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On the Banach envelopes of
Hardy–Orlicz spaces on an annulus

Michał Rzeczkowski (Poznań)

Abstract. We describe the Banach envelopes of Hardy–Orlicz spaces of analytic
functions on an annulus in the complex plane generated by Orlicz functions well-estimated
by power-type functions.

1. Introduction. Let X = (X, τ) be a topological vector space whose
dual X∗ separates the points of X. The Mackey topology µ = µ(X,X∗)
on X is the strongest locally convex topology on X producing the same
topological dual X∗ as τ . It turns out that if X is metrizable then µ is the
strongest locally convex topology on X which is weaker than the original τ .
If (X, ‖ · ‖) is a quasi-Banach space whose dual X∗ separates the points
of X, then the Mackey topology is generated by a norm ‖ · ‖c, which is the
Minkowski functional of the convex hull of the unit ball ofX. The completion
of (X, ‖ · ‖c) is called the Banach envelope of X and is denoted by X̂.

It is easy to see that the Banach envelope of `p (0 < p < 1) is `1.
Duren, Romberg and Shields [3] identified the Banach envelope of the Hardy
space Hp on the unit disc U of the complex plane for 0 < p < 1. They
proved that Ĥp is canonically isomorphic to the weighted Bergman space
B

1/p−2
1 , which consists of all analytic functions on the unit disc U such

that
	1
0M1(f, r)(1− r)1/p−2 dr is finite, where M1(f, r) denotes the integral

mean. There are many variants and generalizations of this theorem. Pavlović
[7] described the Banach envelopes for Hardy–Orlicz spaces; Michalak and
Nawrocki [6] studied the Banach envelopes of vector-valued Hardy spaces.
In [1], Boyd studied the Hardy spaces of analytic functions on the annulus
of the complex plane and described their Banach envelopes.
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In this paper we study Hardy–Orlicz spaces on an annulus. In particular,
in Theorem 4.6, using the techniques from Shapiro’s paper [10], we describe
the Banach envelopes of these spaces in the case when the generating Orlicz
function is well-estimated by power-type functions.

2. Preliminaries. Let Φ : [0,∞) → [0,∞) be an Orlicz function, i.e.,
a continuous and nondecreasing function such that limt→∞ Φ(t) = ∞, and
Φ(t) = 0 if and only if t = 0. Let (Ω,Σ, µ) be a σ-finite measure space and
L0(Ω) := L0(Ω,Σ, µ) the space of all equivalence classes of measurable func-
tions. The Orlicz space LΦ(Ω) := LΦ(Ω,Σ, µ) is the space of all (equivalence
classes of) Σ-measurable functions f : Ω → C for which there is a constant
λ > 0 such that �

Ω

Φ(λ|f |) dµ <∞.

It is easy to check that if there exists C > 0 such that Φ(t/C) ≤ Φ(t)/2 for
all t > 0, then LΦ(Ω) is a quasi-Banach lattice equipped with the quasi-norm

‖f‖Φ := inf
{
λ > 0;

�

Ω

Φ(|f |/λ) dµ ≤ 1
}
.

It is also well-known that ‖ · ‖Φ is a norm when Φ is a convex function. The
functional ρΦ : LΦ(Ω)→ [0,∞] defined by the formula

ρΦ(f) :=
�

Ω

Φ(|f |) dµ

is called a modular. For Φ(t) = tp, p ∈ (0,∞], we have LΦ(Ω) = Lp(Ω) and
the norms coincide. It is well-known that if µ(Ω) < ∞ and Φ ∈ ∆2, i.e.,
lim supt→∞ Φ(2t)/Φ(t) <∞, then the following sets are equal:

LΦ =
{
f ∈ L0(Ω);

�

Ω

Φ(λ|f |) dµ <∞ for some λ > 0
}
,

MΦ =
{
f ∈ L0(Ω);

�

Ω

Φ(λ|f |) dµ <∞ for all λ > 0
}
,

EΦ =
{
f ∈ L0(Ω);

�

Ω

Φ(|f |) dµ <∞
}
.

We refer the reader to [8] for more information about Orlicz spaces.
Let U be the unit disc of the complex plane. Throughout the paper we

identify ∂U with T = [0, 2π). For a given f ∈ H(U) and r ∈ (0, 1) we
denote by fr : T→ C the function given by fr(eit) = f(reit) for every t ∈ T.
Following [4, 5], for a given Orlicz function Φ the Hardy–Orlicz space HΦ(U)
is defined as the space of all f ∈ H(C) such that

(2.1) ‖f‖HΦ(U) := sup
0≤r<1

‖fr‖LΦ(T) <∞.
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The formula (2.1) defines a quasi-norm in HΦ := HΦ(U), and it is a norm
when Φ is a convex function. Notice that if 0 < p <∞ and Φ(t) = tp for all
t ≥ 0, then we recover the classical Hardy space Hp(U) (see [2]).

If an Orlicz function Φ is such that Φ(|f |) is subharmonic, then ‖fr‖ is an
increasing function of r. Recall (see [9]) that for any subharmonic function
v : U → R the condition

sup
0<r<1

1

2π

2π�

0

v(reit) dt <∞

is equivalent to the existence of a harmonic majorant of v (and so the least
harmonic majorant). Hence, if Φ ∈ ∆2, then for each f ∈ HΦ(U) the function
Φ(|f |) has a harmonic majorant.

3. Hardy–Orlicz spaces on an annulus. Let r0 be a real number
such that 0 < r0 < 1, and let C∞ be the Riemann sphere. We define subsets
of the Riemann sphere

E := {z ∈ C∞; |z| > r0},
A := E ∩ U = {z ∈ C∞; r0 < |z| < 1}.

It is well-known that each f ∈ H(A) has a Laurent series expansion f =

f1+f2, where f1(z) =
∑∞

n=0 f̂(n)zn ∈ H(U) and f2(z) =
∑∞

n=1 f̂(−n)z−n ∈
H(E).

The function η : E → U given by η(z) = r0/z for all z ∈ E maps E onto
U and has an inverse η−1(z) = r0/z. For f ∈ H(E) define f̃ = f ◦ η−1.
The Hardy–Orlicz space HΦ(A) consists of all f ∈ H(A) such that ‖f‖HΦ(A)

<∞, where
‖f‖HΦ(A) := sup

r0<r<1
‖fr‖LΦ(T).

In the same way we define HΦ(E). Denote by HΦ
0 (E) the subspace of HΦ(E)

consisting of all functions that vanish at infinity. It is obvious that f ∈ HΦ(E)

if and only if f̃ ∈ HΦ, and the map f 7→ f̃ is an isometric isomorphism from
HΦ(E) onto HΦ.

We will consider Orlicz functions of a certain class. Let α, β be positive
real numbers with α ≤ β, and let Φ be an Orlicz function. We write Φ ∈
∆(α, β) if there exist t0 ≥ 0 and C > 0 such that for any t ≥ t0 and λ ≥ 1,

Φ(λt) ≤ C−1λβΦ(t), Φ(λt) ≥ CλαΦ(t).

Moreover, if t0 = 0, C = 1 and Φ(t1/α) is a convex function, then we write
Φ ∈ ∆(α, β). The subclass ∆(α, β) ⊂ ∆(α, β) is introduced for technical
reasons. It was proved in [7] that for each Φ ∈ ∆(α, β) there exists a function
Ψ ∈ ∆(α, β) equivalent to Φ (i.e.,K−1Ψ(t) ≤ Φ(t) ≤ KΨ(t) for some positive
constants K and large enought t), so that the Orlicz spaces LΨ and LΦ are



130 M. Rzeczkowski

isomorphic. Notice that for a holomorphic function f ∈ H(A), the function
Φ(|f |) is subharmonic whenever Φ ∈ ∆(α, β). It can also be easily shown
that for Φ ∈ ∆(α, β) we have

(3.1) Φ(x+ y) ≤ 2β(Φ(x) + Φ(y)).

If Φ ∈ ∆(α, β), then HΦ(A) ⊂ Hα(A), hence the radial limits f(eit) =
limr→1− f(reit) and f(r0e

it) = limr→r+0
f(reit) exist almost everywhere on

T = [0, 2π), for each f ∈ HΦ(A) (see [1]).

Theorem 3.1. Let Φ ∈ ∆(α, β). The following sets coincide:

H = HΦ(A) = {f ∈ H(A); ‖f‖HΦ(A) <∞},
K = {f ∈ H(A); Φ(|f(z)|) has a harmonic majorant on A},
L = {f ∈ H(A); f = f1 + f2, f1 ∈ HΦ(U), f2 ∈ HΦ

0 (E)}.
Proof. (L ⊂ H). Set ‖f1‖HΦ(U) = x and ‖f2‖HΦ

0 (E) = y with x, y > 0.
Then, for each r ∈ (r0, 1), we have

1

2π

2π�

0

Φ

(
|f(reit)|

2(1+β)/α(x+ y)

)
dt ≤ 2−(1+β)

1

2π

2π�

0

Φ

(
|f(reit)|
x+ y

)
dt

≤ 2β

2β+1

(
1

2π

2π�

0

Φ

(
|f1(reit)|

x

)
dt+

1

2π

2π�

0

Φ

(
|f2(reit)|

y

)
dt

)
≤ 1.

This shows that ‖f‖HΦ(A) ≤ 2(1+β)/α(‖f1‖HΦ + ‖f2‖HΦ
0 (E)).

(H ⊂ L). Since Φ(|f1|) is subharmonic on U and HΦ(A) ⊂ Hα(A),
the radial limits f1(r0eit) and f1(e

it) exist a.e. on T. On the other hand,
f2 ∈ H(E), hence in particular f2 is continuous on T. Thus

1

2π

2π�

0

Φ

(
|f1(reit)|

ε

)
dt ≤ 1

2π

2π�

0

Φ

(
|f1(eit)|

ε

)
dt

≤ 2β
(

1

2π

2π�

0

Φ

(
|f(eit)|
ε

)
dt+

1

2π

2π�

0

Φ

(
|f2(eit)|

ε

)
dt

)
≤ 1

for all r ∈ (0, 1) if ε ≥ 2(1+β)/α max(‖f‖HΦ(A),maxt∈T |f2(eit)|/Φ−1(1)), so
f1 ∈ HΦ(U). In a similar manner, it can be shown that f2 ∈ HΦ

0 (E).
(L ⊂ K). The functions Φ(|f1|) and Φ(|f2|) have harmonic majorants on

U and E, respectively. The inclusion follows from inequality (3.1).
(K ⊂ L). Let f = f1 + f2 ∈ K, where f1 ∈ H(U) and f2 ∈ H0(E).

If uf is the harmonic majorant of Φ(|f |) and s is a fixed real number such
that r0 < s < 1, then Φ(|f |) ≤ 2βuf + C for some constant C ≥ 0. But
uf = u1 + u2, where u1 is harmonic on U and u2 is harmonic on E. Since
u2 is bounded for |z| ≥ s, we have Φ(|f1|) ≤ 2βu1 + C1 for s ≤ |z| < 1,
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where C1 is a nonnegative constant. Since Φ(|f1|) is subharmonic on U , we
conclude that this inequality is true for all z ∈ U . Similar considerations for
Φ(|f2|) show that f2 ∈ HΦ

0 (E).

Let us remark that the map (f1, f2) 7→ f = f1 + f2 is a linear bijection
from HΦ ⊕HΦ

0 (E) onto HΦ(A). In the proof of the first inclusion we have
seen that this operator is continuous. By the Open Mapping Theorem we
get the following statement.

Corollary 3.2. Let Φ ∈ ∆(α, β). Then HΦ(A) ∼= HΦ ⊕ HΦ
0 (E) with

equivalent norms.

4. Weighted Bergman spaces and Banach envelopes of Hardy–
Orlicz spaces. Let ϕ, ω : [0, 1)→ (0,∞) be continuous functions such that

lim
r→1−

ω(r) = 0,(4.1)

1�

0

ϕ(r) dr <∞.(4.2)

The function ω will be called normal if there exist k > ε > 0 and 0 < s < 1
such that

ω(r)

(1− r)ε
↘ 0,

ω(r)

(1− r)k
↗∞, r ≥ s, r → 1−.

The pair {ω, ϕ} of functions defined on [0, 1) will be said to define a normal
pair if ω is normal and, for some k satisfying the above condition, there
exists α > k − 1 such that

ω(r)ϕ(r) = (1− r2)α, 0 ≤ r < 1.

Note that if ω is normal then there exists ϕ such that the pair {ω, ϕ} is
normal.

For ω and ϕ satisfying (4.1) and (4.2), Shields and Williams [11] defined
the following linear spaces of analytic functions:

Bω
∞(U) :=

{
f ∈ H(U); ‖f‖Bω∞(U) := sup

0≤r<1
M∞(f, r)ω(r) <∞

}
,

Bϕ
1 (U) :=

{
f ∈ H(U); ‖f‖ := 2

1�

0

M1(f, r)ϕ(r)r dr <∞
}
,

where M1(f, r) = (2π)−1
	2π
0 |f(reit)| dt and M∞(f, r) = max|z|=r |f(z)|.

Spaces of these types are called weighted Bergman spaces.
It was shown in [11] that Bω

∞(U) and Bϕ
1 (U) are Banach spaces and

Bϕ
1 (U)∗ ∼= Bω

∞(U). More precisely, for a normal pair {ω, ϕ} and f ∈ Bω
∞(U),

if we define
λf (g) =

�

U

g(z)f(z)ϕ(|z|)ω(|z|) dz, g ∈ Bϕ
1 (U),
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then λf ∈ Bϕ
1 (U)∗, and conversely, given λ ∈ Bϕ

1 (U)∗ there is a unique
f ∈ Bω

∞(U) such that λ = λf .
Below we define Bϕ

1 (U) in a slightly different manner. We set

Bϕ
1 (U) :=

{
f ∈ H(U); ‖f‖Bϕ1 (U) :=

1�

0

M1(f, r)ϕ(r) dr <∞
}
.

It can be shown that the norms ‖ · ‖ and ‖ · ‖Bϕ1 (U) are equivalent.
Let ϕ, ω be as above and let ψ, υ : (r0,∞)→ (0,∞) be continuous func-

tions such that

lim
r→r+0

υ(r) = 0,(4.3)

∞�

r0

ψ(r) dr <∞.(4.4)

We define

Bψ
1 (E) :=

{
f ∈ H(E); ‖f‖

Bψ1 (E)
:=

∞�

r0

M1(f, r)ψ(r) dr <∞
}
,

Bυ
∞(E) :=

{
f ∈ H(E); ‖f‖Bυ∞(E) := sup

r0<r<∞
M∞(f, r)υ(r) <∞

}
.

Denote by Bψ
1,0(E) the subspace of Bψ

1 (E) consisting of all functions that
vanish at ∞. Similarly we define Bυ

∞,0(E) ⊂ Bυ
∞(E). For f ∈ Bψ

1 (E) the
map f 7→ f̃ is an isometric isomorphism between Bψ

1 (E) and Bϕ
1 (U), where

ψ(|z|) = ϕ(η(|z|))r0/|z|2 for z ∈ E.
Let ϕ,ψ, ω, υ be as before (in fact we now consider the restrictions of

those functions to (r0, 1)). We define

Bϕ,ψ
1 (A) :=

{
f ∈ H(A); ‖f‖

Bϕ,ψ1 (A)
:=

1�

r0

M1(f, r)ϕ(r)ψ(r) dr <∞
}
,

Bω,υ
∞ (A) :=

{
f ∈ H(A); ‖f‖Bω,υ∞ (A) := sup

r0<r<1
M∞(f, r)ω(r)υ(r) <∞

}
.

It is clear that Bϕ,ψ
1 (A) and Bω,υ

∞ (A) are normed vector spaces. Using meth-
ods from [1] we can prove the following propositions.

Proposition 4.1. A function f is in Bϕ,ψ
1 (A) if and only if there exist

f1 ∈ Bϕ
1 (U) and f2 ∈ Bψ

1,0(E) such that f = f1 + f2.

Proposition 4.2. If F is a bounded set in Bϕ,ψ
1 (A), then the functions

in F are uniformly bounded on compact subsets of A.

Proposition 4.3. The space Bϕ,ψ
1 (A) is a Banach space and conver-

gence in norm implies uniform convergence on compact sets of A.
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A representation similar to that in Proposition 4.1 is true in the case of
the spaces Bω,υ

∞ (A).

Proposition 4.4. A function f is in Bω,υ
∞ (A) if and only if there exist

f1 ∈ Bω
∞(U) and f2 ∈ Bυ

∞,0(E) such that f = f1 + f2.

Proof. If f1 ∈ Bω
∞(U), then supz∈U |f1(z)|ω(|z|) < ∞, and hence

supz∈A |f1(z)|υ(|z|)ω(|z|) < ∞. Analogously, for f2 ∈ Bυ
∞,0(E), we have

supz∈A |f2(z)|υ(|z|)ω(|z|) < ∞. Thus supz∈A |f(z)|υ(|z|)ω(|z|) is finite. Let
f = f1 + f2 ∈ Bω,υ

∞ (A) and fix s ∈ (r0, 1). Then

sup
z∈U
|f1(z)|ω(|z|) = sup

|z|<1
|f1(z)|ω(|z|)

≤ sup
|z|≤s
|f1(z)|ω(|z|) + max

|z|≥s
υ(|z|) sup

s≤|z|<1
|f(z)|ω(|z|)

+ sup
s≤z≤1

|f2(z)|ω(|z|) <∞.

In a similar way we infer that f2 ∈ Bυ
∞,0(E).

Theorem 4.5. Suppose that the functions ϕ,ψ, ω, υ satisfy conditions
(4.1)–(4.4). Then we have the following isomorphisms:

(a) Bϕ,ψ
1 (A) ∼= Bϕ

1 (U)⊕Bψ
1,0(E),

(b) Bω,υ
∞ (A) ∼= Bω

∞(U)⊕Bυ
∞,0(E).

Proof. (a) We know that the map (f1, f2) 7→ f is a linear bijection be-
tween Bω,υ

∞ (A) and Bω
∞(U)⊕Bυ

∞,0(E). It suffices to show that it is continu-
ous; then by the Open Mapping Theorem we deduce continuity of the inverse.
The problem of continuity can be reduced to the following inequalities:

‖f1‖Bϕ,ψ1 (A)
≤ C‖f1‖Bϕ1 (U), ‖f2‖Bϕ,ψ1 (A)

≤ C ′‖f2‖Bψ1,0(E)
,

where C,C ′ are constants that depend only on ϕ,ψ.
For f1, fix t, s ∈ (r0, 1) with s < t. Then

s�

r0

ϕ(r)ψ(r) dr ≤ max
r∈[r0,s]

ϕ(r)

s�

r0

ψ(r) dr =: K.

Since M1(g, r) is an increasing function of r for any g ∈ H(U), we have
s�

r0

M1(f1, r)ϕ(r)ψ(r) dr ≤ KM1(f1, s)

and
t�

r0

M1(f1, r)ϕ(r)ψ(r) dr ≤ KM1(f1, s) +

t�

s

M1(f1, r)ϕ(r)ψ(r) dr

≤ KM1(f1, s) + max
r∈[s,t]

ψ(r)

t�

s

M1(f1, r)ϕ(r) dr
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≤ K

t− s

t�

s

M1(f1, r) dr + max
r∈[s,t]

ψ(r)

t�

s

M1(f1, r)ϕ(r) dr

≤ K

t− s

(
inf
r∈[s,t]

ϕ(r)
)−1 t�

s

M1(f1, r)ϕ(r) dr + max
r∈[s,t]

ψ(r)

t�

s

M1(f1, r)ϕ(r) dr.

Thus,

(4.5)
t�

r0

M1(f1, r)ϕ(r)ψ(r) dr ≤ C1‖f1‖Bϕ1 (U),

where C1 = max
(
K
t−s(infr∈[s,t] ϕ(r))−1,maxr∈[s,t] ψ(r)

)
. On the other hand,

1�

t

M1(f1, r)ϕ(r)ψ(r) dr ≤ sup
r∈[t,1)

ψ(r)

1�

t

M1(f1, r)ϕ(r) dr,

and this implies

(4.6)
1�

t

M1(f1, r)ϕ(r)ψ(r) dr ≤ C2‖f1‖Bϕ1 (U)

with C2 = supr∈[t,1) ψ(r). Summing (4.5) and (4.6), we obtain the desired
inequality with C = max(C1, C2). The second inequality can be proved in a
similar manner.

(b) As above, the problem reduces to the inequalities

‖f1‖Bω,υ∞ (A) ≤ C‖f1‖Bω∞(U), f1 ∈ Bω
∞(U),

‖f2‖Bω,υ∞ (A) ≤ C‖f2‖Bυ∞,0(E), f2 ∈ Bυ
∞,0(E),

which are trivial in this case.

Let us remark that Theorem 4.5 could be proved in a different man-
ner. We have seen that the topologies of Bϕ,ψ

1 (A), Bϕ
1 (U) and Bψ

1,0(E) are
stronger than the respective compact-open topologies. The same is also ob-
vious in the case of Bω,υ

∞ (A), Bω
∞(U) and Bυ

∞,0(E). It can be shown that
the graph of the operator (f1, f2) 7→ f is closed in the compact-open topol-
ogy. Then, by applying the Closed Graph Theorem, we would deduce the
continuity of this operator.

Now we formulate the main result of the paper concerning the description
of the Banach envelopes of Hardy–Orlicz spaces on an annulus. The special
case when Φ is a power function was presented in [1].

Main Theorem 4.6. Let Φ ∈ ∆(α, β), β < 1, and let

ϕ(r) = (1−r)−2/Φ−1
(

1

1− r

)
, ψ(r) = (ϕ◦η−1)(r)r0

r2
, for all r ∈ (r0, 1).

Then the Banach envelope of HΦ(A) is isomorphic to Bϕ,ψ
1 (A).
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To prove Theorem 4.6 we need to show that the topology induced by
the norm ‖ · ‖

Bϕ,ψ1 (A)
is weaker than the topology of HΦ(A), and that the

HΦ(A)-closure of the absolutely convex hull of each HΦ(A)-neighbourhood
of zero contains a Bϕ,ψ

1 (A)-neighbourhood of zero. For the first condition,
from Corollary 3.2 and Theorem 4.5 we have HΦ(A) ∼= HΦ(U)⊕HΦ

0 (E) and
Bϕ,ψ

1 (A) ∼= Bϕ
1 (U)⊕Bψ

1,0(E). Since HΦ(U) ↪→ Bϕ
1 (U) (see [7, Lemma 5]), it

follows that

HΦ(A) ∼= HΦ(U)⊕HΦ
0 (E) ↪→ Bϕ

1 (U)⊕Bψ
1,0(E) ∼= Bϕ,ψ

1 (A).

The proof of the second condition is based on some ideas from [10] (in
the case of Hp(U) with 0 < p < 1). We will prove that for every f ∈ HΦ(A)
such that ‖f‖

Bϕ,ψ1 (A)
≤ C there exist a Borel measure µ on A and a family

of analytic functions F ξ : A→ C, where ξ ∈ A, such that

f(z) =
�

A

F ξ(z) dµ(ξ), z ∈ A,(4.7)

‖F ξ‖HΦ(A) ≤M,(4.8)

|µ|(A) ≤ 1,(4.9)

for some constant M > 0. Notice that conditions (4.7)–(4.9) express f as a
sort of generalized convex combination of the functions F ξ.

To do so, let γ > 1/α−2 and ξ ∈ A. DefineK(ξ, z) := K1(ξ, z)+K2(ξ, z),
where

K1(ξ, z) :=

∞∑
n=0

(1− |ξ|2)γ
(
B1
r0(n+ 1, γ + 1)

)−1
(ξ)nzn,

K2(ξ, z) :=

∞∑
n=0

(
1− r20
|ξ|2

)γ(
B1
r0(n+ 1, γ + 1)

)−1
r2n+2
0 |ξ|−4(ξ)−nz−n,

with

B1
r0(n+ 1, γ + 1) :=

1�

r20

un(1− u)γ du,

B(n+ 1, γ + 1) := B1
0(n+ 1, γ + 1).

For a fixed ξ ∈ A, K(ξ, z) is holomorphic on the annulus A (as a function
of z). In fact, it is analytic on a bigger annulus, because the radii of conver-
gence of K1 and K2 equal 1/|ξ| > 1 and r20/|ξ| < r0, respectively. Moreover,
for f ∈ Bϕ,ψ

1 (A), we have

f(z) =
�

A

K(z, ξ)f(ξ) dλ(ξ),

where λ denotes the two-dimensional Lebesgue measure on A divided by π.
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Set F ξ = F ξ1 + F ξ2 , where

F ξ1 (z) = (1− |ξ|)2Φ−1
(

1

1− |ξ|

)
K1(ξ, z),

F ξ2 (z) =

(
1− r0
|ξ|

)2

Φ−1
(

1

1− r0/|ξ|

)
|ξ|2

r0
K2(ξ, z),

dµ(ξ) =
(
ϕ(|ξ|)f1(ξ) + ψ(|ξ|)f2(ξ)

)
dλ(ξ).

We now show that F ξ and µ satisfy (4.7)–(4.9) for each f ∈ HΦ(A) with
‖f‖Bϕ,υ1 (A) ≤ C. Indeed,

|µ|(A) =
�

A

|ϕ(|ξ|)f1(ξ) + ψ(|ξ|)f2(ξ)| dλ(ξ)

≤
�

A

ϕ(|ξ|)|f1(ξ)| dλ(ξ) +
�

A

ψ(|ξ|)|f2(ξ)|) dλ(ξ)

≤ 2

1�

r0

M1(f1, r)ϕ(r)r dr + 2

1�

r0

M1(f2, r)ψ(r)r dr

≤ C1

1�

0

M1(f1, r)ϕ(r) dr + C2

∞�

r0

M1(f2, r)ψ(r) dr

≤ 1

C
‖f‖

Bϕ,ψ1 (A)
,

with C = 1/max(C1, C2). Therefore, ‖f‖Bϕ,υ1 (A) ≤ C implies |µ|(A) ≤ 1.
The computation

�

A

F ξ(z) dµ(ξ) =
�

A

(1− |ξ|)2Φ−1
(

1

1− |ξ|

)
K1(ξ, z) dµ(ξ)

+
�

A

(
1− r0
|ξ|

)2

Φ−1
(

1

1− r0/|ξ|

)
|ξ|2

r0
K2(ξ, z) dµ(ξ)

=
�

A

1

ϕ(|ξ|)
K1(ξ, z) dµ(ξ) +

�

A

1

ψ(|ξ|)
K2(ξ, z) dµ(ξ)

=
�

A

K1(ξ, z)f1(ξ) dλ(ξ) +
�

A

K2(ξ, z)f2(ξ) dλ(ξ)

= f(z)

shows that condition (4.7) is satisfied. To prove (4.8), we show that
‖F ξ1 ‖HΦ(A) ≤ C where C is a constant (independent of ξ). Using the same
techniques, we can prove that ‖F ξ2 ‖HΦ(A) ≤ C ′ and then, by Corollary 3.2,
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we obtain (4.8). From [10] we know that

Iξ(z) =
1

(1− ξz)γ+2
=
∞∑
n=0

(
B(n+ 1, γ + 1)

)−1
(ξ)nzn

satisfies

(4.10)
1

2π

2π�

0

|Iξ(reit)|α dt ≤ κ(1− |ξ|)1−(γ+2)α

with a constant κ. Notice that for some constants C1, C2, C3 (which depend
on r0 and γ) and n ≥ 1, we have

|B(n+ 1, γ + 1)−B1
r0(n+ 1, γ + 1)| ≤ C1

r2n+2
0

n+ 1
,(4.11)

C2

(n+ 1)γ+1
≤ B1

r0(n+ 1, γ + 1) ≤ B(n+ 1, γ + 1),(4.12)

B(n+ 1, γ + 1) ≤ C3B
1
r0(n+ 1, γ + 1).(4.13)

Only the first inequality in (4.12) and inequality (4.13) are nontrivial. Sup-
pose that γ ≤ 0. Then (1− u)γ is a nondecreasing function on [0, 1), and we
have

1

r20

r20�

0

un(1− u)γ du ≤ 1

1− r20

1�

r20

un(1− u)γ du.

Multiplying both sides by r20 and adding
	1
r20
un(1− u)γ du we obtain (4.13)

with C3 = r20/(1− r20) + 1. If γ > 0, then (1−u)γ is continuous on [0, 1] and
positive on [0, 1). Hence there exists a constant c such that

1

r20

r20�

0

un(1− u)γ du ≤ c

1− r20

1�

r20

un(1− u)γ du.

Using the same argument as in the previous case we obtain (4.13). Recall
that

B(n+ 1, γ + 1) = Γ (γ + 1)
Γ (n+ 1)

Γ (n+ 1 + γ + 1)
.

Using the fact that Γ (z + k)/(kzΓ (k)) → 1 as k → ∞, with z = γ + 1 and
k = n+ 1 we get (4.12).

From (4.11) and (4.13) we have

(4.14)
∣∣∣Iξ(reit)− ∞∑

n=0

(
B1
r0(n+ 1, γ + 1)

)−1
(ξ)nrneint

∣∣∣
=

∣∣∣∣ ∞∑
n=0

B(n+ 1, γ + 1)−B1
r0(n+ 1, γ + 1)

B(n+ 1, γ + 1)B1
r0(n+ 1, γ + 1)

(ξ)nrneint
∣∣∣∣ ≤ c1 <∞,
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so by (4.10) we can assume that

(4.15)
1

2π

2π�

0

∣∣∣ ∞∑
n=0

(B1
r0(n+ 1, γ + 1))−1(ξ)neint

∣∣∣α dt ≤ κ′(1− |ξ|)1−(γ+2)α.

To finish the proof, consider the functions

h(z) = (1− |ξ|)γ+2
∞∑
n=0

(
B1
r0(n+ 1, γ + 1)

)−1
(ξ)nzn,

h1(z) = (1− |ξ|)γ+2Iξ(z).

Inequality (4.14) implies that h1(z) ≈ h(z), and since |h1(z)| ≤ 1, we get
c2|h(z)| ≤ 1, where c2 is a constant. Now setting t = Φ−1(1/(1− |ξ|)) and
applying the approximation 1 − |ξ| ≈ 1 − |ξ|2, we have |F ξ1 (z)| ≤ c3t|h(z)|
and

Φ(|F ξ1 (z)|) ≤ c4Φ(t|h(z)|) ≤ κ′′|h(z)|α(1− |ξ|)−1.
Integrating the last inequality we get

ρΦ(F ξ1 ) ≤ κ′′‖h‖αα(1− |ξ|)−1,
where ρΦ denotes the modular. From (4.15) we deduce that ‖h‖αα ≤ κ′(1−|ξ|).
Finally, ρΦ(F ξ1 ) ≤ κ′κ′′, which proves (4.8).

As a consequence of the preceding theorem we obtain a description of
the dual of HΦ(A).

Theorem 4.7. Let Φ ∈ ∆(α, β), β < 1. Then HΦ(A)∗ ∼= Bω,υ
∞ (A), where

ω(|z|) = (1− |z|)γ+2Φ−1
(

1

1− |z|

)
,

υ(|z|) =

(
1− r0
|z|

)γ+2

Φ−1
(

1

1− r0/|z|

)
, γ > 1/α− 2.

More precisely, if f ∈ Bω,υ
∞ (A) and

λf (g) =
�

A

g(z)f(z)ϕ(|z|)ψ(|z|)ω(|z|)υ(|z|) dz, g ∈ HΦ(A),

then λf ∈ Bϕ,ψ
1 (A)∗. Conversely, given λ ∈ HΦ(A)∗ there exists a unique

f ∈ Bω,υ
∞ (A) such that λ = λf .

Proof. By Theorem 4.6 we haveHΦ(A)∗ = Bϕ,ψ
1 (A)∗. It is easy to see that

λf ∈ Bϕ,ψ
1 (A). Suppose λ ∈ Bϕ,ψ

1 (A)∗. By Theorem 4.5, there exist unique
λ1 ∈ Bϕ

1 (U)∗ and λ2 ∈ Bψ
1,0(E)∗ such that λ = λ1 +λ2. From the description

of the duals of Bϕ
1 (U) and Bψ

1,0(E) we deduce the existence of f1 ∈ Bω
∞(U)

and f2 ∈ Bυ
∞,0(E) which correspond to λ1 and λ2, respectively. Using again

Theorem 4.5, we conclude that f = f1 + f2 ∈ Bω,υ
∞ (A) and λ = λf .
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