On Lusternik-Schnirelmann category of $\mathrm{SO}(10)$

by
Norio Iwase (Fukuoka), Kai Kikuchi and Toshiyuki Miyauchi (Fukuoka)

Abstract

Let G be a compact connected Lie group and $p: E \rightarrow \Sigma A$ be a principal G-bundle with a characteristic map $\alpha: A \rightarrow G$, where $A=\Sigma A_{0}$ for some A_{0}. Let $\left\{K_{i} \rightarrow F_{i-1} \hookrightarrow F_{i} \mid 1 \leq i \leq m\right\}$ with $F_{0}=\{*\}, F_{1}=\Sigma K_{1}$ and $F_{m} \simeq G$ be a cone-decomposition of G of length m and $F_{1}^{\prime}=\Sigma K_{1}^{\prime} \subset F_{1}$ with $K_{1}^{\prime} \subset K_{1}$ which satisfy $F_{i} F_{1}^{\prime} \subset F_{i+1}$ up to homotopy for all i. Then $\operatorname{cat}(E) \leq m+1$, under suitable conditions, which is used to determine $\operatorname{cat}(\mathbf{S O}(10))$. A similar result was obtained by Kono and the first author (2007) to determine cat(Spin(9)), but that result could not yield $\operatorname{cat}(E) \leq m+1$.

1. Introduction. Throughout the paper, we work in the homotopy category of based $C W$-complexes, and often identify a map with its homotopy class.

The Lusternik-Schnirelmann category of a connected space X, denoted by $\operatorname{cat}(X)$, is the least integer n such that there is an open covering $\left\{U_{i} \mid 0 \leq i \leq n\right\}$ of X with each U_{i} contractible in X. If no such integer exists, we write $\operatorname{cat}(X)=\infty$. Let R be a commutative ring with unit. The cup-length of X with respect to R, denoted by $\operatorname{cup}(X ; R)$, is the supremum of all non-negative integers k such that there is a non-zero k-fold cup product in the ordinary reduced cohomology $\tilde{H}^{*}(X ; R)$.

In 1967, Ganea [3] introduced a strong category Cat (X) by modifying Fox's strong category (see Fox [2]), which is characterized as follows: for a connected space $X, \operatorname{Cat}(X)$ is 0 if X is contractible and, otherwise, is equal to the smallest integer n such that there is a series of cofibre sequences $\left\{K_{i} \rightarrow F_{i-1} \hookrightarrow F_{i} \mid 1 \leq i \leq m\right\}$ with $F_{0}=\{*\}$ and $F_{m} \simeq X$ (a cone-

[^0]decomposition of length $m) . \operatorname{Cat}(X)$ is often called the cone-length of X. The following theorem is well-known.

Theorem 1.1 (Ganea 3). $\operatorname{cup}(X ; R) \leq \operatorname{cat}(X) \leq \operatorname{Cat}(X)$.
In 1968, Berstein and Hilton [1 gave a criterion for $\operatorname{cat}\left(C_{f}\right)=2$ in terms of their Hopf invariant $H_{1}(f) \in[\Sigma X, \Omega \Sigma Y * \Omega \Sigma Y]$ for a map $f: \Sigma X \rightarrow \Sigma Y$, where $A * B$ denotes the join of the spaces A and B. In addition, its higher version H_{m} was used to disprove the Ganea conjecture (see Iwase [6, 8]).

We summarize here known L-S categories of special orthogonal groups: since $\mathbf{S O}(2)=S^{1}, \mathbf{S O}(3)=\mathbb{R} P^{3}$ and $\mathbf{S O}(4)=\mathbb{R} P^{3} \times S^{3}$, we know that

$$
\operatorname{cat}(\mathbf{S O}(2))=1, \quad \operatorname{cat}(\mathbf{S O}(3))=3, \quad \operatorname{cat}(\mathbf{S O}(4))=4
$$

In 1999, James and Singhof [12] gave the first non-trivial result:

$$
\operatorname{cat}(\mathbf{S O}(5))=8 .
$$

In 2005, Mimura, Nishimoto and the first author [11 gave an alternative proof of $\operatorname{cat}(\mathbf{S O}(5))=8$ and determined $\operatorname{cat}(\mathbf{S O}(n))$ up to $n=9$:

$$
\operatorname{cat}(\mathbf{S O}(6))=9, \operatorname{cat}(\mathbf{S O}(7))=11, \operatorname{cat}(\mathbf{S O}(8))=12, \operatorname{cat}(\mathbf{S O}(9))=20 .
$$

Let $G \hookrightarrow E \rightarrow \Sigma A$ be a principal bundle with a characteristic map $\alpha: A \rightarrow G$, where A is a suspension space and G is a connected compact Lie group with a cone-decomposition of length m, i.e., there is a series of cofibre sequences $\left\{K_{i} \rightarrow F_{i-1} \hookrightarrow F_{i} \mid 1 \leq i \leq m\right\}$ with $F_{0}=\{*\}, F_{1} \simeq \Sigma K_{1}$ and $F_{m} \simeq G$. Then the multiplication of G is, up to homotopy, a map μ : $F_{m} \times F_{m} \rightarrow F_{m}$, since $G \simeq F_{m}$. The main result of this paper is as follows.

Theorem 1.2. Let $F_{1}^{\prime}=\Sigma K_{1}^{\prime}$, where K_{1}^{\prime} is a connected subspace of K_{1} such that F_{1}^{\prime} is simply-connected, and let $\left.\right|_{F_{i} \times F_{1}^{\prime}}: F_{i} \times F_{1}^{\prime} \rightarrow F_{m}$ be compressible into $F_{i+1} \subset F_{m}$ as $\mu_{i, 1}: F_{i} \times F_{1}^{\prime} \rightarrow F_{i+1}, 1 \leq i<m$, so that $\left.\mu_{i, 1}\right|_{F_{i-1} \times F_{1}^{\prime}} \sim \mu_{i-1,1}$ in F_{i+1}. Then the following three conditions together imply $\operatorname{cat}(E) \leq m+1$:
(1) α is compressible into F_{1}^{\prime},
(2) $H_{1}(\alpha)=0$ in $\left[A, \Omega F_{1}^{\prime} * \Omega F_{1}^{\prime}\right]$,
(3) $K_{m}=S^{\ell-1}$ with $m, \ell \geq 3$.

Remark. Under the conditions in Theorem 1.2, [9, Theorem 0.8] does not imply $\operatorname{cat}(E) \leq m+1$, but only $\operatorname{cat}(E) \leq m+2$, since its key lemma [9, Lemma 1.1] cannot properly manage the case when $\operatorname{im} \alpha \subset F_{1}$.

Theorem 1.2 yields the following result on the L-S category of $\mathbf{S O}(10)$.
Theorem 5.1. $\operatorname{cat}(\mathbf{S O}(10))=\operatorname{cup}\left(\mathbf{S O}(10) ; \mathbb{F}_{2}\right)=21$.
All the results on $\operatorname{cat}(\mathbf{S O}(n))$ with $n \leq 10$ support the following "folklore conjecture".
$\operatorname{Conjecture}$ 1. $\operatorname{cat}(\mathbf{S O}(n))=\operatorname{cup}\left(\mathbf{S O}(n) ; \mathbb{F}_{2}\right)$.

Let us explain the method we employ in this paper. To study L-S category, we must understand Ganea's criterion of L-S category as a basic idea, given in terms of a fibre-cofibre construction in [3]: Let X be a connected space. Then there is a fibre sequence $F_{n} X \hookrightarrow G_{n} X \rightarrow X$, natural with respect to X, such that $\operatorname{cat}(X) \leq n$ if and only if the fibration $G_{n} X \rightarrow X$ has a cross-section.

However, four years before [3], a more understandable description of the fibre sequence $F_{n}(X) \hookrightarrow G_{n}(X) \rightarrow X$ was already published by Stasheff [15]: following [6, 7, 8], we may replace the inclusion $F_{n} X \hookrightarrow G_{n} X$ with the fibration $p_{n}^{\Omega X}: E^{n+1} \Omega X \rightarrow P^{n} \Omega X$ associated with the A_{∞}-structure of ΩX, the based loop space of X in the sense of Stasheff, where $E^{n+1} \Omega X$ has the homotopy type of $(\Omega X)^{*(n+1)}$, the $n+1$-fold join of ΩX, and $P^{n} \Omega X$ satisfies $P^{0} \Omega X=*, P^{1} \Omega X=\Sigma \Omega X$ and $P^{\infty} \Omega X \simeq X$. Let $\iota_{m, n}^{\Omega X}: P^{m} \Omega X \hookrightarrow P^{n} \Omega X$ be the canonical inclusion, for $m \leq n$, and $e_{\infty}^{X}: P^{\infty} \Omega X \simeq X$ be the natural equivalence. Then the fibration $G_{n} X \rightarrow X$ may be replaced with the $\operatorname{map} e_{n}^{X}=e_{\infty}^{X} \circ \iota_{n, \infty}^{\Omega X}: P^{n} \Omega X \rightarrow X$, where $e_{1}^{X}: \Sigma \Omega X \rightarrow X$ equals the evaluation.

Thus, we may restate Ganea's criterion as follows: Let X be a connected space. Then $\operatorname{cat}(X) \leq n$ if and only if $e_{n}^{X}: P^{n} \Omega X \rightarrow X$ has a right homotopy inverse. That is why we use A_{∞}-structures to determine L-S category.

In this paper, instead of using [9, Lemma 1.1], we show Proposition 2.4 and Lemmas 3.3, 4.4. This is a key process to obtain Theorem 1.2. In Sections 2 and 3 , we construct a structure map associated to a given cone-decomposition. In Section 4 , we introduce a map $\hat{\lambda}$ from $\hat{F}_{m+1}=P_{m}^{m} \times \Sigma \Omega F_{1}^{\prime}$ to $P^{m+1} \Omega F_{m}$, which is the main tool to construct a complex D with $\operatorname{Cat}(D) \leq m+1$ dominating E. Finally, in Section 5 we prove Theorem 5.1.
2. Structure map associated with cone-decomposition. In this section, we generalize the following well-known fact to the case of filtered spaces and maps.

FACT 2.1. Let $K \xrightarrow{a} A \hookrightarrow C(a)$ and $L \xrightarrow{b} B \hookrightarrow C(b)$ be cofibre sequences with canonical copairings $\nu: C(a) \rightarrow C(a) \vee \Sigma K$ and $\hat{\nu}: C(b) \rightarrow C(b) \vee \Sigma L$. If there are maps $f: A \rightarrow B$ and $f^{0}: K \rightarrow L$ such that $f \circ a=b \circ f^{0}$, then they induce a map $f^{\prime}: C(a) \rightarrow C(b)$ satisfying $\left(f^{\prime} \vee \Sigma f^{0}\right) \circ \nu=\hat{\nu} \circ f^{\prime}$.

Definition 2.2. A space X with a series of subspaces $\left\{X_{n} ; n \geq 0\right\}$,

$$
\{*\}=X_{0} \subset X_{1} \subset \cdots \subset X_{n} \subset X_{n+1} \subset \cdots \subset X
$$

is said to be filtered by $\left\{X_{n} ; n \geq 0\right\}$ and denoted by $\left(X,\left\{X_{n}\right\}\right)$. We also denote by $i_{m, n}^{X}: X_{m} \hookrightarrow X_{n}, m<n$, the canonical inclusion.

Definition 2.3. Let X and Y be spaces filtered by $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$, respectively. A map $f: X \rightarrow Y$ is a filtered map if $f\left(X_{n}\right) \subset Y_{n}$ for all n.

Proposition 2.4. Let X and Y be filtered by $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$, respectively, and $f: X \rightarrow Y$ be a filtered map. If $\left\{X_{n}\right\}$ is a cone-decomposition of X, i.e. there is a series of cofibre sequences $\left\{K_{n} \xrightarrow{h_{n}} X_{n-1} \stackrel{i}{i_{n-1, n}^{X}} X_{n} \mid\right.$ $n \geq 1\}$ with $X_{0}=*$, then there exist families $\left\{\hat{f}_{n}: X_{n} \rightarrow P^{n} \Omega Y_{n} \mid n \geq 0\right\}$ and $\left\{\hat{f}_{n}^{0}: K_{n} \rightarrow E^{n} \Omega Y_{n} \mid n \geq 0\right\}$ of maps such that:
(1) The following diagram is commutative:

(2) Denote by $f_{n}^{\prime}=\left(P^{n-1} \Omega i_{n-1, n}^{Y} \circ \hat{f}_{n-1}\right) \cup C\left(\hat{f}_{n}^{0}\right): X_{n} \rightarrow P^{n} \Omega Y_{n}$ the induced map from the commutativity of the left square in (1). Then the middle square in (1) with \hat{f}_{n} replaced with f_{n}^{\prime} is commutative. The difference of \hat{f}_{n} and f_{n}^{\prime} is given by a map $\delta_{n}^{f}: \Sigma K_{n} \rightarrow P^{n-1} \Omega Y_{n}$ composed with the inclusion $\iota_{n-1, n}^{\Omega Y_{n}}: P^{n-1} \Omega Y_{n} \hookrightarrow P^{n} \Omega Y_{n}, n \geq 1$.
Proof. First of all, we set $\hat{f}_{0}=*$, the trivial map.
Next, we use induction on $n \geq 1$. When $n=1$, we set $\hat{f}_{1}^{0}=\operatorname{ad}\left(\left.f\right|_{X_{1}}\right)$ and $\hat{f}_{1}=\Sigma \operatorname{ad}\left(\left.f\right|_{X_{1}}\right)=f_{1}^{\prime}$ to obtain the commutative diagram

Then (1) is clear, and (2) is trivial in this case.
When $n=k>1$, suppose we have already obtained $\left\{\hat{f}_{i}\right\}$ and $\left\{\hat{f}_{i}^{0}\right\}$ for $i<k$, which satisfy conditions (1) and (2).

Firstly, we define $\hat{f}_{k}^{0}: K_{k} \rightarrow E^{k} \Omega Y_{k}$ as follows: The homotopy class of a map $P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1} \circ h_{k}: K_{k} \rightarrow P^{k-1} \Omega Y_{k}$ can be described as $h_{k *}\left(P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1}\right) \in\left[K_{k}, Y_{k}\right] \quad$ with $\quad P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1} \in\left[X_{k-1}, Y_{k}\right]$ in the following ladder of exact sequences induced from the fibre sequence

$$
\begin{aligned}
& E^{k} \Omega Y_{k} \rightarrow P^{k-1} \Omega Y_{k} \rightarrow Y_{k}:
\end{aligned}
$$

Since we know that the naturality of e_{k-1}^{Z} at Z implies $e_{k-1}^{Y_{k}} \circ P^{k-1} \Omega i_{k-1, k}^{Y}$ $=i_{k-1, k}^{Y} \circ e_{k-1}^{Y_{k-1}}$, that the induction hypothesis implies $e_{k-1}^{Y_{k-1}} \circ \hat{f}_{k-1}=\left.f\right|_{X_{k-1}}$ and that the naturality of $i_{k-1, k}^{Z}$ at Z implies $\left.i_{k-1, k}^{Y} \circ f\right|_{X_{k-1}}=\left.f\right|_{X_{k}} \circ i_{k-1, k}^{X}$, we obtain $e_{k-1_{*}}^{Y_{k}}\left(P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1}\right)=i_{k-1, k}^{Y} \circ e_{k-1}^{Y_{k-1}} \circ \hat{f}_{k-1}=\left.f\right|_{X_{k}} \circ i_{k-1, k}^{X} \in$ [X_{k-1}, Y_{k}]. On the other hand, since $K_{k} \rightarrow X_{k-1} \hookrightarrow X_{k}$ is a cofibre sequence, we get

$$
e_{k-1_{*}}^{Y_{k}}\left(h_{k}^{*}\left(P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1}\right)\right)=\left[\left.f\right|_{X_{k}} \circ i_{k-1, k}^{X} \circ h_{k}\right]=0
$$

Thus we have $e_{k-1_{*}}^{Y_{k}}\left(P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1} \circ h_{k}\right)=0$, and there exists a map $\hat{f}_{k}^{0}: K_{k} \rightarrow E^{k} \Omega Y_{k}$ such that $p_{k-1_{*}}^{\Omega Y_{k}}\left(\hat{f}_{k}^{0}\right)=P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1} \circ h_{k}$, which implies the commutativity of the left square in (1).

Secondly, let $f_{k}^{\prime}: X_{k} \rightarrow P^{k} \Omega Y_{k}$ be the map induced from the commutativity of the left square in (1). By the induction hypothesis, we have

$$
\begin{aligned}
& \left(i_{k-1, k}^{X}\right)^{*}\left(e_{k}^{Y_{k}} \circ f_{k}^{\prime}\right)=\left[e_{k}^{Y_{k}} \circ f_{k}^{\prime} \circ i_{k-1, k}^{X}\right]=\left[e_{k}^{Y_{k}} \circ \iota_{k-1, k}^{\Omega Y_{k}} \circ P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1}\right] \\
& =\left[i_{k-1, k}^{Y} \circ e_{k-1}^{Y_{k-1}} \circ \hat{f}_{k-1}\right]=\left[\left.i_{k-1, k}^{Y} \circ f\right|_{X_{k-1}} ^{Y}\right]=\left[\left.f\right|_{X_{k}} \circ i_{k-1, k}^{X}\right]=\left(i_{k-1, k}^{X}\right)^{*}\left(\left.f\right|_{X_{k}}\right) .
\end{aligned}
$$

By a standard argument of homotopy theory applied to the cofibre sequence $K_{k} \rightarrow X_{k-1} \hookrightarrow X_{k}$ (see Hilton [5] or Oda [13]), there is a map $\delta_{k}^{f, 0}: \Sigma K_{k} \rightarrow Y_{k}$ such that

$$
\left.f\right|_{X_{k}}=\nabla_{Y_{k}} \circ\left(e_{k}^{Y_{k}} \circ f_{k}^{\prime} \vee \delta_{k}^{f, 0}\right) \circ \nu_{k},
$$

where $\nabla_{Y}: Y \vee Y \rightarrow Y$ denotes the folding map for a space Y and ν_{k} : $X_{k} \rightarrow X_{k} \vee \Sigma K_{k}$ denotes the canonical copairing.

Let $\delta_{k}^{f}=\iota_{1, k-1}^{\Omega Y_{k}} \circ \Sigma \operatorname{ad}\left(\delta_{k}^{f, 0}\right): \Sigma K_{k} \rightarrow \Sigma \Omega Y_{k} \hookrightarrow P^{k-1} \Omega Y_{k}$. Since $e_{1}^{Y_{k}}=$ $e_{k-1}^{Y_{k}} \circ \iota_{1, k-1}^{\Omega Y_{k}}$, we have $\delta_{k}^{f, 0}=e_{1}^{Y_{k}} \circ \Sigma \operatorname{ad}\left(\delta_{k}^{f, 0}\right)=e_{k-1}^{Y_{k}} \circ \delta_{k}^{f}$. Hence, the map $\hat{f}_{k}=\nabla_{P^{k} \Omega Y_{k}} \circ\left(f_{k}^{\prime} \vee \iota_{k-1, k}^{\Omega Y_{k}} \circ \delta_{k}^{f}\right) \circ \nu_{k}$ satisfies condition (2).

Thirdly, by using the above homotopy relations, we obtain

$$
\begin{aligned}
\left.f\right|_{X_{k}} & =\nabla_{Y_{k}} \circ\left(e_{k}^{Y_{k}} \circ f_{k}^{\prime} \vee e_{k-1}^{Y_{k}} \circ \delta_{k}^{f}\right) \circ \nu_{k} \\
& =e_{k}^{Y_{k}} \circ \nabla_{P^{k} \Omega Y_{k}} \circ\left(f_{k}^{\prime} \vee \iota_{k-1, k}^{\Omega Y_{k}} \circ \delta_{k}^{f}\right) \circ \nu_{k}=e_{k}^{Y_{k}} \circ \hat{f}_{k}
\end{aligned}
$$

This implies the commutativity of the right triangle in (1).

Finally, since ν_{k} is a copairing, we have
$p r_{1} \circ \nu_{k} \circ i_{k-1, k}^{X}=1_{X_{k}} \circ i_{k-1, k}^{X}=i_{k-1, k}^{X} \quad$ and $\quad p r_{2} \circ \nu_{k} \circ i_{k-1, k}^{X}=q \circ i_{k-1, k}^{X}=*$, where $p r_{1}: X_{k} \vee \Sigma K_{k} \rightarrow X_{k}$ and $p r_{2}: X_{k} \vee \Sigma K_{k} \rightarrow \Sigma K_{k}$ are the first and second projections, respectively. Then

$$
\begin{aligned}
\hat{f}_{k} \circ i_{k-1, k}^{X} & =\nabla_{P^{k} \Omega Y_{k}} \circ\left(f_{k}^{\prime} \vee \iota_{k-1, k}^{\Omega Y_{k}} \circ \delta_{k}^{f}\right) \circ \nu_{k} \circ i_{k-1, k}^{X} \\
& =f_{k}^{\prime} \circ i_{k-1, k}^{X}=\iota_{k-1, k}^{\Omega Y_{k}} \circ P^{k-1} \Omega i_{k-1, k}^{Y} \circ \hat{f}_{k-1},
\end{aligned}
$$

which implies the commutativity of the middle square in (1). This completes the induction step for $n=k$, and we obtain the proposition for all n.

Corollary 2.4.1. Let $\hat{\nu}_{n}: P^{n} \Omega Y_{n} \rightarrow P^{n} \Omega Y_{n} \vee \Sigma E^{n} \Omega Y_{n}$ be the canonical copairing. If K_{n} is a co-H-space, then the following diagram is commutative:

Proof. Let P and E denote $P^{n} \Omega Y_{n}$ and $E^{n} \Omega Y_{n}$, respectively. By Proposition $2.4(2)$, the difference of \hat{f}_{n} and f_{n}^{\prime} is given by $\iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}$, and hence

$$
\begin{aligned}
\left(\hat{f}_{n} \vee \Sigma \hat{f}_{n}^{0}\right) \circ \nu_{n} & =\left\{\left(\nabla_{P} \circ\left(f_{n}^{\prime} \vee \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}\right) \circ \nu_{n}\right) \vee \Sigma \hat{f}_{n}^{0}\right\} \circ \nu_{n} \\
& =\left(\nabla_{P} \vee 1_{\Sigma E}\right) \circ\left(f_{n}^{\prime} \vee \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f} \vee \Sigma \hat{f}_{n}^{0}\right) \circ\left(\nu_{n} \vee 1_{\Sigma K_{n}}\right) \circ \nu_{n}
\end{aligned}
$$

Since K_{n} is a co-H-space, we have the following homotopy relations:

$$
v_{n}=T \circ v_{n} \quad \text { and } \quad\left(\nu_{n} \vee 1_{\Sigma K_{n}}\right) \circ \nu_{n}=\left(1_{X_{n}} \vee v_{n}\right) \circ \nu_{n},
$$

where $v_{n}: \Sigma K_{n} \rightarrow \Sigma K_{n} \vee \Sigma K_{n}$ is the comultiplication and where T : $\Sigma K_{n} \vee \Sigma K_{n} \rightarrow \Sigma K_{n} \vee \Sigma K_{n}$ is the switching map. Hence

$$
\begin{aligned}
\left(\hat{f}_{n} \vee \Sigma \hat{f}_{n}^{0}\right) & \circ \nu_{n}=\left(\nabla_{P} \vee 1_{\Sigma E}\right) \circ\left(f_{n}^{\prime} \vee \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f} \vee \Sigma \hat{f}_{n}^{0}\right) \circ\left(1_{X_{n}} \vee v_{n}\right) \circ \nu_{n} \\
& =\left(\nabla_{P} \vee 1_{\Sigma E}\right) \circ\left(f_{n}^{\prime} \vee\left(\iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f} \vee \Sigma \hat{f}_{n}^{0}\right)\right) \circ\left(1_{X_{n}} \vee T \circ v_{n}\right) \circ \nu_{n} \\
& =\left(\nabla_{P} \vee 1_{\Sigma E}\right) \circ\left\{f_{n}^{\prime} \vee T^{\prime} \circ\left(\Sigma \hat{f}_{n}^{0} \vee \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}\right)\right\} \circ\left(\nu_{n} \vee 1_{\Sigma K_{n}}\right) \circ \nu_{n} \\
& =\left(\nabla_{P} \vee 1_{\Sigma E}\right) \circ\left(1_{P} \vee T^{\prime}\right) \circ\left\{\left(f_{n}^{\prime} \vee \Sigma \hat{f}_{n}^{0}\right) \circ \nu_{n} \vee \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}\right\} \circ \nu_{n},
\end{aligned}
$$

where $T^{\prime}: \Sigma E \vee P \rightarrow P \vee \Sigma E$ is the switching map. Then we can easily see that $\left(\nabla_{P} \vee 1_{\Sigma E}\right) \circ\left(1_{P} \vee T^{\prime}\right)=\nabla_{P \vee \Sigma E} \circ$ in $_{\Sigma E}$, where, for any space Y, we denote by in ${ }_{\Sigma E}: Y \hookrightarrow Y \vee \Sigma E$ the first inclusion. Hence

$$
\begin{aligned}
\left(\hat{f}_{n} \vee \Sigma \hat{f}_{n}^{0}\right) \circ \nu_{n} & =\nabla_{P \vee \Sigma E} \circ \operatorname{in}_{\Sigma E} \circ\left\{\left(f_{n}^{\prime} \vee \Sigma \hat{f}_{n}^{0}\right) \circ \nu_{n} \vee \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}\right\} \circ \nu_{n} \\
& =\nabla_{P \vee \Sigma E} \circ\left\{\left(f_{n}^{\prime} \vee \Sigma \hat{f}_{n}^{0}\right) \circ \nu_{n} \vee \operatorname{in}_{\Sigma E} \circ \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}\right\} \circ \nu_{n}
\end{aligned}
$$

Here, since the copairing $\hat{\nu}_{n}$ is associated to the cofibre sequence

$$
P^{n-1} \Omega Y_{n} \stackrel{\iota_{n-1, n}^{\Omega Y_{n}}}{\hookrightarrow} P^{n} \Omega Y_{n} \rightarrow \Sigma E^{n} \Omega Y_{n},
$$

we have the following equality up to homotopy:

$$
\hat{\nu}_{n} \circ \iota_{n-1, n}^{\Omega Y_{n}}=\operatorname{in}_{\Sigma E} \circ \iota_{n-1, n}^{\Omega Y_{n}}: P^{n-1} \Omega Y_{n} \hookrightarrow P^{n} \Omega Y_{n} \hookrightarrow P^{n} \Omega Y_{n} \vee \Sigma E^{n} \Omega Y_{n} .
$$

Then, by Theorem 2.1.

$$
\begin{aligned}
\left(\hat{f}_{n} \vee \Sigma \hat{f}_{n}^{0}\right) \circ \nu_{n} & =\nabla_{P \vee \Sigma E} \circ\left\{\left(f_{n}^{\prime} \vee \Sigma \hat{f}_{n}^{0}\right) \circ \nu_{n} \vee \hat{\nu}_{n} \circ \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}\right\} \circ \nu_{n} \\
& =\nabla_{P \vee \Sigma E \circ\left(\hat{\nu}_{n} \circ f_{n}^{\prime} \vee \hat{\nu}_{n} \circ \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}\right) \circ \nu_{n}} \\
& =\hat{\nu}_{n} \circ \nabla_{P} \circ\left(f_{n}^{\prime} \vee \iota_{n-1, n}^{\Omega Y_{n}} \circ \delta_{n}^{f}\right) \circ \nu_{n}=\hat{\nu}_{n} \circ f_{n} .
\end{aligned}
$$

3. Cone-decomposition associated with projective spaces. Let G be a compact Lie group of dimension ℓ with a cone-decomposition of length m, that is, there is a series of cofibre sequences

$$
\begin{equation*}
\left\{K_{i} \xrightarrow{h_{i}} F_{i-1} \hookrightarrow F_{i} \mid 1 \leq i \leq m\right\} \tag{3.1}
\end{equation*}
$$

with $F_{0}=\{*\}$ and $F_{m} \simeq G$. We also denote by $i_{i-1, i}^{F}: F_{i-1} \hookrightarrow F_{i}$ the canonical inclusion and by $q_{i-1, i}^{F}: F_{i} \rightarrow F_{i} / F_{i-1}=\Sigma K_{i}$ its successive quotient.

Lemma 3.1. If $K_{m}=S^{\ell-1}$ with $m, \ell \geq 3$, then:
(1) $\left(E^{m} \Omega F_{m}, E^{m} \Omega F_{m-1}\right)$ is an ℓ-connected pair.
(2) There exists an ℓ-connected map $\hat{\phi}_{S}: P_{m}^{m}=P^{m} \Omega F_{m-1} \cup C S^{\ell-1} \rightarrow$ $P^{m} \Omega F_{m}$ extending the inclusion $P^{m} \Omega F_{m-1} \hookrightarrow P^{m} \Omega F_{m}$.
Proof. Let $q_{E}: \mathfrak{F}_{E} \rightarrow E^{m} \Omega F_{m-1}, q_{P}: \mathfrak{F}_{P} \rightarrow P^{m-1} \Omega F_{m-1}$ and $q_{F}: \mathfrak{F}_{F} \rightarrow F_{m-1}$ be homotopy fibres of inclusion maps $E^{m} \Omega i_{m-1, m}^{F}$, $P^{m-1} \Omega i_{m-1, m}^{F}$ and $i_{m-1, m}^{F}$, respectively, which fit in with the following commutative diagram of fibre sequences. Thus we obtain a fibre sequence $\mathfrak{F}_{E} \rightarrow \mathfrak{F}_{P} \rightarrow \mathfrak{F}_{F}:$

Firstly, since the pair $\left(F_{m}, F_{m-1}\right)$ is $(\ell-1)$-connected, $\left(\Omega F_{m}, \Omega F_{m-1}\right)$ is $(\ell-2)$-connected and $\left(E^{m} \Omega F_{m}, E^{m} \Omega F_{m-1}\right)$ is $(\ell+m-3)$-connected. Therefore, \mathfrak{F}_{F} is $(\ell-2)$-connected and \mathfrak{F}_{E} is $(\ell+m-4)$-connected. We remark that \mathfrak{F}_{E} is at least $(\ell-1)$-connected, since $m \geq 3$, Then, by the homotopy exact sequence for the fibre sequence $\mathfrak{F}_{E} \rightarrow \mathfrak{F}_{P} \rightarrow \mathfrak{F}_{F}$,

$$
\pi_{k}\left(\mathfrak{F}_{P}\right) \cong \pi_{k}\left(\mathfrak{F}_{F}\right), \quad k \leq \ell-1,
$$

and hence \mathfrak{F}_{P} is $(\ell-2)$-connected. Thus \mathfrak{F}_{P} is 1 -connected, since $\ell \geq 3$. By a general version of the Blakers-Massey Theorem (see [4, Corollary 16.27], for example) and the hypothesis that $K_{m}=S^{\ell-1}$, it follows that

$$
\pi_{\ell-1}\left(\mathfrak{F}_{P}\right) \cong \pi_{\ell-1}\left(\mathfrak{F}_{F}\right) \cong \pi_{\ell}\left(F_{m}, F_{m-1}\right) \cong \pi_{\ell}\left(\Sigma K_{m}\right) \cong \pi_{\ell}\left(S^{\ell}\right) \cong \mathbb{Z}
$$

Thus, \mathfrak{F}_{P} has the following homology decomposition, up to homotopy:

$$
\mathfrak{F}_{P}=\left(S^{\ell-1} \vee S^{\ell} \vee \cdots \vee S^{\ell}\right) \cup(\text { cells in dimension } \geq \ell+1)
$$

Secondly, $P^{m-1} \Omega F_{m-1} \cup_{q_{P}} C \mathfrak{F}_{P}$ is described as the homotopy pushout of $q_{P}: \mathfrak{F}_{P} \rightarrow P^{m-1} \Omega F_{m-1}$ and the trivial map $*: \mathfrak{F}_{P} \rightarrow\{*\}$. Then we obtain

$$
\begin{array}{rlrl}
P^{m-1} \Omega F_{m-1} \cup_{q_{P}} C \mathfrak{F}_{P} & \longrightarrow & \begin{array}{c}
P^{m-1} \Omega F_{m-1} \times P^{m-1} \Omega F_{m} \\
\cup P^{m-1} \Omega F_{m} \times\{*\}
\end{array} \\
\phi_{P} \mid & \tag{3.2}\\
\forall & \\
P^{m-1} \Omega F_{m} \xrightarrow{\Delta} & & P^{m-1} \Omega F_{m} \times P^{m-1} \Omega F_{m}
\end{array}
$$

(see [6, Lemma 2.1], for example, with $(X, A)=\left(P^{m-1} \Omega F_{m}, P^{m-1} \Omega F_{m-1}\right)$, $(Y, B)=\left(P^{m-1} \Omega F_{m},\{*\}\right)$ and $\left.Z=P^{m-1} \Omega F_{m}\right)$, where we denote by Δ the diagonal map. Thus, there is a map

$$
\phi_{P}: P^{m-1} \Omega F_{m-1} \cup_{q_{P}} C(\mathfrak{F}) \rightarrow P^{m-1} \Omega F_{m}
$$

the left down arrow in diagram (3.2). On the other hand, by the proof of [6. Lemma 2.1], the subspace $P^{m-1} \Omega F_{m-1} \subset P^{m-1} \Omega F_{m-1} \cup_{q_{P}} C \mathfrak{F}_{P}$ can be described as the pullback of Δ above and the inclusion map
$P^{m-1} \Omega i_{m-1, m}^{F} \times 1: P^{m-1} \Omega F_{m-1} \times P^{m-1} \Omega F_{m} \hookrightarrow P^{m-1} \Omega F_{m-1} \times P^{m-1} \Omega F_{m}$, and hence we obtain

$$
\left.\phi_{P}\right|_{P^{m-1} \Omega F_{m-1}}=P^{m-1} \Omega i_{m-1, m}^{F}: P^{m-1} \Omega F_{m-1} \hookrightarrow P^{m-1} \Omega F_{m}
$$

Thirdly, the homotopy fibre \mathfrak{F}_{P}^{0} of ϕ_{P} is the homotopy pullback of the inclusion

$$
P^{m-1} \Omega F_{m-1} \times P^{m-1} \Omega F_{m} \cup P^{m-1} \Omega F_{m} \times\{*\} \hookrightarrow P^{m-1} \Omega F_{m} \times P^{m-1} \Omega F_{m}
$$

and the trivial map $\{*\} \rightarrow P^{m-1} \Omega F_{m} \times P^{m-1} \Omega F_{m}$. Then we obtain

$$
\begin{aligned}
\mathfrak{F}_{P} \times \Omega P^{m-1} \Omega F_{m} \xrightarrow{\text { proj }_{2}} P^{m-1} \Omega F_{m-1} \\
\operatorname{proj}_{1} \left\lvert\, \begin{array}{c}
\text { HPO } \\
\downarrow \\
\\
\mathfrak{F}_{P}
\end{array} \begin{array}{c}
\downarrow \\
\\
\\
\\
\\
\mathfrak{F}_{P}^{0}
\end{array}\right.
\end{aligned}
$$

(see [6, Lemma 2.1], for example, with $(X, A)=\left(P^{m-1} \Omega F_{m}, P^{m-1} \Omega F_{m-1}\right)$, $(Y, B)=\left(P^{m-1} \Omega F_{m},\{*\}\right)$ and $\left.Z=\{*\}\right)$. Hence \mathfrak{F}_{P}^{0} has the homotopy type of the join $\mathfrak{F}_{P} * \Omega P^{m-1} \Omega F_{m}$ which is $(\ell-1)$-connected. Thus ϕ_{P} is ℓ-connected.

Finally, let $q_{S}=\left.q_{P}\right|_{S^{\ell-1}}: S^{\ell-1} \rightarrow P^{m-1} \Omega F_{m-1}$. Then the inclusion $j: P^{m-1} \Omega F_{m-1} \cup_{q_{S}} C S^{\ell-1} \hookrightarrow P^{m-1} \Omega F_{m-1} \cup_{q_{P}} C \mathfrak{F}_{P}$ is ℓ-connected, since

$$
\begin{aligned}
P^{m-1} \Omega F_{m-1} & \cup_{q_{P}} C \mathfrak{F}_{P} \\
& =P^{m-1} \Omega F_{m-1} \cup_{q_{S}} C S^{\ell-1} \cup(\text { cells in dimension } \geq \ell+1)
\end{aligned}
$$

Then the composition $\phi_{S}=\phi_{P} \circ j:\left(P^{m-1} \Omega F_{m-1} \cup_{q_{S}} C S^{\ell-1}, P^{m-1} \Omega F_{m-1}\right)$ $\hookrightarrow\left(P^{m-1} \Omega F_{m}, P^{m-1} \Omega F_{m-1}\right)$ of ℓ-connected maps is again ℓ-connected.

Since $m \geq 3$, the pair $\left(E^{m} \Omega F_{m}, E^{m} \Omega F_{m-1}\right)$ is ℓ-connected, which implies (1). Thus, the inclusion

$$
P^{m-1} \Omega F_{m} \cup C\left(E^{m} \Omega F_{m-1}\right) \hookrightarrow P^{m-1} \Omega F_{m} \cup C\left(E^{m} \Omega F_{m}\right)
$$

is ℓ-connected, and we obtain an ℓ-connected map

$$
\begin{aligned}
\hat{\phi}_{S} & : P^{m} \Omega F_{m-1} \cup C S^{\ell-1}=P^{m-1} \Omega F_{m-1} \cup_{q S} C S^{\ell-1} \cup_{p_{m-1}^{\Omega F_{m-1}}} C\left(E^{m} \Omega F_{m-1}\right) \\
& \rightarrow P^{m-1} \Omega F_{m} \cup C\left(E^{m} \Omega F_{m-1}\right) \hookrightarrow P^{m-1} \Omega F_{m} \cup C\left(E^{m} \Omega F_{m}\right)=P^{m} \Omega F_{m}
\end{aligned}
$$

which implies (2). This completes the proof of Lemma 3.1.
From now on, we assume $K_{m}=S^{\ell-1}$ with $m, \ell \geq 3$. Thus, by Lemma 3.1, we may assume that $P_{m}^{m}=P^{m} \Omega F_{m-1} \cup C S^{\ell-1} \subset P^{m} \Omega F_{m}$ is such that ($P^{m} \Omega F_{m}, P_{m}^{m}$) is ℓ-connected. In this section, we define cone-decompositions of $F_{m} \times F_{1}^{\prime}, P_{m}^{m}$ and $P_{m}^{m} \times \Sigma \Omega F_{1}^{\prime}$.

Firstly, we give a cone-decomposition of $F_{m} \times F_{1}^{\prime}$ of length $m+1$:

$$
\begin{equation*}
\left\{K_{i}^{m, 1} \xrightarrow{w_{i}^{m, 1}} F_{i-1}^{m, 1} \hookrightarrow F_{i}^{m, 1} \mid 1 \leq i \leq m+1\right\} \quad \text { with } \quad F_{m+1}^{m, 1}=F_{m} \times F_{1}^{\prime}, \tag{3.3}
\end{equation*}
$$ here $K_{i}^{m, 1}, F_{i-1}^{m, 1}$ and $w_{i}^{m, 1}(1 \leq i \leq m+1)$ are defined by

$$
\begin{aligned}
& K_{1}^{m, 1}=K_{1} \vee K_{1}^{\prime}, \quad F_{0}^{m, 1}=\{*\}, \quad w_{1}^{m, 1}=*: K_{1}^{m, 1} \rightarrow F_{0}^{m, 1} \\
& \left\{\begin{array}{l}
K_{i}^{m, 1}=K_{i} \vee\left(K_{i-1} * K_{1}^{\prime}\right), \quad F_{i-1}^{m, 1}=F_{i-1} \times\{*\} \cup F_{i-2} \times F_{1}^{\prime}, \\
\left.w_{i}^{m, 1}\right|_{K_{i}}=\operatorname{incl} \circ\left(h_{i} \times *\right): K_{i} \rightarrow F_{i-1}=F_{i-1} \times\{*\} \subset F_{i-1}^{m, 1}, \\
\left.w_{i}^{m, 1}\right|_{K_{i-1} * K_{1}^{\prime}}=\left[\chi_{i-1}, \Sigma 1_{K_{1}^{\prime}}\right]^{r}: \\
K_{i-1} * K_{1}^{\prime} \rightarrow F_{i-1} \times\{*\} \cup F_{i-2} \times \Sigma K_{1}^{\prime}=F_{i-1}^{m, 1} ;
\end{array}\right.
\end{aligned}
$$

here $K_{m+1}=\{*\}$, incl is the canonical inclusion and $\left[\chi_{i}, \Sigma 1_{K_{1}^{\prime}}\right]^{r}$ is the relative Whitehead product of the characteristic map $\chi_{i}:\left(C K_{i}, K_{i}\right) \rightarrow$ $\left(F_{i}, F_{i-1}\right)$ and the suspension of the identity map $\Sigma 1_{K_{1}^{\prime}}: \Sigma K_{1}^{\prime} \rightarrow \Sigma K_{1}^{\prime}$.

Secondly, a cone-decomposition of P_{m}^{m} of length m is

$$
\left\{\begin{array}{l}
\Omega F_{m-1} \rightarrow\{*\} \hookrightarrow \Sigma \Omega F_{m-1} \\
\vdots \\
E^{i} \Omega F_{m-1} \rightarrow P^{i-1} \Omega F_{m-1} \hookrightarrow P^{i} \Omega F_{m-1}, \quad 1 \leq i<m \\
\vdots \\
E^{m} \Omega F_{m-1} \vee K_{m} \rightarrow P^{m-1} \Omega F_{m-1} \hookrightarrow P_{m}^{m}
\end{array}\right.
$$

Finally, a cone-decomposition of $P_{m}^{m} \times \Sigma \Omega F_{1}^{\prime}$ of length $m+1$ is

$$
\begin{equation*}
\left\{\hat{E}_{i} \xrightarrow{\hat{w}_{i}} \hat{F}_{i-1} \hookrightarrow \hat{F}_{i} \mid 1 \leq i \leq m+1\right\} \quad \text { with } \quad \hat{F}_{m+1}=P_{m}^{m} \times \Sigma \Omega F_{1}^{\prime} \tag{3.4}
\end{equation*}
$$

where $\hat{E}_{i+1}, \hat{F}_{i}$ and $\hat{w}_{i+1}, 0 \leq i \leq m$, are defined by

$$
\begin{aligned}
& \hat{E}_{1}=\Omega F_{m-1} \vee \Omega F_{1}^{\prime}, \quad \hat{F}_{0}=\{*\}, \quad \hat{w}_{1}=*: \hat{E}_{1} \rightarrow \hat{F}_{0}, \\
& \left\{\begin{array}{l}
\hat{E}_{i+1}=E^{i+1} \Omega F_{m-1} \vee\left\{E^{i} \Omega F_{m-1} * \Omega F_{1}^{\prime}\right\}, \\
\hat{F}_{i}=P^{i} \Omega F_{m-1} \times\{*\} \cup P^{i-1} \Omega F_{m-1} \times \Sigma \Omega F_{1}^{\prime}, \\
\left.\hat{w}_{i+1}\right|_{E^{i+1} \Omega F_{m-1}}: E^{i+1} \Omega F_{m-1} \xrightarrow[p_{i}^{\Omega F_{m-1}}]{ } P^{i} \Omega F_{m-1} \times\{*\} \subset \hat{F}_{i}, \\
\left.\hat{w}_{i+1}\right|_{E^{i} \Omega F_{m-1} * \Omega F_{1}^{\prime}}=\left[\chi_{i}^{\prime}, 1_{\left.\Sigma \Omega F_{1}^{\prime}\right]^{r}: E^{i} \Omega F_{m-1} * \Omega F_{1}^{\prime} \rightarrow \hat{F}_{i},} 1 \leq i<m-1,\right.
\end{array}\right. \\
& \left\{\begin{array}{l}
\hat{E}_{m}=\left\{E^{m} \Omega F_{m-1} \vee K_{m}\right\} \vee\left\{E^{m-1} \Omega F_{m-1} * \Omega F_{1}^{\prime}\right\}, \\
\hat{F}_{m-1}=P^{m-1} \Omega F_{m-1} \times\{*\} \cup P^{m-2} \Omega F_{m-1} \times \Sigma \Omega F_{1}^{\prime}, \\
\left.\hat{w}_{m}\right|_{E^{m} \Omega F_{m-1} \vee K_{m}}: E^{m} \Omega F_{m-1} \vee K_{m} \xrightarrow{p_{S}^{\prime}} P^{m-1} \Omega F_{m-1} \times\{*\} \subset \hat{F}_{m-1}, \\
\left.\hat{w}_{m}\right|_{E^{m-1} \Omega F_{m-1} * \Omega F_{1}^{\prime}}=\left[\chi_{m-1}^{\prime}, 1_{\Sigma \Omega F_{1}^{\prime}}\right]^{r}: E^{m-1} \Omega F_{m-1} * \Omega F_{1}^{\prime} \rightarrow \hat{F}_{m-1},
\end{array}\right. \\
& \left\{\begin{array}{l}
\hat{E}_{m+1}=\left\{E^{m} \Omega F_{m-1} \vee K_{m}\right\} * \Omega F_{1}^{\prime}, \\
\hat{F}_{m}=P_{m}^{m} \times\{*\} \cup P^{m-1} \Omega F_{m-1} \times \Sigma \Omega F_{1}^{\prime}, \\
\hat{w}_{m+1}=\left[\chi_{m}^{\prime}, 1_{\Sigma \Omega F_{1}^{\prime}}\right]^{r}: \hat{E}_{m+1} \rightarrow \hat{F}_{m},
\end{array}\right.
\end{aligned}
$$

here $p_{S}^{\prime}: E^{m} \Omega F_{m-1} \vee K_{m} \rightarrow P^{m-1} \Omega F_{m-1}$ is given by $\left.p_{S}^{\prime}\right|_{E^{m} \Omega F_{m-1}}=p_{m-1}^{\Omega F_{m-1}}$ and $\left.p_{S}^{\prime}\right|_{K_{m}}=q_{S}$, and χ_{i}^{\prime} is a relative homeomorphism given by

$$
\left\{\begin{array}{l}
\chi_{i}^{\prime}:\left(C E^{i} \Omega F_{m-1}, E^{i} \Omega F_{m-1}\right) \rightarrow\left(P^{i} \Omega F_{m-1}, P^{i-1} \Omega F_{m-1}\right), \quad 1 \leq i<m \\
\chi_{m}^{\prime}:\left(C E^{\prime}, E^{\prime}\right) \rightarrow\left(P_{m}^{m}, P^{m-1} \Omega F_{m-1}\right), E^{\prime}=E^{m} \Omega F_{m-1} \vee K_{m}
\end{array}\right.
$$

From now on, we denote by $\iota_{i}^{m, 1}: F_{i}^{m, 1} \hookrightarrow F_{i+1}^{m, 1}$ and $\hat{\iota}_{i}: \hat{F}_{i} \hookrightarrow \hat{F}_{i+1}$ the canonical inclusions. Let us denote $1_{m}=1_{F_{m}}: F_{m} \rightarrow F_{m}$.

Definition 3.2. The identity 1_{m} is filtered with respect to the filtration $*=F_{0} \subset F_{1} \subset \cdots \subset F_{m}$. Then by Proposition 2.4 for $f=1_{m}$, we obtain $\sigma_{i}=\widehat{\left(1_{m}\right)}{ }_{i}: F_{i} \rightarrow P^{i} \Omega F_{i}$ for $1 \leq i \leq m$, and $\widehat{\left(1_{m}\right)}{ }_{j}^{0}: K_{j} \rightarrow E^{j} \Omega F_{j}$ for
$1 \leq j \leq m$. Let $g_{j}=\widehat{\left(1_{m}\right)_{j}^{0}}: K_{j} \rightarrow E^{j} \Omega F_{j}$ for $1 \leq j \leq m$. We also obtain $g^{\prime}=\operatorname{ad}\left(1_{K_{1}^{\prime}}\right): K_{1}^{\prime} \rightarrow \Omega \Sigma K_{1}^{\prime}=\Omega F_{1}^{\prime}$ and $\sigma^{\prime}=\Sigma g^{\prime}: F_{1}^{\prime} \rightarrow \Sigma \Omega F_{1}^{\prime}$.

Since K_{m} and F_{m} are of dimension $\ell-1$ and ℓ, respectively, we may assume that the images of g_{m} and σ_{m} are in $E^{m} \Omega F_{m-1}$ and P_{m}^{m}, respectively.

LEMMA 3.3. Let $\nu_{k}^{m, 1}: F_{k}^{m, 1} \rightarrow F_{k}^{m, 1} \vee \Sigma K_{k}^{m, 1}$ and $\hat{\nu}_{k}: \hat{F}_{k} \rightarrow \hat{F}_{k} \vee \Sigma \hat{K}_{k}$ be the canonical copairings for $1 \leq k \leq m+1$, and $\sigma_{m}^{m, 1}=\sigma_{m} \times\{*\} \cup \sigma_{m-1} \times \sigma^{\prime}$: $F_{m}^{m, 1} \rightarrow \hat{F}_{m}$. Then the following diagram is commutative:

To prove Lemma 3.3, we need the following propositions.
Proposition 3.4. Let $K \xrightarrow{a} A \hookrightarrow C(a)$ and $L \xrightarrow{b} B \hookrightarrow C(b)$ be cofibre sequences, and let $\nu_{a}: C(a) \rightarrow C(a) \vee \Sigma K, \nu_{b}: C(b) \rightarrow C(b) \vee \Sigma L$ and $\nu=\nu(a, b): C(a) \times C(b) \rightarrow C(a) \times C(b) \vee \Sigma K * L$ be the canonical copairings.
(1) ν is given by the following composition, natural with respect to g, h :

$$
\begin{aligned}
& C(a) \times C(b) \\
& \xrightarrow{\nu_{a} \times \nu_{b}} C(a) \times C(b) \underset{C(a)}{\cup} C(a) \times \Sigma L \underset{C(b)}{\cup} \Sigma K \times C(b) \underset{\Sigma K \vee \Sigma L}{\cup} \Sigma K \times \Sigma L \\
& \xrightarrow{\Phi} C(a) \times C(b) \vee \Sigma K \times \Sigma L /(\Sigma K \vee \Sigma L) \xrightarrow{\cup} C(a) \times C(b) \vee \Sigma(K * L),
\end{aligned}
$$

$$
\text { where } \Phi \text { is given by }\left.\Phi\right|_{C(a) \times \Sigma L}=\operatorname{proj}_{1},\left.\Phi\right|_{\Sigma K \times C(b)}=\operatorname{proj}_{2} \text { and }
$$ $\left.\Phi\right|_{\Sigma K \times \Sigma L}=($ collapsing $): \Sigma K \times \Sigma L \rightarrow \Sigma K \times \Sigma L /(\Sigma K \vee \Sigma L)$.

Fig. 1
(2) Let $K^{\prime} \xrightarrow{a^{\prime}} A^{\prime} \hookrightarrow C\left(a^{\prime}\right)$ and $L^{\prime} \xrightarrow{b^{\prime}} B^{\prime} \hookrightarrow C\left(b^{\prime}\right)$ be cofibre sequences and $\hat{\nu}=\nu\left(a^{\prime}, b^{\prime}\right): C\left(a^{\prime}\right) \times C\left(b^{\prime}\right) \rightarrow C\left(a^{\prime}\right) \times C\left(b^{\prime}\right) \vee \Sigma\left(K^{\prime} * L^{\prime}\right)$. If $f^{0}: K \rightarrow K^{\prime}, f: A \rightarrow A^{\prime}, g^{0}: L \rightarrow L^{\prime}$ and $g: B \rightarrow B^{\prime}$ satisfy $f \circ a=a^{\prime} \circ f^{0}$ and $g \circ b=b^{\prime} \circ g^{0}$, then $\left(f, f^{0}\right)$ and $\left(g, g^{0}\right)$ induce $f^{\prime}: C(a) \rightarrow C\left(a^{\prime}\right)$ and $g^{\prime}: C(b) \rightarrow C\left(b^{\prime}\right)$ as in Theorem 2.1, which satisfy $\hat{\nu} \circ\left(f^{\prime} \times g^{\prime}\right)=\left(f^{\prime} \times g^{\prime} \vee \Sigma\left(f^{0} * g^{0}\right)\right) \circ \nu: C(a) \times C(b) \rightarrow$ $C\left(a^{\prime}\right) \times C\left(b^{\prime}\right) \vee \Sigma\left(K^{\prime} * L^{\prime}\right)$.

$$
\begin{aligned}
& \hat{E}_{m+1} \xrightarrow{\hat{w}_{m+1}} \hat{F}_{m} \xrightarrow{\hat{\iota}_{m}} \hat{F}_{m+1} \xrightarrow{\hat{\nu}_{m+1}} \hat{F}_{m+1} \vee \Sigma \hat{E}_{m+1}
\end{aligned}
$$

Proof. Let us recall the definition of $C(h)$ for $h: X \rightarrow Z$ and related spaces:

$$
\begin{aligned}
& C X=([0,1] \times X) \amalg\{*\} / \sim,(0, x) \sim * ; C(h)=Z \amalg C X / \sim, 1 \wedge x \sim h(x), \\
& C_{\leq 1 / 2} X=\{t \wedge x \in C X \mid t \leq 1 / 2\} \approx C X, \\
& C_{\geq 1 / 2}(h)=\{t \wedge x \in C(h) \mid t \geq 1 / 2\}, \quad(t, x) \in[0,1] \times X .
\end{aligned}
$$

Firstly, we define a homeomorphism

$$
\hat{\alpha}:(C(K * L), K * L) \approx(C K \times C L, C K \times L \cup K \times C L)
$$

by $\hat{\alpha}(t \wedge(s \wedge x, y))=((t s) \wedge x, t \wedge y)$ and $\hat{\alpha}(t \wedge(x, s \wedge y))=(t \wedge x,(t s) \wedge y)$ for $(x, y) \in K \times L$ and $s, t \in[0,1]$ (see Figure 2).

Fig. 2
Since $C\left(\left[\chi_{a}, \chi_{b}\right]\right)=C(a) \times B \cup A \times C(b) \cup_{\left[\chi_{a}, \chi_{b}\right]} C(K * L)$ and $C(a) \times C(b)=$ $(C(a) \times B \cup A \times C(b)) \cup_{\left[\chi_{a}, \chi_{b}\right]} C K \times C L, \hat{\alpha}$ induces a homeomorphism $\alpha: C\left(\left[\chi_{a}, \chi_{b}\right]\right) \approx C(a) \times C(b)$. Thus the canonical copairing ν is given by

$$
\nu: C(a) \times C(b) \rightarrow \frac{C(a) \times C(b)}{\alpha\left(\left\{C_{\leq 1 / 2}(K * L)\right\}\right)} \vee \frac{\alpha\left(C_{\leq 1 / 2}(K * L)\right)}{\alpha(\{1 / 2\} \times(K * L))} .
$$

Since we can easily see that $\alpha\left(C_{\leq 1 / 2}(K * L)\right) / \alpha(\{1 / 2\} \times(K * L)) \approx \Sigma(K * L)$ and $C(a) \times C(b) / \alpha\left(\left\{C_{\leq 1 / 2}(K * L)\right\}\right)=C(a) \times C(b) / C_{\leq 1 / 2} K \times C_{\leq 1 / 2} L, \nu$ is given as

$$
\nu: C(a) \times C(b) \rightarrow \frac{C(a) \times C(b)}{C_{\leq 1 / 2} K \times C_{\leq 1 / 2} L} \vee \Sigma(K * L) .
$$

Since $C_{\leq 1 / 2} X$ is contractible, the inclusion $(C(a),\{*\}) \times(C(b),\{*\}) \hookrightarrow$ $\left(C(a), C_{\leq 1 / 2} K\right) \times\left(C(b), C_{\leq 1 / 2} L\right)$ is homotopy equivalence, and so is the inclusion $C(a) \times\{*\} \cup\{*\} \times C(b) \hookrightarrow C(a) \times C_{\leq 1 / 2} L \cup C_{\leq 1 / 2} K \times C(b)$.

Hence, the following collapsing map is a homotopy equivalence:

$$
\begin{aligned}
\frac{C(a) \times C_{\leq 1 / 2} L \cup C_{\leq 1 / 2} K \times C(b)}{C_{\leq 1 / 2} K \times C_{\leq 1 / 2} L} & \rightarrow \frac{C_{\geq 1 / 2}(a)}{\{1 / 2\} \times K} \vee \frac{C_{\geq 1 / 2}(b)}{\{1 / 2\} \times L} \\
& \approx C(a) \vee C(b) .
\end{aligned}
$$

Finally, since $C_{\leq 1 / 2} K \times C_{\leq 1 / 2} L=\alpha\left(\left\{C_{\leq 1 / 2}(K * L)\right\}\right)$, by taking pushout of this collapsing with the inclusion

$$
C(a) \times C_{\leq 1 / 2} L \cup \frac{C_{\leq 1 / 2} K \times C(b)}{C_{\leq 1 / 2} K \times C_{\leq 1 / 2} L} \hookrightarrow \frac{C(a) \times C(b)}{\alpha\left(\left\{C_{\leq 1 / 2}(K * L)\right\}\right)},
$$

we obtain a homotopy equivalence

$$
\frac{C(a) \times C(b)}{\alpha\left(\left\{C_{\leq 1 / 2}(K * L)\right\}\right)} \rightarrow \frac{C_{\geq 1 / 2}(a)}{\{1 / 2\} \times K} \times \frac{C_{\geq 1 / 2}(b)}{\{1 / 2\} \times L} \approx C(a) \times C(b)
$$

Therefore, ν is homotopic to the map $\hat{\nu}$ given by

$$
\begin{aligned}
& \hat{\nu}(s \wedge x, t \wedge y) \\
& \quad= \begin{cases}(s \wedge x, t \wedge y) \in \frac{C_{\geq 1 / 2}(a)}{\{1 / 2\} \times K} \times \frac{C_{\geq 1 / 2}(b)}{\{1 / 2\} \times L}, & s, t \geq 1 / 2 \\
(*, t \wedge y) \in\{*\} \times \frac{C_{\geq 1 / 2}(b)}{\{1 / 2\} \times L}, & s \leq 1 / 2, t \geq 1 / 2 \\
(s \wedge x, *) \in \frac{C_{\geq 1 / 2}(a)}{\{1 / 2\} \times K} \times\{*\}, & s \geq 1 / 2, t \leq 1 / 2 \\
((s \wedge x) \wedge(t \wedge y)) \in \frac{C_{\leq 1 / 2} K}{\{1 / 2\} \times K} \wedge \frac{C_{\leq 1 / 2} L}{\{1 / 2\} \times L}, & s, t \leq 1 / 2\end{cases}
\end{aligned}
$$

which coincides with $\Phi \circ\left(\nu_{a} \times \nu_{b}\right)$ which implies (1). As (2) is clear by concrete definitions of these maps, we obtain the proposition.

Proposition 3.5. Let $\nu_{m}: F_{m} \rightarrow F_{m} \vee \Sigma K_{m}$ be the canonical copairing and $T_{1}: F_{m+1}^{m, 1} \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \vee \Sigma K_{m+1}^{m, 1} \rightarrow\left(F_{m+1}^{m, 1} \vee \Sigma K_{m+1}^{m, 1}\right) \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right)$ be an appropriate homeomorphism. Then

$$
T_{1} \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \vee 1_{\Sigma K_{m+1}^{m, 1}}\right) \circ \nu_{m+1}^{m, 1}=\left(\nu_{m+1}^{m, 1} \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}}\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right)
$$

Proof. First, Proposition 3.4 implies the commutative diagram

$$
\begin{gathered}
F_{m} \times F_{1}^{\prime} \xrightarrow{\nu_{m+1}^{m, 1}} F_{m} \times F_{1} \vee \Sigma\left(K_{m} * K_{1}^{\prime}\right) \\
F_{m} \times F_{1}^{\prime} \cup_{F_{1}^{\prime}} \Sigma K_{m} \times F_{1}^{\prime} \xrightarrow{1_{m} \times \nu_{1}} F_{m} \times F_{1}^{\prime} \cup_{F_{1}^{\prime}} \Sigma K_{m} \times F_{1}^{\prime} \cup_{F_{m}} F_{m} \times \Sigma K_{1}^{\prime} \\
\cup \Sigma K_{m} \times \Sigma K_{1}^{\prime}
\end{gathered}
$$

Now Φ goes through $\left(F_{m} \times F_{1}^{\prime} \cup_{F_{1}^{\prime}} \Sigma K_{m} \times F_{1}^{\prime}\right) \cup \Sigma K_{m} \times \Sigma K_{1}^{\prime} /\{*\} \times \Sigma K_{1}^{\prime}$ as

$$
\begin{aligned}
& \Phi:\left(F_{m} \times F_{1}^{\prime} \cup_{F_{1}^{\prime}} \Sigma K_{m} \times F_{1}^{\prime} \cup_{F_{m}} F_{m} \times \Sigma K_{1}^{\prime}\right) \cup \Sigma K_{m} \times \Sigma K_{1}^{\prime} \\
& \xrightarrow{\Phi^{\prime}}\left(F_{m} \times F_{1}^{\prime} \cup_{F_{1}^{\prime}} \Sigma K_{m} \times F_{1}^{\prime}\right) \cup \frac{\Sigma K_{m} \times \Sigma K_{1}^{\prime}}{\{*\} \times \Sigma K_{1}^{\prime}} \\
& \xrightarrow{\mathrm{pr}^{\prime}} F_{m} \times F_{1}^{\prime} \vee \Sigma\left(K_{m} * K_{1}^{\prime}\right),
\end{aligned}
$$

Fig. 3
where Φ^{\prime} and pr^{\prime} are given by

$$
\begin{aligned}
& \left.\Phi^{\prime}\right|_{F_{m} \times F_{1}^{\prime}}=1_{F_{m} \times F_{1}^{\prime}},\left.\quad \Phi^{\prime}\right|_{\Sigma K_{m} \times F_{1}^{\prime}}=1_{\Sigma K_{m} \times F_{1}^{\prime}},\left.\quad \Phi^{\prime}\right|_{F_{m} \times \Sigma K_{1}^{\prime}}=\operatorname{proj}_{1} \\
& \left.\Phi^{\prime}\right|_{\Sigma K_{m} \times \Sigma K_{1}^{\prime}}=(\text { collapsing }): \Sigma K_{m} \times \Sigma K_{1}^{\prime} \rightarrow \frac{\Sigma K_{m} \times \Sigma K_{1}^{\prime}}{\{*\} \times \Sigma K_{1}^{\prime}} \\
& \left.\operatorname{pr}^{\prime}\right|_{F_{m} \times F_{1}^{\prime}}=1_{F_{m} \times F_{1}^{\prime}},\left.\quad \operatorname{pr}^{\prime}\right|_{\Sigma K_{m} \times F_{1}^{\prime}}=\operatorname{proj}_{2}, \\
& \left.\operatorname{pr}^{\prime}\right|_{\Sigma K_{m} \times \Sigma K_{1}^{\prime} /\{*\} \times \Sigma K_{1}^{\prime}}=(\text { collapsing }): \frac{\Sigma K_{m} \times \Sigma K_{1}^{\prime}}{\{*\} \times \Sigma K_{1}^{\prime}} \rightarrow \Sigma\left(K_{m} * K_{1}^{\prime}\right)
\end{aligned}
$$

Since there is a natural homotopy equivalence $h: \Sigma K_{m} \times \Sigma K_{1}^{\prime} /\{*\} \times \Sigma K_{1}^{\prime} \simeq$ $\Sigma K_{m} \vee \Sigma\left(K_{m} * K_{1}^{\prime}\right)$ such that $\left.h\right|_{\Sigma K_{m} \times\{*\}}=1_{\Sigma K_{m}}, \mathrm{pr}^{\prime}$ can be decomposed as

$$
\mathrm{pr}^{\prime}=\mathrm{pr}_{1}^{\prime} \circ \mathrm{pr}_{0}^{\prime}
$$

where pr_{0}^{\prime} and pr_{1}^{\prime} are given by
$\left.\operatorname{pr}_{0}^{\prime}\right|_{F_{m} \times F_{1}^{\prime}}=1_{F_{m} \times F_{1}^{\prime}},\left.\quad \operatorname{pr}_{0}^{\prime}\right|_{\Sigma K_{m} \times F_{1}^{\prime}}=1_{\Sigma K_{m} \times F_{1}^{\prime}},\left.\quad \operatorname{pr}_{0}^{\prime}\right|_{\Sigma K_{m} \times \Sigma K_{1}^{\prime} /\{*\} \times \Sigma K_{1}^{\prime}}=h$,
$\left.\operatorname{pr}_{1}^{\prime}\right|_{F_{m} \times F_{1}^{\prime}}=1_{F_{m} \times F_{1}^{\prime}},\left.\quad \operatorname{pr}_{1}^{\prime}\right|_{\Sigma K_{m} \times F_{1}^{\prime}}=\operatorname{proj}_{2},\left.\quad \operatorname{pr}_{1}^{\prime}\right|_{\Sigma\left(K_{m} * K_{1}^{\prime}\right)}=1_{\Sigma\left(K_{m} * K_{1}^{\prime}\right)}$.

Hence $\Phi=\operatorname{pr}^{\prime} \circ \Phi^{\prime}=\operatorname{pr}_{1}^{\prime} \circ \operatorname{pr}_{0}^{\prime} \circ \Phi^{\prime}$, and $\operatorname{pr}_{0}^{\prime} \circ \Phi^{\prime}$ is given by

$$
\begin{aligned}
& \left.\operatorname{pr}_{0}^{\prime} \circ \Phi^{\prime}\right|_{F_{m} \times F_{1}^{\prime}}=1_{F_{m} \times F_{1}^{\prime}},\left.\quad \operatorname{pr}_{0}^{\prime} \circ \Phi^{\prime}\right|_{\Sigma K_{m} \times F_{1}^{\prime}}=1_{\Sigma K_{m} \times F_{1}^{\prime}}, \\
& \left.\operatorname{pr}_{0}^{\prime} \circ \Phi^{\prime}\right|_{F_{m} \times \Sigma K_{1}^{\prime}}=\operatorname{proj}_{1}, \\
& \left.\operatorname{pr}_{0}^{\prime} \circ \Phi^{\prime}\right|_{\Sigma K_{m} \times \Sigma K_{1}^{\prime}}=(\text { retraction }): \Sigma K_{m} \times \Sigma K_{1}^{\prime} \rightarrow \Sigma K_{m} \vee \Sigma\left(K_{m} * K_{1}^{\prime}\right),
\end{aligned}
$$

and so $\mathrm{pr}_{0}^{\prime} \circ \Phi^{\prime} \circ\left(1_{m} \times \nu_{1}\right)$ is given by
$\left.\operatorname{pr}_{0}^{\prime} \circ \Phi^{\prime} \circ\left(1_{m} \times \nu_{1}\right)\right|_{F_{m} \times F_{1}^{\prime}}=1_{F_{m} \times F_{1}^{\prime}}$,
$\left.\operatorname{pr}_{0}^{\prime} \circ \Phi^{\prime} \circ\left(1_{m} \times \nu_{1}\right)\right|_{\Sigma K_{m} \times F_{1}^{\prime}}=\nu^{\prime}: \Sigma K_{m} \times F_{1}^{\prime} \rightarrow \Sigma K_{m} \times F_{1}^{\prime} \vee \Sigma\left(K_{m} * K_{1}^{\prime}\right)$,

Fig. 4
where ν^{\prime} is the canonical copairing. Thus we obtain a commutative diagram

$$
\begin{gather*}
F_{m+1}^{m, 1}=F_{m} \times F_{1}^{\prime} \xrightarrow{\nu_{m} \times 1_{F_{1}^{\prime}}} \longrightarrow F_{m} \times F_{1}^{\prime} \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \tag{3.5}\\
\nu_{m+1}^{m, 1} \\
F_{m} \times F_{1}^{\prime} \vee \Sigma K_{m} * K_{1}^{\prime} \stackrel{p_{1}}{\leftrightarrows} F_{m} \times F_{1}^{\prime} \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \vee \Sigma K_{m} * K_{1}^{\prime}
\end{gather*}
$$

Therefore

$$
\begin{aligned}
& T_{1} \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \vee 1_{\Sigma K_{m+1}^{m, 1}}\right) \circ \nu_{m+1}^{m, 1} \\
& \quad=T_{1} \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \vee 1_{\Sigma K_{m+1}^{m, 1}}\right) \circ p_{1} \circ\left(1_{F_{m+1}^{m, 1}} \cup \nu^{\prime}\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right)
\end{aligned}
$$

Let us denote by $p_{2}: F_{m+1}^{m, 1} \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \vee \Sigma K_{m+1}^{m, 1} \rightarrow$ $F_{m+1}^{m, 1} \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \vee \Sigma K_{m+1}^{m, 1}$ the map pinching the second $\Sigma K_{m} \times F_{1}^{\prime}$ to F_{1}^{\prime}, by $p_{3}: F_{m+1}^{m, 1} \cup_{F_{1}^{\prime}}\left(\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \vee \Sigma K_{m+1}^{m, 1}\right) \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \rightarrow$ $\left(F_{m+1}^{m, 1} \vee \Sigma K_{m+1}^{m, 1}\right) \cup_{F_{1}^{\prime}} \Sigma K_{m+1}^{m, 1}$ the map pinching the first $\Sigma K_{m} \times F_{1}^{\prime}$ to one point, by $\nu_{0}: \Sigma K_{m} \rightarrow \Sigma K_{m} \vee \Sigma K_{m}$ the canonical comultiplication and by $T_{0}: \Sigma K_{m} \vee \Sigma K_{m} \rightarrow \Sigma K_{m} \vee \Sigma K_{m}$ the switching map. It is then easy to check that

$$
\begin{aligned}
T_{1} \circ & \left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \vee 1_{\Sigma K_{m+1}^{m, 1}}\right) \circ \nu_{m+1}^{m, 1} \\
= & T_{1} \circ p_{2} \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}} \vee 1_{\Sigma K_{m} * K_{1}^{\prime}}\right) \circ\left(1_{F_{m+1}^{m, 1}} \cup \nu^{\prime}\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \\
= & p_{3} \circ\left(1_{F_{m+1}^{m, 1}} \cup \nu^{\prime} \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}}\right) \circ\left(1_{F_{m+1}^{m, 1}} \cup\left(T_{0} \times 1_{F_{1}^{\prime}}\right)\right) \\
& \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}}\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) .
\end{aligned}
$$

Using $\left(1_{F_{m}} \vee \nu_{0}\right) \circ \nu_{m}=\left(\nu_{m} \vee 1_{\Sigma K_{m}}\right) \circ \nu_{m}$ and $T_{0} \circ \nu_{0}=\nu_{0}$ from the assumption that K_{m} is a co-H-space together with $F_{m+1}^{m, 1}=F_{m} \times F_{1}^{\prime}$, we have

$$
\begin{aligned}
& T_{1} \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \vee 1_{\Sigma K_{m+1}^{m, 1}}\right) \circ \nu_{m+1}^{m, 1} \\
&= p_{3} \circ\left(1_{F_{m+1}^{m, 1}} \cup \nu^{\prime} \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}}\right) \circ\left(1_{F_{m+1}^{m, 1}} \cup\left(T_{0} \times 1_{F_{1}^{\prime}}\right)\right) \\
& \circ\left(1_{\left.F_{m+1}^{m, 1} \cup\left(\nu_{0} \times 1_{F_{1}^{\prime}}\right)\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right)}^{=}\right. \\
&\left.p_{3} \circ\left(1_{F_{m+1}^{m, 1} \cup \nu^{\prime} \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}}}\right) \circ\left(\left(1_{F_{m}} \vee \nu_{0}\right) \times 1_{F_{1}^{\prime}}\right)\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \\
&= p_{3} \circ\left(1_{F_{m+1}^{m, 1}} \cup \nu^{\prime} \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}}\right) \circ\left(\left(\nu_{m} \vee 1_{\Sigma K_{m}}\right) \times 1_{F_{1}^{\prime}}\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) .
\end{aligned}
$$

Using diagram (3.5) yields

$$
T_{1} \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \vee 1_{\Sigma K_{m+1}^{m, 1}}\right) \circ \nu_{m+1}^{m, 1}=\left(\nu_{m+1}^{m, 1} \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}}\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right)
$$

This completes the proof of Proposition 3.5 .
Proof of Lemma 3.3. The commutativity of the left square follows from [14, Proposition 2.9], and the middle square is clearly commutative.

So we are left to show $\left(\sigma_{m} \times \sigma^{\prime} \vee \Sigma g_{m} * g^{\prime}\right) \circ \nu_{m+1}^{m, 1}=\hat{\nu}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right)$. Recall that $\sigma_{m}=\widehat{1_{m}}$ by Proposition 2.4(1) for $f=1_{m}$. On the other hand, by Proposition 2.4(2), we have $\sigma_{m}=\nabla_{P^{m} \Omega F_{m}} \circ\left(\left(1_{m}\right)_{m}^{\prime} \vee \iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}^{1_{m}}\right) \circ \nu_{m}$, and hence

$$
\begin{aligned}
\left(\sigma_{m} \times\right. & \left.\sigma^{\prime} \vee \Sigma g_{m} * g^{\prime}\right) \circ \nu_{m+1}^{m, 1} \\
= & \left\{\left(\nabla_{P^{m} \Omega F_{m}} \circ\left(\left(1_{m}\right)_{m}^{\prime} \vee\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}^{1_{m}}\right)\right) \circ \nu_{m}\right) \times \sigma^{\prime} \vee \Sigma g_{m} * g^{\prime}\right\} \circ \nu_{m+1}^{m, 1} \\
= & \left(\nabla_{P^{m} \Omega F_{m}} \times 1_{\Sigma \Omega F_{1}^{\prime}} \vee 1_{\Sigma \hat{E}_{m+1}}\right) \\
& \circ\left\{\left(\left(1_{m}\right)_{m}^{\prime} \times \sigma^{\prime}\right) \cup\left(\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}\right) \times \sigma^{\prime}\right) \vee \Sigma g_{m} * g^{\prime}\right\} \\
& \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \vee 1_{\Sigma K_{m+1}^{m, 1}}\right) \circ \nu_{m+1}^{m, 1} \\
= & \left(\nabla_{P^{m} \Omega F_{m}} \times 1_{\Sigma \Omega F_{1}^{\prime}} \vee 1_{\Sigma \hat{E}_{m+1}}\right) \\
& \circ T_{2} \circ\left\{\left(\left(1_{m}\right)_{m}^{\prime} \times \sigma^{\prime} \vee \Sigma g_{m} * g^{\prime}\right) \cup\left(\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}^{1_{m}}\right) \times \sigma^{\prime}\right)\right\} \circ T_{1} \\
& \circ\left(\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \vee 1_{\Sigma K_{m+1}^{m, 1}}\right) \circ \nu_{m+1}^{m, 1},
\end{aligned}
$$

where $T_{1}: F_{m+1}^{m, 1} \cup_{F_{1}^{\prime}}\left(\Sigma K_{m} \times F_{1}^{\prime}\right) \vee \Sigma K_{m+1}^{m, 1} \rightarrow\left(F_{m+1}^{m, 1} \vee \Sigma K_{m+1}^{m, 1}\right) \cup_{F_{1}^{\prime}}$ $\left(\Sigma K_{m} \times F_{1}^{\prime}\right)$ and $T_{2}:\left(\hat{F}_{m+1} \vee \Sigma \hat{E}_{m+1}\right) \cup_{\Sigma \Omega F_{1}^{\prime}} \hat{F}_{m+1} \rightarrow\left(\hat{F}_{m+1} \cup_{\Sigma \Omega F_{1}^{\prime}} \hat{F}_{m+1}\right)$ $\vee \Sigma \hat{E}_{m+1}$ are appropriate homeomorphisms. Then by Proposition 3.5 , Proposition 3.4(2) and the definitions of $\left(1_{m}\right)_{m}^{\prime}$ and σ^{\prime}, we proceed as
follows:

$$
\begin{aligned}
&\left(\sigma_{m} \times \sigma^{\prime} \vee \Sigma g_{m} * g^{\prime}\right) \circ \nu_{m+1}^{m, 1} \\
&=\left(\nabla_{P^{m} \Omega F_{m}} \times 1_{\Sigma \Omega F_{1}^{\prime}} \vee 1_{\Sigma \hat{E}_{m+1}}\right) \\
& \circ T_{2} \circ\left\{\left(\left(1_{m}\right)_{m}^{\prime} \times \sigma^{\prime} \vee \Sigma g_{m} * g^{\prime}\right) \cup\left(\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}^{1_{m}}\right) \times \sigma^{\prime}\right)\right\} \\
& \circ\left(\nu_{m+1}^{m, 1} \cup 1_{\Sigma K_{m} \times F_{1}^{\prime}}\right) \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \\
&=\left(\nabla_{P^{m} \Omega F_{m}} \times 1_{\Sigma \Omega F_{1}^{\prime}} \vee 1_{\Sigma \hat{E}_{m+1}}\right) \circ T_{2} \\
& \quad \circ\left\{\left(\left(\left(1_{m}\right)_{m}^{\prime} \times \sigma^{\prime} \vee \Sigma g_{m} * g^{\prime}\right) \circ \nu_{m+1}^{m, 1}\right) \cup\left(\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}^{1_{m}}\right) \times \sigma^{\prime}\right)\right\} \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) . \\
&=\left(\nabla_{P^{m} \Omega F_{m}} \times 1_{\Sigma \Omega F_{1}^{\prime}} \vee 1_{\Sigma \hat{E}_{m+1}}\right) \circ T_{2} \\
& \circ\left\{\left(\hat{\nu}_{m+1} \circ\left(\left(1_{m}\right)_{m}^{\prime} \times \sigma^{\prime}\right)\right) \cup\left(\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}^{1_{m}}\right) \times \sigma^{\prime}\right)\right\} \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \\
&=\left(\nabla_{P^{m} \Omega F_{m}} \times 1_{\Sigma \Omega F_{1}^{\prime}} \vee \nabla_{\Sigma \hat{E}_{m+1}}\right) \circ T_{3} \\
& \circ\left\{\hat{\nu}_{m+1} \circ\left(\left(1_{m}\right)_{m}^{\prime} \times \sigma^{\prime}\right) \cup i_{1} \circ\left(\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}^{1_{m}}\right) \times \sigma^{\prime}\right)\right\} \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) .
\end{aligned}
$$

Here $i_{1}: \hat{F}_{m+1} \rightarrow \hat{F}_{m+1} \vee \Sigma \hat{E}_{m+1}$ is the first inclusion and $T_{3}:\left(\hat{F}_{m+1} \vee \Sigma \hat{E}_{m+1}\right)$ $\cup_{\Sigma \Omega F_{1}^{\prime}}\left(\hat{F}_{m+1} \vee \Sigma \hat{E}_{m+1}\right) \rightarrow\left(\hat{F}_{m+1} \cup_{\Sigma \Omega F_{1}^{\prime}} \hat{F}_{m+1}\right) \vee \Sigma \hat{E}_{m+1} \vee \Sigma \hat{E}_{m+1}$ is an appropriate homeomorphism. Thus

$$
\begin{aligned}
\left(\sigma_{m} \times\right. & \left.\sigma^{\prime} \vee \Sigma g_{m} * g^{\prime}\right) \circ \nu_{m+1}^{m, 1} \\
= & \left(\nabla_{P^{m} \Omega F_{m}} \times 1_{\Sigma \Omega F_{1}^{\prime}} \vee \nabla_{\Sigma \hat{E}_{m+1}}\right) \circ T_{3} \\
& \circ\left(\hat{\nu}_{m+1} \cup \hat{\nu}_{m+1}\right) \circ\left\{\left(\left(1_{m}\right)_{m}^{\prime} \times \sigma^{\prime}\right) \cup\left(\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}\right) \times \sigma^{\prime}\right)\right\} \circ\left(\nu_{m} \times 1_{F_{1}^{\prime}}\right) \\
= & \hat{\nu}_{m+1} \circ\left\{\nabla_{P^{m} \Omega F_{m}} \circ\left(\left(1_{m}\right)_{m}^{\prime} \vee\left(\iota_{m-1, m}^{\Omega F_{m}} \circ \delta_{m}^{1_{m}}\right)\right) \circ \nu_{m} \times \sigma^{\prime}\right\} \\
= & \hat{\nu}_{m+1} \circ\left(\sigma_{m}^{1_{m}} \times \sigma^{\prime}\right)
\end{aligned}
$$

This completes the proof of Lemma 3.3 .
4. Proof of Theorem 1.2. In the fibre sequence $G \hookrightarrow E \rightarrow \Sigma A$, by the James-Whitehead decomposition (see Whitehead [17, VII. Theorem (1.15)]), the total space E has the homotopy type of the space $G \cup_{\psi} G \times C A$, where

$$
\psi: G \times A \xrightarrow{1_{G} \times \alpha} G \times G \xrightarrow{\mu} G .
$$

Since $G \simeq F_{m}$ and, by condition (1) of Theorem 1.2, α is compressible into F_{1}^{\prime}, we see that
$\psi: G \times A \simeq F_{m} \times A \xrightarrow{1_{F_{m}} \times \alpha} F_{m} \times F_{1}^{\prime} \subset F_{m} \times F_{1} \subset F_{m} \times F_{m} \simeq G \times G \xrightarrow{\mu} G \simeq F_{m}$ and E is the homotopy pushout of the sequence

$$
F_{m} \stackrel{p r_{1}}{\rightleftarrows} F_{m} \times A \xrightarrow{1_{F_{m}} \times \alpha} F_{m} \times F_{1}^{\prime} \xrightarrow{\mu_{m, 1}} F_{m}
$$

We construct spaces and maps such that the homotopy pushout of these maps dominates E. Let $e^{\prime}=e_{1}^{F_{1}^{\prime}}: \Omega \Sigma F_{1}^{\prime} \rightarrow F_{1}^{\prime}$ and $\sigma_{A}=\Sigma \operatorname{ad}\left(1_{A}\right):$ $A \rightarrow \Sigma \Omega A$, since A is a suspended space. By condition (2) of Theorem 1.2 , we have $H_{1}(\alpha)=0$ in $\left[A, \Omega F_{1}^{\prime} * \Omega F_{1}^{\prime}\right]$, which immediately implies

$$
\begin{equation*}
\sigma^{\prime} \circ \alpha=\Sigma \operatorname{ad}(\alpha)=e^{\prime} \circ \sigma_{A}: A \rightarrow \Sigma \Omega F_{1}^{\prime} . \tag{4.1}
\end{equation*}
$$

By condition (3) of Theorem 1.2, we have $K_{m}=S^{\ell-1}$ with $m, \ell \geq 3$, and so $\left(P^{m} \Omega F_{m}, P_{m}^{m}\right)$ is ℓ-connected by Lemma 3.1 .

Proposition 4.1. The following diagram is commutative:

where $\phi=\iota_{m, m+1}^{\Omega F_{m}} \circ p r_{1}$ and $\chi=1_{P_{m}^{m}} \times \Sigma \Omega \alpha$.
Proof. The upper left square is clearly commutative. The equality $e_{m}^{F_{m}}=$ $e_{m+1}^{F_{m}} \circ \iota_{m, m+1}^{\Omega F_{m}}$ implies that the lower left square is commutative. The equality $\alpha \circ e_{1}^{A}=e^{\prime} \circ \Sigma \Omega \alpha$ implies the commutativity of the lower middle square. The commutativity of the upper middle square is obtained by (4.1). Proposition 2.4(2) for $f=1_{m}$ and the fact that $e^{\prime} \circ \sigma^{\prime}=1_{F_{1}^{\prime}}$ imply that the right rectangle is commutative.

DEFINITION 4.2. $\lambda=\mu_{m, 1} \circ\left\{e_{m}^{F_{m}} \times e^{\prime}\right\}: \hat{F}_{m+1} \rightarrow F_{m} \times F_{1}^{\prime} \rightarrow F_{m}$.
Then λ is a well-defined filtered map with respect to the filtration (3.4) of \hat{F}_{m+1} and the trivial filtration $\left(\left(F_{m}\right)_{i}=F_{m}\right.$ for all $\left.i\right)$ of F_{m}, where $\left\{e_{m}^{F_{m}} \times e^{\prime}\right\}\left(\hat{F}_{k}\right)=\left\{e_{k}^{F_{m-1}} \times * \cup e_{k-1}^{F_{m-1}} \times e^{\prime}\right\}\left(\hat{F}_{k}\right) \subset F_{m-1} \times F_{1}^{\prime}$ for $0 \leq k<m$, and $\left\{e_{m}^{F_{m}} \times e^{\prime}\right\}\left(\hat{F}_{m}\right)=\left\{e_{m}^{F_{m}} \times * \cup e_{m-1}^{F_{m-1}} \times e^{\prime}\right\}\left(\hat{F}_{m}\right) \subset F_{m} \times\{*\} \cup F_{m-1} \times F_{1}^{\prime}$ for $k=m$.

Definition 4.3. By Proposition 2.4 for $f=\lambda$, we obtain a series of maps $\hat{\lambda}_{k}: \hat{F}_{k} \rightarrow P^{k} \Omega F_{m}, 0 \leq k \leq m+1$.

By the hypothesis of Theorem 1.2, we have $\mu_{k, 1}: F_{k} \times F_{1}^{\prime} \rightarrow F_{k+1}$ for $k<m$, and $\mu_{m, 1}: F_{m} \times F_{1}^{\prime} \rightarrow F_{m}$, both of which are restrictions of μ.

Lemma 4.4. There is a map $\hat{\lambda}: \hat{F}_{m+1} \rightarrow P^{m+1} \Omega F_{m}$ which fits in with the following commutative diagram obtained by dividing the right square of
the diagram in Proposition 4.1 by $\hat{\lambda}$ into upper and lower squares.

Proof. Let $\mu_{k}^{m, 1}=1_{F_{k}} \cup \mu_{k-1,1}: F_{k}^{m, 1}=F_{k} \times\{*\} \cup F_{k-1} \times F_{1}^{\prime} \rightarrow F_{k}, \sigma_{k}^{m, 1}$ $=\sigma_{k} \times * \cup \sigma_{k-1} \times \sigma^{\prime}: F_{k}^{m, 1^{\prime}} \rightarrow P^{k} \Omega F_{k} \times\{*\} \cup P^{k-1} \Omega F_{k-1} \times \Sigma \Omega F_{1}^{\prime}$ and $j_{k}=P^{k} \Omega i_{k, m-1}^{F} \times * \cup P^{k-1} \Omega i_{k-1, m-1}^{F} \times 1_{\Sigma \Omega F_{1}^{\prime}}, 0 \leq k<m$.

Firstly, we show the following by induction on $k<m$:

$$
\begin{equation*}
\iota_{k, k+1}^{\Omega F_{m}} \circ P^{k} \Omega i_{k, m}^{F} \circ \sigma_{k} \circ \mu_{k}^{m, 1}=\iota_{k, k+1}^{\Omega F_{m}} \circ \hat{\lambda}_{k} \circ j_{k} \circ \sigma_{k}^{m, 1}: F_{k}^{m, 1} \rightarrow P^{k+1} \Omega F_{m} \tag{4.2}
\end{equation*}
$$

The case $k=0$ is clear, since both maps are constant maps. Assume that (4.2) holds for some k. By Proposition 2.4(1) for $f=1_{m}$, the diagram

is commutative for $k+1<m$, and hence

$$
\begin{aligned}
j_{k+1} & \circ \sigma_{k+1}^{m, 1} \circ \iota_{k}^{m, 1} \\
& =\left(P^{k+1} \Omega i_{k+1, m-1}^{F} \circ \sigma_{k+1} \circ i_{k, k+1}^{F}\right) \times * \cup\left(P^{k} \Omega i_{k, m-1}^{F} \circ \sigma_{k} \circ i_{k-1, k}^{F}\right) \times \sigma^{\prime} \\
& =\left(\iota_{k, k+1}^{\Omega F_{m-1}} \circ P^{k} \Omega i_{k, m-1}^{F} \circ \sigma_{k}\right) \times * \cup\left(\iota_{k-1, k}^{\Omega F_{m-1}} \circ P^{k} \Omega i_{k-1, m-1}^{F} \circ \sigma_{k-1}\right) \times \sigma^{\prime} \\
& =\hat{\iota}_{k} \circ j_{k} \circ \sigma_{k}^{m, 1} .
\end{aligned}
$$

By Proposition 2.4 (1) for $f=\lambda$, we have $\hat{\lambda}_{k+1} \circ \hat{\imath}_{k}=\iota_{k, k+1}^{\Omega F_{m}} \circ \hat{\lambda}_{k}$, and hence

$$
\hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1} \circ \iota_{k}^{m, 1}=\hat{\lambda}_{k+1} \circ \hat{\iota}_{k} \circ j_{k} \circ \sigma_{k}^{m, 1}=\iota_{k, k+1}^{\Omega F_{m}} \circ \hat{\lambda}_{k} \circ j_{k} \circ \sigma_{k}^{m, 1}
$$

Then, by Proposition $2.4(1)$ for $f=1_{m}$ and the induction hypothesis,

$$
\begin{aligned}
& \left(\iota_{k}^{m, 1}\right)^{*}\left(\hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1}\right) \\
& =\left[\iota_{k, k+1}^{\Omega F_{m}} \circ P^{k} \Omega i_{k, m}^{F} \circ \sigma_{k} \circ \mu_{k}^{m, 1}\right]=\left[P^{k+1} \Omega i_{k+1, m}^{F} \circ \sigma_{k+1} \circ i_{k, k+1}^{F} \circ \mu_{k}^{m, 1}\right] \\
& =\left[P^{k+1} \Omega i_{k+1, m}^{F} \circ \sigma_{k+1} \circ \mu_{k+1}^{m, 1} \circ \iota_{k}^{m, 1}\right]=\left(\iota_{k}^{m, 1}\right)^{*}\left(P^{k+1} \Omega i_{k+1, m}^{F} \circ \sigma_{k+1} \circ \mu_{k+1}^{m, 1}\right)
\end{aligned}
$$

By a standard argument of homotopy theory applied to the cofibre sequence $K_{k+1}^{m, 1} \rightarrow F_{k}^{m, 1} \hookrightarrow F_{k+1}^{m, 1}$, we obtain the difference map $\delta_{k+1}: \Sigma K_{k+1}^{m, 1} \rightarrow$ $P^{k+1} \Omega F_{m}$ of $\hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1}$ and $P^{k+1} \Omega i_{k+1, m}^{F} \circ \sigma_{k+1} \circ \mu_{k+1}^{m, 1}, k+1<m$:

$$
\begin{align*}
P^{k+1} \Omega i_{k+1, m}^{F} \circ & \sigma_{k+1} \circ \mu_{k+1}^{m, 1} \tag{4.3}\\
& =\nabla_{P^{k+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1} \vee \delta_{k+1}\right) \circ \nu_{k+1}^{m, 1}
\end{align*}
$$

Then, by Proposition 2.4(1) for $f=\lambda$, we have

$$
e_{k+1}^{F_{m}} \circ \hat{\lambda}_{k+1}=\mu_{m-1,1} \circ\left\{e_{k+1}^{F_{m-1}} \times * \cup e_{k}^{F_{m-1}} \times e^{\prime}\right\}
$$

and hence, by the commutative diagram

for $i=k, k+1 \leq m-1$, we obtain

$$
\left\{e_{k+1}^{F_{m-1}} \times * \cup e_{k}^{F_{m-1}} \times e^{\prime}\right\} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1}=\iota_{k+1, m}^{m, 1}
$$

where $\iota_{k+1, m}^{m, 1}: F_{k+1}^{m, 1} \hookrightarrow F_{m}^{m, 1}$ is the canonical inclusion. Thus

$$
\begin{aligned}
& e_{k+1}^{F_{m}} \circ \hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1}=\mu_{m-1,1} \circ \iota_{k+1, m}^{m, 1}=i_{k+1, m}^{F} \circ \mu_{k+1}^{m, 1} \\
& \quad=i_{k+1, m}^{F} \circ e_{k+1}^{F_{k+1}} \circ \sigma_{k+1} \circ \mu_{k+1}^{m, 1}=e_{k+1}^{F_{m}} \circ P^{k+1} \Omega i_{k+1, m}^{F} \circ \sigma_{k+1} \circ \mu_{k+1}^{m, 1}
\end{aligned}
$$

and hence, by 4.3),

$$
\begin{aligned}
i_{k+1, m}^{F} \circ \mu_{k+1}^{m, 1} & =\nabla_{F_{m}} \circ\left(e_{k+1}^{F_{m}} \circ \hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1} \vee e_{k+1}^{F_{m}} \circ \delta_{k+1}\right) \circ \nu_{k+1}^{m, 1} \\
& =\nabla_{F_{m}} \circ\left(i_{k+1, m}^{F} \circ \mu_{k+1}^{m, 1} \vee e_{k+1}^{F_{m}} \circ \delta_{k+1}\right) \circ \nu_{k+1}^{m, 1}
\end{aligned}
$$

Using [13, Theorem $2.7(1)$] and the multiplication μ on $G \simeq F_{m}$, we see that $e_{k+1}^{F_{m}} \circ \delta_{k+1}: \Sigma K_{k+1}^{m, 1} \rightarrow F_{m}$ is null-homotopic. Hence by a standard argument of homotopy theory applied to the fibre sequence $E^{k+2} \Omega F_{m} \rightarrow$ $P^{k+1} \Omega F_{m} \rightarrow F_{m}$, we get a lift $\delta_{k+1}^{\prime}: \Sigma K_{k+1}^{m, 1} \rightarrow E^{m+1} \Omega F_{m}$ of δ_{k+1} as $p_{k+1}^{\Omega F_{m}} \circ \delta_{k+1}^{\prime}=\delta_{k+1}, k+1<m$. Since $\iota_{k+1, k+2}^{\Omega F_{m}} \circ p_{k+1}^{\Omega F_{m}}=*$, we obtain $\iota_{k+1, k+2}^{\Omega F_{m}} \circ \delta_{k+1}=\iota_{k+1, k+2}^{\Omega F_{m}} \circ p_{k+1}^{\Omega F_{m}} \circ \delta_{k+1}^{\prime}=*$ and

$$
\begin{aligned}
& \iota_{k+1, k+2}^{\Omega F_{m}} \circ \nabla_{P^{k+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1} \vee \delta_{k+1}\right) \circ \nu_{k+1}^{m, 1} \\
& \quad=\nabla_{P^{k+2} \Omega F_{m}} \circ\left(\iota_{k+1, k+2}^{\Omega F_{m}} \circ \hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1} \vee *\right) \circ \nu_{k+1}^{m, 1} \\
& \quad=\iota_{k+1, k+2}^{\Omega F_{m}} \circ \hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1}
\end{aligned}
$$

and hence, by 4.3),

$$
\iota_{k+1, k+2}^{\Omega F_{m}} \circ P^{k+1} \Omega i_{k+1, m}^{F} \circ \sigma_{k+1} \circ \mu_{k+1}^{m, 1}=\iota_{k+1, k+2}^{\Omega F_{m}} \circ \hat{\lambda}_{k+1} \circ j_{k+1} \circ \sigma_{k+1}^{m, 1}
$$

This completes the proof of the induction step and we obtain 4.2 for $k<m$.
Secondly, we show that

$$
\begin{equation*}
\iota_{m, m+1}^{\Omega_{F_{m}}} \circ \sigma_{m} \circ \mu_{m}^{m, 1}=\iota_{m, m+1}^{\Omega_{F_{m}}} \circ \hat{\lambda}_{m} \circ \sigma_{m}^{m, 1} \tag{4.4}
\end{equation*}
$$

By Proposition 2.4 (1) for $f=1_{m}$, we obtain

$$
\sigma_{t} \circ i_{t-1, t}^{F}=i_{t-1, t}^{\Omega F_{t}} \circ P^{t-1} \Omega i_{t-1, t}^{F} \circ \sigma_{t-1} \quad \text { for } \quad t=m-1, m
$$

Hence

$$
\begin{aligned}
\sigma_{m}^{m, 1} \circ \iota_{m-1}^{m, 1}= & \left(\left(\sigma_{m} \circ i_{m-1, m}^{F}\right) \times * \cup\left(\sigma_{m-1} \circ i_{m-2, m-1}^{F}\right) \times \sigma^{\prime}\right) \\
= & \left(\iota_{m-1, m}^{\Omega F_{m}} \circ P^{m-1} \Omega i_{m-1, m}^{F} \circ \sigma_{m-1}\right) \times * \\
& \cup\left(\iota_{m-2, m-1}^{\Omega F_{m-1}} \circ P^{m-2} \Omega i_{m-2, m-1}^{F} \circ \sigma_{m-1}\right) \times \sigma^{\prime} \\
= & \hat{i}_{m-1} \circ j_{m-1} \circ \sigma_{m-1}^{m, 1}
\end{aligned}
$$

By Proposition 2.4 (1) for $f=\lambda$, we obtain $\hat{\lambda}_{m} \circ \hat{\iota}_{m-1}=\iota_{m-1, m}^{\Omega F_{m}} \circ \hat{\lambda}_{m-1}$ and

$$
\begin{aligned}
& \left(\iota_{m-1}^{m, 1}\right)^{*}\left(\hat{\lambda}_{m} \circ \sigma_{m}^{m, 1}\right)=\left[\hat{\lambda}_{m} \circ \sigma_{m}^{m, 1} \circ \iota_{m-1}^{m, 1}\right]=\left[\hat{\lambda}_{m} \circ \hat{i}_{m-1} \circ j_{m-1} \circ \sigma_{m-1}^{m, 1}\right] \\
& \quad=\left[\iota_{m-1, m}^{\Omega F_{m}} \circ \hat{\lambda}_{m-1} \circ j_{m-1} \circ \sigma_{m-1}^{m, 1}\right]=\left[\iota_{m-1, m}^{\Omega F_{m}} \circ P^{m} \Omega i_{m-1, m}^{F} \circ \sigma_{m-1} \circ \mu_{m-1}^{m, 1}\right] \\
& \quad=\left[\sigma_{m} \circ i_{m-1, m}^{F} \circ \mu_{m-1}^{m, 1}\right]=\left(\iota_{m-1}^{m, 1}\right)^{*}\left(\sigma_{m} \circ \mu_{m}^{m, 1}\right)
\end{aligned}
$$

using (4.2) for $k=m-1$. Thus by a standard argument of homotopy theory applied to the cofibre sequence $K_{m}^{m, 1} \rightarrow F_{m} \hookrightarrow F_{m+1}$, we obtain a difference $\operatorname{map} \delta_{m}: \Sigma K_{m}^{m, 1} \rightarrow P^{m} \Omega F_{m}$ of $\hat{\lambda}_{m} \circ \sigma_{m}^{m, 1}$ and $\sigma_{m} \circ \mu_{m}^{m, 1}$:

$$
\begin{equation*}
\sigma_{m} \circ \mu_{m}^{m, 1}=\nabla_{P^{m} \Omega F_{m}} \circ\left(\hat{\lambda}_{m} \circ \sigma_{m}^{m, 1} \vee \delta_{m}\right) \circ \nu_{m}^{m, 1} \tag{4.5}
\end{equation*}
$$

By Proposition 2.4(1) for $f=\lambda$,
$e_{m}^{F_{m}} \circ \hat{\lambda}_{m} \circ \sigma_{m}^{m, 1}=\mu_{m}^{m, 1} \circ\left\{e_{m}^{F_{m}} \times * \cup e_{m-1}^{F_{m-1}} \times e^{\prime}\right\} \circ\left(\sigma_{m} \times * \cup \sigma_{m-1} \times \sigma^{\prime}\right)=\mu_{m}^{m, 1}$, and hence, by 4.5,

$$
\mu_{m}^{m, 1}=\nabla_{F_{m}} \circ\left(e_{m}^{F_{m}} \circ \hat{\lambda}_{m} \circ \sigma_{m}^{m, 1} \vee e_{m}^{F_{m}} \circ \delta_{m}\right) \circ \nu_{m}^{m, 1}=\nabla_{F_{m}} \circ\left(\mu_{m}^{m, 1} \vee e_{m}^{F_{m}} \circ \delta_{m}\right) \circ \nu_{m}^{m, 1}
$$

Thus $e_{m}^{F_{m}} \circ \delta_{m}=*$. Then, by a standard argument of homotopy theory applied to the fibre sequence $E^{m+1} \Omega F_{m} \rightarrow P^{m} \Omega F_{m} \rightarrow F_{m}$, we obtain a lift $\delta_{m}^{\prime}: \Sigma K_{m}^{m, 1} \rightarrow E^{m+1} \Omega F_{m}$ which satisfies $\delta_{m}=p_{m}^{\Omega F_{m}} \circ \delta_{m}^{\prime}$. Since $\iota_{m, m+1}^{\Omega F_{m}} \circ p_{m}^{\Omega F_{m}}=*$, we have $\iota_{m, m+1}^{\Omega F_{m}} \circ \delta_{m}=\iota_{m, m+1}^{\Omega F_{m}} \circ p_{m}^{\Omega F_{m}} \circ \delta_{m}^{\prime}=*$. Then by (4.5), we obtain (4.4) as follows:

$$
\begin{aligned}
& \iota_{m, m+1}^{\Omega F_{m}} \circ \sigma_{m} \circ \mu_{m}^{m, 1}=\iota_{m, m+1}^{\Omega F_{m}} \circ \nabla_{P^{m} \Omega F_{m}} \circ\left(\hat{\lambda}_{m} \circ \sigma_{m}^{m, 1} \vee \delta_{m}\right) \circ \nu_{m}^{m, 1} \\
& \quad=\nabla_{P^{m+1} \Omega F_{m}} \circ\left(\iota_{m, m+1}^{\Omega F_{m}} \circ \hat{\lambda}_{m} \circ \sigma_{m}^{m, 1} \vee *\right) \circ \nu_{m}^{m, 1}=\iota_{m, m+1}^{\Omega F_{m}} \circ \hat{\lambda}_{m} \circ \sigma_{m}^{m, 1}
\end{aligned}
$$

Finally, we construct a map $\hat{\lambda}: \hat{F}_{m+1} \rightarrow P^{m+1} \Omega F_{m}$. By Proposition 2.4(1) for $f=1_{m}$, we have $\sigma_{m} \circ i_{m-1, m}^{F}=i_{m-1, m}^{\Omega F_{m}} \circ P^{m-1} \Omega i_{m-1, m}^{F} \circ \sigma_{m-1}$, and hence

$$
\begin{aligned}
\left(\sigma_{m} \times \sigma^{\prime}\right) \circ \iota_{m}^{m, 1} & =\left(\sigma_{m} \times \sigma^{\prime}\right) \circ\left(1_{F_{m}} \times * \cup i_{m-1, m}^{F} \times 1_{F_{1}^{\prime}}\right) \\
& =\hat{\iota}_{m} \circ\left(\sigma_{m} \times * \cup \sigma_{m-1} \times \sigma^{\prime}\right)=\hat{\iota}_{m} \circ \sigma_{m}^{m, 1}
\end{aligned}
$$

Also by Proposition $2.4(1)$ for $f=\lambda$, we get $\hat{\lambda}_{m+1} \circ \hat{\iota}_{m}=\iota_{m, m+1}^{\Omega F_{m}} \circ \hat{\lambda}_{m}$ and

$$
\hat{\lambda}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right) \circ \iota_{m}^{m, 1}=\hat{\lambda}_{m+1} \circ \hat{\iota}_{m} \circ \sigma_{m}^{m, 1}=\iota_{m, m+1}^{\Omega F_{m}} \circ \hat{\lambda}_{m} \circ \sigma_{m}^{m, 1}
$$

and hence, by 4.4),
$\left(\iota_{m}^{m, 1}\right)^{*}\left(\hat{\lambda}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right)\right)=\iota_{m, m+1}^{\Omega F_{m}} \circ \sigma_{m} \circ \mu_{m}^{m, 1}=\left(\iota_{m}^{m, 1}\right)^{*}\left(\iota_{m, m+1}^{\Omega F_{m}} \circ \sigma_{m} \circ \mu_{m, 1}\right)$.
By a standard argument of homotopy theory applied to the cofibre sequence $K_{m+1}^{m, 1} \rightarrow F_{m}^{m, 1} \hookrightarrow F_{m+1}^{m, 1}$, we obtain $\delta_{m+1}: \Sigma K_{m+1}^{m, 1} \rightarrow P^{m+1} \Omega F_{m}$ such that

$$
\begin{equation*}
\iota_{m, m+1}^{\Omega F_{m}} \circ \sigma_{m} \circ \mu_{m, 1}=\nabla_{P^{m+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right) \vee \delta_{m+1}\right) \circ \nu_{m+1}^{m, 1} \tag{4.6}
\end{equation*}
$$

To proceed further, let us consider the dashed map $\bar{e}: \Sigma \hat{E}_{m+1} \rightarrow \Sigma K_{m}^{m+1}$, induced from the commutativity of the lower left square in the diagram

where the map $\hat{e}_{m}: \hat{F}_{m} \rightarrow F_{m}^{m, 1}$ is $e_{m}^{F_{m}} \times * \cup e_{m-1}^{F_{m-1}} \times e^{\prime}$. Since $\hat{e}_{m} \circ \sigma_{m}^{m, 1}$ and $\left(e_{m}^{F_{m}} \times e^{\prime}\right) \circ\left(\sigma_{m} \times \sigma^{\prime}\right)$ are homotopy equivalences, so is $\bar{e} \circ \Sigma g_{m} * g_{1}$ (see [4, Lemma 16.24]). We denote by $h: \Sigma K_{m}^{m+1} \rightarrow \Sigma K_{m}^{m+1}$ its homotopy inverse. Then, by (4.6),

$$
\begin{aligned}
& \iota_{m, m+1}^{\Omega F_{m}} \circ \sigma_{m} \circ \mu_{m, 1}=\nabla_{P^{m+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right) \vee \delta_{m+1}\right) \circ \nu_{m+1}^{m, 1} \\
& \quad=\nabla_{P^{m+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right) \vee \delta_{m+1} \circ h \circ \bar{e} \circ \Sigma g_{m} * g^{\prime}\right) \circ \nu_{m+1}^{m, 1} \\
& \quad=\nabla_{P^{m+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{m+1} \vee \delta_{m+1} \circ h \circ \bar{e}\right) \circ\left(\left(\sigma_{m} \times \sigma^{\prime}\right) \vee \Sigma g_{m} * g^{\prime}\right) \circ \nu_{m+1}^{m, 1},
\end{aligned}
$$

which, by Lemma 3.3, can be continued as

$$
=\nabla_{P^{m+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{m+1} \vee \delta_{m+1} \circ h \circ \bar{e}\right) \circ \hat{\nu}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right)
$$

This suggests defining $\hat{\lambda}$ by $\nabla_{P^{m+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{m+1} \vee \delta_{m+1} \circ h \circ \bar{e}\right) \circ \hat{\nu}_{m+1}$ to obtain

$$
\iota_{m, m+1}^{\Omega F_{m}} \circ \sigma_{m} \circ \mu_{m, 1}=\hat{\lambda} \circ\left(\sigma_{m} \times \sigma^{\prime}\right): F_{m} \times F_{1}^{\prime} \rightarrow P^{m+1} \Omega F_{m}
$$

which gives the commutativity of the upper right square in Lemma 4.4. So it remains to show the commutativity of the lower right square in Lemma 4.4 . By Proposition 2.4(1) for $f=\lambda$, we have

$$
e_{m+1}^{F_{m}} \circ \hat{\lambda}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right)=\mu_{m, 1} \circ\left\{e_{m}^{F_{m}} \times e^{\prime}\right\} \circ\left(\sigma_{m} \times \sigma^{\prime}\right)=\mu_{m, 1}
$$

and hence, by the equalities $e_{m+1}^{F_{m}} \circ \iota_{m, m+1}^{\Omega F_{m}} \circ \sigma_{m}=1_{F_{m}}$ and (4.6),

$$
\begin{aligned}
\mu_{m, 1} & =e_{m+1}^{F_{m}} \circ \nabla_{P^{m+1} \Omega F_{m}} \circ\left(\hat{\lambda}_{m+1} \circ\left(\sigma_{m} \times \sigma^{\prime}\right) \vee \delta_{m+1}\right) \circ \nu_{m+1}^{m, 1} \\
& =\nabla_{F_{m}} \circ\left(\mu_{m, 1} \vee e_{m+1}^{F_{m}} \circ \delta_{m+1}\right) \circ \nu_{m+1}^{m, 1}
\end{aligned}
$$

Thus, $e_{m+1}^{F_{m}} \circ \delta_{m+1}=*$. Therefore,

$$
\begin{aligned}
e_{m+1}^{F_{m}} \circ \hat{\lambda} & =e_{m+1}^{F_{m}} \circ \nabla_{P^{m+1}} \Omega F_{m} \circ\left(\hat{\lambda}_{m+1} \vee \delta_{m+1} \circ h \circ \bar{e}\right) \circ \hat{\nu}_{m+1} \\
& =\nabla_{F_{m}} \circ\left(e_{m+1}^{F_{m}} \circ \hat{\lambda}_{m+1} \vee *\right) \circ \hat{\nu}_{m+1}=e_{m+1}^{F_{m}} \circ \hat{\lambda}_{m+1}
\end{aligned}
$$

and hence, by Proposition 2.4(1) for $f=\lambda$, we finally get

$$
e_{m+1}^{F_{m}} \circ \hat{\lambda}=\mu_{m, 1} \circ\left\{e_{m}^{F_{m}} \times e^{\prime}\right\}: \hat{F}_{m+1} \rightarrow F_{m}
$$

Now we are ready to define a cone-decomposition $\left\{\hat{E}_{k}^{\prime} \xrightarrow{\hat{w}_{k}^{\prime}} \hat{F}_{k-1}^{\prime} \xrightarrow{\hat{i}_{k-1}^{\prime}} \hat{F}_{k}^{\prime} \mid\right.$ $1 \leq k \leq m+1\}$ of $P_{m}^{m} \times \Sigma \Omega A$ of length $m+1$ by replacing F_{1}^{\prime} with A in the cone-decomposition of $P_{m}^{m} \times \Sigma \Omega F_{1}^{\prime}$. The series of cofibre sequences

$$
\left\{E^{k} \Omega F_{m} \xrightarrow{p_{k-1}^{\Omega F_{m}}} P^{k-1} \Omega F_{m} \xrightarrow{\iota_{k-1}^{\Omega F_{m}}} P^{k} \Omega F_{m} \mid 1 \leq k \leq m+1\right\}
$$

gives a cone-decomposition of $P^{m+1} \Omega F_{m}$ of length $m+1$. Let D be the homotopy pushout of $\phi=\iota_{m, m+1}^{\Omega F_{m}} \circ p r_{1}$ and $\hat{\lambda} \circ \chi=\hat{\lambda} \circ\left(1_{P_{m}^{m}} \times \Sigma \Omega \alpha\right)$:

We give a cone-decomposition of D as follows: $\hat{\lambda} \circ \hat{\iota}_{m}=\nabla_{P^{m+1} \Omega F_{m}} \circ$ $\left(\hat{\lambda}_{m+1} \vee \delta_{m+1} \circ h \circ \bar{e}\right) \circ \hat{\nu}_{m+1} \circ \hat{\iota}_{m}=\hat{\lambda}_{m+1} \circ \hat{\iota}_{m}$, we may identify the restriction of $\hat{\lambda}$ on \hat{F}_{k} with $\hat{\lambda}_{k}$, and hence $\hat{\lambda} \circ \chi$ is a filtered map up to homotopy, i.e., $\left.(\hat{\lambda} \circ \chi)\right|_{\hat{F}_{k}^{\prime}}=\left.\hat{\lambda}_{k} \circ \chi\right|_{\hat{F}_{k}^{\prime}}$ for $1 \leq k \leq m$. Since $\left.\chi\right|_{\hat{F}_{k-1}^{\prime}}=\left.\chi\right|_{\hat{F}_{k}^{\prime}} \circ \hat{i}_{k-1}^{\prime}$ and $\hat{i}_{k-1}^{\prime} \circ \hat{w}_{k}^{\prime}=*$, we have

$$
\begin{aligned}
e_{k-1}^{F_{m}} \circ\left(\left.(\hat{\lambda} \circ \chi)\right|_{\hat{F}_{k-1}^{\prime}} \circ \hat{w}_{k}^{\prime}\right) & =\left.e_{k}^{F_{m}} \circ \hat{\lambda}_{k} \circ \chi\right|_{\hat{F}_{k}^{\prime}} \circ \hat{i}_{k-1}^{\prime} \circ \hat{w}_{k}^{\prime} \\
& =\left.e_{k}^{F_{m}} \circ \hat{\lambda}_{k} \circ \chi\right|_{\hat{F}_{k}^{\prime}} \circ *=*
\end{aligned}
$$

By a standard argument of homotopy theory applied to the fibre sequence $E^{k} \Omega F_{m} \rightarrow P^{k-1} \Omega F_{m} \rightarrow F_{m}$, we have a lift $\kappa_{k}: \hat{E}_{k}^{\prime} \rightarrow E^{k} \Omega F_{m}$ which fits in
with the following commutative diagrams:

$$
\begin{align*}
& \hat{E}_{k}^{\prime} \xrightarrow{\hat{w}_{k}^{\prime}} \hat{F}_{k-1}^{\prime} \xlongequal{\hat{i}_{k-1}^{\prime}} \hat{F}_{k}^{\prime} \tag{4.7}
\end{align*}
$$

By definition of ϕ, it is clear that there exists a map $\psi_{k}: \hat{E}_{k}^{\prime} \rightarrow E^{k} \Omega F_{m}$ which fits in with the commutative diagram

Let E_{k}^{D} be a homotopy pushout of κ_{k} and ψ_{k}, and F_{k}^{D} be a homotopy pushout of $\left.(\hat{\lambda} \circ \chi)\right|_{\hat{F}_{k}^{\prime}}$ and $\left.\phi\right|_{\hat{F}_{k}^{\prime}}$. Then using diagrams (4.7)-(4.9) and the universal property of homotopy pushouts, we obtain the following commutative diagram whose front column $E_{k}^{D} \rightarrow F_{k-1}^{D} \rightarrow F_{k}^{D}$ is a cofibre sequence:

Thus we obtain a cone-decomposition $\left\{E_{k}^{D} \rightarrow F_{k-1}^{D} \hookrightarrow F_{k}^{D} \mid 1 \leq k \leq m+1\right\}$
of D of length $m+1$, which immediately implies

$$
\operatorname{cat}(D) \leq \operatorname{Cat}(D) \leq m+1
$$

The homotopy pushout of the top and bottom rows in (4.4) are $G \cup_{\psi}$ $G \times C A$. Also, since the dimensions of F_{m}, F_{1} and A are less than or equal to ℓ, all compositions of columns in (4.4) are homotopy equivalences. Thus, the composite map $D \rightarrow G \cup_{\psi} G \times C A \simeq E \rightarrow D$ is a homotopy equivalence (see [4, Lemma 16.24], for example). Hence D dominates E, and we obtain

$$
\operatorname{cat}(E) \leq \operatorname{cat}(D) \leq \operatorname{Cat}(D) \leq m+1
$$

5. L-S category of $\mathbf{S O}(10)$. In this section, we determine cat $(\mathbf{S O}(10))$ and prove Theorem 5.1.

To give a lower bound of $\operatorname{cat}(\mathbf{S O}(10))$, let us recall the algebra structure of the well-known cohomology algebra $H^{*}\left(\mathbf{S O}(10) ; \mathbb{F}_{2}\right)$:

$$
H^{*}\left(\mathbf{S O}(10) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{1}, x_{3}, x_{5}, x_{7}, x_{9}\right] /\left(x_{1}^{16}, x_{3}^{4}, x_{5}^{2}, x_{7}^{2}, x_{9}^{2}\right)
$$

where x_{k} is a generator in dimension k. Then by Theorem 1.1,

$$
\begin{equation*}
21=\operatorname{cup}\left(\mathbf{S O}(10) ; \mathbb{F}_{2}\right) \leq \operatorname{cat}(\mathbf{S O}(10)) \tag{5.1}
\end{equation*}
$$

On the other hand, to give the upper bound using Theorem 1.2, we first recall the cone-decomposition of $\operatorname{Spin}(7)$ in [10]:

$$
* \subset F_{1}^{\prime}=\Sigma \mathbb{C P}^{3} \subset F_{2}^{\prime} \subset F_{3}^{\prime} \subset F_{4}^{\prime} \subset F_{5}^{\prime} \simeq \operatorname{Spin}(7)
$$

In [11, the cone-decomposition of $\mathbf{S O}(9)$ is given by using the above filtration F_{i}^{\prime} of $\mathbf{S p i n}(7)$ together with the principal bundle $\mathbf{S p i n}(7) \hookrightarrow \mathbf{S O}(9)$ $\rightarrow \mathbb{R} \mathrm{P}^{15}$. Let e^{k} be a k-cell in $\mathbf{S O}(9)$ corresponding to the k-cell in $\mathbb{R} \mathrm{P}^{15}$. The cone-decomposition $\left\{F_{i}\right\}$ of $\mathbf{S O}(9)$ introduced in [11] is

$$
\begin{aligned}
F_{0} & =\{*\} \\
\vdots & \ddots \\
F_{j} & =F_{j}^{\prime} \cup\left(e^{1} \times F_{j-1}^{\prime}\right) \cup \cdots \cup\left(e^{j-1} \times F_{1}^{\prime}\right) \cup e^{j} \\
\vdots & \ddots \\
F_{5} & =F_{5}^{\prime} \cup\left(e^{1} \times F_{4}^{\prime}\right) \cup\left(e^{2} \times F_{3}^{\prime}\right) \cup\left(e^{3} \times F_{2}^{\prime}\right) \cup\left(e^{4} \times F_{1}^{\prime}\right) \cup e^{5} \\
\vdots & \ddots \\
F_{i+5} & =F_{5}^{\prime} \cup\left(e^{1} \times F_{5}^{\prime}\right) \cup \cdots \cup\left(e^{i} \times F_{5}^{\prime}\right) \cup\left(e^{i+1} \times F_{4}^{\prime}\right) \cup \cdots \cup\left(e^{i+4} \times F_{1}^{\prime}\right) \cup e^{i+5} \\
\vdots & \vdots \\
F_{15} & =F_{5}^{\prime} \cup\left(e^{1} \times F_{5}^{\prime}\right) \cup \cdots \cup\left(e^{10} \times F_{5}^{\prime}\right) \cup\left(e^{11} \times F_{4}^{\prime}\right) \cup \cdots \cup\left(e^{14} \times F_{1}^{\prime}\right) \cup e^{15} \\
\vdots & \vdots \\
F_{15+j} & =F_{5}^{\prime} \cup\left(e^{1} \times F_{5}^{\prime}\right) \cup \cdots \cup\left(e^{10+j} \times F_{5}^{\prime}\right) \cup\left(e^{11+j} \times F_{4}^{\prime}\right) \cup \cdots \cup\left(e^{15} \times F_{5-j}^{\prime}\right) \\
\vdots & \vdots \\
F_{20} & =F_{5}^{\prime} \cup\left(e^{1} \times F_{5}^{\prime}\right) \cup \cdots \cup\left(e^{15} \times F_{5}^{\prime}\right) \simeq \mathbf{S O}(9)
\end{aligned}
$$

where $0 \leq i \leq 10$ and $0 \leq j \leq 5$, which is given with a series of cofibre sequences $\left\{K_{i} \rightarrow F_{i-1} \rightarrow \bar{F}_{i} \mid 1 \leq i \leq 20\right\}$.

Secondly, a cofibre sequence $S^{20} \rightarrow F_{4}^{\prime} \hookrightarrow F_{4}^{\prime} \cup e^{21}\left(=F_{5}^{\prime} \simeq \operatorname{Spin}(9)\right)$ in [10] induces a cofibre sequence $K_{20}=S^{14} * S^{20}=S^{35} \rightarrow F_{19} \hookrightarrow F_{20}$.

Thirdly, since $\left.\mu^{\prime}\right|_{F_{i}^{\prime} \times F_{1}^{\prime}}$ is compressible into F_{i+1}^{\prime} for $1 \leq i<5$ by [11, proof of Theorem 2.9], $\left.\mu\right|_{F_{i} \times F_{1}^{\prime}}$ is compressible into F_{i+1} for $1 \leq i<20$, where μ and μ^{\prime} are the multiplications of $\mathbf{S O}(9)$ and $\mathbf{S p i n}(7)$, respectively.

Fourthly, let us consider two principal bundles $p: \mathbf{S O}(10) \rightarrow S^{9}$ and $p^{\prime}: \mathbf{S U}(5) \rightarrow S^{9}$, together with the commutative diagram

The map $\alpha: S^{8} \rightarrow \mathbf{S O}(9)$ in the above diagram is the characteristic map of $p: \mathbf{S O}(10) \rightarrow S^{9}$. By Steenrod [16], α is homotopic in $\mathbf{S O}(9)$ to a map $\alpha^{\prime}: S^{8} \rightarrow \mathbf{S U}(4)$, the characteristic map of $p^{\prime}: \mathbf{S U}(5) \rightarrow S^{9}$. Further, by Yokota [18], the suspension $\Sigma \gamma_{3}: S^{8} \rightarrow \Sigma \mathbb{C} \mathbb{P}^{3}$ of the canonical projection $\gamma_{3}: S^{7} \rightarrow \mathbb{C} P^{3}$ is the attaching map of the top cell of $\Sigma \mathbb{C P}^{4} \subset \mathbf{S U}(5)$, which is homotopic to α^{\prime}. Therefore, the characteristic map α is compressible into $\Sigma \mathbb{C} \mathbb{P}^{3} \subset F_{1}$. Since α is homotopic to a suspension map to $\Sigma \mathbb{C} P^{3}$ in $\mathbf{S O}(9)$, we have $H_{1}(\alpha)=0 \in \pi_{8}\left(\Omega \Sigma \mathbb{C P}{ }^{3} * \Omega \Sigma \mathbb{C} P^{3}\right)$ when α is regarded as a map to $\Sigma \mathbb{C} P^{3}$.

Thus, finally by Theorem 1.2 with $F_{1}^{\prime}=\Sigma \mathbb{C} \mathrm{P}^{3}$, we obtain

$$
\begin{equation*}
\operatorname{cat}(\mathbf{S O}(10)) \leq 20+1=21 \tag{5.2}
\end{equation*}
$$

Combining (5.2) with (5.1), we obtain our desired result.
Theorem 5.1. $\operatorname{cat}(\mathbf{S O}(10))=21=\operatorname{cup}\left(\mathbf{S O}(10) ; \mathbb{F}_{2}\right)$.
Acknowledgments. We would like to express our gratitude to the referee for his/her kind comments and suggestions which helped us to improve the presentation of this paper. This research was supported by Grant-inAid for Scientific Research (B) \#22340014 and (A) \#23244008 and for Exploratory Research \#24654013 from Japan Society for the Promotion of Science.

References

[1] I. Berstein and P. J. Hilton, Category and generalised Hopf invariants, Illinois J. Math. 12 (1968), 421-432.
[2] R. H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42 (1941), 333-370.
[3] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417-427.
[4] B. Gray, Homotopy Theory. An Introduction to Algebraic Topology, Academic Press, 1975.
[5] P. Hilton, Homotopy Theory and Duality, Gordon and Breach, New York, 1965.
[6] N. Iwase, Ganea's conjecture on LS-category, Bull. London Math. Soc. 30 (1998), 623-634.
[7] N. Iwase, A_{∞}-method in Lusternik-Schnirelmann category, Topology 41 (2002), 695-723.
[8] N. Iwase, The Ganea conjecture and recent developments on Lusternik-Schnirelmann category, Sūgaku Expositions 20 (2007), 43-63.
[9] N. Iwase and A. Kono, Lusternik-Schnirelmann category of Spin(9), Trans. Amer. Math. Soc. 359 (2007), 1517-1526.
[10] N. Iwase, M. Mimura and T. Nishimoto, On the cellular decomposition and the Lusternik-Schnirelmann category of Spin(7), Topology Appl. 133 (2003), 1-14.
[11] N. Iwase, M. Mimura and T. Nishimoto, Lusternik-Schnirelmann category of nonsimply connected compact simple Lie groups, Topology Appl. 150 (2005), 111-123.
[12] I. M. James and W. Singhof, On the category of fibre bundles, Lie groups, and Frobenius maps, in: Higher Homotopy Structures in Topology and Mathematical Physics (Poughkeepsie, NY, 1996), Contemp. Math. 227, Amer. Math. Soc., Providence, RI, 1999, 177-189.
[13] N. Oda, Pairings and co-pairings in the category of topological spaces, Publ. RIMS Kyoto Univ. 28 (1992), 83-97.
[14] D. Stanley, On the Lusternik-Schnirelmann category of maps, Canad. J. Math. 54 (2002), 608-633.
[15] J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292, 293-312.
[16] N. E. Steenrod, The Topology of Fibre Bundles, Princeton Math. Ser. 14, Princeton Univ. Press, Princeton, 1951.
[17] G. W. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, Berlin, 1978.
[18] I. Yokota, On the cell structures of $\mathrm{SU}(n)$ and $\operatorname{Sp}(n)$, Proc. Japan Acad. 31 (1955), 673-677.

Norio Iwase
Faculty of Mathematics
Kyushu University
Motooka 744, Fukuoka 819-0395, Japan
E-mail: iwase@math.kyushu-u.ac.jp

Toshiyuki Miyauchi Department of Applied Mathematics

Faculty of Science
Fukuoka University
Fukuoka 814-0180, Japan
E-mail: miyauchi@math.sci.fukuoka-u.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 55M30; Secondary 55Q25, 55R10, 57T10, 57T15.
 Key words and phrases: Lusternik-Schnirelmann category, special orthogonal groups, Hopf invariant, principal bundle.
 Received 14 March 2013; revised 28 October 2013, 29 May 2015 and 11 November 2015. Published online 10 June 2016.

