Let α ≥ 2 and κ ≥ ω. Then

(a) κ ≤ 2<κ ≤ α<κ;
(b) if κ is regular then α<κ = (α<κ)<κ;
(c) if κ is singular then (α<κ)<κ = ακ;
(d) ((α<κ)<κ)<κ = (α<κ)<κ.

Remark 2.2.7. It is clear that the useful relation given in part (d) of Theorem 2.2.6 is
immediate from parts (b) and (c). The authors are not acquainted with other examples
in mathematics of operators which, as in Theorem 2.2.6(d), first stabilize at the third
iteration. Responding to a request from one of us (speaking in a seminar) for terminol-
ogy suitable for this phenomenon, Peter Johnstone promptly proposed the expression
“sesquipotent”.

The condition (α<κ)<κ = α<κ, satisfied by many pairs of cardinals α and κ, will play
a role frequently in this paper. An alternate characterization is often useful.

Theorem 2.2.8. Let α ≥ 2 and κ ≥ ω.

(a) These conditions are equivalent:

(i) α<κ = (α<κ)<κ; and
(ii) either κ is regular, or there is ν < κ such that αν = α<κ.

(b) If the conditions in (a) fail, then κ and α<κ are singular cardinals and cf(α<κ) =

cf(κ).

Proof. (a) (i)⇒(ii). If (ii) fails then κ is a limit cardinal and for every ν < κ there is a
cardinal λ < κ such that αν < αλ, so also α<κ is a limit cardinal. It is easily checked
that cf(κ) = cf(α<κ), so

(α<κ)<κ ≥ (α<κ)cf(κ) = (α<κ)cf(α
<κ)) > α<κ.

(ii)⇒(i). If κ is regular, we have (α<κ)<κ = α<κ by Theorem 2.2.6(b). Suppose then
that κ is singular, hence a limit cardinal, and that there is ν < κ such that αν = α<κ.
Then

(α<κ)<κ = (αν)<κ =
∑
λ<κ

(αν)λ =
∑

ν<λ<κ

(αν)λ =
∑

ν<λ<κ

αλ = α<κ.

(b) Clearly, κ is singular, α<κ is limit and

cf(α<κ) = cf(κ) < κ ≤ α<κ.
Hence α<κ is singular.

Remarks 2.2.9. (a) As our title and Abstract indicate, we are concerned here with the
weight, density character and Suslin number of (sometimes specialized) products of the
form (XI)κ; the corresponding results are contained in Chapters 3, 4 and 5, respectively.

(b) As the reader knows well, the “functions” w, d and S enjoy specific useful mono-
tonicity properties; we have in mind these familiar phenomena:
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(i) If X and Y are spaces and Y ⊆h X, then w(Y ) ≤ w(X).
(ii) If T1 and T2 are topologies on a set X with T1 ⊆ T2, then d(X, T1) ≤ d(X, T2) and

S(X, T1) ≤ S(X, T2).

On the other hand, both the analogue of (i) for d and S, and of (ii) for w can fail.
For example, with X = 2c and

Y := {x ∈ X : |{i ∈ I : xi 6= 0}| = 1},

one has Y discrete in X with |Y | = c and d(X) = ω < c = d(Y ), also S(X) = ω+ < c+ =

S(Y ). And with X = 2c and Y ′ a countable dense subset of X one has w(Y ′) = w(X) = c

when the usual product topology T1 is considered, but w(Y ′, T2) = ω < c when Y ′ is given
the discrete topology T2 ⊇ T1.

We use the indicated monotonicity properties (i) and (ii) frequently in this paper,
without warning or comment. We use also the fact that if X is a space and Y is dense
in X, then necessarily S(Y ) = S(X).

3. On the weight of κ-box products

3.1. Results in ZFC

Discussion 3.1.1. It is well known [8, 2.3.F(a)] for each set {Xi : i ∈ I} of T1-spaces
with w(Xi) ≥ 2 that XI :=

∏
i∈I Xi satisfies

w(XI) = max
{

sup
i∈I

w(Xi), |I|
}
.

In particular,

(3.1.1) w(XI) = |I| if each Xi satisfies w(Xi) ≤ |I|.

In Theorem 3.1.10 we give the correct analogue of (3.1.1) for κ-box topologies.

Lemma 3.1.2. Let α ≥ ω and κ ≥ ω. Then

w((2α)κ) ≥ α.

Proof. Let Y ⊆ X = 2α be as in Remark 2.2.9(b). Then Y is discrete in 2α, hence is
discrete in (2α)κ, so

w((2α)κ) ≥ w(Y ) = α,

as required.

Theorem 3.1.3. Let α ≥ ω and κ ≥ ω, and let {Xi : i ∈ I} be a set of spaces such that
w(Xi) ≤ α for each i ∈ I. Then

(a) supi∈I w(Xi) ≤ w((XI)κ) ≤ α<κ · |I|<κ; and
(b) if in addition 2 ⊆h Xi for each i ∈ I, then also w((XI)κ) ≥ |I|.

Proof. (a) Let Bi be a base for Xi with |Bi| ≤ α and with Xi ∈ Bi, and for λ < κ let

B(λ) :=
{
B =

∏
i∈I

Bi : Bi ∈ Bi, |R(B)| = λ
}
.
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Then |B(λ)| ≤ |[I]|λ · αλ, and since B :=
⋃
λ<κ B(λ) is a base for (XI)κ we have

w((XI)κ) ≤ |B| ≤
∑
λ<κ

|[I]λ| · αλ = |I|<κ · α<κ.

Since Xi ⊆h (XI)κ, we have w((XI)κ) ≥ w(Xi) for each i ∈ I. Hence w((XI)κ) ≥
supi∈I w(Xi).

(b) It follows from 2 ⊆h Xi that 2I ⊆h X, and from Lemma 3.1.2 we have w((XI)κ) ≥
w((2I)κ) ≥ |I|.

For future reference we restate this portion of Theorem 3.1.3.

Corollary 3.1.4. Let α and κ be infinite cardinals, and let {Xi : i ∈ I} be a set of
spaces such that |I| ≤ α and w(Xi) ≤ α for each i ∈ I. Then w((XI)κ) ≤ α<κ.

Discussion 3.1.5. If ω ≤ α < α+ < κ then w((2α)κ) = 2α, while α<κ ≥ α(α+) = 2(α
+).

In many models of set theory and for many cardinals α one has 2(α
+) > 2α, and in such

cases the inequality w((2α)κ) ≤ α<κ of Corollary 3.1.4 becomes strict. That explains
why the formula w(Xκ) = α<κ cannot be asserted without restraint in Corollary 3.1.4,
even when |I| = α. Our next goal in this section is to show that, subject only to the
simple restrictions κ ≤ α+ and |I| = α, the inequality w((XI)κ) ≤ α<κ of Corollary 3.1.4
becomes an equality (Theorem 3.1.10).

Lemma 3.1.6. Let α and κ be infinite cardinals such that κ ≤ α+. Then

(a) if λ < κ and λ ≤ α, then w((2α)κ) ≥ 2λ; and
(b) w((2α)κ) ≥ 2<κ.

Proof. (a) If κ = α+ then (2α)κ is the discrete space D(2α), which has weight 2α =

2<κ ≥ 2λ. We therefore assume that κ ≤ α. The space (2λ)κ is then homeomorphic to a
discrete subspace of (2α)κ, so w((2α)κ) ≥ w((2λ)κ) = |2λ| = 2λ.

(b) is immediate from (a).

Theorem 3.1.7. Let κ and α be infinite cardinals. Then

(a) if κ ≥ α+ then w((2α)κ) = 2α;
(b) if κ ≤ α+ then w((2α)κ) = α<κ.

Proof. (a) is obvious, since (2α)κ is discrete.
(b) The inequality ≤ is given by Corollary 3.1.4. We show ≥.
If κ = α+ then (2α)κ is the discrete space D(2α), which has weight 2α = αα = α<κ.

We assume in what follows that κ ≤ α, and we consider two cases.

Case 1: 2<κ ≤ α. If w((2α)κ) ≥ α<κ fails then there is λ < κ such that w((2α)κ) < αλ;
we fix such λ and we choose in (2α)κ a base B of canonical open sets such that |B| < αλ.
From Lemma 3.1.6(b) we have |B| ≥ 2<κ.

For every A ∈ [α]<κ there is B ∈ B such that A ⊆ R(B). (To check that, it is enough
to choose in (2α)κ a canonical open set U =

∏
i∈I Ui with R(U) = A and x ∈ U , and

then to find B ∈ B such that x ∈ B ⊆ U . Then B is as required.) Thus

(3.1.2) [α]<κ ⊆
⋃
{[R(B)]<κ : B ∈ B}.
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For each B ∈ B we have |R(B)| < κ, and hence [R(B)]<κ = P(R(B)). Therefore
|[R(B)]<κ| = 2|R(B)| ≤ 2<κ. From (3.1.2), we then have

α<κ = |[α]<κ| ≤
∑
{[R(B)]<κ| : B ∈ B} ≤ 2<κ · |B| = |B| < αλ ≤ α<κ.

Case 2: Case 1 fails. Then there is λ < κ such that 2λ > α. If the desired inequality
w((2α)κ) ≥ α<κ fails then there is µ < κ such that w((2α)κ) < αµ, and then with
δ := max{λ, µ} we have the contradiction

w((2α)κ) < αδ ≤ (2δ)δ = 2δ = w((2δ)κ) ≤ w((2α)κ),

as required.

Remark 3.1.8. When κ = α+, parts (a) and (b) of Theorem 3.1.7 are compatible since
α<κ = αα = 2α in that case.

Corollary 3.1.9. Let κ and α be infinite cardinals. Then

w((2(α<κ))κ) = (α<κ)<κ = w((2((α<κ)<κ))κ).

Proof. From Theorem 2.2.6(a) we have κ ≤ α<κ ≤ (α<κ)<κ. The first equality then
results by replacing α by α<κ in Theorem 3.1.7(b); the second equality results by making
the same substitution one more time.

Theorem 3.1.10. Let α and κ be infinite cardinals, and let {Xi : i ∈ I} be a set of spaces
such that |I| = α, and 2 ⊆h Xi and w(Xi) ≤ α for each i ∈ I. Then

(a) if κ ≤ α+ then w((XI)κ) = α<κ;
(b) if κ ≥ α+ then w((XI)κ) = 2α.

Proof. We have 2α ⊆h X and hence (2α)κ ⊆h (XI)κ. Then from Theorem 3.1.7 and
Corollary 3.1.4 it follows that in (a),

α<κ = w((2α)κ) ≤ w((XI)κ) ≤ α<κ,

and in (b),
2α = w((2α)κ) ≤ w((XI)κ) ≤ α<κ ≤ αα = 2α.

Corollary 3.1.11. Let α and κ be infinite cardinals, and let {Xi : i ∈ I} be a set
of spaces such that 2 ⊆h Xi for each i ∈ I. If w(Xi) ≤ (α<κ)<κ for each i ∈ I and
α<κ ≤ |I| ≤ (α<κ)<κ, then w((XI)κ) = (α<κ)<κ.

Proof. For ≤, replace α by (α<κ)<κ in Theorem 3.1.3(a) and use Theorem 2.2.6(d).
For ≥, it is enough to note from Corollary 3.1.9 that

w((XI)κ) ≥ w((2I)κ) ≥ w((2(α<κ))κ) = (α<κ)<κ,

as required.

Like the authors, the reader will have noted already at this stage a distinction in kind
between the pleasing, clear-cut result given in Discussion 3.1.1 concerning the weight
of a product in the usual product topology and the less satisfactory statement given in
Corollary 3.1.11; in this latter, the weight of spaces of the form (2I)κ is determined by |I|,
but unexpectedly such products which differ in size may have the same weight.
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Corollary 3.1.12. Let α, κ and λ be infinite cardinals such that λ ≤ κ, and let {Xi :

i ∈ I} be a set of spaces such that |I| = α, and 2 ⊆h Xi and w(Xi) ≤ α for each i ∈ I.
Then w((XI)λ) ≤ w((XI)κ).

Proof. Necessarily we have λ ≤ κ ≤ α+, or λ ≤ α+ ≤ κ, or α+ ≤ λ ≤ κ. In those three
cases, Theorem 3.1.10 gives respectively

w((XI)λ) = α<λ ≤ α<κ = w((XI)κ),

w((XI)λ) = α<λ ≤ αα = 2α = w((XI)κ),

w((XI)λ) = 2α = w((XI)κ).

3.2. For future consideration

Remarks 3.2.1. (a) Surely Corollary 3.1.12 is as expected. Presumably a short, direct
proof is available but the authors’ search for that was unsuccessful. We note however that,
as the simple example in Remark 2.2.9(b)(ii) shows, a larger topology (for example, the
discrete topology) on a given set may have a strictly smaller weight than does a smaller
Tychonoff topology.

(b) The authors find surprising both the extent of validity of the formula given in
Theorem 3.1.10 and the simplicity of its proof. We had anticipated finding an explicit
formula for w((XI)κ) only under special axioms and assumptions (perhaps GCH, for
example), and we had anticipated the necessity to consider, at the least, such cardinals
as cf(κ), cf(α) and log(α), as well as the least cardinal γ such that αγ > α.

4. On the density character of κ-box products

In this chapter we continue to investigate spaces of the form (XI)κ, focusing now on the
invariant d rather than on w.

4.1. The Hewitt–Marczewski–Pondiczery theorem. Our point of departure and
motivation is the paradigmatic trilogy of Theorems 4.1.1, 4.1.2 and 4.1.3, which for the
usual product topology give respectively upper bounds, lower bounds, and conditions of
equality for (certain) numbers of the form d((XI)κ). To avoid unnecessary restrictions,
we state these three familiar results in considerable generality. Standard treatments often
impose stronger separation properties according to authors’ conventions, but the pub-
lished proofs (of Theorems 4.1.2 and 4.1.3 in [4, 3.19 and 3.20], for example) suffice to
establish Theorems 4.1.1–4.1.3 in the form we have chosen. Theorem 4.1.1 is, of course,
the classic theorem of Hewitt, Marczewski and Pondiczery [18], [26], [27], stated here in
two useful equivalent forms; and Theorem 4.1.2 is its converse.

Our κ-box analogues to Theorems 4.1.1 and 4.1.2 are given in 4.2.4–4.2.8 and 4.3.7–
4.3.8, respectively. The quest for the exact κ-box analogue of Theorem 4.1.3—that is, the
search for a specific cardinal number δ depending on the variables |I|, d(Xi), i ∈ I, and
κ such that d((XI)κ) = δ—is elusive, perhaps unattainable. For example, answering a
question from [3], [4], Cater, Erdős and Galvin [1] have shown that in some models for
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β = ℵω the inequalities

d((2(β+))ω+) = c < β = log(2β) < d((2(2β))ω+)

occur. Furthermore, it has been known for some time [1], [6] that consistently d((2β)ω+) =

(log(β))ω for every infinite cardinal β. The question whether that equality holds in (all
models of) ZFC, raised in [1], was answered in the negative by Gitik and Shelah [17]; we
discuss their models in 4.2.11(d)–(g).

The foregoing paragraph explains why we are able for κ > ω to offer exact compu-
tations of the form d((XI)κ) = δ, in parallel with Theorem 4.1.3, only for spaces Xi,
i ∈ I, and κ subject to severe constraints. Our (few) contributions of this sort are given
in Corollary 4.2.6(a) and Theorems 4.3.2–4.3.5 below.

Theorem 4.1.1.

[Version 1] Let α ≥ ω and let XI =
∏
i∈I Xi with d(Xi) ≤ α for each i ∈ I and with

|I| ≤ 2α. Then d(XI) ≤ α.

[Version 2] Let I be an infinite set and {Xi : i ∈ I} a set of spaces. Then d(XI) ≤
max{sup{d(Xi) : i ∈ I}, log |I|}.

Theorem 4.1.2. Let α ≥ ω and let XI =
∏
i∈I Xi with S(Xi) ≥ 3 for each i ∈ I. If

d(Xi) > α for some i ∈ I, or if |I| > 2α, then d(XI) > α.

Theorem 4.1.3. If {Xi : i ∈ I} is a family of spaces such that S(Xi) ≥ 3 for each i ∈ I
and |I| ≥ ω, then

d(XI) = max
{

sup{d(Xi) : i ∈ I}, log |I|
}
.

4.2. Upper bounds for d((XI)κ). We say that a subset A of a space X is strongly
discrete (in X) if there is a family {U(a) : a ∈ A} of pairwise disjoint open subsets of
X such that a ∈ U(a) for each a ∈ A. Simple examples show that a strongly discrete
set need not be closed. It is clear, however, that if κ is fixed and every A ∈ [X]<κ is
strongly discrete, then also every A ∈ [X]<κ is closed in X. That motivates the following
terminology.

Definition 4.2.1. Let κ ≥ ω and let X be a space. Then X is strongly κ-discrete if every
A ∈ [X]<κ is strongly discrete.

Remarks 4.2.2. (a) The terminology in Definition 4.2.1 is not in universal usage. Note
that the separation requirement applies only to sets A ∈ [X]<κ, not to all A ∈ [X]≤κ.
Note also that since in a strongly κ-discrete space X each set A ∈ [X]<κ is both closed
and discrete, the condition is strictly stronger than the condition that each discrete set
A ∈ [X]<κ is strongly discrete.

(b) We note that a space which for some κ ≥ ω is strongly κ-discrete is a Hausdorff
space.

(c) We give the following lemma in the generality it warrants, but in fact we will use
it only when each of the spaces Ei is discrete.

Lemma 4.2.3. Let κ ≥ ω and let E = EI =
∏
i∈I Ei with each space Ei strongly

κ-discrete. Then (EI)κ is strongly κ-discrete.
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Proof. Given A ∈ [E]<κ there is J ∈ [I]<κ such that the projection
∏
J : E �

∏
i∈J Ei,

when restricted to A, is an injection. (If κ > |I| we may take J = I ∈ [I]<κ.) Now for
i ∈ I and a ∈ A we choose a neighborhood Ui(a) of ai in Xi such that

(a) Ui(ai) = Ui(bi) if a, b ∈ A and ai = bi; and
(b) Ui(ai) ∩ Ui(bi) = ∅ if a, b ∈ A and ai 6= bi.

(Such a family {Ui(ai) : a ∈ A} exists in Xi since
∏
i[A] ∈ [Xi]

<κ.) Then the sets
U(a) := (

∏
i∈J Ui(ai)) × (

∏
i∈I\J Ei) are open in (EI)κ and are pairwise disjoint, with

a ∈ U(a) for each a ∈ A.

The principal result of this section is given in Theorem 4.2.5. The following lemma
does most of the work.

Lemma 4.2.4. Let α ≥ 2, β ≥ ω and κ ≥ ω be cardinals and let E := (D(α))2
β

. Then

d(Eκ) ≤ α<κ · (β<κ)<κ.

Proof. Let B be the canonical base for (2β)κ (such that |B| = β<κ), and let C :=

{C ⊆ P(B) : C is cellular in (2β)κ and |C| < κ}; and for each C ∈ C and f : C → D(α)

define p(C, f) ∈ E = (D(α))2
β

by

(p(C, f))x =

{
f(C) if x ∈ C ∈ C,
0 if x ∈ 2β \

⋃
C.

We set A := {p(C, f) : C ∈ C, f : C → D(α)}.
Since κ ≤ β<κ = |B| we have |[B]<κ| = (β<κ)<κ.
Then since |C| ≤ |[B]<κ| = (β<κ)<κ and for C ∈ C we have |αC | = α|C| ≤ α<κ-many

functions f : C → D(α), it follows that

|A| ≤ α<κ · (β<κ)<κ.

It then suffices to show that A is dense in Eκ = ((D(α))2
β

)κ.
Let U =

∏
x∈2β Ux be a canonical open subset of Eκ. Without loss of generality we

take |Ux| = 1 when x ∈ R(U) ∈ [2β ]<κ (and necessarily Ux = D(α) when x ∈ 2β \R(U)).
Since (2β)κ is strongly κ-discrete (by Lemma 4.2.3) and R(U) ∈ [2β ]<κ, there is a family
C = {C(x) : x ∈ R(U)} ∈ C of pairwise disjoint open subsets of (2β)κ such that x ∈ C(x)

for each x ∈ R(U). Then for x ∈ R(U) we have x ∈ C(x) ∈ C ∈ C and (p(C, f))x =

f(x) ∈ Ux; it follows that p(C, f) ∈ A ∩ U , as required.

The proof of Lemma 4.2.4 seemed so natural that for some time we considered its
statement to be optimal. However, a stronger statement is available. This is the principal
result of this section, given now in two equivalent formulations.

Theorem 4.2.5. Let α ≥ 2, β ≥ ω and κ ≥ ω be cardinals.

(a) Let E := (D(α))2
β

. Then d(Eκ) ≤ (α · β)<κ.
(b) Let E := (D(α))β. Then d(Eκ) ≤ (α · log(β))<κ.

Proof. When (a) is known, (b) follows upon replacing 2β in (a) by β and using the
inequality β ≤ 2log(β). To derive (a) from (b), replace β in (b) by 2β and use log(2β) ≤ β.

To prove (a), we consider two cases:
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Case 1: κ is regular. Then it follows from Lemma 4.2.4 and Theorem 2.2.6(b) that

d(Eκ) ≤ α<κ · (β<κ)<κ = α<κ · β<κ = (α · β)<κ.

Case 2: κ is singular (hence, a limit cardinal). (Here we use a trick taken from [1,
p. 308].) For λ < κ there is, by Case 1 applied to the regular cardinal λ+, a dense set
A(λ) ⊆ Eλ+ such that |A(λ)| ≤ (α · β)<λ

+

= (α · β)λ. The set A :=
⋃
λ<κ A(λ) is clearly

dense in Eκ, so
d(Eκ) ≤ |A| ≤

∑
λ<κ

(α · β)λ = (α · β)<κ,

as required.

Corollary 4.2.6. Let α ≥ 2 and κ ≥ ω be cardinals, and let 1 ≤ λ ≤ (α<κ)<κ and
1 ≤ µ ≤ 2((α

<κ)<κ). Then

(a) d(((D((α<κ)<κ))2
((α<κ)<κ)

)κ) = (α<κ)<κ; and
(b) d(((D(λ))µ)κ) ≤ (α<κ)<κ.

Proof. Clearly (b) is immediate from (a). To prove (a), it is enough to replace α and β
in Theorem 4.2.5 by (α<κ)<κ and then to use Theorem 2.2.6(d).

Discussion 4.2.7. A convenient method of proof of the Hewitt–Marczewski–Pondiczery
theorem (Theorem 4.1.1), adopted by many expositors, is to prove first that the tractable
space E := (D(α))2

α

has a dense subset A with |A| = α; since evidently there is a
continuous function f from E onto a dense subset of X, the set f [A] is dense in X,
with |f [A]| ≤ |A| = α. The identical argument suffices to derive Corollary 4.2.8 from
Theorem 4.2.5 and Corollary 4.2.6.

Corollary 4.2.8. Let α ≥ 2, β ≥ ω and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a
set of spaces.

(a) If d(Xi) ≤ α for each i ∈ I and |I| ≤ 2β, then d((XI)κ) ≤ (α · β)<κ;
(b) if d(Xi) ≤ α for each i ∈ I and |I| ≤ β, then d((XI)κ) ≤ (α · log(β))<κ; and
(c) if d(Xi) ≤ (α<κ)<κ for each i ∈ I and |I| ≤ 2((α

<κ)<κ), then d((XI)κ) ≤ (α<κ)<κ.

Remark 4.2.9. For cardinals α and κ such that α<κ = α = β, Corollary 4.2.8(a) is [4,
3.18] and was also mentioned in [5, p. 76].

We restate Corollary 4.2.8(b) in the form most easily comparable with Version 2 of
Theorem 4.1.1.

Theorem 4.2.10. Let {Xi : i ∈ I} be a set of spaces with d(Xi) = αi, and let α :=

supi∈I αi. Then
d((XI)κ) ≤ max{α<κ, (log(|I|))<κ}.

As we see in Discussion 4.2.11(d), however, the inequality in Theorem 4.2.10 can be
strict. Thus consistently the obvious κ-box analogue of Theorem 4.1.3 can fail.

Discussion 4.2.11. The two results

d(((D(α))2
α

)κ) ≤ α<κ
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and
d(((D((α<κ)<κ))2

((α<κ)<κ)

)κ) = (α<κ)<κ,

valid for α ≥ 2 and κ ≥ ω and given by Theorem 4.2.5(a) and Corollary 4.2.6(a) respec-
tively, suggest the attractive “intermediate” speculation

(4.2.1) d(((D(α<κ))2
(α<κ)

)κ) ≤ α<κ

which, if valid, would yield these two weaker statements:

d(((D(α))2
(α<κ)

)κ) ≤ α<κ,(4.2.2)

d(((D(α<κ))2
α

)κ) ≤ α<κ.(4.2.3)

We discuss what we do and do not know about the truth value of (4.2.1)–(4.2.3).
(a) (4.2.1) (hence also (4.2.2) and (4.2.3)) holds for all α and κ satisfying (α<κ)<κ =

α<κ. This is obvious from Corollary 4.2.6(a). Thus by Theorem 2.2.8(a) the conditions
(4.2.1), (4.2.2) and (4.2.3) hold (for all α ≥ 2) when κ is regular or there is ν < κ such
that αν = α<κ.

(b) (4.2.3) holds in ZFC, for all κ ≥ ω, when 2 ≤ α < ω. This is obvious, since
|D(α<κ)2

α | = α<κ in that case.
(c) For all α ≥ κ, (4.2.3) fails (hence (4.2.1) fails) in ZFC for certain κ. In fact, we

prove this statement:
Let α ≥ ω. There are arbitrarily large cardinals κ such that the space E := (D(α<κ))α

satisfies d(Eκ) > α<κ.
To prove that, choose λ ≥ ω such that cf(λ) ≤ α (for example, set λ := ω). Then, set

κ := iλ(α). Since κ > α the space Eκ is discrete, from Remark 2.2.3(b) we have

d(Eκ) = |E| = κα ≥ κcf(λ) = κcf(κ) > κ = α<κ.

(d) Consistently, (4.2.2) fails (hence (4.2.1) fails) when α = 2 and κ = ℵ1. Indeed,
Gitik and Shelah [17], answering a question left unresolved in [1] and [6], have constructed
models V1 and V2 of ZFC such that

d((2ℵω )ℵ1) =

{
ℵω+1 if V1,

ℵω+2 if V2

with 2ℵω = ℵωω = ℵω+2 in each case and with “GCH below ℵω”, such that 2<ℵω = ℵω.
Then taking α = 2 and κ = ℵω in Theorem 4.2.5(a) we have

2ℵω ≥ d((2(2(2
<ℵω )))ℵω ) ≥ d((2ℵω )ℵ1) = ℵω+2 = 2ℵω > ℵω = 2<ℵω

in the Gitik–Shelah model V2, while in V1 we have

2ℵω ≥ d((2(2(2
<ℵω )))ℵω ) ≥ d((2ℵω )ℵ1) = ℵω+1 > ℵω = 2<ℵω .

Thus in both V1 and V2 we have

2ℵω ≥ d((2(2(2
<ℵω )))ℵω ) > 2<ℵω ,

so (4.2.2) (hence (4.2.1)) fails there.
(e) We interpret the cited results of Gitik and Shelah, where the density character

of so simple a space as (2ℵω )ℵ1 is not determined by the axioms of ZFC (even when
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2ℵn = ℵn+1 for all n < ω and 2ℵω = ℵω+2), as indicating the difficulty, perhaps even the
futility, of finding a pleasing and definitive κ-box analogue of Theorem 4.1.3. We also note
that the Gitik–Shelah models V1 and V2 require large cardinals for their construction.
Therefore it might be that the failure of (4.2.2) requires large cardinals. For parallel
statements concerning the Suslin number, see Remark 5.2.23 below.

(f) It is clear from the relations

|2ℵω | ≥ d((2ℵω )ℵω ) ≥ d((2ℵω )ℵ1) = ℵω+2 = |2ℵω |

in V2 that d((2ℵω )ℵω ) = ℵω+2 there. For the value of d((2ℵω )ℵω ) in the model V1 we
have

ℵω+2 = |2ℵω | ≥ d((2ℵω )ℵω ) ≥ d((2ℵω )ℵ1) = ℵω+1

there, i.e.,
ℵω+1 ≤ d((2ℵω )ℵω ) ≤ ℵω+2.

As it was noted in [17, p. 236] there exist models of ZFC such that

d((D(α)ℵω )κ) = ℵω+1

for every α, κ < ℵω, and therefore in such models d((2ℵω )ℵω ) = ℵω+1.
We do not know if there exist models of ZFC such that d((2ℵω )ℵ1) = ℵω+1 and

d((2ℵω )ℵω ) = ℵω+2.
(g) For an exact computation of the weight and Suslin number of the spaces (2ℵω )ℵ1

and (2ℵω )ℵω in the Gitik–Shelah models V1 and V2, see Remark 5.2.26 below.
(h) While we do not pretend to follow every detail of the arguments from [17], nor to

frame maximal generalizations, we note that the consistent failure of (4.2.1) and (4.2.2)
is not restricted to the case α = 2 < ω. In both V1 and V2 one evidently has ℵ<ℵωn = ℵω
for 0 < n < ω, so (4.2.1) and (4.2.2) fail in those models (with κ = ℵω) for every α such
that 2 ≤ α < ℵω.

(i) In passing we note the existence of two misprints in [17] which have confused at
least two readers: Reference in Theorem 1.1(c) should be only to uncountable cardinals γ,
and in Theorem 4.2(4) the symbol < ℵ0 should be < ℵ1.

Remark 4.2.12. The arguments developed to prove 4.2.4–4.2.10 follow the general pat-
tern of classical arguments used to prove the original Hewitt–Marczewski–Pondiczery
Theorem 4.1.1, albeit with combinatorial modifications necessary to accommodate to
the κ-box topology. (When κ = ω, Lemma 4.2.3 reduces to the simple observations
that (1) the product of Hausdorff spaces is a Hausdorff space, and (2) in a Hausdorff
space, the points of any finite set can be separated by disjoint open sets.) Quite likely,
it was reasoning similar to ours which over 40 years ago provoked from Engelking and
Karłowicz [9, p. 285], after they had completed their own proof of the Hewitt–Mar-
czewski–Pondiczery theorem, the cavalier statement (here we quote faithfully, but using
the notation of the present paper) “We can also derive theorems analogous to those above
for κ-box topologies . . . . We shall not formulate these theorems since they are less inter-
esting, but the reader, if he wishes, will be able to do so without the least difficulty.”
OK, fair enough. We do note, however, that in the several treatments known to us of
the Hewitt–Marczewski–Pondiczery theorem, we have found no mention of the cardinal
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number (α<κ)<κ which figures prominently and naturally in our development. (This is
hardly surprising with respect to the paper [9], since those authors restrict attention to
box products of the form (XI)κ+ .) Nor have we found an indication, as in Theorem 4.3.2
below, that the upper bound α<κ ≥ d(((D(α))β)κ) given in Theorem 4.2.5(a) is in fact
assumed in every case with κ ≤ β ≤ 2α.

4.3. Lower bounds for d((XI)κ). In Section 4.2, seeking κ-box analogues and gener-
alizations of Theorem 4.1.1, for specific function pairs f and g of two variables we have
sought a function h such that

d(((D(f(α, κ)))g(α,κ))κ) ≤ h(α, κ).

Now here in Section 4.3, again for hand-picked f and g, we seek h′ such that

(4.3.1) d(((D(f(α, κ)))g(α,κ))κ) ≥ h′(α, κ).

In some cases the choice h = h′ is accessible, so

d(((D(f(α, κ)))g(α,κ))κ)

is computed exactly. In other cases, in parallel with Theorem 4.1.2, we find several con-
ditions sufficient to ensure that the inequality (4.3.1) is strict.

Lemma 4.3.1. Let α ≥ 2 and κ ≥ ω be cardinals and let E := (D(α))κ. Then

d(Eκ) ≥ α<κ.

Proof. For λ < κ the space ((D(α))λ)κ is discrete, and since the projection from Eκ
onto ((D(α))λ)κ is continuous we have d(Eκ) ≥ d(((D(α))λ)κ) = αλ. Hence d(Eκ) ≥∑
λ<κ α

λ = α<κ.

As we noted in Discussion 4.2.7, the Hewitt–Marczewski–Pondiczery theorem may
be regarded as a routine generalization of this startling special case: d((D(α))β) = α

when α ≥ ω and 1 ≤ β ≤ 2α. Therefore we draw specific attention to the correct κ-box
analogue of that result. We note that no regularity hypothesis is imposed here on the
cardinal number κ.

Theorem 4.3.2. Let ω ≤ κ ≤ β ≤ 2α. Then d(((D(α))β)κ) = α<κ.

Proof. The inequalities ≥ and ≤ are immediate from Lemma 4.3.1 and Theorem 4.2.5(a),
respectively.

In the following theorems we compute the density character of certain specific spaces.

Theorem 4.3.3. Let ω ≤ κ and 2 ≤ α ≤ κ. If either log(κ) < κ or κ is a regular strong
limit cardinal, then

(a) 2<κ = α<κ = κ<κ; and
(b) d(((D(α))κ)κ) = 2<κ = α<κ = κ<κ.

Proof. (a) That 2<κ ≤ α<κ ≤ κ<κ is clear, since 2 ≤ α ≤ κ. Now if log(κ) < κ then

κ<κ ≤ (2log(κ))<κ =
∑
λ<κ

(2log(κ))λ =
∑
λ<κ

2λ = 2<κ;
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and if κ is regular then since no set in [κ]<κ is cofinal in κ we have [κ]<κ ⊆
⋃
η<κ P(η),

so if in addition κ is a strong limit cardinal then

κ<κ = |[κ]<κ| ≤
∑
η<κ

|P(η)| =
∑
η<κ

2|η| ≤
∑
η<κ

κ = κ ≤ 2<κ.

(b) From Theorem 4.3.2 (with α = β = κ) and Lemma 4.3.1 (with α = 2) we have

κ<κ = d(((D(κ))κ)κ) ≥ d(((D(α))κ)κ) ≥ d((2κ)κ) ≥ 2<κ,

so the asserted equations follow from (a).

Here is our most comprehensive result for numbers of the form d((XI)κ).

Theorem 4.3.4. Let α ≥ 2 and κ ≥ ω be cardinals, and let α ≤ λ ≤ (α<κ)<κ and
κ ≤ µ ≤ 2((α

<κ)<κ). Then

(a) α<κ ≤ d(((D(λ))µ)κ) ≤ (α<κ)<κ;
(b) if κ is regular or some ν < κ satisfies αν = α<κ, then d(((D(λ))µ)κ) = α<κ.

Proof. (a) This is clear from Lemma 4.3.1 and Corollary 4.2.6(b).
(b) From Theorem 2.2.8(a) we have α<κ = (α<κ)<κ, so (b) follows from (a).

We next note that for λ = α and κ ≤ µ ≤ 2(α
<κ), the conclusion of Theorem 4.3.4(b)

can be established with a supplementary hypothesis weaker than the existence of ν < κ

such that αν = α<κ. (The ZFC-consistent existence of instances to which Theorem 4.3.5
applies, while Theorem 4.3.4(b) does not, is shown in Remark 4.3.6.)

Theorem 4.3.5. Let α ≥ 2, κ ≥ ω and κ ≤ µ ≤ 2(α
<κ), and set E := (D(α))µ. If there

is ν < κ such that 2(α
ν) = 2(α

<κ), then d(Eκ) = α<κ.

Proof. That d(Eκ) ≥ α<κ is immediate from Lemma 4.3.1. Now for ν ≤ λ < κ we have
2(α

λ) = 2(α
<κ), and there is, by Theorem 4.2.5(a) with α, αλ and λ+ in the role of α, β

and κ there, a dense set A(λ) ⊆ ((D(α))2
(αλ)

)λ+ such that |A(λ)| ≤ (α · αλ)λ = αλ. The
set A :=

⋃
ν≤λ<κA(λ) is clearly dense in (((D(α))(2

(α<κ)))κ, so

d(Eκ) ≤ d((((D(α))(2
(α<κ)))κ) ≤ |A| ≤

∑
ν≤λ<κ

αλ ≤ κ · α<κ = α<κ.

Remarks 4.3.6. (a) We indicate that there are models M of ZFC in which, for suitably
chosen α and κ as in Theorem 4.3.5 (specifically for α = 2 and κ = ℵω) there exist ν < κ

such that 2α
ν

= 2(α
<κ) but there is no ν < κ such that αν = α<κ. To that end, using the

fundamental consistency theorem of Easton [7] as given by Kunen [23, VIII], let M be a
model of ZFC in which

(1) 2ℵn = ℵω+n+1 for n < ω;
(2) 2ℵω = ℵω+ω+1; and
(3) 2ℵω+n+1 = 2ℵω+ω = ℵω+ω+2 for n < ω.

It is clear in M, taking α = 2 and κ = ℵω, that

α<κ = 2<ℵω = ℵω+ω,
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so for every ν = ℵn < ℵω = κ we have

αν = 2ℵn = ℵω+n+1 < ℵω+ω = α<κ

and
2α

ν

= 2(2
ℵn ) = ℵω+ω+2 = 2ℵω+ω = 2(α

<κ).

(b) We note in passing that the existence of ν < κ such that 2α
ν

= 2(α
<κ) holds in all

models in which log(2(α
<κ)) < α<κ. Indeed, if log(2(α

<κ)) = β < α<κ then there is λ < κ

such that β < αλ, and then 2β = 2α
ν

= 2(α
<κ) for all ν satisfying λ ≤ ν < κ.

Next, as promised, we give a couple of generalizations of Theorem 4.1.2 to the κ-box
context.

Theorem 4.3.7. Let α ≥ ω, β ≥ 2 and κ ≥ ω, and let S(Xi) > β for each i ∈ I. Suppose
that either

(i) some i ∈ I satisfies d(Xi) > α; or
(ii) |[I]<κ| > 2α; or
(iii) β<κ > 2α; or
(iv) there is J ∈ [I]<κ such that β|J| > α.

Then d((XI)κ) > α.

Proof. The sufficiency of (i) is clear: the natural projection from (XI)κ toXi is continuous
and surjective, so d((XI)κ) ≥ d(Xi).

For the rest of the proof, for i ∈ I let {Ui(η) : η < β} be a cellular family in Xi.
We prove d((XI)κ) > α, assuming that either (ii) or (iii) holds. For A ∈ [I]<κ and

f ∈ βA, set
U(A, f) := {x ∈ XI : i ∈ A⇒ xi ∈ Ui(f(i))}.

Let T be dense in (XI)κ with |T | = d((XI)κ) and set T (A, f) := T ∩ U(A, f).
We claim that the map φ :

⋃
A∈[I]<κ (A× βA)→ P(T ) given by φ(A, f) = T (A, f) is

injective. Let (A, f) 6= (B, g) with A,B ∈ [I]<κ, f ∈ βA and g ∈ βB . We consider two
cases:

Case 1: A = B. Then there is i ∈ A = B such that f(i) 6= g(i), so T (A, f)∩T (B, g) = ∅
(since Ui(f(i)) ∩ Ui(g(i)) = ∅).

Case 2: A 6= B. Without loss of generality there is then i ∈ A \ B. Choose η < β such
that f(i) 6= η. The set V := U(B, g) ∩

∏−1
i (Ui(η)) is then nonempty and open in (XI)κ,

and with p ∈ T ∩ V we have p ∈ T (B, g) \ T (A, f). The claim is proved.
For λ < κ and A ∈ [I]λ we have A × βA ⊆ dom(φ), so |dom(φ)| ≥ |[I]λ| and

|dom(φ)| ≥ βλ. Then it follows that |dom(φ)| ≥ |[I]<κ| · β<κ, so if d((XI)κ) = |T | ≤ α

and (ii) or (iii) holds, we would have the contradiction

2α < |[I]<κ| · β<κ ≤ |dom(φ)| ≤ |P(T )| ≤ 2α.

It remains to derive d((XI)κ) > α from (iv). Let J be as hypothesized, and for f ∈ βJ
set

V (f) :=
(∏
i∈J

Ui(f(i))
)
×
( ∏
i∈I\J

Xi

)
.
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Then V := {V (f) : f ∈ βJ} is cellular in (XI)κ, so

d((XI)κ) ≥ |V| = |βJ | = β|J| > β,

as required.

We note that the hypothesis in Theorem 4.3.7 on the family {Xi : I ∈ I} can be
relaxed in places. In connection with (iv), for example, it is clear that the condition
S(Xi) > β need hold only for i in some set J ∈ [I]<κ such that β|J| > α.

Taking β = 2 in Theorem 4.3.7 and replacing α there first by α<κ and then by
(α<κ)<κ, we obtain respectively parts (a) and (b) of the following corollary.

Corollary 4.3.8. Let α ≥ 2 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set of
spaces such that S(Xi) ≥ 3 for each i ∈ I.

(a) If |[I]<κ| > 2(α
<κ) then d((XI)κ)) > α<κ; and

(b) if |[I]<κ| > 2((α
<κ)<κ) then d((XI)κ) > (α<κ)<κ.

Corollary 4.3.8 shows that the inequalities given in Corollary 4.2.8 are sharp. The
following simple combinatorial result offers reformulations of some of the hypotheses of
Corollary 4.3.8.

Theorem 4.3.9. Let α ≥ 2 and κ ≥ ω be cardinals, and let I be a set.

(a) These three conditions are equivalent:

(1) |I| > 2(α
<κ); (2) |[I]<κ| > 2(α

<κ); (3) |I|<κ > 2(α
<κ).

(b) These three conditions are equivalent:

(1) |I| > 2((α
<κ)<κ); (2) |[I]<κ| > 2((α

<κ)<κ); (3) |I|<κ > 2((α
<κ)<κ).

Proof. The implications (1)⇒(2) and (2)⇒(3) are clear in both (a) and (b). To see that
(3)⇒(1) in (a), note that if |I| ≤ 2(α

<κ) then

|I|<κ ≤ (2(α
<κ))<κ ≤ (2(α

<κ))κ = 2(α
<κ)·κ = 2(α

<κ).

The proof that (3)⇒(1) in (b) is similar.

Remarks 4.3.10. (a) The authors of [4, 3.16], improving their results from [3], show
that if E = (D(α))2

α

or E = (D(α))α
+

, then d(Eκ) = α if and only if α = α<κ. Clearly
Theorem 4.3.4(b) above improves that statement. Similarly, Corollary 4.2.8(a) improves
[4, 3.18], which asserts the conclusion of Corollary 4.2.8 only under the assumption that
α = α<κ.

(b) The investigation by Hu [19] of cardinals of the form d((XI)κ) is from a differ-
ent perspective: Rather than beginning with the set E =

∏
i∈I D(αi) and seeking dense

subsets of the space Eκ, Hu [19] uses (maximal) generalized independent families of par-
titions of a given set S to map S faithfully onto dense subsets of spaces of the form Eκ
(one writes S ⊆ Eκ). The emphasis is on finding conditions such that S ⊆ Eκ is irre-
solvable. Hu [19] shows, for example, that if each αi is less than the first cardinal which
is strongly κ-inaccessible, and Eκ contains a dense, irresolvable subspace, then κ = 2<κ,
and consistently a measurable cardinal exists.
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5. On the Suslin number of κ-box products

We remind the reader of our standing convention that hypothesized spaces are not as-
sumed to enjoy any special separation properties. This complicates our exposition slightly,
since it is convenient for us to cite some basic familiar results from sources where, for
simplicity and often unnecessarily, such properties as Hausdorff separation are assumed
throughout. We mention in particular the following two useful results, both valid for
every space. These will be used frequently in what follows, without explicit restatement.

Let X be a space. Then

(a) S(X) 6= ω; and
(b) either S(X) < ω or S(X) is an (infinite) regular cardinal.

The proof of (a) given in [5, 2.10], although long-winded and unnecessarily compli-
cated, is valid without separation assumptions; (b) is a fundamental result of Erdős and
Tarski [14] (see [4, 2.10], [5, 2.14] for other treatments).

5.1. The classical context: κ = ω. As with Chapters 3 and 4 concerning weight
and density character respectively, we begin this chapter by citing those classical Suslin-
related theorems (pertaining to the usual product topology) whose κ-box analogues we
study here. As usual, when a set {Xi : i ∈ I} of spaces is given, we write XI :=

∏
i∈I Xi.

Theorem 5.1.1. Let {Xi : i ∈ I} be a set of nonempty spaces, and set

α := sup{S(XF ) : ∅ 6= F ∈ [I]<ω}.

Then

S(XI) =

{
α if (a) α < ω or (b) α is regular and α > ω,
α+ in all other cases.

The thrust of Theorem 5.1.1 is that the Suslin number of a product space XI (in the
usual product topology) is completely determined by the Suslin numbers of the various
subproducts XF with F ∈ [I]<ω. Much of this chapter is devoted to the presentation of
κ-box analogues of Theorem 5.1.1 (see in particular Theorems 5.2.4, 5.2.5, 5.2.20, 5.2.45
and Corollaries 5.2.40(b), 5.2.46).

The proof of Theorem 5.1.1 depends on nontrivial combinatorial machinery in which,
reflecting the restriction to the usual product topology, the cardinal numbers ω and
ω+ figure prominently. The key to the proof is the theory of quasi-disjoint families as
developed by Erdős and Rado [12], [13] (the “∆-system lemma”); this is used in the
proof of Theorem 5.2.4. For a thorough development of that result and of several other
Suslin-related consequences, the reader may consult [4, 3.8] and [5, 3.25].

As we noted in Theorem 4.1.1, for α ≥ ω the product of 2α-many (or fewer) spaces Xi

such that d(Xi) ≤ α satisfies d(XI) ≤ α. From that and Theorem 5.1.1, one can derive
the following well-known theorem (see for example [8, 2.3.17]; or Theorem 5.2.11 for the
general κ-box statement of which Theorem 5.1.2 is the case κ = ω).

Theorem 5.1.2. Let α ≥ ω and {Xi : i ∈ I} be a set of spaces with d(Xi) ≤ α for each
i ∈ I. Then S(XI) ≤ α+.
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Discussion 5.1.3. Theorems 5.1.1 and 5.1.2 leave unanswered, even for the usual product
topology, a question which arises naturally in their wake:

Given α ≥ ω and a finite set {Xi : i ∈ F} of spaces with S(Xi) ≤ α for each i ∈ F ,
is necessarily S(XF ) ≤ α?

The brief response is that the question is not settled by the axioms of ZFC, even
in the case α = ω+. Referring the reader to [5] for extensive comments and relevant
bibliographic citations, we simply remark that it has been known in ZFC for many years
that while the Suslin number may “jump” in passing from a space X to X ×X, roughly
speaking that jump is bounded by a single exponential. To be more precise, we next cite
a theorem taken from [4, 3.13] that gives a partial generalization to certain restricted box
topologies. For the full generalization to the κ-box context, see Theorem 5.2.30.

5.2. Concerning S((XI)κ) for κ > ω

Theorem 5.2.1. If α ≥ ω and {Xi : i ∈ I} is a family of spaces such that S(Xi) ≤ α+

for i ∈ I, then
S(XI) ≤ S((XI)α+) ≤ (2α)+.

The following notational device (see [5, p. 254]) is useful, as we seek κ-box analogues
of Theorems 5.1.1 and 5.1.2.

Notation 5.2.2. Let α and κ be infinite cardinals. Then α is strongly κ-inaccessible (in
symbols: κ� α) if (a) κ < α, and (b) βλ < α whenever β < α and λ < κ.

Remark 5.2.3. To help the reader fix ideas, we note that the condition κ � α occurs
for many pairs of cardinals. For example,

(1) every uncountable cardinal α satisfies ω � α;
(2) every infinite cardinal α satisfies α+ � (2α)+, since if λ < α+ and β < (2α)+ then

λ ≤ α and β ≤ 2α, and hence βλ ≤ (2α)α = 2α < (2α)+;
(3) every pair κ, α with α ≥ 2 and κ ≥ ω satisfies κ � ((α<κ)<κ)+, since if λ < κ and

β < ((α<κ)<κ)+ then β ≤ (α<κ)<κ, and hence βλ ≤ ((α<κ)<κ)<κ = (α<κ)<κ (by
Theorem 2.2.6(d)); and

(4) every pair κ, α with α ≥ 2 and κ ≥ ω singular satisfies κ+ � ((α<κ)<κ)+, since if
λ < κ+ and β < ((α<κ)<κ)+ then λ ≤ κ and β ≤ (α<κ)<κ, and hence

βλ ≤ ((α<κ)<κ)κ = ακ = (α<κ)<κ

(by Theorem 2.2.6(c)).

Theorem 5.2.4 (cf. [4, 3.8], [5, 3.25(a)]). Let ω ≤ κ � α with α regular and let {Xi :

i ∈ I} be a family of nonempty spaces. Then S((XI)κ) ≤ α if and only if S((XJ)κ) ≤ α

for each nonempty J ∈ [I]<κ.

From the relations α+ � (2α)+ and κ� ((α<κ)<κ)+ we have these consequences of
Theorem 5.2.4.

Theorem 5.2.5. Let κ ≥ ω and α ≥ 2 be cardinals and let {Xi : i ∈ I} be a family of
nonempty spaces.
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(a) If α ≥ ω, then S((XI)α+) ≤ (2α)+ if and only if

S((XJ)α+) ≤ (2α)+

for each nonempty J ∈ [I]≤α; and
(b) S((XI)κ) ≤ ((α<κ)<κ)+ if and only if

S((XJ)κ) ≤ ((α<κ)<κ)+

for each nonempty J ∈ [I]<κ.

The following result, another immediate consequence of Theorem 5.2.4, furnishes in
certain cases an exact formula for the numbers S((XI)κ).

Corollary 5.2.6. Let κ ≥ ω, let {Xi : i ∈ I} be a set of nonempty spaces, and set
α := sup{S((XJ)κ) : ∅ 6= J ∈ [I]<κ}. Then

(a) (cf. [5, 3.27]) If α is regular and κ� α, then S((XI)κ) = α;
(b) if α is singular and κ� α+, then S((XI)κ) = α+.

The following result, taken from [5, 3.28], is given for the reader’s convenience. Since
every infinite cardinal α satisfies ω � α+ with α+ regular, the implication (a)⇒(b) is a
suitable κ-box analogue of Theorem 5.1.2.

Theorem 5.2.7. Let ω ≤ κ < α with α regular. Then these conditions are equivalent:

(a) κ� α;
(b) if {Xi : i ∈ I} is a set of spaces such that d(Xi) < α, then S((XI)κ) ≤ α.

Proof. (a)⇒(b). According to Theorem 5.2.4, it suffices to show that S((XJ)κ) ≤ α

whenever ∅ 6= J ∈ [I]<κ. Fix such J , for i ∈ J let Di be dense in Xi with |Di| = βi < α,
and set D :=

∏
i∈J Di and β := supi∈J βi. Since |J | < κ < α = cf(α) we have β < α, and

from κ� α follows |D| ≤ β|J| < α. Clearly D is dense in (XJ)κ, and from d((XJ)κ) < α

it then follows that S((XJ)κ) ≤ α, as required.
(b)⇒(a). Fix β < α and λ < κ, and set X := (D(β))λ. Then (X)κ is discrete, and

from S((X)κ) ≤ α it follows that βλ = |X| = |(X)κ| < α.

Corollary 5.2.8. Let α ≥ 2 and κ ≥ ω, and let {Xi : i ∈ I} be a set of spaces.

(a) If α ≥ ω and d(Xi) ≤ 2α for each i ∈ I, then S((XI)α+) ≤ (2α)+; and
(b) if d(Xi) ≤ (α<κ)<κ for each i ∈ I, then S((XI)κ) ≤ ((α<κ)<κ)+.

Proof. As noted in Remark 5.2.3(3) & (4) we have κ � (α<κ)<κ)+ and α+ � (2α)+,
so Theorem 5.2.7 applies (with (2α)+ replacing α in (a), and ((α<κ)<κ)+ replacing α
in (b)).

The following result, which we are going to use frequently, shows a relationship be-
tween the Suslin number of product spaces of the type (XI)κ and the cardinal number κ.

Lemma 5.2.9. Let α ≥ 3 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set of spaces
such that S(Xi) ≥ α for each i ∈ I. Let µ = min{κ, |I|+}. Then S((XI)κ) > β<µ for
each β < α.
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Proof. We show first that if |I| ≥ κ then S((XI)κ) > κ. Indeed, in this case there is
J ∈ [I]κ, say J = {iη : η < κ}. For iη ∈ J let U(iη, 0) and U(iη, 1) be nonempty, disjoint
open subsets of Xiη , and for η < κ set

U(η) :=
(∏
ξ<η

U(iξ, 0)
)
× U(iη, 1)×

( ∏
i∈I\{iξ:ξ≤η}

Xi

)
.

Then C(κ) := {U(η) : η < κ} is cellular in (XI)κ, so S((XI)κ) > |C(κ)| = κ.
Now fix β < α, λ < µ and J ∈ [I]λ. For i ∈ J let {U(i, η) : η < β} be a cellular family

in Xi, and for f ∈ βJ set U(f) := (
∏
i∈J U(i, f(i)))×XI\J . Then C := {U(f) : f ∈ βJ}

is cellular in (XI)κ, and

(5.2.1) S((XI)κ) > |C| = |βJ | = βλ.

Since S((XI)κ) > βλ for each λ < κ, we have

S((XI)κ) ≥ β<µ for each β < α.

To show that S((XI)κ) > β<µ for each β < α we consider three cases:

Case 1: The cardinal β<µ is singular. Then clearly S((XI)κ) > β<µ.

Case 2: The cardinal β<µ is regular and there is ν < µ such that βν = β<µ. Then
S((XI)κ) > βν = β<µ by (5.2.1).

Case 3: Cases 1 and 2 fail. Then, according to Lemma 5.2.15(b), β<µ = µ and µ is a
regular strong limit cardinal. Since µ = min{κ, |I|+}, we have µ = κ, hence |I| ≥ κ and
since in that case S((XI)κ) > κ we conclude that S((XI)κ) > β<µ.

Theorem 5.2.10. Let κ ≥ ω be a limit cardinal and let {Xi : i ∈ I} be a set of spaces
such that |I| ≥ κ and S(Xi) ≥ 3 for each i ∈ I. Let also

α :=

{
sup{S((XI)γ) : γ < κ} if κ > ω,
sup{S(XJ) : J ∈ [I]<κ} if κ = ω.

Then

(a) κ ≤ α ≤ S((XI)κ) ≤ α+ and κ+ ≤ S((XI)κ);
(b) if α is regular and κ < α then S((XI)κ) = α; and
(c) if α is singular or κ = α then S((XI)κ) = α+.

Proof. In each of (a), (b), or (c) the case κ = ω follows from Theorem 5.1.1. Therefore
below we consider only the case κ > ω.

(a) That α ≤ S((XI)κ) is obvious. Let µ = min{κ, |I|+}. Since |I| ≥ κ, we have
µ = κ. Then it follows from Lemma 5.2.9 that S((XI)κ) > 2<µ = 2<κ ≥ κ, hence
S((XI)κ) ≥ κ+. Also, since κ > ω, we have S((XI)γ+) > 2<γ

+

= 2γ ≥ γ+ for every
γ < κ, hence α ≥ κ.

To prove S((XI)κ) ≤ α+, suppose there is a basic cellular family C in (XI)κ such
that |C| = α+, and for γ < κ set C(γ) := {U ∈ C : |R(U)| < γ}. Then since α+ is
regular with α+ > κ, there is γ < κ such that |C(γ)| = α+ and we have the contradiction
α ≥ S((XI)γ) ≥ α++.
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(b) A similar argument applies. If there is a basic cellular family C in (XI)κ such that
|C| = α then C =

⋃
γ<κ C(γ) with C(γ) = {U ∈ C : |R(U)| < γ} and from the regularity

of α and the relation κ < α we have |C(γ)| = α for some γ < κ, and thus

α ≥ S((XI))κ) ≥ S((XI)γ) > α,

a contradiction.
(c) Since S((XI)κ) is regular, this is immediate from (a).

Theorem 5.2.11. Let α ≥ 2 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set of
spaces with d(Xi) ≤ α for each i ∈ I. Then S((XI)κ) ≤ (α<κ)+.

Proof. We assume first that α ≥ ω, and we consider two cases:

Case 1: α<κ = (α<κ)<κ. The conclusion is immediate from Corollary 5.2.8 (even with
the hypothesis d(Xi) ≤ α weakened to d(Xi) ≤ α<κ = (α<κ)<κ).

Case 2: Case 1 fails. Then κ is singular (by Theorem 2.2.8(a)) and therefore a limit
cardinal such that κ > ω. If there exists γ < κ such that S((XI)κ) = S((XI)γ+) then
since γ+ is regular it follows from Corollary 5.2.8(b) that

S((XI)κ) = S((XI)γ+) ≤ (αγ)γ ≤ α<κ < (α<κ)+.

If there is no γ < κ such that S((XI)κ) = S((XI)γ+) then for each γ < κ we have
S((XI)γ+) ≤ (αγ)γ ≤ α<κ, and hence

S((XI)κ) ≤
(

sup
γ<κ

S((XI)γ)
)+
≤ (α<κ)+

from Theorem 5.2.10(a).
It remains to consider the case α < ω. Note that d(Xi) ≤ ω for each i ∈ I. Then if

κ = ω we have
S((XI)κ) = S(XI) ≤ ω+ = (α<κ)+

from Theorem 5.1.2, and if κ > ω then the preceding paragraphs apply to give

S((XI)κ) ≤ (ω<κ)+ ≤ ((2ω)<κ)+ = (2<κ)+ ≤ (α<κ)+,

as required.

Remark 5.2.12. (a) If the hypothesis d(Xi) ≤ α of Theorem 5.2.11 is weakened to
d(Xi) ≤ α<κ, the conclusion can fail. To see that, it is enough to refer to Discussion 4.2.11,
where we noted that for every pre-assigned α ≥ ω the choice κ := iλ(α) with λ ≤ cf(α)

guarantees that the space E := (D(α<κ))I with |I| = α has Eκ discrete (since κ > |I|)
and |Eκ| = (α<κ)α = κα > α<κ, hence S(Eκ) = |Eκ|+ > (α<κ)+.

(b) With Theorem 5.2.11 in hand the implication (a)⇒(b) in Theorem 5.2.7 becomes
now a direct corollary. Indeed, if α = β+ in Theorem 5.2.7 then d(Xi) ≤ β, and according
to Theorem 5.2.11 we have

S((XI)κ) ≤ (β<κ)+ =
(∑
λ<κ

βλ
)+
≤ (β · κ)+ = α

since κ � α. And if α is a regular limit cardinal in Theorem 5.2.7 then Theorem 5.2.11
gives S((XI)κ) ≤ (α<κ)+. But in this case, since α is regular and no set in [α]<κ is cofinal
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in α we have
α<κ = |[α]<κ| ≤

∑
η<α

|[η]<κ| =
∑
η<α

|η|<κ ≤
∑
η<α

α = α,

since |η|<κ =
∑
ζ<κ |η|ζ ≤ κ · α = α for every η < α whenever κ� α.

Theorem 5.2.14, using some of those same ideas, strengthens that result. For use in its
proof and frequently thereafter we adopt henceforth the following notational convention
concerning limit cardinals κ. We do not exclude here the possibility that κ is regular, but
this convention will be invoked chiefly in cases where it is known that cf(κ) < κ.

Notation 5.2.13. Let κ ≥ ω be a limit cardinal. Then {κη : η < cf(κ)} is a set of
cardinals such that

(a) κη < κη′ < κ when η < η′ < cf(κ), and
(b)

∑
η<cf(κ) κη = κ.

Theorem 5.2.14. Let α ≥ 2, let κ > ω be a (possibly regular) limit cardinal, and let
{κη : η < cf(κ)} be a family of cardinals as in Notation 5.2.13. For η < cf(κ) let {X(η) :

η < cf(κ)} be a (not necessarily faithfully indexed) set of spaces such that S(X(η)) ≥ ακη
for each η < cf(κ), and let X :=

∏
η<cf(κ) X(η). Then

(a) S(Xcf(κ)) ≥ α<κ; and
(b) if α<κ < (α<κ)<κ, then S(X(cf(κ))+) > ακ ≥ (α<κ)+.

Proof. (a) is obvious, since S(Xcf(κ)) ≥ S(X(η)) ≥ ακη for each η < cf(κ).
(b) The topology of X(cf(κ))+ is the (full) box topology. Since cf(α<κ) = cf(κ) < κ by

Theorem 2.2.8, we may assume without loss of generality that ακη < ακη′ for η < η′ <

cf(κ). Let C(η) := {X(η)} for limit ordinals η < cf(κ), and for η < cf(κ) let C(η + 1)

be cellular in X(η + 1) with |C(η + 1)| ≥ ακη . Then C := {
∏
η<cf(κ) Cη : Cη ∈ C(η)} is

cellular in X(cf(κ))+ with

|C| =
∏

η<cf(κ)

|C(η)| ≥
∏

η<cf(κ)

ακη = α
∑
η<cf(κ) κη = ακ,

so S(X(cf(κ))+) > ακ ≥ (α<κ)+.

The following simple lemma, strictly set-theoretic (nontopological) in nature, is one
of several preliminaries required for the proof of Theorem 5.2.20.

Lemma 5.2.15. Let α ≥ 2 and κ ≥ ω be cardinals.

(a) If α<κ is a successor cardinal, then there is ν < κ such that αν = α<κ.
(b) If α<κ is a regular cardinal and there is no ν < κ such that αν = α<κ, then α<κ = κ

and κ is a regular strong limit cardinal.

Proof. (a) Let α<κ = λ+.
If κ = α<κ then α<κ = αλ (with λ < κ).
If κ < α<κ and αν < α<κ for each ν < κ, then we have the contradiction

α<κ =
∑
ν<κ

αν ≤ λ · κ = λ < λ+ = α<κ.
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(b) It follows from (a) that if (b) fails and there is no ν < κ such that αν = α<κ, then
α<κ is a (regular) limit cardinal and we have

α<κ = cf(α<κ) ≤ cf(κ) ≤ κ ≤ α<κ.

Hence α<κ = κ, and for each ν < κ we have

2ν ≤ αν < α<κ = κ,

as required.

Remark 5.2.16. It is not difficult to show, as in [4, 3.12], that for every uncountable
regular cardinal α there is a product space XI such that S(XI) = S((XI)ω) = α; indeed,
as noted there, with Y :=

∏
β<α D(β) one has S(Y I) = α for all nonempty sets I.

Thus the instance S(XI) = α allowed by Theorem 5.1.1 does in fact arise in nontrivial
circumstances, provided that uncountable regular limit cardinals α do exist. In any case it
is immediate from Theorem 5.1.1 that for every infinite cardinal α of the form α = β+ one
has S((D(β))I) = α for all nonempty sets I. The κ-box analogue of these statements holds
for suitable regular cardinals α (see Theorem 5.2.20(a) and Remark 5.2.21(b) below), but
the full analogue fails consistently (see Remark 5.2.34).

We continue with results preparatory to the proof of Theorem 5.2.20.

Theorem 5.2.17. Let α ≥ 3 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set of
spaces such that |I|+ ≥ κ and α ≤ S(Xi) for each i ∈ I. Then

(a) α<κ ≤ S((XI)κ); and
(b) if in addition α < κ then (2<κ)+ = (α<κ)+ ≤ S((XI)κ).

Proof. (a) We consider two cases:

Case 1: α is singular. Then for each i ∈ I we have S(Xi) ≥ α+, and it follows from
Lemma 5.2.9 (with α+ now replacing α) that for each λ < κ we have S((XI)κ) > αλ.
Thus

S((XI)κ) ≥ sup
λ<κ

(αλ)+ ≥
∑
λ<κ

αλ = α<κ.

Case 2: α is regular. (We consider here only the case α ≥ κ, since the case α < κ is
considered in (b).) Fix β < α. Since S(Xi) > β for each i ∈ I, it follows from Lemma
5.2.9 that S((XI)κ) ≥ (βλ)+ for every λ < κ. Therefore

(5.2.2) S((XI)κ) ≥ sup
β<α

(βλ)+ ≥
∑
β<α

βλ.

Since α is regular and λ < κ ≤ α, for each A ∈ [α]λ there is ξ < α such that A ⊆ ξ (with
|ξ| < α), so αλ =

∑
β<α β

λ. It follows from (5.2.2) that S((XI)κ) ≥ αλ for each λ < κ.
Hence S((XI)κ) ≥ α<κ, as required.

(b) Since
2<κ ≤ α<κ ≤ (2α)<κ =

∑
λ<κ

(2α)λ =
∑
λ<κ

2λ = 2<κ,

we have
2<κ = α<κ.
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Now fix λ < κ. Since S(Xi) > 2 for each i ∈ I, it follows from Lemma 5.2.9 that

(5.2.3) S((XI)κ) ≥ S((XI)λ+) ≥ (2λ)+.

Case 1: There exists ν < κ such that αν = α<κ. Since α < κ, without loss of generality
we can assume that ν ≥ α. Then αν = 2ν and from (5.2.3) we get

S((XI)κ) ≥ (2ν)+ > 2ν = α<κ.

Case 2: Case 1 fails. If α<κ is regular then it follows from Lemma 5.2.15(b) that κ = α<κ

and κ is a regular strong limit cardinal. If κ = ω then surely S((XI)κ) ≥ κ+, and if κ > ω

then Theorem 5.2.10(a) applies to give

S((XI)κ) ≥ κ+ = (α<κ)+.

Now let α<κ be singular. Since (5.2.3) holds for every λ < κ we have

S((XI)κ) ≥ sup
λ<κ

(2λ)+ ≥
∑
λ<κ

2λ = α<κ,

and since α<κ is singular we have S((XI)κ) ≥ (α<κ)+, as required.

Corollary 5.2.18. Let α, β and κ be cardinals with α≥3 and κ≥ω, and let {Xi : i ∈ I}
be a set of spaces such that |I|+ ≥ κ, and d(Xi) ≤ β and α ≤ S(Xi) for each i ∈ I. Then
α<κ ≤ S((XI)κ) ≤ (β<κ)+.

Proof. Follows directly from Theorems 5.2.11 and 5.2.17.

Corollary 5.2.19. Let α ≥ 3 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set
of spaces such that |I|+ ≥ κ and d(Xi) ≤ α ≤ S(Xi) for each i ∈ I. Then α<κ ≤
S((XI)κ) ≤ (α<κ)+.

Corollary 5.2.19 provides tight parameters, but leaves undetermined the question of
exactly when the value of S((XI)κ) is α<κ and when it is (α<κ)+. In the following theorem
we settle that matter completely.

Theorem 5.2.20. Let α ≥ 3 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set of spaces
such that |I|+ ≥ κ and d(Xi) ≤ α ≤ S(Xi) for each i ∈ I. Consider these conditions:
(i) α is regular; (ii) α = α<κ; (iii) κ� α; (iv) S((XJ)κ) = α for all nonempty J ∈ [I]<κ.
Then:

(a) if conditions (i)–(iv) all hold, then S((XI)κ) = α<κ = α; and
(b) if one (or more) of these conditions fails, then S((XI)κ) = (α<κ)+.

Proof. (a) is immediate from Theorem 5.2.4, since S(Xi) = α = α<κ for each i ∈ I under
the present hypotheses.

(b) It suffices, according to Corollary 5.2.19, to assume that S((XI)κ) = α<κ and to
show that conditions (i), (ii), (iii) and (iv) must hold. We consider two cases:

Case 1: There is ν < κ such that αν = α<κ. We fix such ν.
If (i) fails then S(Xi) = α+ and from Lemma 5.2.9 (with α+ and ν in the roles of α

and µ, respectively) we have S((XI)κ) ≥ S((XI)ν+) > αν = α<κ, a contradiction. Thus
(i) holds.
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To see that (ii) holds, suppose first that there are β < α and λ < κ such that βλ ≥ α.
Then

α<κ = αν ≤ βλ·ν ≤ αλ·ν ≤ α<κ,

so from Lemma 5.2.9 we conclude that S((XI)κ) > β<κ ≥ βλ·ν = α<κ, a contradiction.
Thus

(5.2.4) βλ < α for all β < α, λ < κ.

It follows that κ ≤ α. Then each λ < κ satisfies λ < α, and from the regularity of α we
have [α]λ =

⋃
β<α [β]λ for each such λ. Thus (5.2.4) gives

α<κ =
∑
λ<κ

αλ ≤
∑
λ<κ

[∑
β<α

βλ
]
≤ κ · α · α = α ≤ α<κ,

and (ii) is proved.
To prove (iii) we need only show κ < α, since (5.2.4) then gives κ � α. Suppose

then that κ = α. Then (5.2.4) shows that κ is a (regular, strong) limit cardinal, so from
Theorem 5.2.10 we have the contradiction S((XI)κ) > κ = α = α<κ. Thus κ < α and
the proof of (iii) is complete.

To prove (iv), it suffices to note that if S((XJ)κ) > α for some nonempty J ∈ [I]<κ,
then we have the contradiction S((XI)κ) > α = α<κ.

Case 2: There is no ν < κ such that αν = α<κ. If α<κ is singular, then S((XI)κ) = α<κ

is impossible, so α<κ is regular and Lemma 5.2.15(b) applies to show that α<κ = κ is
a (regular, strong) limit cardinal; from Theorem 5.2.10 we again have the contradiction
S((XI)κ) > κ = α<κ.

Although every infinite Suslin number is regular and uncountable, hence is either a
successor cardinal or an uncountable regular limit cardinal, it is perhaps not clear from
Theorem 5.2.20 exactly which uncountable regular cardinals occur in the form S((XI)κ)

with {Xi : i ∈ I} constrained as in Theorem 5.2.20. Is part (a) of that theorem potentially
vacuous? Can every successor cardinal β+ occur as β+ = α in Theorem 5.2.20(a)? For
each κ, can some β+ = α so occur? Do there exist, for every regular limit cardinal α,
infinite κ � α and spaces {Xi : i ∈ I} such that S((XI)κ) = α? We address these
questions in 5.2.21–5.2.23 below.

Remarks 5.2.21. (a) Let β be a singular cardinal and set α := β+. Let I be an un-
countable set, and for i ∈ I write Xi := D(β). Clearly (i)–(iii) are satisfied with κ = ω;
also (iv) is satisfied with κ = ω, since if J ∈ [I]<ω then XJ = XJ is discrete with
|XJ | = β, so S(XI) = S((XI)ω) = β+ = α. Thus S(XI) = S((XI)ω) = α by Theo-
rem 5.2.20(a). The same conclusion is available from Theorem 5.2.20(b) by replacing α
everywhere in the statement of Theorem 5.2.20 by β. In this case both (i) and (iv) fail
for β, so S(XI) = S((XI)ω) = β+ = α by Theorem 5.2.20(b).

(b) Similar examples exist in ZFC for every uncountable regular cardinal κ. Indeed,
given such κ let γ ≥ 2 be arbitrary, and set β := iκ(γ) and α := β+. For λ < κ we have

[β]λ =
⋃
δ<β

[δ]λ and [α]λ =
⋃
ξ<α

[ξ]λ,
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so
βλ ≤

∑
δ<β

δλ ≤
∑
δ<β

2δ · 2λ = β and αλ ≤ α · βλ ≤ α · β = α.

Conditions (i)–(iii) are then clear, and again, as in (a), if |I| > κ and Xi := D(β) for
each i ∈ I, then each space (XJ)κ = (XJ)κ is discrete (when |J | < κ) with |XJ | = β, so
S((XJ)κ) = β+ = α and (iv) holds by Theorem 5.2.20(a). Also, as in (a) above, the same
conclusion is available from Theorem 5.2.20(b) by replacing α everywhere in the statement
of Theorem 5.2.20 by β. In this case both (i) and (iv) fail for β, so S((XI)κ) = β+ = α

by Theorem 5.2.20(b).
(c) Items (a) and (b) above indicate that in all models of ZFC conditions (i)–(iv) of

Theorem 5.2.20(a) are satisfied by suitably chosen cardinals and spaces, so part (a) of
Theorem 5.2.20 is not vacuous. Those examples depend, however, on choosing for α a
regular cardinal of the form α = β+. Part (a) of Theorem 5.2.22 shows exactly which
successor cardinals γ+ arise as S((XI)κ) in Theorem 5.2.20, and part (b) indicates when
it can occur that S((XI)κ) is a limit cardinal.

Theorem 5.2.22. Let α ≥ 3 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set of
spaces such that |I|+ ≥ κ and d(Xi) ≤ α ≤ S(Xi) for each i ∈ I.

(a) If S((XI)κ) is a successor cardinal—say S((XI)κ) = γ+—then either conditions
(i)–(iv) of Theorem 5.2.20 all hold and γ = γ<κ, or at least one of those conditions
fails and γ = α<κ.

(b) If S((XI)κ) is a (regular) limit cardinal, then S((XI)κ) = α and d(Xi) = S(Xi) = α

for each i ∈ I.

Proof. (a) If γ+ = S((XI)κ) 6= (α<κ)+ then by Theorem 5.2.20 the indicated conditions
(i)–(iv) all hold and γ+ = S((XI)κ) = α = α<κ. Since κ � α = γ+ we have γλ = γ for
all λ < κ, and hence γ<κ ≤ κ · γ = γ, so γ = γ<κ, as asserted.

(b) If S((XI)κ) is a regular limit cardinal then conditions (i)–(iv) of Theorem 5.2.20
all hold, so S((XI)κ) = α by Theorem 5.2.20(a); further, for each i ∈ I we have S(Xi) = α

by condition (iv). If there is i ∈ I such that d(Xi) < α then (d(XI))
+ < α = S(Xi),

which is impossible.

Remark 5.2.23. It is well known that the existence of an uncountable regular strong limit
cardinal cannot be derived from the axioms of ZFC; indeed, as noted by Jech [20, 12.12],
those axioms cannot establish even the relative consistency of the existence of such a
cardinal. In this connection, the referee of this paper has remarked that “the Gitik–Shelah
models [described above in Discussion 4.2.11] are not “mere” consistency results but [they]
require rather large cardinals for their construction. This brings up the question of the
consistency strength of the statements that hold in the models V1 and V2 and their
consequences, e.g., it may be that the failure of Theorem 4.1.2 requires large cardinals.”

We note that if an uncountable strong limit cardinal α exists, then there are cardinals
κ and spaces Xi to which Theorems 5.2.20(a) and 5.2.22 apply. Indeed, let α be a regular
limit cardinal and suppose that κ satisfies ω ≤ κ � α = α<κ. (These latter conditions
are satisfied by every infinite κ < α, in case α is in addition assumed to be a strong
limit cardinal.) Let I be a nonempty set, and for β < α and i ∈ I set D(β, i) := D(β).
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Then {D(β, i) : β < α, i ∈ I} is a set of spaces such that d(D(β, i)) = β < α, so by
Theorem 5.2.7 the space Y :=

∏
β<α, i∈I D(β, i) satisfies S((Y )κ) = α. As a set we have

Y = XI withX :=
∏
β<αD(β), and the topology of the space Yκ is finer than the topology

of the space (XI)κ, so also the power space XI satisfies S((XI)κ) = α, where α is a
(regular strong) limit cardinal. Clearly d(X) = α and S(X) = α, and therefore (XI)κ
is an example of a product space that satisfies all the hypotheses and the conclusion of
Theorem 5.2.20(a).

Lemma 5.2.24. Let κ be a strong limit cardinal.

(a) If 2 ≤ α < κ then α<κ = κ.
(b) If κ is regular then κ<κ = κ.
(c) If κ is singular then κ<κ = 2κ.

Proof. (a) We have

κ ≤ α<κ ≤ (2α)<κ =
∑
λ<κ

(2α)λ =
∑
λ<κ

2λ ≤ κ · κ = κ.

(b) This is proved in Lemma 4.3.3(a).
(c) With {κη : η < cf(κ)} chosen as in Notation 5.2.13 we have

2κ = 2
∑
η<cf(κ) κη =

∏
η<cf(κ)

2κη ≤ κcf(κ) ≤ κ<κ ≤ 2κ

which proves our claim.

Theorem 5.2.25. Let κ be a strong limit cardinal and I be an index set with |I| ≥ κ.

(a) If 2 ≤ α < κ then S(((D(α))I)κ) = κ+.
(b) If κ is regular then S(((D(κ))I)κ) = κ+.
(c) If κ is singular then S(((D(κ))I)κ) = (2κ)+.

Proof. In each case, condition (iii) of Theorem 5.2.20 fails, so parts (a), (b) and (c) follow
from Theorem 5.2.20(b) and from the respective parts of Lemma 5.2.24.

Remark 5.2.26. As we noted in Discussion 4.2.11(f), the value of d((2ℵω )ℵω depends on
the model of ZFC, while the findings we have enunciated here are sufficiently powerful
that the weight and Suslin number of such spaces as (2ℵω )ℵ1 and (2ℵω )ℵω in V1 and
V2 now emerge painlessly. To make those computations, recall that 2ℵn = ℵn+1 and
2ℵω = ℵωω = ℵω+2 there, so from Theorem 3.1.7(b) we have

w((2ℵω )ℵ1) = ℵωω = ℵω+2,

and also
w((2ℵω )ℵω ) = (ℵω)<ℵω = ℵω+2

in both those models.
Concerning the Suslin number, it is clear that S((2ℵ0)ℵ1) = (2ℵ0)+ = c+ in ZFC, so

from Corollary 5.2.8 we see, for each nonempty set I, that

c+ = S((2ℵ0)ℵ1) ≤ S((2I)ℵ1) ≤ c+,

hence S((2ℵω )ℵ1) = c+ in ZFC (with c+ = ℵ2 in the models V1 and V2).
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Finally, from Theorem 5.2.25(a) (or from Theorem 5.2.20(b)) we have

S((2ℵω )ℵω ) = (ℵω)+ = ℵω+1

in V1 and V2.

In Theorem 5.2.30 below we give an upper bound for the Suslin number of a product
space with the κ-box topology that depends only on the Suslin numbers of its coordinate
spaces, rather than (as in Theorem 5.2.5) on the Suslin numbers of its “small” sub-
products. For that we need the following notation (see [4], [5], [22]).

Notation 5.2.27. Let α, β, κ and λ be cardinals. The arrow notation α→ (κ)βλ denotes
the following partition relation: if [α]β =

⋃
i<λ Pi then there are A ⊆ α and i < λ such

that |A| = κ and [A]β ⊆ Pi.

Preliminary to Theorem 5.2.30 we give a combinatorial lemma which makes plain
the relevance of the arrow relation α → (κ)2λ to numbers of the form S((XI)λ+). The
(general) proof we give is as anticipated in [4, p. 73]; it parallels in all its essentials that
of the special case treated in [4, 3.13].

We remark that results significantly stronger than that of Lemma 5.2.28, which have
perhaps not received the attention or the recognition they deserve, were developed by
Negrepontis and his school in Athens in the 1970’s. It is shown in [5, 5.17] for example,
using the hypothesis ω ≤ λ < κ � α with κ and α regular, that if S(Xi) ≤ κ for each
i ∈ I then not only S((XI)λ+) ≤ α, as in Lemma 5.2.28, but in fact of every α-many
nonempty open subsets of (XI)λ+ some α-many have the finite intersection property.

Lemma 5.2.28. Let α, κ and λ be infinite cardinals such that α → (κ)2λ, and let {Xi :

i ∈ I} be a set of spaces such that S(Xi) ≤ κ for each i ∈ I. Then S((XI)λ+) ≤ α.

Proof. Suppose that there is a faithfully indexed cellular family {Uξ : ξ < α} of basic open
subsets of (XI)λ+ , and for {ξ, ξ′} ∈ [α]2 let i(ξ, ξ′) ∈ I be such that Uξi(ξ,ξ′) ∩U

ξ′

i(ξ,ξ′) = ∅.
For ξ < α we define

I(ξ) := {i(ξ, ξ′) : ξ′ < α and ξ 6= ξ′}.

Since i(ξ, ξ′) ∈ R(Uξ)∩R(Uξ
′
) for {ξ, ξ′} ∈ [α]2, we have |I(ξ)| ≤ |R(Uξ)| ≤ λ for ξ < α.

Let {iξ,η : η < λ} be an indexing of I(ξ) for ξ < α, and for (η, η′) ∈ λ× λ set

Pη,η′ := {{ξ, ξ′} ∈ [α]2 : ξ < ξ′ and iξ,η = iξ′,η′}

(some of the sets Pη,η′ might be empty). Since

[α]2 =
⋃

(η,η′)∈λ×λ

Pη,η′

and α→ (κ)2λ, there are A ∈ [α]κ and (η, η′) ∈ λ× λ such that [A]2 ⊆ Pη,η′ . Thus there
is i ∈ I such that if {ξ, ξ′} ∈ [A]2 and ξ < ξ′ then i(ξ, ξ′) = iξ,η = iξ′,η′ = i, and hence
Uξ
i
∩Uξ

′

i
= ∅. It follows that {Uξ

i
: ξ ∈ A} is cellular in Xi, and we have the contradiction

S(Xi) > |A| = κ.

The following theorem is [5, Theorem 1.5(a)]. It is noted in [5] that preliminary
formulations of Theorem 5.2.29 appear (with different hypotheses) in Erdős and Rado [11,
39(iii)] and Kurepa [24]. The important and motivating special case (2α)+ → (α+)2α of
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Theorem 5.2.29 appeared as early as 1942 [10], while the seminal instance κ = ω, α = ω+

of Theorem 5.2.30(a) was given by Kurepa [25] (see also [4, Theorem 3.13 and remark on
pp. 73–74]).

Theorem 5.2.29. If ω ≤ κ� α with α and κ regular, then α→ (κ)2λ for all λ < κ.

Theorem 5.2.30. Let α ≥ 2 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a family of
nonempty spaces such that S(Xi) ≤ α+ for each i ∈ I.

(a) If α+ ≥ κ then S((XI)κ) ≤ (2α)+; and
(b) if α+ ≤ κ then S((XI)κ) ≤ ((α<κ)<κ)+.

Proof. (a) Clearly α ≥ ω here, so Remark 5.2.3(2) applies to give α+ � (2α)+. We then
have

(2α)+ → (α+)2α

by Theorem 5.2.29, so S((XI)α+) ≤ (2α)+ by Lemma 5.2.28 (with (2α)+, α+ and α in
the role of α, κ and λ there). Thus surely S((XI)κ) ≤ (2α)+ if κ ≤ α+.

(b) We consider three cases:

Case 1: κ is singular. Then κ+ � ((α<κ)<κ)+ by Remark 5.2.3(4), hence from Theo-
rem 5.2.29 we have

((α<κ)<κ)+ → (κ+)2κ.

Since α ≤ κ we have S(Xi) ≤ κ+ for each i ∈ I, so in fact even

S((XI)κ) ≤ S((XI)κ+) ≤ ((α<κ)<κ)+

by Lemma 5.2.28 (with ((α<κ)<κ)+, κ+ and κ in the role of α, κ and λ there).

Case 2: κ is a successor cardinal, say κ = λ+. Since λ+ � (αλ)+, by Theorem 5.2.29
we have

(αλ)+ → (λ+)2λ,

so
S((XI)κ) ≤ (αλ)+ = ((α<κ)<κ)+

by Lemma 5.2.28 (with (αλ)+, λ+ and λ in the role of α, κ and λ there).

Case 3: κ is regular limit cardinal. Then it follows from Remark 5.2.3(3) that ω ≤ κ�
((α<κ)<κ)+, and therefore, according to Theorem 5.2.29, ((α<κ)<κ)+ → (κ)2λ for all
λ < κ. Then since S(Xi) ≤ κ for each i ∈ I, we have

(5.2.5) S((XI)λ+) ≤ ((α<κ)<κ)+ for all λ < κ

from Lemma 5.2.28 (with ((α<κ)<κ)+ in the role of α there).
Now suppose that C is a cellular family in (XI)κ of canonical open sets such that

|C| = ((α<κ)<κ)+, and for λ < κ let C(λ) := {U ∈ C : |R(U)| < λ}. Then C =
⋃
λ<κ C(λ)

with
cf(((α<κ)<κ)+) = ((α<κ)<κ)+ ≥ κ+ > κ,

so there is λ < κ such that |C(λ)| = ((α<κ)<κ)+. Then

S((XI)λ+) > |C(λ)| = ((α<κ)<κ)+,

contrary to (5.2.5).
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Remark 5.2.31. We note that in those cases of Theorem 5.2.30 to which both (a) and
(b) apply, namely when κ = α+, the upper bounds provided by the estimates in (a) and
(b) coincide. Indeed, with κ = α+ we have

((α<κ)<κ)+ = ((αα)α)+ = (2α)+.

Combining Theorems 5.2.17 and 5.2.30 we obtain the following corollary.

Corollary 5.2.32. Let α ≥ 3 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set of
spaces such that |I|+ ≥ κ and α ≤ S(Xi) ≤ α+ for each i ∈ I.

(a) If α+ ≥ κ then α<κ ≤ S((XI)κ) ≤ (2α)+; and
(b) if α+ ≤ κ then (2<κ)+ ≤ S((XI)κ) ≤ ((2<κ)<κ)+.

Corollary 5.2.33. Let α ≥ 3 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set
of spaces such that |I|+ ≥ κ and 3 ≤ S(Xi) ≤ α+ for each i ∈ I. If α+ ≤ κ then
S((XI)κ) = (2<κ)+.

Proof. The case 3 = α < κ of Theorem 5.2.17(b) gives S((XI)κ ≥ (2<κ)+.
If κ is regular or there is ν < κ such that 2ν = 2<κ, then 2<κ = (2<κ)<κ by Theo-

rem 2.2.8(a) and the statement is immediate from Corollary 5.2.32(b).
Now we assume that κ is singular and that 2ν < 2<κ for each ν < κ, and we let {κη :

η < cf(κ)} be a set of cardinals as in Notation 5.2.13. Suppose that S((XI)κ) > (2<κ)+,
and let C be a cellular family of basic open sets in (XI)κ with |C| = (2<κ)+. Then with

C(η) := {C : C ∈ C and C is open in (XI)κη}

for η < cf(κ) we have C = ∪η<cf(κ) C(η), and since cf((2<κ)+) > cf(κ) there is η < cf(κ)

such that |C(η)| = (2<κ)+; for this η we have

(5.2.6) S((XI)κη ) > (2<κ)+.

Since κ is singular, from α+ ≤ κ we have α < κ, so there is η′ < cf(κ) such that α < κη′ ;
we take η′ ≥ η. Then from Theorem 5.2.30(b) with κ+η′ replacing κ we have

S((XI)κη ) ≤ S((XI)κ+

η′
) ≤ (ακη′ )+ ≤ ((2α)κη′ )+ = (2κη′ )+ < 2<κ,

which contradicts (5.2.6).

Remarks 5.2.34. (a) We noted in Remark 5.2.21 that the conditions given in Theo-
rem 5.2.20 are satisfied by many pairs κ, α of cardinals and for many sets {Xi : i ∈ I}
of spaces; in particular (see condition (iv) of Theorem 5.2.20) for κ � α = α<κ there
are spaces X such that S((XI)κ) = α for all nonempty index sets I. We note now that
consistently there are (regular) α and κ for which the relation S((XI)κ) = α holds for
no space X and infinite index set I. Indeed, let V be one of the Gitik–Shelah models
whose salient cardinality properties are given in Discussion 4.2.11(d), and let κ = ℵ1
and α = ℵω+1. Suppose there is a space X such that S(X) = α and S((XI)κ) = α for
some infinite set I. Then S(X) = α = ℵω+1 > ℵω, and it follows from Lemma 5.2.9 that
S((XI)κ) > (ℵω)ω = ℵω+2, a contradiction.

(b) The upper bound S(X ×X) = (2α)+ for spaces X such that S(X) = α+, allowed
by Theorem 5.2.30(a), is in fact achieved for many α and X. This was first shown by
Galvin and Laver (cf. [16]) assuming α+ = 2α (see [5, 7.13] for a treatment of the
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construction) and by examples in ZFC by Todorčević [29]–[31]. When α+ = 2α this strict
increase from S(X) to S(X ×X) is minimal in the sense that

S(X ×X) = (2α)+ = (α+)+ = (S(X))+.

We note in contrast that in the models discussed in (a) there are spaces X such that
S(XI) ≥ (S(X))++ for every infinite set I. For example, for any space X in those models
satisfying S(X) = α = ℵω+1 and with κ = ℵ1, we have

((ℵω+1)+)+ = ℵω+3 ≤ S((XI)κ) ≤ (2α)+ = (2ℵω+1)+

in these models. Similarly Fleissner [15, Section 5], in suitably defined Cohen models of
ZFC, constructs spaces X for which S(X) = ω+ = ℵ1 and S(X×X) = ℵω+2 > c = ℵω+1.

The rest of this section is devoted to seeking definitive relations between the cardinals
S((XI)κ), S((XJ)κ) with J ∈ [I]<κ, and (α<κ)+. Our success, though substantial, is only
partial, since we have been unable to give a fully satisfactory answer to Question 5.2.42
in ZFC.

Theorem 5.2.35. Let α ≥ 2 and κ ≥ ω be cardinals such that α<κ < (α<κ)<κ. If
{Xi : i ∈ I} is a set of nonempty spaces such that S((XI)κ) > (α<κ)+, then there are a
cardinal λ < κ and J ∈ [I]<λ such that S((XJ)λ) ≥ (α<κ)+.

Proof. Let C be a cellular family of basic open subsets of (XI)κ such that |C| = (α<κ)+.
Let {κη : η < cf(κ)} be as in Notation 5.2.13, and for η < cf(κ) set C(η) := {U ∈ C :

|R(U)| < κη}. Since |C| =
⋃
η<cf(κ) C(η) and cf((α<κ)+) = (α<κ)+ ≥ κ+ > cf(κ), there

is η < cf(κ) (henceforth fixed) such that |C(η)| = (α<κ)+. Then C(η) is cellular in (XI)κη ,
hence in (XI)κ+

η
, and for η < η′ < cf(κ) we have

S((XI)κ+
η

) > |C(η)| = (α<κ)+ > (ακη′ )+.

Then since κ+η � (ακη′ )+ there is, by Theorem 5.2.4 (with κ+η and (ακη′ )+ in the roles
of κ and α respectively), a set J(η′) ∈ [I]<κ

+
η such that S((XJ(η′))κ+

η
) > (ακη′ )+. Then

with J :=
⋃
η<η′<cf(κ) J(η′) we have |J | ≤ κη · cf(κ) < κ, and

S((XJ)κ+
η

) > (ακη′ )+ when η < η′ < cf(κ),

hence
S((XJ)κ+

η
) ≥ sup

η<η′<cf(κ)

(ακη′ )+ =
∑

η<η′<cf(κ)

(ακη′ )+ = α<κ.

Since in our case α<κ is singular (Theorem 2.2.8(b)), we have

S((XJ)κ+
η

) ≥ (α<κ)+,

so the conclusion holds with λ := max{κ+η , |J |+}.

We continue in Corollary 5.2.37 with a consequence of Theorem 5.2.35 for which
Lemma 5.2.36 is preparatory.

Lemma 5.2.36. Let κ ≥ ω be a limit cardinal, α ≥ 2 be a cardinal and {Xi : i ∈ I}
be a set of nonempty spaces. Then S((XJ)λ) < α for each λ < κ and each nonempty
J ∈ [I]<λ if and only if S((XJ)κ) < α for each nonempty J ∈ [I]<κ.
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Proof. Let S((XJ)κ) < α for each nonempty J ∈ [I]<κ, and let λ < κ and ∅ 6= J0 ∈ [I]<λ.
Then S((XJ0)λ) = S((XJ0)κ) < α since the spaces (XJ0)λ and (XJ0)κ have the full box
topology and therefore coincide.

For the converse, let S((XJ)λ) < α for each λ < κ and each nonempty J ∈ [I]<λ, and
let ∅ 6= J0 ∈ [I]<κ. Since |J0| < κ and κ is a limit cardinal, there exists λ < κ such that
|J0| < λ. Then S((XJ0)κ) = S((XJ0)λ) < α since the spaces (XJ0)κ and (XJ0)λ have the
full box topology and therefore coincide.

Corollary 5.2.37. Let α ≥ 2 and κ ≥ ω be cardinals such that α<κ < (α<κ)<κ, and let
{Xi : i ∈ I} be a set of nonempty spaces such that S((XJ)κ) < (α<κ)+ for each nonempty
J ∈ [I]<κ. Then S((XI)κ) ≤ (α<κ)+.

Proof. The cardinal κ is singular by Theorem 2.2.8(b), hence is a limit cardinal. Then by
Lemma 5.2.36 (with α there replaced by (α<κ)+) we have S((XJ)λ) < (α<κ)+ whenever
λ < κ and J ∈ [I]<λ. Then S((XI)κ) ≤ (α<κ)+ by Theorem 5.2.35.

Theorem 5.2.39, like Corollary 5.2.40, is a miscellaneous stand-alone result based on
the homeomorphisms developed in Lemma 5.2.38. To see that those results are (consis-
tently) nonvacuous, we need a model of ZFC where α<κ < (α<κ)<κ and ακ > (α<κ)+.
For that, see Remark 5.2.41. In 5.2.38–5.2.40, given a set {Xi : i ∈ I} of spaces, for i ∈ I
we write

ĩ := {j ∈ I : Xi =h Xj}.

We note that if κ ≥ ω and |̃i| ≥ cf(κ) for each i ∈ I, then there is a partition {I(η) :

η < cf(κ)} of I such that |I(η) ∩ ĩ| = |̃i| for each i ∈ I. Indeed, for each i ∈ I it is
enough to choose a partition {A(̃i, η) : η < cf(κ)} of ĩ with |A(̃i, η)| = |̃i|, and to take
I(η) :=

⋃
i∈I A(̃i, η).

Lemma 5.2.38. Let κ ≥ ω and cf(κ) ≤ λ ≤ κ with λ regular, and let {Xi : i ∈ I} be a set
of spaces with |̃i| ≥ cf(κ) for each i ∈ I. Let {I(η) : η < cf(κ)} be a partition of I such
that |I(η) ∩ ĩ| = |̃i| for each i. Then

(a) (XI)λ =h (XI(η))λ for each η < cf(κ);
(b) (XI)λ =h (

∏
η<cf(κ) (XI(η))λ)λ; and

(c) (XI)λ =h (((XI)λ)cf(κ))λ.

Proof. (a) Given η < cf(κ), let φ : I � I(η) be a bijection with φ[̃i] = ĩ ∩ I(η) for each
i ∈ I. Then the map Φ : XI � XI(η) given by Φ(xi) = xφ(i) ∈ XI(η) is a homeomorphism,
with φ[R(A)] = R(Φ[A]) for each generalized rectangle A =

∏
i∈I Ai ⊆ XI .

(b) We show that the natural map from
∏
η<cf(κ)XI(η) onto XI is a homeomor-

phism from (
∏
η<cf(κ)(XI(η))λ)λ onto (XI)λ when λ is regular. Indeed, an (open) gener-

alized rectangle U =
∏
η<cf(κ) U(η) in

∏
η<cf(κ)XI(η) with U(η) =

∏
i∈I(η) U(η, i) satisfies

R(U) =
⋃
η<cf(κ)R(U(η)), so |R(U)| < λ if and only if |R(U(η))| < λ for all η.

(c) follows immediately from (a) and (b).

Theorem 5.2.39. Let α ≥ 2 and κ ≥ ω be cardinals, and let {Xi : i ∈ I} be a set of
nonempty spaces. Suppose that α<κ < (α<κ)<κ and that |̃i| ≥ cf(κ) for each i ∈ I. If
S((XI)κ) > (α<κ)+ then S((XI)κ) > ακ.
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Proof. By Theorem 5.2.35 there are J ∈ [I]<κ and a regular cardinal λ < κ such that
S((XJ)λ) ≥ (α<κ)+. Let {I(η) : η < cf(κ)} be a partition of I as in Lemma 5.2.38, and
for η < cf(κ) let C(η) be a cellular family in XI(η) such that |C(η)| = α<κ. Then

C :=
∏

η<cf(κ)

C(η) =
{ ∏
η<cf(κ)

C(η) : C(η) ∈ C(η)
}

is cellular in (
∏
η<cf(κ) (XI(η))λ)λ =h (XI)λ, so

S((XI)κ) ≥ S((XI)λ) > |C| = (α<κ)cf(κ) = ακ,

as required.

Corollary 5.2.40. Let α ≥ 2 and κ ≥ ω be cardinals, and let X be a space and I a set.

(a) Suppose that α<κ = (α<κ)<κ. Then S((XI)κ) ≤ (α<κ)+ if and only if S((XJ)κ) ≤
(α<κ)+ for every nonempty J ∈ [I]<κ.

(b) Suppose that α<κ < (α<κ)<κ. If S((XI)κ) > (α<κ)+ then

(1) there is a nonempty J ∈ [I]<κ such that S((XJ)κ) ≥ (α<κ)+; and
(2) if |I| ≥ cf(κ), then S((XI)κ) > ακ.

Proof. In view of Theorems 5.2.5 and 5.2.35, only (b)(2) requires attention. This follows
from Theorem 5.2.39, since now ĩ = I for each i ∈ I.

Remarks 5.2.41. (a) It is easy to see that in many models of ZFC, for example under
GCH, the equality ακ = (α<κ)+ holds for all cardinals α and κ for which α<κ < (α<κ)<κ.
In such models, Theorem 5.2.39 and Corollary 5.2.40(b)(2) become tautologies. To see
that Theorem 5.2.39 and Corollary 5.2.40(b)(2) are not vacuous in every setting, it is
enough to refer to the models V1 and V2 of Gitik and Shelah described in Discus-
sion 4.2.11(d), taking now α = 2 and κ = ℵω. In those models we have

α<κ = 2<ℵω = ℵω,

while (using Theorem 2.2.6(c), for example)

ακ = (α<κ)<κ = 2ℵω = ℵω+2 > ℵω+1 = (α<κ)+.

(b) It is a consequence of Theorem 5.2.39 and Corollary 5.2.40(b)(2) that under the
hypotheses there, the relation S((XI)κ) = ακ is impossible (even when ακ is regular).

Now we consider two questions. The first of these arises naturally from Corollaries
5.2.5(b) and 5.2.37, and a version of the second, attributed to Argyros and Negrepontis,
appears in [5]. Theorem 5.2.45 shows a relation between these. For what we do and do not
know about the status of these questions in ZFC and in augmented systems, see Remarks
5.2.47(a) and (b).

Question 5.2.42. Let α ≥ 2, κ ≥ ω, and let {Xi : i ∈ I} be a set of spaces such
that S((XJ)κ) ≤ (α<κ)+ for each nonempty J ∈ [I]<κ. Is then necessarily S((XI)κ) ≤
(α<κ)+?

Question 5.2.43 ([5, 7.15(a)]). Are there spaces X and Y with S(X × Y ) > S(X) >

S(Y )?
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Remark 5.2.44. By Theorem 5.2.5(b), the answer to Question 5.2.42 is affirmative in
case α<κ = (α<κ)<κ.

Theorem 5.2.45. Let α ≥ 2, κ ≥ ω, and {Xi : i ∈ I} witness a negative answer to
Question 5.2.42. If α < κ then the answer to Question 5.2.43 is positive.

Proof. Set

L := {i ∈ I : S(Xi) = (α<κ)+} and M := {i ∈ I : S(Xi) < (α<κ)+}.
Note first from Remark 5.2.44 that α<κ < (α<κ)<κ, so κ > ω, and κ and α<κ are

singular by Theorem 2.2.8. Further, it follows directly from our hypothesis that |I| ≥ κ.
Clearly, we may assume without loss of generality that S(Xi) ≥ 3 for every i ∈ I.

For each infinite cardinal λ we have S((XI)λ+) = S((XL)λ+ × (XM )λ+). Thus to
prove the theorem it suffices to show that there exists an infinite cardinal λ < κ such
that

(i) S((XL)λ+) = (α<κ)+;
(ii) S((XM )λ+) < α<κ; and
(iii) S((XI)λ+) > (α<κ)+.

Let {κη : η < cf(κ)} be a family of cardinals as in Notation 5.2.13.
We note that

(5.2.7) |L| < cf(κ)

and

(5.2.8) there is η < cf(κ) such that S(Xi) ≤ ακη for each i ∈M.

(Indeed, if (5.2.7) [resp., (5.2.8)] fails then by Theorem 5.2.14(b) there is J ∈ [L]cf(κ)

[resp., J ∈ [M ]cf(κ)] such that

S((XJ)κ) ≥ S((XJ)(cf(κ))+) > (α<κ)+,

a contradiction since |J | = cf(κ) < κ.)
It follows from (5.2.7) that |M | = |I| ≥ κ; further, according to Lemma 5.2.9 (with

M , γ+, 2 and (α<κ)+ in place of I, κ, β and α, respectively), we have

(5.2.9) S((XM )γ+) > 2γ for every infinite γ < κ.

We claim that

(5.2.10) S((XL)κ) = S((XM )κ) = (α<κ)+.

To see that, fix η as in (5.2.8) and let γ be such that κη < γ < κ. Since α < κ, we have
(αγ)+ < α<κ; then

(5.2.11) S((XM )γ+) ≤ (((ακη )γ)γ)+ = (αγ)+ < α<κ

by (5.2.8) and Theorem 5.2.30(b) (with α, κ and I replaced by ακη , γ+ and M , respec-
tively). It then follows from (5.2.9) and (5.2.11) that

sup{S((XM )γ) : γ < κ} = α<κ,

hence from Theorem 5.2.10(c) we have

S((XM )κ) = (α<κ)+.
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Since S((XM )κ) = (α<κ)+ < S((XI)κ), we have M 6= I, so L 6= ∅. Clearly then
S((XL)κ) ≥ (α<κ)+, while S((XL)κ) ≤ (α<κ)+ follows from (5.2.7) and our hypoth-
esis. Therefore S((XL)κ) = (α<κ)+ and claim (5.2.10) is proved.

From (5.2.10) we have

(α<κ)+ ≤ S((XL)λ+) ≤ S((XL)κ) = (α<κ)+

for each infinite λ, so (i) holds (for all infinite λ). That (ii) holds for all λ such that
κη < λ < κ is given by (5.2.11). It follows that there is λ such that κη < λ < κ and
S((XI)λ+) > (α<κ)+, since otherwise we have

sup{S((XI)λ+) : λ < κ} = sup{S((XI)λ) : λ < κ} = (α<κ)+

and Theorem 5.2.10(b) gives the contradiction S((XI)κ) = (α<κ)+. Then (iii) holds for
that specific λ.

Corollary 5.2.46. Let M be a model of ZFC in which every singular cardinal is a
strong limit cardinal (e.g. M is a model of ZFC+GCH ). If the answer to Question 5.2.42
is negative in M then the answer to Question 5.2.43 is positive in M.

Proof. With α, κ and {Xi : i ∈ I} chosen as in Theorem 5.2.45 it suffices to show that
α < κ.

Since α<κ < (α<κ)<κ by Remark 5.2.44, by Theorem 2.2.8(b) both κ and α<κ are
singular. If α = α<κ then α = α<κ = (α<κ)<κ, a contradiction; therefore α < α<κ.
Suppose now that κ ≤ α. Then from Theorem 2.2.6(c) we have (α<κ)<κ = ακ ≤ αα = 2α,
and the relation α < α<κ < 2α contradicts the hypothesis that α<κ is a strong limit
cardinal.

Remarks 5.2.47. (a) The proof of the previous corollary does not need the full hypoth-
esis that every singular cardinal in M is strong limit. It is enough to know just that α<κ

is strong limit.
(b) ZFC-consistent examples of spaces as requested in Question 5.2.43 are available

in the literature.

(1) In the Cohen models of Fleissner [15] (see Remark 5.2.34(b)) there are spaces X and
Y such that

S(Y × Y ) = ℵω+2 > c = ℵω+1 > ℵ1 = S(Y ),

and then with X the “disjoint union” of D(ℵ1) and Y we have S(X × Y ) > S(X) >

S(Y ).
The same paper [15] suggests a construction which furnishes an even more striking
positive consistent response to Question 5.2.43: In an appropriate Cohen model, there
is a space X such that S(Xn) = ωn = ℵn for every integer n > 0.

(2) It is shown by Shelah [28, 4.4] that if κ is a singular strong limit cardinal such that
λ := κ+ = 2κ, then there are spaces X and Y such that

S(X × Y ) ≥ λ++ > λ+ = S(X) > λ > κ > (2cf(κ))++ ≥ S(Y ).

(c) We do not know if there are models of ZFC in which no spaces as in Question 5.2.43
exist. We do not know if the answer to Question 5.2.42 is absolutely or consistently “Yes”,
absolutely or consistently “No”.
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