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Abstract. Let G be a compact connected Lie group and p : E → ΣA be a prin-
cipal G-bundle with a characteristic map α : A → G, where A = ΣA0 for some A0.
Let {Ki → Fi−1 ↪→ Fi | 1 ≤ i ≤ m} with F0 = {∗}, F1 = ΣK1 and Fm ' G be a
cone-decomposition of G of length m and F ′1 = ΣK′1 ⊂ F1 with K′1 ⊂ K1 which satisfy
FiF

′
1 ⊂ Fi+1 up to homotopy for all i. Then cat(E) ≤ m + 1, under suitable condi-

tions, which is used to determine cat(SO(10)). A similar result was obtained by Kono
and the first author (2007) to determine cat(Spin(9)), but that result could not yield
cat(E) ≤ m+ 1.

1. Introduction. Throughout the paper, we work in the homotopy cat-
egory of based CW -complexes, and often identify a map with its homotopy
class.

The Lusternik–Schnirelmann category of a connected space X, denoted
by cat(X), is the least integer n such that there is an open covering
{Ui | 0 ≤ i ≤ n} of X with each Ui contractible in X. If no such integer
exists, we write cat(X) = ∞. Let R be a commutative ring with unit. The
cup-length of X with respect to R, denoted by cup(X;R), is the supremum
of all non-negative integers k such that there is a non-zero k-fold cup product
in the ordinary reduced cohomology H̃∗(X;R).

In 1967, Ganea [3] introduced a strong category Cat(X) by modifying
Fox’s strong category (see Fox [2]), which is characterized as follows: for a
connected space X, Cat(X) is 0 if X is contractible and, otherwise, is equal
to the smallest integer n such that there is a series of cofibre sequences
{Ki → Fi−1 ↪→ Fi | 1 ≤ i ≤ m} with F0 = {∗} and Fm ' X (a cone-
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decomposition of length m). Cat(X) is often called the cone-length of X.
The following theorem is well-known.

Theorem 1.1 (Ganea [3]). cup(X;R) ≤ cat(X) ≤ Cat(X).

In 1968, Berstein and Hilton [1] gave a criterion for cat(Cf ) = 2 in terms
of their Hopf invariantH1(f) ∈ [ΣX,ΩΣY ∗ΩΣY ] for a map f : ΣX → ΣY ,
where A ∗B denotes the join of the spaces A and B. In addition, its higher
version Hm was used to disprove the Ganea conjecture (see Iwase [6, 8]).

We summarize here known L-S categories of special orthogonal groups:
since SO(2) = S1, SO(3) = RP 3 and SO(4) = RP 3 × S3, we know that

cat(SO(2)) = 1, cat(SO(3)) = 3, cat(SO(4)) = 4.

In 1999, James and Singhof [12] gave the first non-trivial result:

cat(SO(5)) = 8.

In 2005, Mimura, Nishimoto and the first author [11] gave an alternative
proof of cat(SO(5)) = 8 and determined cat(SO(n)) up to n = 9:

cat(SO(6)) = 9, cat(SO(7)) = 11, cat(SO(8)) = 12, cat(SO(9)) = 20.

Let G ↪→ E → ΣA be a principal bundle with a characteristic map
α : A → G, where A is a suspension space and G is a connected compact
Lie group with a cone-decomposition of length m, i.e., there is a series of
cofibre sequences {Ki → Fi−1 ↪→ Fi | 1 ≤ i ≤ m} with F0 = {∗}, F1 ' ΣK1

and Fm ' G. Then the multiplication of G is, up to homotopy, a map µ :
Fm × Fm → Fm, since G ' Fm. The main result of this paper is as follows.

Theorem 1.2. Let F ′1 = ΣK ′1, where K ′1 is a connected subspace of
K1 such that F ′1 is simply-connected, and let µ|Fi×F ′1 : Fi × F ′1 → Fm be

compressible into Fi+1 ⊂ Fm as µi,1 : Fi × F ′1 → Fi+1, 1 ≤ i < m, so that
µi,1|Fi−1×F ′1 ∼ µi−1,1 in Fi+1. Then the following three conditions together

imply cat(E) ≤ m+ 1:

(1) α is compressible into F ′1,
(2) H1(α) = 0 in [A,ΩF ′1 ∗ΩF ′1],
(3) Km = S`−1 with m, ` ≥ 3.

Remark. Under the conditions in Theorem 1.2, [9, Theorem 0.8] does
not imply cat(E) ≤ m+ 1, but only cat(E) ≤ m+ 2, since its key lemma [9,
Lemma 1.1] cannot properly manage the case when imα ⊂ F1.

Theorem 1.2 yields the following result on the L-S category of SO(10).

Theorem 5.1. cat(SO(10)) = cup(SO(10);F2) = 21.

All the results on cat(SO(n)) with n ≤ 10 support the following “folklore
conjecture”.

Conjecture 1. cat(SO(n)) = cup(SO(n);F2).
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Let us explain the method we employ in this paper. To study L-S cate-
gory, we must understand Ganea’s criterion of L-S category as a basic idea,
given in terms of a fibre-cofibre construction in [3]: Let X be a connected
space. Then there is a fibre sequence FnX ↪→ GnX → X, natural with re-
spect to X, such that cat(X) ≤ n if and only if the fibration GnX → X has
a cross-section.

However, four years before [3], a more understandable description of the
fibre sequence Fn(X) ↪→ Gn(X)→ X was already published by Stasheff [15]:
following [6, 7, 8], we may replace the inclusion FnX ↪→ GnX with the fi-
bration pΩXn : En+1ΩX → PnΩX associated with the A∞-structure of ΩX,
the based loop space of X in the sense of Stasheff, where En+1ΩX has the
homotopy type of (ΩX)∗(n+1), the n+1-fold join of ΩX, and PnΩX satisfies
P 0ΩX = ∗, P 1ΩX = ΣΩX and P∞ΩX ' X. Let ιΩXm,n : PmΩX ↪→ PnΩX

be the canonical inclusion, for m ≤ n, and eX∞ : P∞ΩX ' X be the nat-
ural equivalence. Then the fibration GnX → X may be replaced with the

map eXn = eX∞ ◦ ιΩXn,∞ : PnΩX → X, where eX1 : ΣΩX → X equals the
evaluation.

Thus, we may restate Ganea’s criterion as follows: Let X be a connected
space. Then cat(X) ≤ n if and only if eXn : PnΩX → X has a right homotopy
inverse. That is why we use A∞-structures to determine L-S category.

In this paper, instead of using [9, Lemma 1.1], we show Proposition 2.4
and Lemmas 3.3, 4.4. This is a key process to obtain Theorem 1.2. In Sec-
tions 2 and 3, we construct a structure map associated to a given cone-de-
composition. In Section 4, we introduce a map λ̂ from F̂m+1 = Pmm ×ΣΩF ′1
to Pm+1ΩFm, which is the main tool to construct a complex D with
Cat(D) ≤ m+ 1 dominating E. Finally, in Section 5 we prove Theorem 5.1.

2. Structure map associated with cone-decomposition. In this
section, we generalize the following well-known fact to the case of filtered
spaces and maps.

Fact 2.1. Let K
a→ A ↪→ C(a) and L

b→ B ↪→ C(b) be cofibre sequences
with canonical copairings ν : C(a)→ C(a)∨ΣK and ν̂ : C(b)→ C(b)∨ΣL.
If there are maps f : A→ B and f0 : K → L such that f ◦ a = b ◦ f0, then
they induce a map f ′ : C(a)→ C(b) satisfying (f ′ ∨Σf0) ◦ ν = ν̂ ◦ f ′.

Definition 2.2. A space X with a series of subspaces {Xn;n ≥ 0},
{∗} = X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · ⊂ X,

is said to be filtered by {Xn;n ≥ 0} and denoted by (X, {Xn}). We also
denote by iXm,n : Xm ↪→ Xn, m < n, the canonical inclusion.
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Definition 2.3. Let X and Y be spaces filtered by {Xn} and {Yn},
respectively. A map f : X → Y is a filtered map if f(Xn) ⊂ Yn for all n.

Proposition 2.4. Let X and Y be filtered by {Xn} and {Yn}, respec-
tively, and f : X → Y be a filtered map. If {Xn} is a cone-decomposition

of X, i.e. there is a series of cofibre sequences {Kn
hn−→ Xn−1

iXn−1,n
↪→ Xn |

n ≥ 1} with X0 = ∗, then there exist families {f̂n : Xn → PnΩYn | n ≥ 0}
and {f̂0

n : Kn → EnΩYn | n ≥ 0} of maps such that:

(1) The following diagram is commutative:

Kn
hn //

f̂0n

��

Xn−1
� �

iXn−1,n //

f̂n−1
��

Xn

f̂n

��

f |Xn

��

Pn−1ΩYn−1� _

Pn−1ΩiYn−1,n
��

EnΩYn
pΩYnn−1

// Pn−1ΩYn
� �

ιΩYnn−1,n

// PnΩYn
eYnn

// Yn

(2) Denote by f ′n = (Pn−1ΩiYn−1,n ◦ f̂n−1) ∪ C(f̂0
n) : Xn → PnΩYn the

induced map from the commutativity of the left square in (1). Then

the middle square in (1) with f̂n replaced with f ′n is commutative.

The difference of f̂n and f ′n is given by a map δfn : ΣKn → Pn−1ΩYn
composed with the inclusion ιΩYnn−1,n : Pn−1ΩYn ↪→ PnΩYn, n ≥ 1.

Proof. First of all, we set f̂0 = ∗, the trivial map.

Next, we use induction on n ≥ 1. When n = 1, we set f̂0
1 = ad(f |X1)

and f̂1 = Σ ad(f |X1) = f ′1 to obtain the commutative diagram

K1
//

f̂01
��

∗ //

f̂0

��

ΣK1

f̂1
��

f |X1

##
ΩY1

// ∗ // ΣΩY1
� �

e
Y1
1

// Y1

Then (1) is clear, and (2) is trivial in this case.

When n = k > 1, suppose we have already obtained {f̂i} and {f̂0
i } for

i < k, which satisfy conditions (1) and (2).

Firstly, we define f̂0
k : Kk → EkΩYk as follows: The homotopy class of a

map P k−1ΩiYk−1,k ◦ f̂k−1 ◦ hk : Kk → P k−1ΩYk can be described as

hk∗(P
k−1ΩiYk−1,k ◦ f̂k−1) ∈ [Kk, Yk] with P k−1ΩiYk−1,k ◦ f̂k−1 ∈ [Xk−1, Yk]

in the following ladder of exact sequences induced from the fibre sequence
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EkΩYk → P k−1ΩYk → Yk:

[Xk−1, E
kΩYk] [Xk−1, P

k−1ΩYk] [Xk−1, Yk]

[Kk, E
kΩYk] [Kk, P

k−1ΩYk] [Kk, Yk]

��

h∗k

//
p
ΩYk
k−1 ∗

��

h∗k

//
e
Yk
k−1∗

��

h∗k

//
p
ΩYk
k−1 ∗ //

e
Yk
k−1∗

Since we know that the naturality of eZk−1 at Z implies eYkk−1◦P k−1ΩiYk−1,k

= iYk−1,k ◦ e
Yk−1

k−1 , that the induction hypothesis implies e
Yk−1

k−1 ◦ f̂k−1 = f |Xk−1

and that the naturality of iZk−1,k at Z implies iYk−1,k ◦ f |Xk−1
= f |Xk ◦ iXk−1,k,

we obtain eYkk−1∗(P
k−1ΩiYk−1,k ◦ f̂k−1) = iYk−1,k ◦e

Yk−1

k−1 ◦ f̂k−1 = f |Xk ◦ iXk−1,k ∈
[Xk−1, Yk]. On the other hand, since Kk → Xk−1 ↪→ Xk is a cofibre sequence,
we get

eYkk−1∗(h
∗
k(P

k−1ΩiYk−1,k ◦ f̂k−1)) = [f |Xk ◦ iXk−1,k ◦ hk] = 0.

Thus we have eYkk−1∗(P
k−1ΩiYk−1,k ◦ f̂k−1 ◦ hk) = 0, and there exists a map

f̂0
k : Kk → EkΩYk such that pΩYkk−1 ∗(f̂

0
k ) = P k−1ΩiYk−1,k ◦ f̂k−1 ◦ hk, which

implies the commutativity of the left square in (1).

Secondly, let f ′k : Xk → P kΩYk be the map induced from the commuta-
tivity of the left square in (1). By the induction hypothesis, we have

(iXk−1,k)
∗(eYkk ◦ f ′k) = [eYkk ◦ f ′k ◦ iXk−1,k] = [eYkk ◦ ι

ΩYk
k−1,k ◦ P k−1ΩiYk−1,k ◦ f̂k−1]

= [iYk−1,k ◦e
Yk−1

k−1 ◦ f̂k−1] = [iYk−1,k ◦f |Xk−1
] = [f |Xk ◦iXk−1,k] = (iXk−1,k)

∗(f |Xk).

By a standard argument of homotopy theory applied to the cofibre se-
quence Kk → Xk−1 ↪→ Xk (see Hilton [5] or Oda [13]), there is a map

δf,0k : ΣKk → Yk such that

f |Xk = ∇Yk ◦ (eYkk ◦ f ′k ∨ δ
f,0
k ) ◦ νk,

where ∇Y : Y ∨ Y → Y denotes the folding map for a space Y and νk :
Xk → Xk ∨ΣKk denotes the canonical copairing.

Let δfk = ιΩYk1,k−1 ◦ Σ ad(δf,0k ) : ΣKk → ΣΩYk ↪→ P k−1ΩYk. Since eYk1 =

eYkk−1 ◦ ι
ΩYk
1,k−1, we have δf,0k = eYk1 ◦ Σad(δf,0k ) = eYkk−1 ◦ δ

f
k . Hence, the map

f̂k = ∇PkΩYk ◦ (f ′k ∨ ι
ΩYk
k−1,k ◦ δ

f
k ) ◦ νk satisfies condition (2).

Thirdly, by using the above homotopy relations, we obtain

f |Xk = ∇Yk ◦ (eYkk ◦ f ′k ∨ e
Yk
k−1 ◦ δ

f
k ) ◦ νk

= eYkk ◦ ∇PkΩYk ◦ (f ′k ∨ ιΩYkk−1,k ◦ δ
f
k ) ◦ νk = eYkk ◦ f̂k.

This implies the commutativity of the right triangle in (1).
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Finally, since νk is a copairing, we have

pr1◦νk ◦iXk−1,k = 1Xk ◦iXk−1,k = iXk−1,k and pr2◦νk ◦iXk−1,k = q◦iXk−1,k = ∗,
where pr1 : Xk ∨ΣKk → Xk and pr2 : Xk ∨ΣKk → ΣKk are the first and
second projections, respectively. Then

f̂k ◦ iXk−1,k = ∇PkΩYk ◦ (f ′k ∨ ιΩYkk−1,k ◦ δ
f
k ) ◦ νk ◦ iXk−1,k

= f ′k ◦ iXk−1,k = ιΩYkk−1,k ◦ P k−1ΩiYk−1,k ◦ f̂k−1,

which implies the commutativity of the middle square in (1). This completes
the induction step for n = k, and we obtain the proposition for all n.

Corollary 2.4.1. Let ν̂n : PnΩYn → PnΩYn∨ΣEnΩYn be the canon-
ical copairing. If Kn is a co-H-space, then the following diagram is commu-
tative:

Xn
νn //

f̂n
��

Xn ∨ΣKn

f̂n∨Σf̂0n
��

PnΩYn
ν̂n // PnΩYn ∨ΣEnΩYn

Proof. Let P and E denote PnΩYn and EnΩYn, respectively. By Propo-
sition 2.4(2), the difference of f̂n and f ′n is given by ιΩYnn−1,n ◦ δfn, and hence

(f̂n ∨Σf̂0
n) ◦ νn = {(∇P ◦ (f ′n ∨ ιΩYnn−1,n ◦ δfn) ◦ νn) ∨Σf̂0

n} ◦ νn
= (∇P ∨ 1ΣE) ◦ (f ′n ∨ ιΩYnn−1,n ◦ δfn ∨Σf̂0

n) ◦ (νn ∨ 1ΣKn) ◦ νn.
Since Kn is a co-H-space, we have the following homotopy relations:

υn = T ◦ υn and (νn ∨ 1ΣKn) ◦ νn = (1Xn ∨ υn) ◦ νn,
where υn : ΣKn → ΣKn ∨ ΣKn is the comultiplication and where T :
ΣKn ∨ΣKn → ΣKn ∨ΣKn is the switching map. Hence

(f̂n ∨Σf̂0
n) ◦ νn = (∇P ∨ 1ΣE) ◦ (f ′n ∨ ιΩYnn−1,n ◦ δfn ∨Σf̂0

n) ◦ (1Xn ∨ υn) ◦ νn
= (∇P ∨ 1ΣE) ◦ (f ′n ∨ (ιΩYnn−1,n ◦ δfn ∨Σf̂0

n)) ◦ (1Xn ∨ T ◦ υn) ◦ νn
= (∇P ∨ 1ΣE) ◦ {f ′n ∨ T ′ ◦ (Σf̂0

n ∨ ιΩYnn−1,n ◦ δfn)} ◦ (νn ∨ 1ΣKn) ◦ νn
= (∇P ∨ 1ΣE) ◦ (1P ∨ T ′) ◦ {(f ′n ∨Σf̂0

n) ◦ νn ∨ ιΩYnn−1,n ◦ δfn} ◦ νn,
where T ′ : ΣE ∨P → P ∨ΣE is the switching map. Then we can easily see
that (∇P ∨ 1ΣE) ◦ (1P ∨ T ′) = ∇P∨ΣE ◦ inΣE , where, for any space Y , we
denote by inΣE : Y ↪→ Y ∨ΣE the first inclusion. Hence

(f̂n ∨Σf̂0
n) ◦ νn = ∇P∨ΣE ◦ inΣE ◦ {(f ′n ∨Σf̂0

n) ◦ νn ∨ ιΩYnn−1,n ◦ δfn} ◦ νn
= ∇P∨ΣE ◦ {(f ′n ∨Σf̂0

n) ◦ νn ∨ inΣE ◦ ιΩYnn−1,n ◦ δfn} ◦ νn.
Here, since the copairing ν̂n is associated to the cofibre sequence

Pn−1ΩYn
ιΩYnn−1,n
↪→ PnΩYn → ΣEnΩYn,
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we have the following equality up to homotopy:

ν̂n ◦ ιΩYnn−1,n = inΣE ◦ ιΩYnn−1,n : Pn−1ΩYn ↪→ PnΩYn ↪→ PnΩYn ∨ΣEnΩYn.
Then, by Theorem 2.1,

(f̂n ∨Σf̂0
n) ◦ νn = ∇P∨ΣE ◦ {(f ′n ∨Σf̂0

n) ◦ νn ∨ ν̂n ◦ ιΩYnn−1,n ◦ δfn} ◦ νn
= ∇P∨ΣE ◦ (ν̂n ◦ f ′n ∨ ν̂n ◦ ιΩYnn−1,n ◦ δfn) ◦ νn
= ν̂n ◦ ∇P ◦ (f ′n ∨ ιΩYnn−1,n ◦ δfn) ◦ νn = ν̂n ◦ fn.

3. Cone-decomposition associated with projective spaces. Let
G be a compact Lie group of dimension ` with a cone-decomposition of
length m, that is, there is a series of cofibre sequences

(3.1) {Ki
hi−→ Fi−1 ↪→ Fi | 1 ≤ i ≤ m}

with F0 = {∗} and Fm ' G. We also denote by iFi−1,i : Fi−1 ↪→ Fi the

canonical inclusion and by qFi−1,i : Fi → Fi/Fi−1 = ΣKi its successive
quotient.

Lemma 3.1. If Km = S`−1 with m, ` ≥ 3, then:

(1) (EmΩFm, E
mΩFm−1) is an `-connected pair.

(2) There exists an `-connected map φ̂S : Pmm = PmΩFm−1 ∪ CS`−1 →
PmΩFm extending the inclusion PmΩFm−1 ↪→ PmΩFm.

Proof. Let qE : FE → EmΩFm−1, qP : FP → Pm−1ΩFm−1 and
qF : FF → Fm−1 be homotopy fibres of inclusion maps EmΩiFm−1,m,

Pm−1ΩiFm−1,m and iFm−1,m, respectively, which fit in with the following
commutative diagram of fibre sequences. Thus we obtain a fibre sequence
FE → FP → FF :

FE

qE

��

// FP

qP
��

// FF

qF

��
EmΩFm−1� _

EmΩiFm−1,m

��

p
ΩFm−1
m−1 // Pm−1ΩFm−1� _

Pm−1ΩiFm−1,m

��

e
Fm−1
m−1 // Fm−1� _

iFm−1,m

��
EmΩFm

pΩFmm−1 // Pm−1ΩFm
eFmm−1 // Fm

Firstly, since the pair (Fm, Fm−1) is (` − 1)-connected, (ΩFm, ΩFm−1)
is (` − 2)-connected and (EmΩFm, E

mΩFm−1) is (` + m − 3)-connected.
Therefore, FF is (` − 2)-connected and FE is (` + m − 4)-connected. We
remark that FE is at least (` − 1)-connected, since m ≥ 3, Then, by the
homotopy exact sequence for the fibre sequence FE → FP → FF ,

πk(FP ) ∼= πk(FF ), k ≤ `− 1,
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and hence FP is (`− 2)-connected. Thus FP is 1-connected, since ` ≥ 3. By
a general version of the Blakers–Massey Theorem (see [4, Corollary 16.27],
for example) and the hypothesis that Km = S`−1, it follows that

π`−1(FP ) ∼= π`−1(FF ) ∼= π`(Fm, Fm−1) ∼= π`(ΣKm) ∼= π`(S
`) ∼= Z.

Thus, FP has the following homology decomposition, up to homotopy:

FP = (S`−1 ∨ S` ∨ · · · ∨ S`) ∪ (cells in dimension ≥ `+ 1).

Secondly, Pm−1ΩFm−1 ∪qP CFP is described as the homotopy pushout
of qP : FP → Pm−1ΩFm−1 and the trivial map ∗ : FP → {∗}. Then we
obtain

(3.2)

Pm−1ΩFm−1 ∪qP CFP
Pm−1ΩFm−1 × Pm−1ΩFm

∪Pm−1ΩFm × {∗}

HPB

Pm−1ΩFm Pm−1ΩFm × Pm−1ΩFm

��

φP

//

� _

��
//∆

(see [6, Lemma 2.1], for example, with (X,A) = (Pm−1ΩFm, P
m−1ΩFm−1),

(Y,B) = (Pm−1ΩFm, {∗}) and Z = Pm−1ΩFm), where we denote by ∆ the
diagonal map. Thus, there is a map

φP : Pm−1ΩFm−1 ∪qP C(F)→ Pm−1ΩFm,

the left down arrow in diagram (3.2). On the other hand, by the proof of
[6, Lemma 2.1], the subspace Pm−1ΩFm−1 ⊂ Pm−1ΩFm−1 ∪qP CFP can be
described as the pullback of ∆ above and the inclusion map

Pm−1ΩiFm−1,m×1 : Pm−1ΩFm−1×Pm−1ΩFm ↪→ Pm−1ΩFm−1×Pm−1ΩFm,

and hence we obtain

φP |Pm−1ΩFm−1
= Pm−1ΩiFm−1,m : Pm−1ΩFm−1 ↪→ Pm−1ΩFm.

Thirdly, the homotopy fibre F0
P of φP is the homotopy pullback of the

inclusion

Pm−1ΩFm−1 × Pm−1ΩFm∪Pm−1ΩFm × {∗} ↪→ Pm−1ΩFm × Pm−1ΩFm

and the trivial map {∗} → Pm−1ΩFm × Pm−1ΩFm. Then we obtain

FP ×ΩPm−1ΩFm Pm−1ΩFm−1

HPO

FP F0
P

��

proj1

//proj2

��
//
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(see [6, Lemma 2.1], for example, with (X,A) = (Pm−1ΩFm, P
m−1ΩFm−1),

(Y,B) = (Pm−1ΩFm, {∗}) and Z = {∗}). Hence F0
P has the homotopy

type of the join FP ∗ ΩPm−1ΩFm which is (` − 1)-connected. Thus φP is
`-connected.

Finally, let qS = qP |S`−1 : S`−1 → Pm−1ΩFm−1. Then the inclusion
j : Pm−1ΩFm−1 ∪qS CS`−1 ↪→ Pm−1ΩFm−1 ∪qP CFP is `-connected, since

Pm−1ΩFm−1 ∪qP CFP
= Pm−1ΩFm−1 ∪qS CS`−1 ∪ (cells in dimension ≥ `+ 1).

Then the composition φS = φP ◦ j : (Pm−1ΩFm−1∪qS CS`−1, Pm−1ΩFm−1)
↪→ (Pm−1ΩFm, P

m−1ΩFm−1) of `-connected maps is again `-connected.

Since m ≥ 3, the pair (EmΩFm, E
mΩFm−1) is `-connected, which im-

plies (1). Thus, the inclusion

Pm−1ΩFm ∪ C(EmΩFm−1) ↪→ Pm−1ΩFm ∪ C(EmΩFm)

is `-connected, and we obtain an `-connected map

φ̂S : PmΩFm−1 ∪ CS`−1 = Pm−1ΩFm−1 ∪qS CS`−1 ∪
p
ΩFm−1
m−1

C(EmΩFm−1)

→ Pm−1ΩFm ∪ C(EmΩFm−1) ↪→ Pm−1ΩFm ∪ C(EmΩFm) = PmΩFm,

which implies (2). This completes the proof of Lemma 3.1.

From now on, we assume Km = S`−1 with m, ` ≥ 3. Thus, by Lemma 3.1,
we may assume that Pmm = PmΩFm−1 ∪ CS`−1 ⊂ PmΩFm is such that
(PmΩFm, P

m
m ) is `-connected. In this section, we define cone-decompositions

of Fm × F ′1, Pmm and Pmm ×ΣΩF ′1.

Firstly, we give a cone-decomposition of Fm × F ′1 of length m+ 1:

(3.3) {Km,1
i

wm,1i−→ Fm,1i−1 ↪→ Fm,1i | 1 ≤ i ≤ m+ 1} with Fm,1m+1 = Fm × F ′1,

here Km,1
i , Fm,1i−1 and wm,1i (1 ≤ i ≤ m+ 1) are defined by

Km,1
1 = K1 ∨K ′1, Fm,10 = {∗}, wm,11 = ∗ : Km,1

1 → Fm,10 ,
Km,1
i = Ki ∨ (Ki−1 ∗K ′1), Fm,1i−1 = Fi−1 × {∗} ∪ Fi−2 × F ′1,

wm,1i |Ki = incl ◦ (hi × ∗) : Ki → Fi−1 = Fi−1 × {∗} ⊂ Fm,1i−1 ,

wm,1i |Ki−1∗K′1 = [χi−1, Σ1K′1 ]r :

Ki−1 ∗K ′1 → Fi−1 × {∗} ∪ Fi−2 ×ΣK ′1 = Fm,1i−1 ;

i ≥ 2,

here Km+1 = {∗}, incl is the canonical inclusion and [χi, Σ1K′1 ]r is the
relative Whitehead product of the characteristic map χi : (CKi,Ki) →
(Fi, Fi−1) and the suspension of the identity map Σ1K′1 : ΣK ′1 → ΣK ′1.
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Secondly, a cone-decomposition of Pmm of length m is

ΩFm−1 → {∗} ↪→ ΣΩFm−1,
...

EiΩFm−1 → P i−1ΩFm−1 ↪→ P iΩFm−1,
...

EmΩFm−1 ∨Km → Pm−1ΩFm−1 ↪→ Pmm .

1 ≤ i < m,

Finally, a cone-decomposition of Pmm ×ΣΩF ′1 of length m+ 1 is

(3.4) {Êi ŵi−→ F̂i−1 ↪→ F̂i | 1 ≤ i ≤ m+ 1} with F̂m+1 = Pmm ×ΣΩF ′1,
where Êi+1, F̂i and ŵi+1, 0 ≤ i ≤ m, are defined by

Ê1 = ΩFm−1 ∨ΩF ′1, F̂0 = {∗}, ŵ1 = ∗ : Ê1 → F̂0,

Êi+1 = Ei+1ΩFm−1 ∨ {EiΩFm−1 ∗ΩF ′1},
F̂i = P iΩFm−1 × {∗} ∪ P i−1ΩFm−1 ×ΣΩF ′1,

ŵi+1|Ei+1ΩFm−1
:Ei+1ΩFm−1

p
ΩFm−1
i−−−−−→ P iΩFm−1×{∗}⊂ F̂i,

ŵi+1|EiΩFm−1∗ΩF ′1 = [χ′i, 1ΣΩF ′1 ]r : EiΩFm−1 ∗ΩF ′1 → F̂i,

1≤ i<m−1,


Êm = {EmΩFm−1 ∨Km} ∨ {Em−1ΩFm−1 ∗ΩF ′1},
F̂m−1 = Pm−1ΩFm−1 × {∗} ∪ Pm−2ΩFm−1 ×ΣΩF ′1,
ŵm|EmΩFm−1∨Km : EmΩFm−1 ∨Km

p′S−→ Pm−1ΩFm−1 × {∗} ⊂ F̂m−1,

ŵm|Em−1ΩFm−1∗ΩF ′1 = [χ′m−1, 1ΣΩF ′1 ]r : Em−1ΩFm−1 ∗ΩF ′1 → F̂m−1,
Êm+1 = {EmΩFm−1 ∨Km} ∗ΩF ′1,
F̂m = Pmm × {∗} ∪ Pm−1ΩFm−1 ×ΣΩF ′1,
ŵm+1 = [χ′m, 1ΣΩF ′1 ]r : Êm+1 → F̂m;

here p′S : EmΩFm−1∨Km → Pm−1ΩFm−1 is given by p′S |EmΩFm−1 = p
ΩFm−1

m−1

and p′S |Km = qS , and χ′i is a relative homeomorphism given by{
χ′i : (CEiΩFm−1, E

iΩFm−1)→ (P iΩFm−1, P
i−1ΩFm−1), 1 ≤ i < m,

χ′m : (CE′, E′)→ (Pmm , P
m−1ΩFm−1), E′ = EmΩFm−1 ∨Km.

From now on, we denote by ιm,1i : Fm,1i ↪→ Fm,1i+1 and ι̂i : F̂i ↪→ F̂i+1 the
canonical inclusions. Let us denote 1m = 1Fm : Fm → Fm.

Definition 3.2. The identity 1m is filtered with respect to the filtration
∗ = F0 ⊂ F1 ⊂ · · · ⊂ Fm. Then by Proposition 2.4 for f = 1m, we obtain

σi = (̂1m)i : Fi → P iΩFi for 1 ≤ i ≤ m, and (̂1m)0
j : Kj → EjΩFj for
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1 ≤ j ≤ m. Let gj = (̂1m)0
j : Kj → EjΩFj for 1 ≤ j ≤ m. We also obtain

g′ = ad(1K′1) : K ′1 → ΩΣK ′1 = ΩF ′1 and σ′ = Σg′ : F ′1 → ΣΩF ′1.

Since Km and Fm are of dimension ` − 1 and `, respectively, we may
assume that the images of gm and σm are in EmΩFm−1 and Pmm , respectively.

Lemma 3.3. Let νm,1k : Fm,1k →Fm,1k ∨ΣKm,1
k and ν̂k : F̂k → F̂k∨ΣK̂k be

the canonical copairings for 1 ≤ k ≤ m+1, and σm,1m = σm×{∗}∪σm−1×σ′ :
Fm,1m → F̂m. Then the following diagram is commutative:

Km,1
m+1

wm,1m+1 //

gm∗g′
��

Fm,1m
ιm,1m //

σm,1m
��

Fm,1m+1

νm,1m+1 //

σm×σ′
��

Fm,1m+1 ∨ΣKm,1
m+1

σm×σ′ ∨Σgm∗g′
��

Êm+1
ŵm+1 // F̂m

ι̂m // F̂m+1
ν̂m+1 // F̂m+1 ∨ΣÊm+1

To prove Lemma 3.3, we need the following propositions.

Proposition 3.4. Let K
a→ A ↪→ C(a) and L

b→ B ↪→ C(b) be cofibre
sequences, and let νa : C(a) → C(a) ∨ ΣK, νb : C(b) → C(b) ∨ ΣL and
ν = ν(a, b) : C(a)×C(b)→ C(a)×C(b)∨ΣK ∗ L be the canonical copairings.

(1) ν is given by the following composition, natural with respect to g, h:

C(a)× C(b)
νa×νb−−−−→ C(a)× C(b) ∪

C(a)
C(a)×ΣL ∪

C(b)
ΣK × C(b) ∪

ΣK∨ΣL
ΣK×ΣL

Φ−→ C(a)×C(b)∨ΣK×ΣL/(ΣK ∨ΣL)
≈−→C(a)×C(b)∨Σ(K ∗L),

where Φ is given by Φ|C(a)×ΣL = proj1, Φ|ΣK×C(b) = proj2 and
Φ|ΣK×ΣL = (collapsing) : ΣK ×ΣL� ΣK ×ΣL/(ΣK∨ΣL).

Fig. 1

(2) Let K ′
a′→ A′ ↪→ C(a′) and L′

b′→ B′ ↪→ C(b′) be cofibre sequences
and ν̂ = ν(a′, b′) : C(a′) × C(b′) → C(a′) × C(b′) ∨ Σ(K ′ ∗ L′). If
f0 : K → K ′, f : A → A′, g0 : L → L′ and g : B → B′ satisfy
f ◦ a = a′ ◦ f0 and g ◦ b = b′ ◦ g0, then (f, f0) and (g, g0) induce
f ′ : C(a) → C(a′) and g′ : C(b) → C(b′) as in Theorem 2.1, which

satisfy ν̂ ◦ (f ′ × g′) = (f ′ × g′ ∨ Σ(f0 ∗ g0)) ◦ ν : C(a) × C(b) →
C(a′)× C(b′) ∨Σ(K ′ ∗ L′).
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Proof. Let us recall the definition of C(h) for h : X → Z and related
spaces:

CX = ([0, 1]×X)q {∗}/∼, (0, x) ∼ ∗; C(h) = Z q CX/∼, 1 ∧ x ∼ h(x),

C≤1/2X = {t ∧ x∈CX | t≤ 1/2}≈CX,
C≥1/2(h) = {t ∧ x ∈ C(h) | t ≥ 1/2}, (t, x) ∈ [0, 1]×X.

Firstly, we define a homeomorphism

α̂ : (C(K ∗ L),K ∗ L) ≈ (CK × CL,CK × L ∪K × CL)

by α̂(t ∧ (s ∧ x, y)) = ((ts) ∧ x, t ∧ y) and α̂(t ∧ (x, s ∧ y)) = (t ∧ x, (ts) ∧ y)
for (x, y) ∈ K × L and s, t ∈ [0, 1] (see Figure 2).

CK×L

K×CL

C(K∗L)

1
2
∧(K∗L)

α̂

CK×CL
CK×L

K×CL

α̂(1
2
∧(K∗L))

Figure 1

1

Fig. 2

Since C([χa, χb]) = C(a)×B∪A×C(b)∪[χa,χb]C(K∗L) and C(a)×C(b) =
(C(a) × B ∪ A × C(b)) ∪[χa,χb] CK × CL, α̂ induces a homeomorphism
α : C([χa, χb]) ≈ C(a) × C(b). Thus the canonical copairing ν is given
by

ν : C(a)× C(b)→ C(a)× C(b)

α({C≤1/2(K ∗ L)}) ∨
α(C≤1/2(K ∗ L))

α({1/2} × (K ∗ L))
.

Since we can easily see that α(C≤1/2(K ∗L))/α({1/2}×(K ∗L)) ≈ Σ(K ∗L)
and C(a)×C(b)/α({C≤1/2(K ∗L)}) = C(a)×C(b)/C≤1/2K ×C≤1/2L, ν is
given as

ν : C(a)× C(b)→ C(a)× C(b)

C≤1/2K × C≤1/2L
∨Σ(K ∗ L).

Since C≤1/2X is contractible, the inclusion (C(a), {∗}) × (C(b), {∗}) ↪→
(C(a), C≤1/2K) × (C(b), C≤1/2L) is homotopy equivalence, and so is the
inclusion C(a)× {∗} ∪ {∗} × C(b) ↪→ C(a)× C≤1/2L ∪ C≤1/2K × C(b).

Hence, the following collapsing map is a homotopy equivalence:

C(a)× C≤1/2L ∪ C≤1/2K × C(b)

C≤1/2K × C≤1/2L
→

C≥1/2(a)

{1/2} ×K ∨
C≥1/2(b)

{1/2} × L
≈ C(a) ∨ C(b).
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Finally, since C≤1/2K×C≤1/2L = α({C≤1/2(K ∗L)}), by taking pushout
of this collapsing with the inclusion

C(a)× C≤1/2L ∪
C≤1/2K × C(b)

C≤1/2K × C≤1/2L
↪→ C(a)× C(b)

α({C≤1/2(K ∗ L)}) ,

we obtain a homotopy equivalence

C(a)× C(b)

α({C≤1/2(K ∗ L)}) →
C≥1/2(a)

{1/2} ×K ×
C≥1/2(b)

{1/2} × L ≈ C(a)× C(b).

Therefore, ν is homotopic to the map ν̂ given by

ν̂(s ∧ x, t ∧ y)

=



(s ∧ x, t ∧ y) ∈ C≥1/2(a)

{1/2}×K ×
C≥1/2(b)

{1/2}×L , s, t ≥ 1/2,

(∗, t ∧ y) ∈ {∗} × C≥1/2(b)

{1/2}×L , s ≤ 1/2, t ≥ 1/2,

(s ∧ x, ∗) ∈ C≥1/2(a)

{1/2}×K × {∗}, s ≥ 1/2, t ≤ 1/2,

((s ∧ x) ∧ (t ∧ y)) ∈ C≤1/2K

{1/2}×K ∧
C≤1/2L

{1/2}×L , s, t ≤ 1/2,

which coincides with Φ◦(νa×νb) which implies (1). As (2) is clear by concrete
definitions of these maps, we obtain the proposition.

Proposition 3.5. Let νm : Fm → Fm∨ΣKm be the canonical copairing
and T1 : Fm,1m+1∪F ′1 (ΣKm×F ′1)∨ΣKm,1

m+1 → (Fm,1m+1∨ΣKm,1
m+1)∪F ′1 (ΣKm×F ′1)

be an appropriate homeomorphism. Then

T1 ◦ ((νm × 1F ′1) ∨ 1
ΣKm,1

m+1
) ◦ νm,1m+1 = (νm,1m+1 ∪ 1ΣKm×F ′1) ◦ (νm × 1F ′1).

Proof. First, Proposition 3.4 implies the commutative diagram

Fm×F ′1 Fm×F1 ∨Σ(Km ∗K ′1)

Fm×F ′1 ∪F ′1 ΣKm×F ′1
Fm×F ′1 ∪F ′1 ΣKm×F ′1 ∪Fm Fm×ΣK ′1

∪ΣKm×ΣK ′1

//
νm,1m+1

��

νm×1F ′1

//1m×ν1

OO

Φ

Now Φ goes through (Fm×F ′1∪F ′1 ΣKm×F ′1)∪ΣKm×ΣK ′1/{∗}×ΣK ′1 as

Φ : (Fm × F ′1 ∪F ′1 ΣKm × F ′1 ∪Fm Fm ×ΣK ′1) ∪ΣKm ×ΣK ′1
Φ′−→ (Fm × F ′1 ∪F ′1 ΣKm × F ′1) ∪ ΣKm ×ΣK ′1

{∗} ×ΣK ′1
pr′−−→ Fm × F ′1 ∨Σ(Km ∗K ′1),
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Fig. 3

where Φ′ and pr′ are given by

Φ′|Fm×F ′1 = 1Fm×F ′1 , Φ′|ΣKm×F ′1 = 1ΣKm×F ′1 , Φ′|Fm×ΣK′1 = proj1,

Φ′|ΣKm×ΣK′1 = (collapsing) : ΣKm ×ΣK ′1 �
ΣKm ×ΣK ′1
{∗} ×ΣK ′1

,

pr′|Fm×F ′1 = 1Fm×F ′1 , pr′|ΣKm×F ′1 = proj2,

pr′|ΣKm×ΣK′1/{∗}×ΣK′1 = (collapsing) :
ΣKm ×ΣK ′1
{∗} ×ΣK ′1

� Σ(Km ∗K ′1).

Since there is a natural homotopy equivalence h : ΣKm×ΣK ′1/{∗}×ΣK ′1 '
ΣKm ∨ Σ(Km ∗K ′1) such that h|ΣKm×{∗} = 1ΣKm , pr′ can be decomposed
as

pr′ = pr′1 ◦ pr′0,

where pr′0 and pr′1 are given by

pr′0|Fm×F ′1 = 1Fm×F ′1 , pr′0|ΣKm×F ′1 = 1ΣKm×F ′1 , pr′0|ΣKm×ΣK′1/{∗}×ΣK′1 =h,

pr′1|Fm×F ′1 = 1Fm×F ′1 , pr′1|ΣKm×F ′1 = proj2, pr′1|Σ(Km∗K′1) = 1Σ(Km∗K′1).

Hence Φ = pr′ ◦ Φ′ = pr′1 ◦ pr′0 ◦ Φ′, and pr′0 ◦ Φ′ is given by

pr′0 ◦ Φ′|Fm×F ′1 = 1Fm×F ′1 , pr′0 ◦ Φ′|ΣKm×F ′1 = 1ΣKm×F ′1 ,

pr′0 ◦ Φ′|Fm×ΣK′1 = proj1,

pr′0 ◦ Φ′|ΣKm×ΣK′1 = (retraction) : ΣKm ×ΣK ′1 → ΣKm ∨Σ(Km ∗K ′1),

and so pr′0 ◦ Φ′ ◦ (1m × ν1) is given by

pr′0 ◦ Φ′ ◦ (1m× ν1)|Fm×F ′1 = 1Fm×F ′1 ,

pr′0 ◦ Φ′ ◦ (1m× ν1)|ΣKm×F ′1 = ν ′ : ΣKm × F ′1 → ΣKm × F ′1 ∨Σ(Km ∗K ′1),
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Fig. 4

where ν ′ is the canonical copairing. Thus we obtain a commutative diagram

(3.5) Fm,1m+1 =Fm×F ′1
νm×1F ′1 //

νm,1m+1

��

Fm×F ′1 ∪F ′1 (ΣKm×F ′1)

1Fm×F ′1
∪ν′

��
Fm×F ′1 ∨ΣKm ∗K ′1 Fm×F ′1 ∪F ′1 (ΣKm×F ′1) ∨ΣKm ∗K ′1

p1oo

Therefore

T1 ◦ ((νm × 1F ′1) ∨ 1
ΣKm,1

m+1
) ◦ νm,1m+1

= T1 ◦ ((νm × 1F ′1) ∨ 1
ΣKm,1

m+1
) ◦ p1 ◦ (1

Fm,1m+1
∪ ν ′) ◦ (νm × 1F ′1).

Let us denote by p2 : Fm,1m+1 ∪F ′1 (ΣKm × F ′1) ∪F ′1 (ΣKm × F ′1) ∨ΣKm,1
m+1 →

Fm,1m+1 ∪F ′1 (ΣKm × F ′1) ∨ ΣKm,1
m+1 the map pinching the second ΣKm × F ′1

to F ′1, by p3 : Fm,1m+1 ∪F ′1 ((ΣKm × F ′1) ∨ ΣKm,1
m+1) ∪F ′1 (ΣKm × F ′1) →

(Fm,1m+1 ∨ ΣKm,1
m+1) ∪F ′1 ΣK

m,1
m+1 the map pinching the first ΣKm × F ′1 to

one point, by ν0 : ΣKm → ΣKm∨ΣKm the canonical comultiplication and
by T0 : ΣKm ∨ΣKm → ΣKm ∨ΣKm the switching map. It is then easy to
check that

T1 ◦ ((νm × 1F ′1) ∨ 1
ΣKm,1

m+1
) ◦ νm,1m+1

= T1 ◦ p2 ◦
(
(νm × 1F ′1) ∪ 1ΣKm×F ′1 ∨ 1ΣKm∗K′1

)
◦ (1

Fm,1m+1
∪ ν ′) ◦ (νm×1F ′1)

= p3 ◦ (1
Fm,1m+1

∪ ν ′ ∪ 1ΣKm×F ′1) ◦ (1
Fm,1m+1

∪ (T0 × 1F ′1))

◦ ((νm × 1F ′1) ∪ 1ΣKm×F ′1) ◦ (νm × 1F ′1).
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Using (1Fm ∨ ν0) ◦ νm = (νm ∨ 1ΣKm) ◦ νm and T0 ◦ ν0 = ν0 from the

assumption that Km is a co-H-space together with Fm,1m+1 = Fm × F ′1, we
have

T1 ◦ ((νm × 1F ′1) ∨ 1
ΣKm,1

m+1
) ◦ νm,1m+1

= p3 ◦ (1
Fm,1m+1

∪ ν ′ ∪ 1ΣKm×F ′1) ◦ (1
Fm,1m+1

∪ (T0×1F ′1))

◦ (1
Fm,1m+1

∪ (ν0×1F ′1)) ◦ (νm×1F ′1)

= p3 ◦ (1
Fm,1m+1

∪ ν ′ ∪ 1ΣKm×F ′1) ◦ ((1Fm ∨ ν0)×1F ′1)) ◦ (νm×1F ′1)

= p3 ◦ (1
Fm,1m+1

∪ ν ′ ∪ 1ΣKm×F ′1) ◦ ((νm ∨ 1ΣKm)×1F ′1) ◦ (νm×1F ′1).

Using diagram (3.5) yields

T1 ◦ ((νm × 1F ′1) ∨ 1
ΣKm,1

m+1
) ◦ νm,1m+1 = (νm,1m+1 ∪ 1ΣKm×F ′1) ◦ (νm × 1F ′1).

This completes the proof of Proposition 3.5.

Proof of Lemma 3.3. The commutativity of the left square follows from
[14, Proposition 2.9], and the middle square is clearly commutative.

So we are left to show (σm × σ′ ∨Σgm ∗ g′) ◦ νm,1m+1 = ν̂m+1 ◦ (σm × σ′).
Recall that σm = 1̂m by Proposition 2.4(1) for f = 1m. On the other hand,
by Proposition 2.4(2), we have σm = ∇PmΩFm ◦ ((1m)′m∨ ιΩFmm−1,m ◦ δ1m

m )◦νm,
and hence

(σm × σ′ ∨Σgm ∗ g′) ◦ νm,1m+1

= {(∇PmΩFm ◦ ((1m)′m ∨ (ιΩFmm−1,m ◦ δ1m
m )) ◦ νm)× σ′ ∨Σgm ∗ g′} ◦ νm,1m+1

= (∇PmΩFm × 1ΣΩF ′1 ∨ 1ΣÊm+1
)

◦ {((1m)′m × σ′) ∪ ((ιΩFmm−1,m ◦ δm)× σ′) ∨Σgm ∗ g′}

◦ ((νm × 1F ′1) ∨ 1
ΣKm,1

m+1
) ◦ νm,1m+1

= (∇PmΩFm × 1ΣΩF ′1 ∨ 1ΣÊm+1
)

◦ T2 ◦ {((1m)′m × σ′ ∨Σgm ∗ g′) ∪ ((ιΩFmm−1,m ◦ δ1m
m )× σ′)} ◦ T1

◦ ((νm × 1F ′1) ∨ 1
ΣKm,1

m+1
) ◦ νm,1m+1,

where T1 : Fm,1m+1 ∪F ′1 (ΣKm × F ′1) ∨ ΣKm,1
m+1 → (Fm,1m+1 ∨ ΣKm,1

m+1) ∪F ′1
(ΣKm×F ′1) and T2 : (F̂m+1 ∨ΣÊm+1)∪ΣΩF ′1 F̂m+1 → (F̂m+1 ∪ΣΩF ′1 F̂m+1)

∨ ΣÊm+1 are appropriate homeomorphisms. Then by Proposition 3.5,
Proposition 3.4(2) and the definitions of (1m)′m and σ′, we proceed as
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follows:

(σm × σ′ ∨Σgm ∗ g′) ◦ νm,1m+1

= (∇PmΩFm × 1ΣΩF ′1 ∨ 1ΣÊm+1
)

◦ T2 ◦ {((1m)′m × σ′ ∨Σgm ∗ g′) ∪ ((ιΩFmm−1,m ◦ δ1m
m )× σ′)}

◦ (νm,1m+1 ∪ 1ΣKm×F ′1) ◦ (νm × 1F ′1)

= (∇PmΩFm × 1ΣΩF ′1 ∨ 1ΣÊm+1
) ◦ T2

◦ {(((1m)′m×σ′∨Σgm ∗ g′) ◦ νm,1m+1) ∪ ((ιΩFmm−1,m ◦ δ1m
m )×σ′)} ◦ (νm×1F ′1).

= (∇PmΩFm × 1ΣΩF ′1 ∨ 1ΣÊm+1
) ◦ T2

◦ {(ν̂m+1 ◦ ((1m)′m × σ′)) ∪ ((ιΩFmm−1,m ◦ δ1m
m )× σ′)} ◦ (νm × 1F ′1)

= (∇PmΩFm × 1ΣΩF ′1 ∨∇ΣÊm+1
) ◦ T3

◦ {ν̂m+1 ◦ ((1m)′m × σ′) ∪ i1 ◦ ((ιΩFmm−1,m ◦ δ1m
m )× σ′)} ◦ (νm × 1F ′1).

Here i1 : F̂m+1→ F̂m+1∨ΣÊm+1 is the first inclusion andT3 : (F̂m+1∨ΣÊm+1)
∪ΣΩF ′1 (F̂m+1 ∨ ΣÊm+1) → (F̂m+1 ∪ΣΩF ′1 F̂m+1) ∨ ΣÊm+1 ∨ ΣÊm+1 is an
appropriate homeomorphism. Thus

(σm × σ′ ∨Σgm ∗ g′) ◦ νm,1m+1

= (∇PmΩFm × 1ΣΩF ′1 ∨∇ΣÊm+1
) ◦ T3

◦ (ν̂m+1 ∪ ν̂m+1) ◦ {((1m)′m × σ′) ∪ ((ιΩFmm−1,m ◦ δm)× σ′)} ◦ (νm × 1F ′1)

= ν̂m+1 ◦ {∇PmΩFm ◦ ((1m)′m ∨ (ιΩFmm−1,m ◦ δ1m
m )) ◦ νm × σ′}

= ν̂m+1 ◦ (σ1m
m × σ′).

This completes the proof of Lemma 3.3.

4. Proof of Theorem 1.2. In the fibre sequence G ↪→ E → ΣA,
by the James–Whitehead decomposition (see Whitehead [17, VII. Theorem
(1.15)]), the total space E has the homotopy type of the space G∪ψG×CA,
where

ψ : G×A 1G×α−−−→ G×G µ−→ G.

Since G ' Fm and, by condition (1) of Theorem 1.2, α is compressible
into F ′1, we see that

ψ : G×A ' Fm×A
1Fm×α−−−−→ Fm×F ′1 ⊂ Fm×F1 ⊂ Fm×Fm ' G×G µ−→G ' Fm

and E is the homotopy pushout of the sequence

Fm
pr1←−− Fm ×A

1Fm×α−−−−→ Fm × F ′1
µm,1−−−→ Fm.
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We construct spaces and maps such that the homotopy pushout of these

maps dominates E. Let e′ = e
F ′1
1 : ΩΣF ′1 → F ′1 and σA = Σ ad(1A) :

A→ ΣΩA, since A is a suspended space. By condition (2) of Theorem 1.2,
we have H1(α) = 0 in [A,ΩF ′1 ∗ΩF ′1], which immediately implies

(4.1) σ′ ◦ α = Σ ad(α) = e′ ◦ σA : A→ ΣΩF ′1.

By condition (3) of Theorem 1.2, we have Km = S`−1 with m, ` ≥ 3, and so
(PmΩFm, P

m
m ) is `-connected by Lemma 3.1.

Proposition 4.1. The following diagram is commutative:

Fm

ιΩFmm,m+1◦σm
��

Fm ×A
σm×σA

��

pr1oo 1Fm×α // Fm × F ′1
σm×σ′

��

µm,1 // Fm

ιΩFmm,m+1◦σm
��

Pm+1ΩFm

eFmm+1

��

Pmm ×ΣΩA
φoo

eFmm ×eA1
��

χ // F̂m+1

eFmm ×e′
��

Pm+1ΩFm

eFmm+1

��
Fm Fm ×A

pr1oo 1Fm×α // Fm × F ′1
µm,1 // Fm

where φ = ιΩFmm,m+1 ◦ pr1 and χ = 1Pmm ×ΣΩα.

Proof. The upper left square is clearly commutative. The equality eFmm =

eFmm+1 ◦ ιΩFmm,m+1 implies that the lower left square is commutative. The equal-

ity α◦ eA1 = e′ ◦ΣΩα implies the commutativity of the lower middle square.
The commutativity of the upper middle square is obtained by (4.1). Propo-
sition 2.4(2) for f = 1m and the fact that e′ ◦ σ′ = 1F ′1 imply that the right
rectangle is commutative.

Definition 4.2. λ = µm,1 ◦ {eFmm × e′} : F̂m+1 → Fm × F ′1 → Fm.

Then λ is a well-defined filtered map with respect to the filtration (3.4)
of F̂m+1 and the trivial filtration ((Fm)i = Fm for all i) of Fm, where

{eFmm × e′}(F̂k) = {eFm−1

k × ∗ ∪ eFm−1

k−1 × e′}(F̂k) ⊂ Fm−1 × F ′1 for 0≤ k <m,

and {eFmm × e′}(F̂m) = {eFmm × ∗∪ eFm−1

m−1 × e′}(F̂m) ⊂ Fm×{∗} ∪Fm−1×F ′1
for k = m.

Definition 4.3. By Proposition 2.4 for f = λ, we obtain a series of
maps λ̂k : F̂k → P kΩFm, 0 ≤ k ≤ m+ 1.

By the hypothesis of Theorem 1.2, we have µk,1 : Fk × F ′1 → Fk+1 for
k < m, and µm,1 : Fm × F ′1 → Fm, both of which are restrictions of µ.

Lemma 4.4. There is a map λ̂ : F̂m+1 → Pm+1ΩFm which fits in with
the following commutative diagram obtained by dividing the right square of
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the diagram in Proposition 4.1 by λ̂ into upper and lower squares.

Fm

ιΩFmm,m+1◦σm
��

Fm ×A
σm×σA

��

pr1oo 1×α // Fm × F ′1
σm×σ′

��

µm,1 // Fm

ιΩFmm,m+1◦σm
��

Pm+1ΩFm

eFmm+1

��

Pmm ×ΣΩA
φoo

eFmm ×eA1
��

χ // F̂m+1

eFmm ×e′
��

λ̂ // Pm+1ΩFm

eFmm+1

��
Fm Fm ×A

pr1oo 1×α // Fm × F ′1
µm,1 // Fm

Proof. Let µm,1k = 1Fk ∪µk−1,1 : Fm,1k = Fk×{∗}∪Fk−1×F ′1 → Fk, σ
m,1
k

= σk × ∗ ∪ σk−1 × σ′ : Fm,1
′

k → P kΩFk × {∗} ∪ P k−1ΩFk−1 × ΣΩF ′1 and

jk = P kΩiFk,m−1 × ∗ ∪ P k−1ΩiFk−1,m−1 × 1ΣΩF ′1 , 0 ≤ k < m.

Firstly, we show the following by induction on k < m:

(4.2) ιΩFmk,k+1◦P kΩiFk,m◦σk◦µ
m,1
k = ιΩFmk,k+1◦λ̂k◦jk◦σ

m,1
k : Fm,1k →P k+1ΩFm.

The case k = 0 is clear, since both maps are constant maps. Assume
that (4.2) holds for some k. By Proposition 2.4(1) for f = 1m, the diagram

Fk
σk //

iFk,k+1

��

P kΩFk
� �
PkΩiFk,k+1 // P kΩFk+1

� �
PkΩiFk+1,m−1 //

� _

ι
ΩFk+1
k,k+1
��

P kΩFm−1� _

ι
ΩFm−1
k,k+1
��

Fk+1
σk+1 // P k+1ΩFk+1

� �
Pk+1ΩiFk+1,m−1 // P k+1ΩFm−1

is commutative for k + 1 < m, and hence

jk+1 ◦ σm,1k+1 ◦ ι
m,1
k

= (P k+1ΩiFk+1,m−1 ◦ σk+1 ◦ iFk,k+1)× ∗ ∪ (P kΩiFk,m−1 ◦ σk ◦ iFk−1,k)× σ′

= (ι
ΩFm−1

k,k+1 ◦ P kΩiFk,m−1 ◦ σk)× ∗ ∪ (ι
ΩFm−1

k−1,k ◦ P kΩiFk−1,m−1 ◦ σk−1)× σ′

= ι̂k ◦ jk ◦ σm,1k .

By Proposition 2.4(1) for f = λ, we have λ̂k+1 ◦ ι̂k = ιΩFmk,k+1 ◦ λ̂k, and hence

λ̂k+1 ◦ jk+1 ◦ σm,1k+1 ◦ ι
m,1
k = λ̂k+1 ◦ ι̂k ◦ jk ◦ σm,1k = ιΩFmk,k+1 ◦ λ̂k ◦ jk ◦ σ

m,1
k .

Then, by Proposition 2.4(1) for f = 1m and the induction hypothesis,

(ιm,1k )∗(λ̂k+1 ◦ jk+1 ◦ σm,1k+1)

= [ιΩFmk,k+1 ◦ P kΩiFk,m ◦ σk ◦ µ
m,1
k ] = [P k+1ΩiFk+1,m ◦ σk+1 ◦ iFk,k+1 ◦ µm,1k ]

= [P k+1ΩiFk+1,m ◦ σk+1 ◦µm,1k+1 ◦ ι
m,1
k ] = (ιm,1k )∗(P k+1ΩiFk+1,m ◦ σk+1 ◦µm,1k+1).
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By a standard argument of homotopy theory applied to the cofibre sequence
Km,1
k+1 → Fm,1k ↪→ Fm,1k+1, we obtain the difference map δk+1 : ΣKm,1

k+1 →
P k+1ΩFm of λ̂k+1 ◦ jk+1 ◦ σm,1k+1 and P k+1ΩiFk+1,m ◦ σk+1 ◦ µm,1k+1, k+ 1 < m:

(4.3) P k+1ΩiFk+1,m ◦ σk+1 ◦ µm,1k+1

= ∇Pk+1ΩFm ◦ (λ̂k+1 ◦ jk+1 ◦ σm,1k+1 ∨ δk+1) ◦ νm,1k+1.

Then, by Proposition 2.4(1) for f = λ, we have

eFmk+1 ◦ λ̂k+1 = µm−1,1 ◦ {eFm−1

k+1 × ∗ ∪ e
Fm−1

k × e′},
and hence, by the commutative diagram

Fi
σi //

1Fi ""

P iΩFi
� �
P iΩiFi,m−1 //

e
Fi
i
��

P iΩFm−1

e
Fm−1
i // Fm−1

Fi
% �

iFi,m−1

22

for i = k, k + 1 ≤ m− 1, we obtain

{eFm−1

k+1 × ∗ ∪ e
Fm−1

k × e′} ◦ jk+1 ◦ σm,1k+1 = ιm,1k+1,m,

where ιm,1k+1,m : Fm,1k+1 ↪→ Fm,1m is the canonical inclusion. Thus

eFmk+1 ◦ λ̂k+1 ◦ jk+1 ◦ σm,1k+1 = µm−1,1 ◦ ιm,1k+1,m = iFk+1,m ◦ µm,1k+1

= iFk+1,m ◦ e
Fk+1

k+1 ◦ σk+1 ◦ µm,1k+1 = eFmk+1 ◦ P k+1ΩiFk+1,m ◦ σk+1 ◦ µm,1k+1,

and hence, by (4.3),

iFk+1,m ◦ µm,1k+1 = ∇Fm ◦ (eFmk+1 ◦ λ̂k+1 ◦ jk+1 ◦ σm,1k+1 ∨ eFmk+1 ◦ δk+1) ◦ νm,1k+1

= ∇Fm ◦ (iFk+1,m ◦ µm,1k+1 ∨ eFmk+1 ◦ δk+1) ◦ νm,1k+1.

Using [13, Theorem 2.7(1)] and the multiplication µ on G ' Fm, we see

that eFmk+1 ◦ δk+1 : ΣKm,1
k+1 → Fm is null-homotopic. Hence by a standard

argument of homotopy theory applied to the fibre sequence Ek+2ΩFm →
P k+1ΩFm → Fm, we get a lift δ′k+1 : ΣKm,1

k+1 → Em+1ΩFm of δk+1 as

pΩFmk+1 ◦ δ′k+1 = δk+1, k + 1 < m. Since ιΩFmk+1,k+2 ◦ pΩFmk+1 = ∗, we obtain

ιΩFmk+1,k+2 ◦ δk+1 = ιΩFmk+1,k+2 ◦ pΩFmk+1 ◦ δ′k+1 = ∗ and

ιΩFmk+1,k+2 ◦ ∇Pk+1ΩFm ◦ (λ̂k+1 ◦ jk+1 ◦ σm,1k+1 ∨ δk+1) ◦ νm,1k+1

= ∇Pk+2ΩFm ◦ (ιΩFmk+1,k+2 ◦ λ̂k+1 ◦ jk+1 ◦ σm,1k+1 ∨ ∗) ◦ ν
m,1
k+1

= ιΩFmk+1,k+2 ◦ λ̂k+1 ◦ jk+1 ◦ σm,1k+1,
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and hence, by (4.3),

ιΩFmk+1,k+2 ◦ P k+1ΩiFk+1,m ◦ σk+1 ◦ µm,1k+1 = ιΩFmk+1,k+2 ◦ λ̂k+1 ◦ jk+1 ◦ σm,1k+1.

This completes the proof of the induction step and we obtain (4.2) for k < m.
Secondly, we show that

(4.4) ι
ΩFm
m,m+1 ◦ σm ◦ µm,1m = ι

ΩFm
m,m+1 ◦ λ̂m ◦ σm,1m .

By Proposition 2.4(1) for f = 1m, we obtain

σt ◦ iFt−1,t = iΩFtt−1,t ◦ P t−1ΩiFt−1,t ◦ σt−1 for t = m− 1,m.

Hence

σm,1m ◦ ιm,1m−1 =
(
(σm ◦ iFm−1,m)× ∗ ∪ (σm−1 ◦ iFm−2,m−1)× σ′

)
= (ιΩFmm−1,m ◦ Pm−1ΩiFm−1,m ◦ σm−1)× ∗
∪ (ι

ΩFm−1

m−2,m−1 ◦ Pm−2ΩiFm−2,m−1 ◦ σm−1)× σ′

= îm−1 ◦ jm−1 ◦ σm,1m−1.

By Proposition 2.4(1) for f = λ, we obtain λ̂m ◦ ι̂m−1 = ιΩFmm−1,m ◦ λ̂m−1 and

(ιm,1m−1)∗(λ̂m ◦ σm,1m ) = [λ̂m ◦ σm,1m ◦ ιm,1m−1] = [λ̂m ◦ îm−1 ◦ jm−1 ◦ σm,1m−1]

= [ιΩFmm−1,m ◦ λ̂m−1 ◦ jm−1 ◦ σm,1m−1] = [ιΩFmm−1,m ◦ PmΩiFm−1,m ◦ σm−1 ◦ µm,1m−1]

= [σm ◦ iFm−1,m ◦ µm,1m−1] = (ιm,1m−1)∗(σm ◦ µm,1m )

using (4.2) for k = m−1. Thus by a standard argument of homotopy theory

applied to the cofibre sequence Km,1
m → Fm ↪→ Fm+1, we obtain a difference

map δm : ΣKm,1
m → PmΩFm of λ̂m ◦ σm,1m and σm ◦ µm,1m :

(4.5) σm ◦ µm,1m = ∇PmΩFm ◦ (λ̂m ◦ σm,1m ∨ δm) ◦ νm,1m .

By Proposition 2.4(1) for f = λ,

eFmm ◦ λ̂m ◦σm,1m = µm,1m ◦{eFmm ×∗ ∪ eFm−1

m−1 ×e′}◦ (σm×∗ ∪ σm−1×σ′) = µm,1m ,

and hence, by (4.5),

µm,1m = ∇Fm◦(eFmm ◦λ̂m◦σm,1m ∨eFmm ◦δm)◦νm,1m = ∇Fm◦(µm,1m ∨eFmm ◦δm)◦νm,1m .

Thus eFmm ◦ δm = ∗. Then, by a standard argument of homotopy theory
applied to the fibre sequence Em+1ΩFm → PmΩFm → Fm, we obtain
a lift δ′m : ΣKm,1

m → Em+1ΩFm which satisfies δm = pΩFmm ◦ δ′m. Since
ιΩFmm,m+1 ◦ pΩFmm = ∗, we have ιΩFmm,m+1 ◦ δm = ιΩFmm,m+1 ◦ pΩFmm ◦ δ′m = ∗. Then
by (4.5), we obtain (4.4) as follows:

ιΩFmm,m+1 ◦ σm ◦ µm,1m = ιΩFmm,m+1 ◦ ∇PmΩFm ◦ (λ̂m ◦ σm,1m ∨ δm) ◦ νm,1m

= ∇Pm+1ΩFm ◦ (ιΩFmm,m+1 ◦ λ̂m ◦ σm,1m ∨ ∗) ◦ νm,1m = ιΩFmm,m+1 ◦ λ̂m ◦ σm,1m .
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Finally, we construct a map λ̂ : F̂m+1→Pm+1ΩFm. By Proposition 2.4(1)

for f = 1m, we have σm◦iFm−1,m = iΩFmm−1,m◦Pm−1ΩiFm−1,m◦σm−1, and hence

(σm × σ′) ◦ ιm,1m = (σm × σ′) ◦ (1Fm × ∗ ∪ iFm−1,m × 1F ′1)

= ι̂m ◦ (σm × ∗ ∪ σm−1 × σ′) = ι̂m ◦ σm,1m .

Also by Proposition 2.4(1) for f = λ, we get λ̂m+1 ◦ ι̂m = ιΩFmm,m+1 ◦ λ̂m and

λ̂m+1 ◦ (σm × σ′) ◦ ιm,1m = λ̂m+1 ◦ ι̂m ◦ σm,1m = ιΩFmm,m+1 ◦ λ̂m ◦ σm,1m ,

and hence, by (4.4),

(ιm,1m )∗(λ̂m+1 ◦ (σm×σ′)) = ιΩFmm,m+1 ◦σm ◦µm,1m = (ιm,1m )∗(ιΩFmm,m+1 ◦σm ◦µm,1).

By a standard argument of homotopy theory applied to the cofibre sequence
Km,1
m+1 → Fm,1m ↪→ Fm,1m+1, we obtain δm+1 : ΣKm,1

m+1 → Pm+1ΩFm such that

(4.6) ιΩFmm,m+1 ◦σm ◦µm,1 = ∇Pm+1ΩFm ◦ (λ̂m+1 ◦ (σm×σ′)∨ δm+1)◦νm,1m+1.

To proceed further, let us consider the dashed map ē : ΣÊm+1 → ΣKm+1
m ,

induced from the commutativity of the lower left square in the diagram

Fm,1m
� � ιm,1m //

σm,1m
��

Fm,1m+1

qP //

σm×σ′
��

ΣKm,1
m

Σgm∗g′
��

F̂m
� � ι̂m //

êm
��

F̂m+1
q̄F //

eFmm ×e′
��

ΣÊm+1

ē
��

Fm,1m
� � ιm,1m // Fm,1m+1

qP // ΣKm,1
m

where the map êm : F̂m → Fm,1m is eFmm × ∗ ∪ e
Fm−1

m−1 × e′. Since êm ◦ σm,1m

and (eFmm × e′) ◦ (σm × σ′) are homotopy equivalences, so is ē ◦ Σgm ∗ g1

(see [4, Lemma 16.24]). We denote by h : ΣKm+1
m → ΣKm+1

m its homotopy
inverse. Then, by (4.6),

ιΩFmm,m+1 ◦ σm ◦ µm,1 = ∇Pm+1ΩFm ◦ (λ̂m+1 ◦ (σm × σ′) ∨ δm+1) ◦ νm,1m+1

= ∇Pm+1ΩFm ◦ (λ̂m+1 ◦ (σm × σ′) ∨ δm+1 ◦ h ◦ ē ◦Σgm ∗ g′) ◦ νm,1m+1

= ∇Pm+1ΩFm ◦ (λ̂m+1 ∨ δm+1 ◦ h ◦ ē) ◦ ((σm × σ′) ∨Σgm ∗ g′) ◦ νm,1m+1,

which, by Lemma 3.3, can be continued as

= ∇Pm+1ΩFm ◦ (λ̂m+1 ∨ δm+1 ◦ h ◦ ē) ◦ ν̂m+1 ◦ (σm × σ′).
This suggests defining λ̂ by ∇Pm+1ΩFm ◦ (λ̂m+1 ∨ δm+1 ◦ h ◦ ē) ◦ ν̂m+1 to
obtain

ιΩFmm,m+1 ◦ σm ◦ µm,1 = λ̂ ◦ (σm × σ′) : Fm × F ′1 → Pm+1ΩFm,
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which gives the commutativity of the upper right square in Lemma 4.4. So it
remains to show the commutativity of the lower right square in Lemma 4.4.
By Proposition 2.4(1) for f = λ, we have

eFmm+1 ◦ λ̂m+1 ◦ (σm × σ′) = µm,1 ◦ {eFmm × e′} ◦ (σm × σ′) = µm,1,

and hence, by the equalities eFmm+1 ◦ ιΩFmm,m+1 ◦ σm = 1Fm and (4.6),

µm,1 = eFmm+1 ◦ ∇Pm+1ΩFm ◦ (λ̂m+1 ◦ (σm × σ′) ∨ δm+1) ◦ νm,1m+1

= ∇Fm ◦ (µm,1 ∨ eFmm+1 ◦ δm+1) ◦ νm,1m+1.

Thus, eFmm+1 ◦ δm+1 = ∗. Therefore,

eFmm+1 ◦ λ̂ = eFmm+1 ◦ ∇Pm+1ΩFm ◦ (λ̂m+1 ∨ δm+1 ◦ h ◦ ē) ◦ ν̂m+1

= ∇Fm ◦ (eFmm+1 ◦ λ̂m+1 ∨ ∗) ◦ ν̂m+1 = eFmm+1 ◦ λ̂m+1,

and hence, by Proposition 2.4(1) for f = λ, we finally get

eFmm+1 ◦ λ̂ = µm,1 ◦ {eFmm × e′} : F̂m+1 → Fm.

Now we are ready to define a cone-decomposition {Ê′k
ŵ′k−→ F̂ ′k−1 ↪

î′k−1−−→ F̂ ′k |
1 ≤ k ≤ m + 1} of Pmm × ΣΩA of length m + 1 by replacing F ′1 with A in
the cone-decomposition of Pmm ×ΣΩF ′1. The series of cofibre sequences

{EkΩFm
pΩFmk−1−−−→ P k−1ΩFm ↪

ιΩFmk−1−−−→ P kΩFm | 1 ≤ k ≤ m+ 1}
gives a cone-decomposition of Pm+1ΩFm of length m + 1. Let D be the
homotopy pushout of φ = ιΩFmm,m+1 ◦ pr1 and λ̂ ◦ χ = λ̂ ◦ (1Pmm ×ΣΩα):

Pmm ×ΣΩA
φ
��

λ̂◦χ // Pm+1ΩFm

��
Pm+1ΩFm // D

We give a cone-decomposition of D as follows: λ̂ ◦ ι̂m = ∇Pm+1ΩFm ◦
(λ̂m+1 ∨ δm+1 ◦ h ◦ ē) ◦ ν̂m+1 ◦ ι̂m = λ̂m+1 ◦ ι̂m, we may identify the restric-

tion of λ̂ on F̂k with λ̂k, and hence λ̂ ◦ χ is a filtered map up to homotopy,
i.e., (λ̂ ◦ χ)|F̂ ′k = λ̂k ◦ χ|F̂ ′k for 1 ≤ k ≤ m. Since χ|F̂ ′k−1

= χ|F̂ ′k ◦ î
′
k−1 and

î′k−1 ◦ ŵ′k = ∗, we have

eFmk−1 ◦ ((λ̂ ◦ χ)|F̂ ′k−1
◦ ŵ′k) = eFmk ◦ λ̂k ◦ χ|F̂ ′k ◦ î

′
k−1 ◦ ŵ′k

= eFmk ◦ λ̂k ◦ χ|F̂ ′k ◦ ∗ = ∗.
By a standard argument of homotopy theory applied to the fibre sequence
EkΩFm → P k−1ΩFm → Fm, we have a lift κk : Ê′k → EkΩFm which fits in
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with the following commutative diagrams:

(4.7)

Ê′k
ŵ′k //

κk

��

F̂ ′k−1
� �

î′k−1 //

λ̂k−1◦χ|F̂ ′
k−1

��

F̂ ′k

λ̂k◦χ|F̂ ′
k

(1 ≤ k ≤ m),
��

EkΩFm
pΩFmk−1 // P k−1ΩFm

� �
ιΩFmk−1,k // P kΩFm

(4.8)

Ê′m+1

ŵ′m+1 //

κm+1

��

F̂ ′m
� � î′m //

λ̂m◦χ|F̂ ′m
��

F̂ ′m+1

λ̂◦χ (k = m+ 1).
��

Em+1ΩFm
pΩFmm // PmΩFm

� �
ιΩFmm,m+1 // Pm+1ΩFm

By definition of φ, it is clear that there exists a map ψk : Ê′k → EkΩFm
which fits in with the commutative diagram

(4.9)

Ê′k
ŵ′k //

ψk
��

F̂ ′k−1
� �

î′k−1 //

φ|F̂ ′
k−1

��

F̂ ′k

φ|F̂ ′
k

��
EkΩFm

pΩFmk−1 // P k−1ΩFm
� �

ιΩFmk−1,k // P kΩFm

Let EDk be a homotopy pushout of κk and ψk, and FDk be a homotopy

pushout of (λ̂ ◦ χ)|F̂ ′k and φ|F̂ ′k . Then using diagrams (4.7)–(4.9) and the

universal property of homotopy pushouts, we obtain the following commu-
tative diagram whose front column EDk → FDk−1 → FDk is a cofibre sequence:

Ê′kψk

vv
ŵ′k
��

κk

**
EkΩFm

pΩFmk−1
��

**

F̂ ′k−1
φ|F̂ ′

k−1

vv

� _

î′k−1

��

(λ̂◦χ)|F̂ ′
k−1

**

EkΩFm

vv

pΩFmk−1
��

P k−1ΩFm� _

ιΩFmk−1,k
��

**

F̂ ′kφ|F̂ ′
k

vv

(λ̂◦χ)|F̂ ′
k

**

EDk

��

P k−1ΩFm

vv

� _

ιΩFmk−1,k
��

P kΩFm

**

FDk−1� _

��

P kΩFm

vv
FDk

Thus we obtain a cone-decomposition {EDk → FDk−1 ↪→ FDk | 1 ≤ k ≤ m+1}
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of D of length m+ 1, which immediately implies

cat(D) ≤ Cat(D) ≤ m+ 1.

The homotopy pushout of the top and bottom rows in (4.4) are G ∪ψ
G×CA. Also, since the dimensions of Fm, F1 and A are less than or equal
to `, all compositions of columns in (4.4) are homotopy equivalences. Thus,
the composite map D → G∪ψG×CA ' E → D is a homotopy equivalence
(see [4, Lemma 16.24], for example). Hence D dominates E, and we obtain

cat(E) ≤ cat(D) ≤ Cat(D) ≤ m+ 1.

5. L-S category of SO(10). In this section, we determine cat(SO(10))
and prove Theorem 5.1.

To give a lower bound of cat(SO(10)), let us recall the algebra structure
of the well-known cohomology algebra H∗(SO(10);F2):

H∗(SO(10);F2) ∼= F2[x1, x3, x5, x7, x9]/(x16
1 , x

4
3, x

2
5, x

2
7, x

2
9),

where xk is a generator in dimension k. Then by Theorem 1.1,

(5.1) 21 = cup(SO(10);F2) ≤ cat(SO(10)).

On the other hand, to give the upper bound using Theorem 1.2, we first
recall the cone-decomposition of Spin(7) in [10]:

∗ ⊂ F ′1 = ΣCP3 ⊂ F ′2 ⊂ F ′3 ⊂ F ′4 ⊂ F ′5 ' Spin(7).

In [11], the cone-decomposition of SO(9) is given by using the above filtra-
tion F ′i of Spin(7) together with the principal bundle Spin(7) ↪→ SO(9)
→ RP15. Let ek be a k-cell in SO(9) corresponding to the k-cell in RP15.
The cone-decomposition {Fi} of SO(9) introduced in [11] is

F0 = {∗}
...

. . .

Fj = F ′j ∪ (e1 × F ′j−1) ∪ · · · ∪ (ej−1 × F ′1) ∪ ej
...

. . .

F5 = F ′5 ∪ (e1 × F ′4) ∪ (e2 × F ′3) ∪ (e3 × F ′2) ∪ (e4 × F ′1) ∪ e5
...

. . .

Fi+5 = F ′5 ∪ (e1 × F ′5) ∪ · · · ∪ (ei × F ′5) ∪ (ei+1 × F ′4) ∪ · · · ∪ (ei+4 × F ′1) ∪ ei+5

...
...

F15 = F ′5 ∪ (e1 × F ′5) ∪ · · · ∪ (e10 × F ′5) ∪ (e11 × F ′4) ∪ · · · ∪ (e14 × F ′1) ∪ e15
...

...

F15+j = F ′5 ∪ (e1 × F ′5) ∪ · · · ∪ (e10+j × F ′5) ∪ (e11+j × F ′4) ∪ · · · ∪ (e15 × F ′5−j)
...

...

F20 = F ′5 ∪ (e1 × F ′5) ∪ · · · ∪ (e15 × F ′5) ' SO(9)
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where 0 ≤ i ≤ 10 and 0 ≤ j ≤ 5, which is given with a series of cofibre
sequences {Ki → Fi−1 → Fi | 1 ≤ i ≤ 20}.

Secondly, a cofibre sequence S20 → F ′4 ↪→ F ′4 ∪ e21 (= F ′5 ' Spin(9))
in [10] induces a cofibre sequence K20 = S14 ∗ S20 = S35 → F19 ↪→ F20.

Thirdly, since µ′|F ′i×F ′1 is compressible into F ′i+1 for 1 ≤ i < 5 by
[11, proof of Theorem 2.9], µ|Fi×F ′1 is compressible into Fi+1 for 1 ≤ i < 20,

where µ and µ′ are the multiplications of SO(9) and Spin(7), respectively.
Fourthly, let us consider two principal bundles p : SO(10) → S9 and

p′ : SU(5)→ S9, together with the commutative diagram

ΣCP3 � � // SU(4) �
� //

� _

��

SO(9)� _

��
SU(5) �

� //

p′

%%

SO(10)

p
��

S8 � � //

α

CC

α′

@@

Σγ3

SS

S9

The map α : S8 → SO(9) in the above diagram is the characteristic map
of p : SO(10) → S9. By Steenrod [16], α is homotopic in SO(9) to a map
α′ : S8 → SU(4), the characteristic map of p′ : SU(5) → S9. Further, by
Yokota [18], the suspension Σγ3 : S8 → ΣCP3 of the canonical projection
γ3 : S7 → CP3 is the attaching map of the top cell of ΣCP4 ⊂ SU(5), which
is homotopic to α′. Therefore, the characteristic map α is compressible into
ΣCP3 ⊂ F1. Since α is homotopic to a suspension map to ΣCP3 in SO(9),
we have H1(α) = 0 ∈ π8(ΩΣCP3 ∗ ΩΣCP3) when α is regarded as a map
to ΣCP3.

Thus, finally by Theorem 1.2 with F ′1 = ΣCP3, we obtain

(5.2) cat(SO(10)) ≤ 20 + 1 = 21.

Combining (5.2) with (5.1), we obtain our desired result.

Theorem 5.1. cat(SO(10)) = 21 = cup(SO(10);F2).
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