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The Besov capacity in metric spaces

Juho Nuutinen (Jyväskylä)

Abstract. We study a capacity theory based on a definition of Hajłasz–Besov func-
tions. We prove several properties of this capacity in the general setting of a metric space
equipped with a doubling measure. The main results of the paper are lower bound and
upper bound estimates for the capacity in terms of a modified Netrusov–Hausdorff con-
tent. Important tools are γ-medians, for which we also prove a new version of a Poincaré
type inequality.

1. Introduction. In this paper, we study a metric version of the Besov
capacity in a metric measure space (X, d, µ) with a doubling measure µ.
Different capacities in the metric setting have been studied previously, for
example, in [BB], [B], [GT], [HK], [KM], [Leh] and [NS]. In the Euclidean
setting, the Besov capacity has been studied, for example, in [A1], [A2],
[AH], [AHS], [AX], [D], [HN], [MX], [N1], [N2], [N3] and [Sto]. Our defi-
nition of the Besov capacity is based on the pointwise definition of frac-
tional s-gradients and the Hajłasz–Besov space N s

p,q(X), 0 < s < ∞ and
0 < p, q ≤ ∞. This characterization for Besov spaces was first introduced
in [KYZ] and has recently been applied, for example, in [GKZ], [HIT],
[HKT], [HT1] and [HT2]. The Hajłasz–Besov space N s

p,q(X) consists of Lp-
functions u that have a fractional s-gradient with finite mixed lq(Lp(X))-
norm. A sequence of nonnegative measurable functions (gk)k∈Z is a frac-
tional s-gradient of u if it satisfies the Hajłasz type pointwise inequal-
ity

|u(x)− u(y)| ≤ d(x, y)s(gk(x) + gk(y))

for all k ∈ Z and almost all x, y ∈ X with 2−k−1 ≤ d(x, y) < 2−k. We give
the precise definitions and notation in Section 2, where we also prove two
useful lemmas for the fractional s-gradients.
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In Section 3, we define the Besov capacity and prove its basic properties.
These include monotonicity, a version of subadditivity and several conver-
gence results. In particular, we apply the results to show that Hajłasz–Besov
functions are quasicontinuous with respect to this capacity. Besov capacity
has been studied previously in the metric setting in [B] and [Co]. However,
in these papers only the case p = q is considered in a less general met-
ric space. Ahlfors Q-regularity, for example, is assumed in both papers. In
a recent preprint [HKT], some of the results of our Section 3 are stated
and a version of subadditivity is proved. We provide several new results
and full proofs to the basic properties of the Besov capacity not proved
in [HKT].

The γ-medians are extremely useful tools in the setting of Besov spaces,
especially when 0 < p ≤ 1 or 0 < q ≤ 1. In our proofs, they take the place
of integral averages. Medians behave similarly to the integral averages, but
have the advantage that the function does not need to be locally integrable.
In Section 4, we study some of the basic properties of the γ-medians that
we later use in our proofs. One of the main results of this section is a new
Sobolev–Poincaré type inequality for the γ-medians. For slightly different
results, see [HKT] and [HT2]. Also, we recall the definition of discrete median
convolutions and use them as tools to obtain Theorem 4.8, which says that for
compact sets it is equivalent to consider only the locally Lipschitz admissible
functions when calculating the capacity.

In Section 5, we study a modified version of the Netrusov–Hausdorff
content. The Netrusov–Hausdorff content was introduced in Rn by Netru-
sov [N2], [N3]. It has also been studied, for example, in [A2] and [HN]. We
modify the Euclidean definition to the metric setting, since in our case the
dimension of the space X need not be constant. Instead of summing over the
powers of the radii rj of the balls in the covering, we sum over the measures
of the balls in the covering divided by the values φ(rj) of an increasing func-
tion φ. Our main results are lower and upper bounds for the capacity in terms
of the modified Netrusov–Hausdorff content (see Theorems 5.4 and 5.5).

2. Notation and preliminaries

2.1. Basic assumptions and notation. We assume that the triple
(X, d, µ), denoted simply by X, is a metric measure space equipped with
a metric d and a Borel regular, doubling outer measure µ, for which the
measure of every ball is positive and finite. The doubling property means
that there is a fixed constant cd > 0, called the doubling constant, such that

µ(B(x, 2r)) ≤ cdµ(B(x, r))

for every ball B(x, r) = {y ∈ X : d(y, x) < r}, where x ∈ X and r > 0.
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We define the integral average of a locally integrable function u over a
set A of positive and finite measure by

uA =
�

A

u dµ =
1

µ(A)

�

A

u dµ.

We denote by χE denote the characteristic function of a set E ⊂ X and
by R the extended real numbers [−∞,∞]. We write L0(X) for the set of
all measurable, almost everywhere finite functions u : X → R. In general,
C is a positive constant whose value is not necessarily the same at each
occurrence.

2.2. Fractional s-gradients and Hajłasz–Besov spaces. We define
the Hajłasz–Besov space in terms of pointwise inequalities, as in [KYZ]. This
characterization is motivated by the definition of a generalized gradient and
of the Hajłasz–Sobolev space M s,p(X), given for s = 1, p ≥ 1 in [H] and for
fractional scales in [Y]. There are also other definitions of Besov spaces in
the metric setting. They have been studied, for example, in [GKS], [GKZ],
[HMY], [KYZ], [MY], [SYY], [YZ].

Definition 2.1. Let 0 < s < ∞. A sequence (gk)k∈Z of nonnegative
measurable functions is a fractional s-gradient of a function u ∈ L0(X) if
there exists a set E with µ(E) = 0 such that

(2.1) |u(x)− u(y)| ≤ d(x, y)s(gk(x) + gk(y))

for all k ∈ Z and all x, y ∈ X \ E satisfying 2−k−1 ≤ d(x, y) < 2−k. The
collection of all fractional s-gradients of u is denoted by Ds(u).

We prove two lemmas that we use later. The above definition implies the
following lattice property for fractional s-gradients.

Lemma 2.2. Let 0 < s < ∞, u, v ∈ L0(X), (gk)k∈Z ∈ Ds(u) and
(hk)k∈Z ∈ Ds(v). Then the sequence (max{gk, hk})k∈Z is a fractional s-
gradient of max{u, v} and min{u, v}.

Proof. We define w = max{u, v} and assume that G and H are the exep-
tional sets for (gk)k∈Z and (hk)k∈Z in Definition 2.1. Clearly, the function w
is measurable and (max{gk, hk})k∈Z is a sequence of nonnegative measurable
functions. We show that (2.1) holds outside the set G ∪H of measure zero.
Let

Fu = {x ∈ X \ (G ∪ H) : u(x) ≥ v(x)},
Fv = {x ∈ X \ (G ∪H) : u(x) < v(x)}.

If x, y ∈ Fu then

|w(x)− w(y)| = |u(x)− u(y)| ≤ d(x, y)s(gk(x) + gk(y))
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for all k ∈ Z satisfying 2−k−1 ≤ d(x, y) < 2−k. Similarly, for x, y ∈ Fv we get

|w(x)− w(y)| ≤ d(x, y)s(hk(x) + hk(y))

for all k ∈ Z satisfying 2−k−1 ≤ d(x, y) < 2−k.
If x ∈ Fu and y ∈ Fv, then we can look at the two cases u(x) ≥ v(y) and

u(x) < v(y) separately. In the first case

|w(x)− w(y)| = |u(x)− v(y)| = u(x)− v(y)
≤ u(x)− u(y) ≤ d(x, y)s(gk(x) + gk(y))

for all k ∈ Z satisfying 2−k−1 ≤ d(x, y) < 2−k. In the second case

|w(x)− w(y)| = v(y)− u(x) ≤ v(y)− v(x) ≤ d(x, y)s(hk(x) + hk(y))

for all k ∈ Z satisfying 2−k−1 ≤ d(x, y) < 2−k. The case x ∈ Fv and y ∈ Fu
follows by symmetry, and hence

|w(x)− w(y)| ≤ d(x, y)s(max{gk, hk}(x) + max{gk, hk}(y))

for all k ∈ Z and all x, y ∈ X \ (G ∪ H) such that 2−k−1 ≤ d(x, y) < 2−k.
The proof for the function min{u, v} follows along the same lines.

The next lemma is useful when we want to show that the supremum
of countably many Hajłasz–Besov functions belongs to the Hajłasz–Besov
space N s

p,q(X) (see Definition 2.4).

Lemma 2.3. Let ui ∈ L0(X) and (gi,k)k∈Z ∈ Ds(ui), i ∈ N, and de-
fine u = supi∈N ui and (gk)k∈Z = (supi∈N gi,k)k∈Z. If u ∈ L0(X), then
(gk)k∈Z ∈ Ds(u).

Proof. Since u ∈ L0(X), it is finite almost everywhere. Let x, y ∈ X \E,
with u(y) ≤ u(x) < ∞, where E is the union of exceptional sets for the
functions ui in Definition 2.1. Let ε > 0. There is i = ix ∈ N such that
u(x) < ui(x) + ε. Now, since u(y) ≥ ui(y), we have

|u(x)− u(y)| = u(x)− u(y) ≤ ui(x) + ε− ui(y)
≤ d(x, y)s(gi,k(x) + gi,k(y)) + ε ≤ d(x, y)s(gk(x) + gk(y)) + ε

for all k ∈ Z satisfying 2−k−1 ≤ d(x, y) < 2−k. Letting ε → 0 proves the
claim.

For 0 < p, q ≤ ∞ and a sequence (fk)k∈Z of measurable functions, we
define

‖(fk)k∈Z‖lq(Lp(X)) =
∥∥(‖fk‖Lp(X))k∈Z

∥∥
lq
,

where

‖(ak)k∈Z‖lq =

{
(
∑

k∈Z |ak|q)1/q when 0 < q <∞,
supk∈Z |ak| when q =∞.
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Definition 2.4. Let 0 < s < ∞ and 0 < p, q ≤ ∞. The homogeneous
Hajłasz–Besov space Ṅ s

p,q(X) consists of all functions u ∈ L0(X) for which
the (semi)norm

‖u‖Ṅs
p,q(X) = inf

(gk)∈Ds(u)
‖(gk)‖lq(Lp(X))

is finite. The Hajłasz–Besov space N s
p,q(X) is Ṅ s

p,q(X)∩Lp(X) equipped with
the norm

‖u‖Ns
p,q(X) = ‖u‖Lp(X) + ‖u‖Ṅs

p,q(X).

For 0 < s < 1 and 0 < p, q ≤ ∞, the space N s
p,q(Rn) coincides with

the classical Besov space defined via differences (Lp-modulus of smoothness,
see [GKZ]). When 0 < p < 1 or 0 < q < 1, the (semi)norms defined above
are actually quasi(semi)norms, but for simplicity we call them just norms.
Recall that a quasinorm is similar to a norm in that it satisfies the norm
axioms, except that there is a constant C > 1 on the right-hand side of the
triangle inequality.

2.3. Inequalities. We will often use the elementary inequality

(2.2)
∑
i∈Z

ai ≤
(∑
i∈Z

aβi

)1/β
,

which holds whenever ai ≥ 0 for all i and 0 < β ≤ 1. Hölder’s inequality for
sums (when 1 < b < ∞) and (2.2) imply the next lemma that we use later
to estimate the norms of fractional gradients.

Lemma 2.5 ([HIT, Lemma 3.1]). Let 1 < a <∞, 0 < b <∞ and ck ≥ 0,
k ∈ Z. There exists a constant C = C(a, b) such that∑

k∈Z

(∑
j∈Z

a−|j−k|cj

)b
≤ C

∑
j∈Z

cbj .

3. Capacity. In this section, we study a metric version of the Besov
capacity. We prove its basic properties, including several useful lemmas and
convergence results. In particular, we show that Hajłasz–Besov functions
u ∈ N s

p,q(X), 0 < s < 1 and 0 < p, q <∞, are quasicontinuous with respect
to this capacity (see Theorem 3.10). Recently, some of the results of this
section have been stated or proved in [HKT]. We give complete proofs to the
results not proved there as well as to new ones.

Definition 3.1. Let 0 < s <∞ and 0 < p, q ≤ ∞. The Besov capacity
of a set E ⊂ X is

Csp,q(E) = inf{‖u‖pNs
p,q(X) : u ∈ A(E)},
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where

A(E) = {u ∈ N s
p,q(X) : u ≥ 1 in a neighbourhood of E}

is the set of admissible functions for the capacity. We say that a property
holds Csp,q-quasieverywhere if it holds outside a set of Csp,q-capacity zero.

Remark 3.2. Lemma 2.2 implies that

Csp,q(E) = inf{‖u‖pNs
p,q(X) : u ∈ A

′(E)},

where A′(E) = {u ∈ A(E) : 0 ≤ u ≤ 1}. Since A′(E) ⊂ A(E), we see that
Csp,q(E) ≤ inf{‖u‖pNs

p,q(X) : u ∈ A
′(E)}. To prove the reverse inequality, let

ε > 0 and let u ∈ A(E) be such that

‖u‖pNs
p,q(X) ≤ C

s
p,q(E) + ε.

Then v = max{0,min{u, 1}} ∈ A′(E) and by Lemma 2.2 we have Ds(u)
⊂ Ds(v). Now

inf{‖w‖pNs
p,q(X) : w ∈ A

′(E)} ≤ ‖v‖pNs
p,q(X) ≤ ‖u‖

p
Ns
p,q(X) ≤ C

s
p,q(E) + ε

and letting ε→ 0 yields the desired inequality.

Remark 3.3. It follows immediately that

µ(E) ≤ Csp,q(E)

for every E ⊂ X. Indeed, let u ∈ A(E). Then there is an open set U ⊃ E
such that u ≥ 1 in U . Hence

µ(E) ≤ µ(U) ≤ ‖u‖pLp(X) ≤ ‖u‖
p
Ns
p,q(X)

and taking the infimum over all u ∈ A(E) proves the inequality.

The Csp,q-capacity is generally not an outer measure. The definition clearly
implies monotonicity, but the capacity is not necessarily subadditive. How-
ever, for practical purposes it is enough that the capacity satisfies (3.1) below
for some r > 0. Even in the Euclidean setting, countable subadditivity for
the Besov capacity is known only when p ≤ q (see [A1]).

Theorem 3.4 ([HKT, Lemma 6.4]). Let 0 < s <∞ and 0 < p, q ≤ ∞.
Then there are constants C ≥ 1 and 0 < r ≤ 1 such that

(3.1) Csp,q

(⋃
i∈N

Ei

)r
≤ C

∑
i∈N

Csp,q(Ei)
r

for all sets Ei ⊂ X, i ∈ N. Actually, (3.1) holds with r = min{1, q/p}.

The Besov capacity is an outer capacity. This means that the capacity of
a set E ⊂ X can be obtained by approximating E with open sets from the
outside.
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Lemma 3.5. The Csp,q-capacity is an outer capacity, that is,

Csp,q(E) = inf{Csp,q(U) : U ⊃ E, U open}.

Proof. By monotonicity, Csp,q(E) ≤ inf{Csp,q(U) : U ⊃ E, U open}. To
obtain the reverse inequality, let ε > 0 and let u ∈ A(E) be such that

‖u‖pNs
p,q(X) ≤ C

s
p,q(E) + ε.

Now, since u is an admissible function for the capacity, there is an open set
U containing E such that u ≥ 1 on U . Then

Csp,q(U) ≤ ‖u‖pNs
p,q(X) ≤ C

s
p,q(E) + ε.

Letting ε→ 0 proves the claim.

The following compatibility condition says that removing a set of measure
zero does not change the capacity of an open set. In particular, this can be
applied to prove a uniqueness for Csp,q-quasicontinuous representatives of a
Hajłasz–Besov function (see Remark 3.11).

Lemma 3.6. Let 0 < s <∞ and 0 < p, q ≤ ∞. If U is an open set and
µ(E) = 0, then

Csp,q(U) = Csp,q(U \ E).

Proof. Clearly, by monotonicity, Csp,q(U) ≥ Csp,q(U \ E) so it remains to
show the other inequality. Let ε > 0 and let u ∈ A′(U \ E), with (gk)k∈Z
∈ Ds(u), be such that χU\E ≤ u ≤ 1 and(

‖u‖Lp(X) + ‖(gk)‖lq(Lp(X))

)p
< Csp,q(U \ E) + ε.

Let v be a function such that v = u in X \ U and v = 1 in U . Then
v = u outside the set U ∩ E, which has measure zero, and so ‖v‖Lp(X) =
‖u‖Lp(X). Also, (gk)k∈Z ∈ Ds(v), since we can choose the exceptional set in
Definition 2.1 to be the union of U ∩E and the exceptional set related to u
and (gk)k∈Z. Then v ∈ A′(U) and

Csp,q(U) ≤ ‖v‖pNs
p,q(X) ≤

(
‖u‖Lp(X) + ‖(gk)‖lq(Lp(X))

)p
< Csp,q(U \ E) + ε

and letting ε→ 0 proves the claim.

The outer capacity property of the Besov capacity implies the next con-
vergence result for compact sets.9+

Theorem 3.7. If X ⊃K1⊃K2⊃ · · · are compact sets and K =
⋂∞
i=1Ki,

then
lim
i→∞

Csp,q(Ki) = Csp,q(K).

Proof. Clearly, by monotonicity, limi→∞C
s
p,q(Ki) ≥ Csp,q(K) and so it

remains to show the other inequality. If U is an open set containing K, then
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U ∪
⋃∞
i=1(X \Ki) is an open cover of K1 and, since K1 is compact, there is

a finite subcover, i.e. a positive integer N such that

K1 ⊂ U ∪
N⋃
i=1

(X \Ki) = U ∪ (X \KN ).

It follows that KN ⊂ U , since KN ⊂ K1. Hence, limi→∞C
s
p,q(Ki) ≤ Csp,q(U)

and by Lemma 3.5 we obtain

lim
i→∞

Csp,q(Ki) ≤ inf{Csp,q(U) : U ⊃ K, U open} = Csp,q(K).

We apply the following theorem to show that Hajłasz–Besov functions
are quasicontinuous with respect to the Csp,q-capacity (see Theorem 3.10).

Theorem 3.8. Let 0 < s < ∞ and 0 < p, q ≤ ∞. If (ui)i∈N is a
Cauchy sequence of continuous functions in N s

p,q(X), then there is a sub-
sequence of (ui)i∈N which converges pointwise Csp,q-quasieverywhere in X.
Moreover, the convergence is uniform outside a set of arbitrary small Csp,q-
capacity.

Proof. Let r = min{1, q/p}. There is a subsequence of (ui)i∈N, which we
still denote by (ui)i∈N, such that

(3.2)
∞∑
i=1

2ipr ‖ui − ui+1‖prNs
p,q(X) <∞.

For i, j ∈ N, let

Ai = {x ∈ X : |ui(x)− ui+1(x)| > 2−i} and Bj =
∞⋃
i=j

Ai.

Since the functions ui are continuous, the sets Ai and Bj are open. It follows
that the function 2i|ui − ui+1| is admissible for the Besov capacity of Ai
and

Csp,q(Ai) ≤ 2ip ‖ui − ui+1‖pNs
p,q(X).

Now, by Theorem 3.4,

Csp,q(Bj) ≤ C
( ∞∑
i=j

Csp,q(Ai)
r
)1/r

≤ C
( ∞∑
i=j

2ipr ‖ui − ui+1‖prNs
p,q(X)

)1/r
.

Since B1 ⊃ B2 ⊃ · · · and the sum (3.2) converges, we have

Csp,q

( ∞⋂
j=1

Bj

)
≤ lim

j→∞
Csp,q(Bj) = 0

and (ui)i∈N converges pointwise in X \
⋂∞
j=1Bj . Moreover,

|uj(x)− uk(x)| ≤
k−1∑
i=j

|ui(x)− ui+1(x)| ≤
k−1∑
i=j

2−i ≤ 21−j



Besov capacity in metric spaces 67

for all x ∈ X \ Bj and every k > j. Hence, the convergence is uniform in
X \Bj and the claim follows.

Definition 3.9. A function u : X → R is Csp,q-quasicontinuous if for
every ε > 0 there exists a set U such that Csp,q(U) < ε and the restriction of
u to X \ U is continuous.

Note that, by Lemma 3.5, the set U can be chosen to be open.

Theorem 3.10. Let 0 < s < 1 and 0 < p, q < ∞. Then, for every
u ∈ N s

p,q(X), there exists a Csp,q-quasicontinuous function v such that u = v
almost everywhere.

Proof. Since continuous functions are dense in N s
p,q(X) when 0 < s < 1

and 0 < p, q < ∞ (see [HKT, Theorem 1.1]), and N s
p,q(X) is complete

by [HT2, appendix], the claim follows from the previous theorem. Indeed,
u ∈ N s

p,q(X) if and only if there is a sequence (ui)i∈N of continuous func-
tions in Lp(X) and (gi,k)k∈Z ∈ Ds(ui − u) such that ui → u in Lp(X)
and ‖(gi,k)k∈Z‖lq(Lp(X)) → 0. By the previous theorem, the limit function is
Csp,q-quasicontinuous.

Remark 3.11. The Csp,q-quasicontinuous representative is unique in the
sense that if two Csp,q-quasicontinuous functions coincide almost everywhere,
then they actually coincide outside a set of Csp,q-capacity zero. This follows
from Lemmas 3.5 and 3.6, and from a nice argument, in an abstract setting,
in [K].

4. γ-median. In this section, we study γ-medians, which are important
tools in our setting of Besov spaces. In our proofs, they take the place of in-
tegral averages and are extremely useful when 0 < p ≤ 1 or 0 < q ≤ 1. One
of the main results is Theorem 4.5 which is a new Sobolev–Poincaré type in-
equality for the medians. Recently, slightly different results have been proved
in [HKT] and [HT2], where an additional nonempty spheres property is as-
sumed on the underlying space X. In the last part of this section, we define
a discrete median convolution which we use to show that it is equivalent
to consider only the locally Lipschitz admissible functions when calculating
the capacity of a compact set (see Theorem 4.8). These results are useful in
Section 5, where we study a modified Netrusov–Hausdorff content related to
the capacity.

Now, we define the γ-median of a function u ∈ L0(X) over a set of finite
measure. Previously, the γ-medians have been studied, for example, in [F],
[GKZ], [JPW], [JT], [Ler], [LP], [PT], [Str], [Z], and recently in [HIT], [HKT]
and [HT2].
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Definition 4.1. Let 0<γ ≤ 1/2. The γ-median of a function u ∈ L0(X)
over a set A of finite measure is

mγ
u(A) = inf

{
a ∈ R : µ({x ∈ A : u(x) > a}) < γµ(A)

}
.

In the following lemma, we give some basic properties of the γ-median.

Lemma 4.2. Let A ⊂ X be a set with µ(A) <∞. Let u, v ∈ L0(A) and
let 0 < γ ≤ 1/2. The γ-median has the following properties:

(a) If γ ≤ γ′, then mγ
u(A) ≥ mγ′

u (A).
(b) If u ≤ v almost everywhere, then mγ

u(A) ≤ mγ
v(A).

(c) If A ⊂ B and µ(B) ≤ Cµ(A), then mγ
u(A) ≤ mγ/C

u (B).
(d) If c ∈ R, then mγ

u(A) + c = mγ
u+c(A).

(e) If c ∈ R, then mγ
c u(A) = cmγ

u(A).
(f) |mγ

u(A)| ≤ mγ
|u|(A).

(g) For every p > 0 and u ∈ Lp(A),

mγ
|u|(A) ≤

(
γ−1

�

A

|u|p dµ
)1/p

.

(h) If u is continuous, then

lim
r→0

mγ
u(B(x, r)) = u(x) for every x ∈ X.

Proof. We prove the property (g) below. The other, quite straightforward
proofs are left for the reader, who can also look at [PT] where most of the
properties are proved in the Euclidean space. The proofs in the metric setting
follow essentially the same lines.

For (g), we may assume that mγ
|u|(A) 6= 0, since otherwise the claim is

obvious. Let p > 0 and u ∈ Lp(A). The definition of the γ-median clearly
implies that

γµ(A) ≤ µ({x ∈ A : |u(x)| ≥ mγ
|u|(A)}) = µ({x ∈ A : |u(x)|p ≥ mγ

|u|(A)
p})

and by Chebyshev’s inequality

µ({x ∈ A : |u(x)|p ≥ mγ
|u|(A)

p}) ≤ 1

mγ
|u|(A)

p

�

A

|u|p dµ.

The claim follows by combining the above two estimates.

We have the following definition, analogous to the definition of a Lebesgue
point of a function, when taking the limit of medians.

Definition 4.3. Let u ∈ L0(A). A point x is a generalized Lebesgue
point of u if

lim
r→0

mγ
u(B(x, r)) = u(x) for all 0 < γ ≤ 1/2.
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Remark 4.4. Recently, it was shown in [HKT, Theorem 1.2] that every
point outside of a set of Csp,q-capacity zero of a Hajłasz–Besov function u
is a generalized Lebesgue point of u and that the limit of medians gives a
Csp,q-quasicontinuous representative of the function. This is proved in [HKT]
by defining a median maximal function and using it as a tool. In particular,
a capacitary weak type estimate for the median maximal function is used in
the proof.

Definition 2.1 of fractional s-gradients implies various Sobolev–Poincaré
type inequalities for medians. Slightly different results than the following can
be found, for example, in [HKT] and [HT2]. We obtain the next theorem even
without assuming a nonempty spheres property, unlike in [HKT] and [HT2].

Theorem 4.5. Let 0 < γ ≤ 1/2, 0 < s, p < ∞ and 0 < q ≤ ∞. Let
u ∈ N s

p,q(X). Then there is a constant C > 0 and a sequence (gk)k∈Z ∈ Ds(u)
such that

(4.1) inf
c∈R

mγ
|u−c|(B(x, 2−k)) ≤ C2−ks

( �

B(x,2−k+1)

gpk dµ
)1/p

for every x ∈ X and k ∈ Z. In fact, given any (hj)j∈Z ∈ Ds(u), we can
choose

(4.2) gk =
( ∑
j≥k−2

2(k−j)s
′p̃hpj

)1/p
,

where 0 < s′ < s and p̃ = min{1, p}. Moreover, there is a constant c > 0
such that

(4.3) ‖(gk)‖lq(Lp(X)) ≤ c ‖(hj)‖lq(Lp(X)).

Proof. Let (hj)j∈Z ∈ Ds(u). By [GKZ, Lemma 2.1] and by Lemma 4.2(g),
there exist constants C > 0 and 0 < s′ < s such that

inf
c∈R

mγ
|u−c|(B(x, 2−k)) ≤ C2−ks

∑
j≥k−2

2(k−j)s
′
( �

B(x,2−k+1)

hpj dµ
)1/p

for every x ∈ X and k ∈ Z. We show that the right-hand side is bounded by
C2−ks(

�
B(x,2−k+1) g

p
k dµ)

1/p, where

gk =
( ∑
j≥k−2

2(k−j)s
′p̃hpj

)1/p
and p̃ = min{1, p}. Notice that (gk)k∈Z ∈ Ds(u), since

|u(x)− u(y)| ≤ d(x, y)s(hk(x) + hk(y)) ≤ d(x, y)s(gk(x) + gk(y))

for all k ∈ Z and all x, y ∈ X \ E satisfying 2−k−1 ≤ d(x, y) < 2−k.
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If p > 1, we use Hölder’s inequality for sums (1/p+ 1/p′ = 1):∑
j≥k−2

2(k−j)s
′/p′ 2(k−j)s

′/p
( �

B(x,2−k+1)

hpj dµ
)1/p

≤
( ∑
j≥k−2

2(k−j)s
′
)1/p′( ∑

j≥k−2
2(k−j)s

′
�

B(x,2−k+1)

hpj dµ
)1/p

≤ C
( �

B(x,2−k+1)

∑
j≥k−2

2(k−j)s
′
hpj dµ

)1/p
,

and if 0 < p ≤ 1, by inequality (2.2),∑
j≥k−2

2(k−j)s
′
( �

B(x,2−k+1)

hpj dµ
)1/p

≤
( ∑
j≥k−2

2(k−j)s
′p

�

B(x,2−k+1)

hpj dµ
)1/p

=
( �

B(x,2−k+1)

∑
j≥k−2

2(k−j)s
′phpj dµ

)1/p
.

Combining the two cases, we obtain (4.1).
To prove (4.3), we first see that

‖gk‖pLp(X) =
�

X

∑
j≥k−2

2(k−j)s
′p̃hpj dµ =

∑
j≥k−2

2(k−j)s
′p̃‖hj‖pLp(X).

Now, by Lemma 2.5, we get∑
k∈Z
‖gk‖qLp(X) ≤

∑
k∈Z

( ∑
j≥k−2

2(k−j)s
′p̃‖hj‖pLp(X)

)q/p
≤ C

∑
j∈Z
‖hj‖qLp(X),

and consequently

‖(gk)‖lq(Lp(X)) ≤ C‖(hj)‖lq(Lp(X)).

Remark 4.6. Let A ⊂ X be a set with µ(A) < ∞, u ∈ L0(A) and
0 < γ ≤ 1/2. Then

mγ
|u−mγ(A)|(A) ≤ 2 inf

c∈R
mγ
|u−c|(A),

since for all c ∈ R,

mγ
|u−mγ(A)|(A) ≤ m

γ
|u−c|+|c−mγ(A)|(A) = mγ

|u−c|(A) + |c−m
γ
u(A)|

≤ mγ
|u−c|(A) +mγ

|u−c|(A),

where we have used properties (b), (d) and (f) of γ-median from Lemma 4.2.

Next, we define a discrete γ-median convolution that we use in the proof
of Theorem 4.8. Discrete convolutions are standard tools in analysis on met-
ric measure spaces (see, for example, [CW] and [MS]) and they are used, for
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example, to define a discrete maximal function, introduced in [KL]. Anal-
ogously, a discrete γ-median maximal function can be defined by taking a
supremum of the discrete γ-median convolutions (see, for example, [HKT]).

We fix a scale r > 0 and cover the spaceX with a countable family of balls
{Bi} = {B(xi, r)}, so that the enlarged balls are of bounded overlap. This
means that there is a constant C(cd) > 0, depending only on the doubling
constant, such that ∞∑

i=1

χ2Bi(x) ≤ C(cd) <∞

for all x ∈ X. Then a partition of unity related to the covering {Bi} is
constructed. There exist C/r-Lipschitz functions ϕi, i = 1, 2, . . . , such that
0 ≤ ϕi ≤ 1, ϕi = 0 outside 2Bi and ϕi ≥ C−1 on Bi for all i and

∑∞
i=1 ϕi = 1.

Let 0 < γ ≤ 1/2. A discrete γ-median convolution of a function u ∈ L0(X)
at scale r > 0 is

uγr (x) =
∞∑
i=1

mγ
u(Bi)ϕi(x)

for all x ∈ X, where the balls Bi and functions ϕi are as above.
We apply the next theorem, by which locally Lipschitz functions are

dense in N s
p,q(X), to show that for compact sets we can restrict the set of

admissible functions in the definition of the Csp,q-capacity to locally Lipschitz
functions when 0 < s < 1 and 0 < p, q <∞.

Theorem 4.7 ([HKT, Theorem 1.1]). Let 0 < γ ≤ 1/2, 0 < s < 1,
0 < p, q < ∞ and u ∈ Ṅ s

p,q(X). Then the discrete γ-median convolution
approximations uγ

2−i
converge to u in N s

p,q(X) as i→∞.

Theorem 4.8. Let 0 < s < 1, 0 < p, q < ∞ and let K ⊂ X be a
compact set. Then

Csp,q(K) ≈ inf{‖u‖pNs
p,q(X) : u ∈ Ã(K)},

where Ã(K) = {u ∈ A(K) : u is locally Lipschitz}.
Proof. Since Ã(K) ⊂ A(K), it suffices to prove the “≥” part. Let u ∈

A(K). Then there is an open set U ⊃ K such that u ≥ 1 in U . Let V =
{x : d(x,K) < d(K,X \ U)/2}. If x ∈ V and r < d(K,X \ U)/8, then
B(y, 2r) ⊂ U whenever x ∈ B(y, 2r). It follows that uγr ≥ 1 in V when
r < d(K,X \ U)/8. Thus, uγr ∈ Ã(K) for small r, and so, by Theorem 4.7,

inf{‖v‖pNs
p,q(X) : v ∈ Ã(K)} ≤ lim inf

i→∞
‖uγ

2−i
‖pNs

p,q(X)

≤ lim inf
i→∞

C(‖u‖pNs
p,q(X) + ‖u

γ
2−i
− u‖pNs

p,q(X))

≤ C‖u‖pNs
p,q(X).

The claim follows by taking the infimum over u ∈ A(K).



72 J. Nuutinen

5. Netrusov–Hausdorff content. In this section, we define a modified
version of the Netrusov–Hausdorff content and prove lower bounds and
upper bounds for the Besov capacity in terms of the related Netrusov–
Hausdorff cocontent. The Netrusov–Hausdorff content was first used by
Netrusov [N2], [N3] when studying the relations between capacities and
Hausdorff contents in Rn. We modify this content by taking the sum over
the measures of the balls in the covering divided by the values φ(rj) of the
radii, where φ is an increasing function. In the setting of a doubling metric
measure space, this kind of modification, instead of summing the powers of
the radii of the balls in the covering, is natural since the dimension of the
space is usually not (even locally) constant.

Definition 5.1. Let φ : (0,∞)→ (0,∞) be an increasing function and
let 0 < θ < ∞ and 0 < R < ∞. The Netrusov–Hausdorff cocontent of a set
E ⊂ X is

Hφ,θR (E) = inf

[ ∑
i:2−i<R

(∑
j∈Ii

µ(B(xj , rj))

φ(rj)

)θ]1/θ
,

where the infimum is taken over all coverings {B(xj , rj)} of E with 0< rj ≤R
and Ii = {j : 2−i ≤ rj < 2−i+1}. When R = ∞, the infimum is taken over
all coverings of E and the first sum is over i ∈ Z. When φ(t) = td, we use
the notation Hd,θR := Hφ,θR .

Notice that if the measure µ is (Ahlfors) Q-regular , that is, there is a
constant C > 1 such that

C−1rQ ≤ µ(B(x, r)) ≤ CrQ

for every x ∈ X and 0 < r < diam(X), then the cocontent Hd,θR is compa-
rable (with two-sided inequalites) with the (Q − d)-dimensional Netrusov–
Hausdorff content defined using the powers of radii.

A similar modification of the classical Hausdorff content is standard in
the metric setting. The Hausdorff content of codimension d, 0 < d <∞, is

HdR(E) = inf

{ ∞∑
j=1

µ(B(xj , rj))

rdj

}
,

where 0 < R < ∞, and the infimum is taken over all coverings {B(xj , rj)}
of E satisfying rj ≤ R for all j. When R =∞, the infimum is taken over all
coverings {B(xj , rj)} of E. Naturally, the Hausdoff measure of codimension d
is defined as

Hd(E) = lim
R→0
HdR(E).

We use the following Leibniz type rule for fractional s-gradients, and its
corollary, in the proofs of Theorems 5.4 and 5.5.
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Lemma 5.2 ([HIT, Lemma 3.10 and Remark 3.11]). Let 0 < s < 1,
0 < p < ∞ and 0 < q ≤ ∞, and let S ⊂ X be a measurable set. Let
u : X → R be a measurable function with (gk)k∈Z ∈ Ds(u) and let ϕ be a
bounded L-Lipschitz function supported in S. Then sequences (hk)k∈Z and
(ρk)k∈Z where

hk = (gk + 2sk+2|u|)‖ϕ‖∞χsuppϕ, ρk = (gk‖ϕ‖∞ + 2k(s−1)L|u|)χsuppϕ
are fractional s-gradients of uϕ. Moreover, if u ∈ N s

p,q(S), then uϕ ∈
N s
p,q(X) and ‖uϕ‖Ns

p,q(X) ≤ C‖u‖Ns
p,q(S)

.

By choosing u ≡ 1 and gk ≡ 0 for all k ∈ Z in (the proof of) the previous
lemma, we obtain norm estimates for Lipschitz functions.

Corollary 5.3 ([HIT, Corollary 3.12]). Let 0 < s < 1, 0 < p < ∞
and 0 < q ≤ ∞. Let ϕ : X → R be an L-Lipschitz function supported in a
bounded set F ⊂ X. Then ϕ ∈ N s

p,q(X) and

(5.1) ‖ϕ‖Ns
p,q(X) ≤ C(1 + ‖ϕ‖∞)(1 + Ls)µ(F )1/p,

where the constant C > 0 depends only on s and q.

In the next theorem, we show that the Besov capacity of a set E ⊂ X is
bounded from above by a constant times the Netrusov–Hausdorff cocontent
of E.

Theorem 5.4. Let 0 < s < 1, 0 < p < ∞, 0 < q ≤ ∞, E ⊂ X and
R ≤ 1. Then there is a constant C > 0 such that

Csp,q(E) ≤ CHsp,θR (E), where θ = min{1, q/p}.
Proof. Let {B(xj , rj)} be a covering of the set E such that rj ≤ 1 for

all j. Let i ∈ Z+ ∪ {0} and

ui(x) = max
{
0, 1− 2id

(
x,
⋃
j∈Ii

B(xj , rj)
)}
,

where Ii = {j : 2−i ≤ rj < 2−i+1}. Then ui = 1 in
⋃
j∈Ii B(xj , rj), ui = 0

outside
⋃
j∈Ii B(xj , 2

−i+2) and ui is Lipschitz with constant 2i. Since i ≥ 0,
we have 1 + 2is ≤ C2is and it follows from Corollary 5.3 and the doubling
property that

Csp,q

(⋃
j∈Ii

B(xj , rj)
)
≤ ‖ui‖pNs

p,q(X)

≤ C (1 + ||ui||∞)p(1 + 2is)pµ
(⋃
j∈Ii

B(xj , 2
−i+2)

)
≤ C 2ispµ

(⋃
j∈Ii

B(xj , 2
−i+2)

)
≤ C

∑
j∈Ii

µ(B(xj , rj))

rspj
.
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Let θ = min{1, q/p}. By Theorem 3.4,

Csp,q(E) ≤ C
(∑

i

Csp,q

(⋃
j∈Ii

B(xj , rj)
)θ)1/θ

≤ C
(∑

i

(∑
j∈Ii

µ(B(xj , rj))

rspj

)θ)1/θ

;

the claim follows by taking the infimum over all covers {B(xj , rj)} of E.

Next, we prove a converse result which gives a lower bound for the ca-
pacity in terms of the Netrusov–Hausdorff cocontent.

Theorem 5.5. Let 0 < s < 1, 0 < p < ∞, 0 < q ≤ ∞ and let φ:
(0,∞)→ (0,∞) be an increasing function such that

a�

0

φ(t)−1/pts−1 dt <∞ for every 0 < a <∞.

Let x0 ∈ X, 0 < R <∞ and assume that B(x0, 8R)\B(x0, 4R) is nonempty.
Then there are constants C > 0 and c > 0 such that

Hφ,q/pcR (E) ≤ CCsp,q(E)

for every compact set E ⊂ B(x0, R).

Remark 5.6. For example, when φ(t) = td, we have
a�

0

t−d/p+s−1 dt <∞ if and only if 1− s+ d/p < 1.

That is, d < sp.

Proof of Theorem 5.5. To avoid some inessential technical difficulties and
make the notation simpler, we assume that R = 2−m for m ∈ Z. Our proof
will show that the result for all 0 < R <∞ can be obtained using the same
argument.

Let ε > 0 and E ⊂ B(x0, 2
−m) be a compact set. By Theorem 4.8, there is

a locally Lipschitz function v ∈ N s
p,q(X) such that v ≥ 1 on a neighbourhood

of E and
‖v‖pNs

p,q(X) < CCsp,q(E) + ε.

Let ψ be a Lipschitz function such that ψ = 1 on B(x0, 2
−m) and ψ = 0

outside B(x0, 2
−m+1). Then u = vψ ∈ N s

p,q(X) is Lipschitz continuous and
u ≥ 1 on a neighbourhood of E. By Lemma 5.2, there exists (gk)k∈Z ∈ Ds(u)
such that gk = 0 outside B(x0, 2

−m+1) for every k, and

(5.2) ‖(gk)‖plq(Lp(X)) ≤ C‖v‖
p
Ns
p,q(X) < C(Csp,q(E) + ε).
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To be precise, we have here the fractional s-gradient of u, still denoted by gk,
which satisfies the Sobolev–Poincaré type inequality (4.1) that is later used
in the proof. By (4.2), gk is supported in B(x0, 2

−m+1) for every k, and by
(4.3) the inequality (5.2) is satisfied.

Let x ∈ E be a generalized Lebesgue point of u (see Definition 4.3). Since
u is continuous, it follows from Lemma 4.2(h) that every point in E is such
a point. Then

(5.3) 1 ≤ u(x) ≤ |u(x)−mγ
u(B(x, 2−m))|+ |mγ

u(B(x, 2−m))|.

We can estimate the first term by properties (d), (f) and (c) of the γ-median
(Lemma 4.2), and by a telescoping argument

|u(x)−mγ
u(B(x, 2−m))| ≤

∑
k≥m
|mγ

u(B(x, 2−k−1))−mγ
u(B(x, 2−k))|

≤
∑
k≥m

mγ
|u−mγu(B(x,2−k))|(B(x, 2−k−1))

≤
∑
k≥m

m
γ/C

|u−mγu(B(x,2−k))|(B(x, 2−k)).

Hence, it follows from Theorem 4.5 and Remark 4.6 that∑
k≥m

m
γ/C

|u−mγu(B(x,2−k))|(B(x, 2−k)) ≤ C
∑
k≥m

2−ks
( �

B(x,2−k+1)

gpk dµ
)1/p

.

Next, we estimate the second term of (5.3). Let y ∈ B(x, 2−m) \ F , where
F is the exceptional set from Definition 2.1. Since B(x, 2−m) ⊂ B(x0, 2

−m+1)
and since B(x0, 2

−m+3) \ B(x0, 2
−m+2) is nonempty, there exists z ∈

(B(x0, 2
−m+3) \ B(x0, 2

−m+2)) \ F such that 2−m ≤ d(y, z) < 2−m+4. We
define g = max{gk : m− 4 ≤ k ≤ m− 1}. Now,

|u(y)| = |u(y)− u(z)|
≤ d(y, z)s(g(y) + g(z)) = d(y, z)sg(y) ≤ 2(−m+4)sg(y)

and by (f), (b), (e) and (g) of Lemma 4.2 we have

|mγ
u(B(x, 2−m))| ≤ mγ

2(−m+4)sg
(B(x, 2−m)) ≤ C 2−msmγ

g (B(x, 2−m))

≤ C
m−1∑

k=m−4
2−ks

( �

B(x,2−m)

gpk dµ
)1/p

≤ C
∑
k≥m

2−ks
( �

B(x,2−k+1)

gpk dµ
)1/p

.
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Hence,

1 ≤ C
∑
k≥m

2−ks
( �

B(x,2−k+1)

gpk dµ
)1/p

≤ C
(∑
k≥m

φ(2−k+1)−1/p 2−ks
)
sup
k≥m

φ(2−k+1)1/p
( �

B(x,2−k+1)

gpk dµ
)1/p

≤ C
(2−m+1�

0

φ(t)−1/p ts−1 dt
)
sup
k≥m

φ(2−k+1)1/p
( �

B(x,2−k+1)

gpk dµ
)1/p

≤ C sup
k≥m

φ(2−k+1)1/p
( �

B(x,2−k+1)

gpk dµ
)1/p

.

Now, for every x ∈ E, there is a ball B(x, 2−kx+1), such that
µ(B(x, 2−kx+1))

φ(2−kx+1)
≤ C

�

B(x,2−kx+1)

gpkx dµ.

By the 5r-covering lemma, there exists a countable family of disjoint balls
Bj = B(xj , 2

−kxj+1), of radii rj = 2−kxj+1 ≤ 2−m, such that the dilated
balls 5Bj cover the set E. We write j ∈ Ii when 2−i ≤ 5rj < 2−i+1. Then
kxj = i+ 3 for j ∈ Ii, and since φ is increasing we see that∑

j∈Ii

µ(5Bj)

φ(5rj)
≤ C

∑
j∈Ii

µ(Bj)

φ(rj)
≤ C

∑
j∈Ii

�

Bj

gpi+3 dµ ≤ C‖gi+3‖pLp(X),

where we have also used doubling and the disjointness of the balls Bj . Sum-
ming over i, we obtain∑

2−i<5·2−m

(∑
j∈Ii

µ(5Bj)

φ(5rj)

)q/p
≤ C

∑
i∈Z
‖gi+3‖qLp(X),

and it follows that

Hφ,q/p
5·2−m(E) ≤ C

(∑
i∈Z
‖gi+3‖qLp(X)

)p/q
.

Now, letting ε→ 0 in (5.2) proves the claim.
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