Average r-rank Artin conjecture

by
Lorenzo Menici (Roma) and Cihan Pehlivan (Istanbul)

1. Introduction. Artin's conjecture for primitive roots (1927) states that for any integer $a \neq 0, \pm 1$ which is not a perfect square there exist infinitely many prime numbers p for which a is a primitive root modulo p. In particular, Artin conjectured that the number of primes not exceeding x for which a is a primitive root, $N_{a}(x)$, asymptotically satisfies

$$
N_{a}(x) \sim A(a) \operatorname{Li}(x) \quad \text { as } x \rightarrow \infty
$$

where $\operatorname{Li}(x)$ is the logarithmic integral and the positive constant $A(a)$ depends on the integer a. A breakthrough in this area was achieved by Hooley's [8] who proved Artin's conjecture under the assumption of the Generalized Riemann Hypothesis (GRH) for the Dedekind zeta function over the Kummer extension $\mathbb{Q}\left(a^{1 / k}, \zeta_{k}\right)$ for any positive square-free integer k. Several generalizations of Artin's original conjecture were studied by many authors during the following years (for an exhaustive survey see [10]). A first unconditional result on Artin's conjecture in the 3-rank case was found by Gupta and Ram Murty [5], improved a few years later by Heath-Brown [7].

In the case of rank $r=1$, a first study of the average behavior of $N_{a}(x)$ was proposed by Stephens [14] in 1969: Stephens proved that if $T>\exp \left(4(\log x \log \log x)^{1 / 2}\right)$, then

$$
\begin{align*}
\frac{1}{T} \sum_{a \leq T} N_{a}(x) & =\sum_{p \leq x} \frac{\varphi(p-1)}{p-1}+O\left(\frac{x}{(\log x)^{D}}\right) \tag{1}\\
& =A \operatorname{Li}(x)+O\left(\frac{x}{(\log x)^{D}}\right)
\end{align*}
$$

where φ is the Euler totient function, $A:=\prod_{p}\left(1-\frac{1}{p(p-1)}\right)$ is Artin's constant

[^0]and D is an arbitrary constant greater than 1 . Stephens also proved that if $T>\exp \left(6(\log x \log \log x)^{1 / 2}\right)$, then
\[

$$
\begin{equation*}
\frac{1}{T} \sum_{a \leq T}\left\{N_{a}(x)-A \operatorname{Li}(x)\right\}^{2} \ll \frac{x^{2}}{(\log x)^{D^{\prime}}} \tag{2}
\end{equation*}
$$

\]

for any constant $D^{\prime}>2$. In 1976, Stephens refined his results with different methods [15], getting both the asymptotic bounds (1) and (2) under the weaker assumption $T>\exp \left(C(\log x)^{1 / 2}\right)$ with C a positive constant.

For any $a \in \mathbb{N} \backslash\{0, \pm 1\}$ and $m \in \mathbb{N}$, let $N_{a, m}(x)$ be the number of primes $p \equiv 1(\bmod m)$ not exceeding x such that $\left[\mathbb{F}_{p}^{*}:\langle a(\bmod p)\rangle\right]=m$. For $T>\exp \left(4(\log x \log \log x)^{1 / 2}\right)$ Moree [11] showed that

$$
\begin{equation*}
\frac{1}{T} \sum_{a \leq T} N_{a, m}(x)=\sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} \frac{\varphi((p-1) / m)}{p-1}+O\left(\frac{x}{(\log x)^{E}}\right) \tag{3}
\end{equation*}
$$

for any constant $E>1$.
In the present work, we will discuss the average version of the r-rank Artin quasi primitive root conjecture, adapting the methods used in [14] by Stephens to the case of rank r. Let $\Gamma \subset \mathbb{Q}^{*}$ be a multiplicative subgroup of finite rank r. For almost all primes, namely those primes p such that for all $g \in \Gamma$ the p-adic valuation $v_{p}(g)$ is 0 , one can consider the reduction group

$$
\Gamma_{p}=\{g(\bmod p): g \in \Gamma\},
$$

which is a well defined subgroup of the multiplicative group \mathbb{F}_{p}^{*}. We denote by $N_{\Gamma, m}(x)$ the number of primes $p \equiv 1(\bmod m)$ not exceeding x for which $\left[\mathbb{F}_{p}^{*}: \Gamma_{p}\right]=m$. It was proven by Cangelmi, Pappalardi and Susa [12, 2, 13], assuming the GRH for $\mathbb{Q}\left(\zeta_{k}, \Gamma^{1 / k}\right)$ for any natural number k, that for any $\varepsilon>0$, if $m \leq x^{\frac{r-1}{(r+1)(4 r+2)}-\varepsilon}$, then

$$
N_{\Gamma, m}(x)=\left(\delta_{\Gamma}^{m}+O\left(\frac{1}{\varphi\left(m^{r+1}\right)(\log x)^{r}}\right)\right) \operatorname{Li}(x) \quad \text { as } x \rightarrow \infty
$$

where δ_{Γ}^{m} is a rational multiple of

$$
C_{r}=\sum_{n \geq 1} \frac{\mu(n)}{n^{r} \varphi(n)}=\prod_{p}\left(1-\frac{1}{p^{r}(p-1)}\right)
$$

Here we restrict ourselves to studying subgroups $\Gamma=\left\langle a_{1}, \ldots, a_{r}\right\rangle$, with $a_{i} \in \mathbb{Z}$ for all $i=1, \ldots, r$, and we prove the following theorems:

Theorem 1. Suppose

$$
T^{*}:=\min \left\{T_{i}: i=1, \ldots, r\right\}>\exp \left(4(\log x \log \log x)^{1 / 2}\right)
$$

and $m \leq(\log x)^{D}$ for an arbitrary positive constant D. Then

$$
\frac{1}{T_{1} \cdots T_{r}} \sum_{\substack{a_{i} \in \mathbb{Z} \\ 0<a_{i} \leq T_{i} \\ 1<i \leq r}} N_{\left\langle a_{1}, \ldots, a_{r}\right\rangle, m}(x)=C_{r, m} \operatorname{Li}(x)+O\left(\frac{x}{(\log x)^{M}}\right),
$$

where

$$
C_{r, m}:=\sum_{n \geq 1} \frac{\mu(n)}{(n m)^{r} \varphi(n m)}
$$

and $M>1$ is arbitrarily large.
Theorem 2. Suppose $T^{*}>\exp \left(6(\log x \log \log x)^{1 / 2}\right)$ and $m \leq(\log x)^{D}$ for an arbitrary positive constant D. Then

$$
\frac{1}{T_{1} \cdots T_{r}} \sum_{\substack{a_{i} \in \mathbb{Z} \\ 0<a_{i} 1 \leq T_{i} \\ 1 \leq i<r}}\left\{N_{\left\langle a_{1}, \ldots, a_{r}\right\rangle, m}(x)-C_{r, m} \operatorname{Li}(x)\right\}^{2} \ll \frac{x^{2}}{(\log x)^{M^{\prime}}}
$$

where $M^{\prime}>2$ is arbitrarily large.
Now since $\varphi(m n)=\varphi(m) \varphi(n) \operatorname{gcd}(m, n) / \varphi(\operatorname{gcd}(m, n))$ and $\operatorname{gcd}(m, n)$ is a multiplicative function of n for any fixed integer m, we also have the following Euler product expansion:

$$
\begin{aligned}
C_{r, m} & =\frac{1}{m^{r} \varphi(m)} \sum_{n \geq 1} \frac{\mu(n)}{n^{r} \varphi(n)} \prod_{p \mid \operatorname{gcd}(m, n)}\left(1-\frac{1}{p}\right) \\
& =\frac{1}{m^{r} \varphi(m)} \prod_{p \mid m}\left[1-\frac{1}{p^{r}(p-1)}\left(1-\frac{1}{p}\right)\right] \prod_{p \nmid m}\left(1-\frac{1}{p^{r}(p-1)}\right) \\
& =\frac{1}{m^{r+1}} \prod_{p \mid m}\left(1-\frac{p^{r}}{p^{r+1}-1}\right)^{-1} C_{r}
\end{aligned}
$$

The results found in the present paper (see in particular (8) and Lemma 2) will lead as a side product to the asymptotic identity

$$
\frac{1}{T_{1} \cdots T_{r}} \sum_{\substack{a_{i} \in \mathbb{Z} \\ 0<a_{i} T_{i} \\ 1 \leq i \leq r}} N_{\left\langle a_{1}, \ldots, a_{r}\right\rangle, m}(x)=\sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} \frac{J_{r}((p-1) / m)}{(p-1)^{r}}+O\left(\frac{x}{(\log x)^{M}}\right)
$$

if $T_{i}>\exp \left(4(\log x \log \log x)^{1 / 2}\right)$ for all $i=1, \ldots, r, m \leq(\log x)^{D}$ and $M>1$ is an arbitrary constant, where

$$
J_{r}(n)=n^{r} \prod_{\substack{\ell \mid n \\ \ell \text { prime }}}\left(1-\frac{1}{\ell^{r}}\right)
$$

is Jordan's totient function. This provides a natural generalization of Moree's result in [11.

Theorem 2 leads to the following corollary:
Corollary 1. For any $\epsilon>0$, let $\mathcal{H}:=\left\{\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{Z}^{r}: 0<a_{i} \leq T_{i}, i \in\{1, \ldots, r\}\right.$,

$$
\left.\left|N_{\left\langle a_{1}, \ldots, a_{r}\right\rangle, m}(x)-C_{r, m} \operatorname{Li}(x)\right|>\epsilon \operatorname{Li}(x)\right\}
$$

Then, supposing $T^{*}>\exp \left(6(\log x \log \log x)^{1 / 2}\right)$, we have

$$
\# \mathcal{H} \leq K T_{1} \ldots T_{r} / \epsilon^{2}(\log x)^{F}
$$

for every positive constant F, where K is an absolute positive constant.
Proof. The proof is a trivial generalization of that in [14, Corollary, p. 187].
2. Notation and conventions. In order to simplify the formulas, we introduce the following notation. Underlined letters stand for general r-tuples defined within some set, e.g. $\underline{a}=\left(a_{1}, \ldots, a_{r}\right) \in\left(\mathbb{F}_{p}^{*}\right)^{r}$ or $\underline{T}=$ $\left(T_{1}, \ldots, T_{r}\right) \in\left(\mathbb{R}^{>0}\right)^{r}$; moreover, given two r-tuples, \underline{a} and \underline{n}, their scalar product is $\underline{a} \cdot \underline{n}=a_{1} n_{1}+\cdots+a_{r} n_{r}$, and we write e.g. $\underline{a} \leq \underline{n}$ if $a_{i} \leq n_{i}$ for all i. The null vector is $\underline{0}=\{0, \ldots, 0\}$. Similarly, if $\underline{\chi}=\left(\chi_{1}, \ldots, \chi_{r}\right)$ is an r-tuple of Dirichlet characters and $\underline{a} \in \mathbb{Z}^{r}$, then we denote $\underline{\chi}(\underline{a})=$ $\chi_{1}\left(a_{1}\right) \cdots \chi_{r}\left(a_{r}\right) \in \mathbb{C}$.

In addition, $(q, \underline{a}):=\left(q, a_{1}, \ldots, a_{r}\right)=\operatorname{gcd}\left(q, a_{1}, \ldots, a_{r}\right)$; otherwise, to avoid possible misinterpretations, we will write explicitly $\operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)$ instead of (\underline{n}). Given any r-tuple $\underline{a} \in \mathbb{Z}^{r}$, we indicate with

$$
\langle\underline{a}\rangle_{p}:=\left\langle a_{1}(\bmod p), \ldots, a_{r}(\bmod p)\right\rangle
$$

the reduction modulo p of the subgroup $\langle\underline{a}\rangle=\left\langle a_{1}, \ldots, a_{r}\right\rangle \subset \mathbb{Q}$; if $\Gamma=$ $\left\langle a_{1}, \ldots, a_{r}\right\rangle$, then $\Gamma_{p}=\langle\underline{a}\rangle_{p}$.

In the whole paper, ℓ and p will always indicate prime numbers. For a finite field \mathbb{F}_{p}, we set $\mathbb{F}_{p}^{*}=\mathbb{F}_{p} \backslash\{0\}$ and $\widehat{\mathbb{F}}_{p}^{*}$ will denote its relative dual group (or character group). Finally, given an integer $a, v_{p}(a)$ is its p-adic valuation.
3. Lemmata. Let $q>1$ be an integer and let $\underline{n} \in \mathbb{Z}^{r}$. We define the multiple Ramanujan sum as

$$
c_{q}(\underline{n}):=\sum_{\substack{\underline{a} \in(\mathbb{Z} / q \mathbb{Z})^{r} \\(q, \underline{a})=1}} e^{2 \pi i \underline{i} \cdot \underline{n} / q} .
$$

It is well known (see [6, Theorem 272]) that, for any integer n,

$$
\begin{equation*}
c_{q}(n)=\mu\left(\frac{q}{(q, n)}\right) \frac{\varphi(q)}{\varphi(q /(q, n))} . \tag{4}
\end{equation*}
$$

In the following lemma, we generalize this result to r-rank.
Lemma 1. Let

$$
J_{r}(m):=m^{r} \prod_{\ell \mid m}\left(1-\frac{1}{\ell^{r}}\right)
$$

be Jordan's totient function. Then

$$
c_{q}(\underline{n})=\mu\left(\frac{q}{(q, \underline{n})}\right) \frac{J_{r}(q)}{J_{r}(q /(q, \underline{n}))} .
$$

Proof. Let us start by considering the case when $q=\ell$ is prime. Then

$$
\begin{aligned}
c_{\ell}(\underline{n}) & =\sum_{\underline{a} \in(\mathbb{Z} / \ell \mathbb{Z})^{r} \backslash\{\underline{0}\}} e^{2 \pi i \underline{a} \cdot \underline{n} / \ell} \\
& =-1+\prod_{j=1}^{r} \sum_{a_{j}=1}^{\ell} e^{2 \pi i a_{j} n_{j} / \ell}= \begin{cases}-1 & \text { if } \ell \nmid \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right), \\
\ell^{r}-1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Next we consider the case when $q=\ell^{k}$ with $k \geq 2$ and ℓ prime. We need to show that

$$
c_{\ell^{k}}(\underline{n})= \begin{cases}0 & \text { if } \ell^{k-1} \nmid \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right) \\ -\ell^{r(k-1)} & \text { if } \ell^{k-1} \| \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right) \\ \ell^{r k}\left(1-1 / \ell^{r}\right) & \text { if } \ell^{k} \mid \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)\end{cases}
$$

To do so, we write

$$
\begin{aligned}
c_{\ell^{k}}(\underline{n}) & =\sum_{\substack{\underline{a} \in\left(\mathbb{Z} / \ell^{k} \mathbb{Z}\right)^{r} \\
(\ell, \underline{a})=1}} e^{2 \pi i \underline{a} \cdot \underline{n} / \ell^{k}} \\
& =c_{\ell^{k}}\left(n_{1}\right) \prod_{j=2}^{r} \sum_{a_{j}=1}^{\ell^{k}} e^{2 \pi i a_{j} n_{j} / \ell^{k}}+c_{\ell^{k}}\left(n_{2}, \ldots, n_{r}\right) \sum_{j=1}^{k} \sum_{\substack{a_{1} \in \mathbb{Z} / \ell^{k} \mathbb{Z} \\
\left(a_{1}, \ell^{k}\right)=\ell^{j}}} e^{2 \pi i a_{1} n_{1} / \ell^{k}} \\
& =c_{\ell^{k}}\left(n_{1}\right) \prod_{j=2}^{r} \sum_{a_{j}=1}^{\ell^{k}} e^{2 \pi i a_{j} n_{j} / \ell^{k}}+c_{\ell^{k}}\left(n_{2}, \ldots, n_{r}\right) \sum_{j=1}^{k} c_{\ell^{k-j}}\left(n_{1}\right) .
\end{aligned}
$$

If we apply (4), we obtain

$$
\begin{aligned}
c_{\ell^{k}}\left(n_{1}, \ldots, n_{r}\right)= & \mu\left(\frac{\ell^{k}}{\left(\ell^{k}, n_{1}\right)}\right) \frac{\varphi\left(\ell^{k}\right)}{\varphi\left(\ell^{k} /\left(\ell^{k}, n_{1}\right)\right)} \prod_{j=2}^{r} \sum_{a_{j}=1}^{\ell^{k}} e^{2 \pi i a_{j} n_{j} / \ell^{k}} \\
& +c_{\ell^{k}}\left(n_{2}, \ldots, n_{r}\right) \sum_{j=1}^{k} \mu\left(\frac{\ell^{k-j}}{\left(\ell^{k-j}, n_{1}\right)}\right) \frac{\varphi\left(\ell^{k-j}\right)}{\varphi\left(\ell^{k-j} /\left(\ell^{k-j}, n_{1}\right)\right)}
\end{aligned}
$$

Now, for $k \geq 2$, we distinguish two cases:
(1) $\ell^{k-1} \nmid \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)$,
(2) $\ell^{k-1} \mid \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)$.

In the first case we can assume, without loss of generality, that $\ell^{k-1} \nmid n_{1}$. Hence $\mu\left(\ell^{k} /\left(\ell^{k}, n_{1}\right)\right)=0$ and if $k_{1}=v_{\ell}\left(n_{1}\right)<k-1$, then

$$
\mu\left(\frac{\ell^{k-j}}{\left(\ell^{k-j}, n_{1}\right)}\right)=\mu\left(\ell^{\max \left\{0, k-k_{1}-j\right\}}\right)= \begin{cases}0 & \text { if } 1 \leq j \leq k-k_{1}-2 \\ -1 & \text { if } j=k-k_{1}-1 \\ 1 & \text { if } j \geq k-k_{1}\end{cases}
$$

Hence

$$
\sum_{j=1}^{k} \mu\left(\frac{\ell^{k-j}}{\left(\ell^{k-j}, n_{1}\right)}\right) \frac{\varphi\left(\ell^{k-j}\right)}{\varphi\left(\ell^{k-j} /\left(\ell^{k-j}, n_{1}\right)\right)}=-\ell^{k_{1}}+\sum_{j=k-k_{1}}^{k} \varphi\left(\ell^{k-j}\right)=0
$$

In the second case, from the definition of $c_{q}(\underline{n})$ we find

$$
\begin{aligned}
c_{\ell^{k}}(\underline{n}) & =\ell^{r(k-1)} c_{\ell}\left(\frac{n_{1}}{\ell^{k-1}}, \ldots, \frac{n_{r}}{\ell^{k-1}}\right) \\
& = \begin{cases}\ell^{r k}\left(1-1 / \ell^{r}\right) & \text { if } \ell^{k} \mid \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right) \\
-\ell^{r(k-1)} & \text { if } \ell^{k-1} \| \operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)\end{cases}
\end{aligned}
$$

So, the formula holds for $q=\ell^{k}$.
Finally, we claim that if $q^{\prime}, q^{\prime \prime} \in \mathbb{N}$ are such that $\operatorname{gcd}\left(q^{\prime}, q^{\prime \prime}\right)=1$, then

$$
c_{q^{\prime} q^{\prime \prime}}(\underline{n})=c_{q^{\prime}}(\underline{n}) c_{q^{\prime \prime}}(\underline{n})
$$

this amounts to saying that the multiple Ramanujan sum is multiplicative in q. Indeed,

$$
\begin{aligned}
\sum_{\substack{\underline{a} \in\left(\mathbb{Z} / q^{\prime} \mathbb{Z}\right)^{r} \\
\left(q^{\prime}, \underline{a}\right)=1}} e^{2 \pi i \underline{i} \cdot \underline{n} / q^{\prime}} & \sum_{\substack{\underline{b} \in\left(\mathbb{Z} / q^{\prime \prime} \mathbb{Z}\right)^{r} \\
\left(q^{\prime}, \underline{b}\right)=1}} e^{2 \pi i \underline{b} \cdot \underline{n} / q^{\prime \prime}} \\
= & \sum_{\substack{\underline{a} \in\left(\mathbb{Z} / q^{\prime} \mathbb{Z}\right)^{r} \\
\underline{b} \in\left(\mathbb{Z} / q^{\prime \prime} \mathbb{Z}\right)^{r} \\
\operatorname{gcd}\left(q^{\prime}, \underline{a}\right)=1 \\
\operatorname{gcd}\left(q^{\prime \prime}, \underline{b}\right)=1}} e^{2 \pi i\left[n_{1}\left(q^{\prime \prime} a_{1}+q^{\prime} b_{1}\right)+\cdots+n_{r}\left(q^{\prime \prime} a_{r}+q^{\prime} b_{r}\right)\right] /\left(q^{\prime} q^{\prime \prime}\right)},
\end{aligned}
$$

and the result follows from the remark that since $\operatorname{gcd}\left(q^{\prime}, q^{\prime \prime}\right)=1$,

- for all $j=1, \ldots, r$, if a_{j} runs through a complete set of residues modulo q^{\prime}, and b_{j} runs through a complete set of residues modulo $q^{\prime \prime}$, then $q^{\prime \prime} a_{j}+q^{\prime} b_{j}$ runs through a complete set of residues modulo $q^{\prime} q^{\prime \prime}$;
- for all $\underline{a} \in\left(\mathbb{Z} / q^{\prime} \mathbb{Z}\right)^{r}$ and $\underline{b} \in\left(\mathbb{Z} / q^{\prime \prime} \mathbb{Z}\right)^{r}$,

$$
\begin{aligned}
& \operatorname{gcd}\left(q^{\prime}, \underline{a}\right)=1 \text { and } \operatorname{gcd}\left(q^{\prime \prime}, \underline{b}\right)=1 \\
& \quad \Leftrightarrow \operatorname{gcd}\left(q^{\prime} q^{\prime \prime}, q^{\prime} b_{1}+q^{\prime \prime} a_{1}, \ldots, q^{\prime} b_{r}+q^{\prime \prime} a_{r}\right)=1
\end{aligned}
$$

The lemma now follows from the multiplicativity of μ and of J_{r}.

From the previous lemma we deduce the following corollary:
Corollary 2. Let p be an odd prime, and let $m \in \mathbb{N}$ be a divisor of $p-1$. Given an r-tuple $\underline{\chi}=\left(\chi_{1}, \ldots, \chi_{r}\right)$ of Dirichlet characters modulo p, set

$$
c_{m}(\underline{\chi}):=\frac{1}{(p-1)^{r}} \sum_{\substack{\alpha \in\left(\mathbb{F}_{p}^{*}\right)^{r} \\\left[\mathbb{F}_{p}^{\frac{1}{p}}(\underline{\underline{2}})_{p}\right]=m}} \underline{\chi}(\underline{\alpha}) .
$$

Then

$$
\begin{align*}
c_{m}(\underline{\chi})= & \frac{1}{(p-1)^{r}} \mu\left(\frac{p-1}{m \operatorname{gcd}\left(\frac{p-1}{m}, \frac{p-1}{\operatorname{ord}\left(\chi_{1}\right)}, \ldots, \frac{p-1}{\operatorname{ord}\left(\chi_{r}\right)}\right)}\right) \tag{5}\\
& \times \frac{J_{r}((p-1) / m)}{J_{r}\left(\frac{p-1}{m \operatorname{gcd}\left(\frac{p-1}{m}, \frac{p-1}{\operatorname{ord}\left(\chi_{1}\right)}, \ldots, \frac{p-1}{\operatorname{ord}\left(\chi_{r}\right)}\right)}\right)} .
\end{align*}
$$

Proof. Fix a primitive root $g \in \mathbb{F}_{p}^{*}$. For each $j=1, \ldots, r$, let $n_{j} \in$ $\mathbb{Z} /(p-1) \mathbb{Z}$ be such that

$$
\chi_{j}=\chi_{j}(g)=e^{2 \pi i n_{j} /(p-1)} .
$$

Write $\alpha_{j}=g^{a_{j}}$ for $j=1, \ldots, r$. Then

$$
\left[\mathbb{F}_{p}^{*}:\langle\underline{\alpha}\rangle_{p}\right]=m \Leftrightarrow(p-1, \underline{a})=m .
$$

Therefore, naming $t=(p-1) / m$, we have

$$
\begin{align*}
c_{m}(\underline{\chi}) & =\frac{1}{(p-1)^{r}} \sum_{\substack{\underline{a} \in\left(\mathbb{F}_{p}^{*}\right)^{r} \\
(p-1, a)=m}} \chi_{1}(g)^{a_{1}} \cdots \chi_{r}(g)^{a_{r}} \tag{6}\\
& =\frac{1}{(p-1)^{r}} \sum_{\substack{\underline{a}^{\prime} \in(\mathbb{Z} / t \mathbb{Z})^{r} \\
\left(t, a^{\prime}\right)=1}} e^{2 \pi i \underline{a}^{\prime} \cdot \underline{a} / t}=\frac{1}{(p-1)^{r}} c_{(p-1) / m}(\underline{n}) .
\end{align*}
$$

By definition we have $\operatorname{ord}\left(\chi_{j}\right)=(p-1) / \operatorname{gcd}\left(n_{j}, p-1\right)$, so

$$
\frac{p-1}{m \operatorname{gcd}\left(\frac{p-1}{m}, \underline{n}\right)}=\frac{p-1}{m \operatorname{gcd}\left(\frac{p-1}{m}, \frac{p-1}{\operatorname{ord}\left(\chi_{1}\right)}, \ldots, \frac{p-1}{\operatorname{ord}\left(\chi_{r}\right)}\right)},
$$

and this together with Lemma 1 concludes the proof.
For a fixed rank r, define

$$
R_{p}(m):=\#\left\{\underline{a} \in(\mathbb{Z} /(p-1) \mathbb{Z})^{r}:(\underline{a}, p-1)=m\right\} .
$$

Then using the well-known properties of the Möbius function, we can write

$$
R_{p}(m)=\sum_{\underline{a} \in(\mathbb{Z} /(p-1) \mathbb{Z})^{r}} \sum_{n \left\lvert\,\left(\frac{a}{m}, \frac{p-1}{m}\right)\right.} \mu(n)=\sum_{n \left\lvert\, \frac{p-1}{m}\right.} \mu(n)\left[h_{m}(n)\right]^{r},
$$

where

$$
h_{m}(n)=\#\left\{a \in \mathbb{Z} /(p-1) \mathbb{Z}: n \left\lvert\, \frac{a}{m}\right.\right\}=\frac{p-1}{n m}
$$

so that

$$
\begin{equation*}
R_{p}(m)=\left(\frac{p-1}{m}\right)^{r} \sum_{n \left\lvert\, \frac{p-1}{m}\right.} \frac{\mu(n)}{n^{r}}=J_{r}\left(\frac{p-1}{m}\right) \tag{7}
\end{equation*}
$$

Defining

$$
\begin{align*}
S_{m}(x) & :=\frac{1}{m^{r}} \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \sum_{n \left\lvert\, \frac{p-1}{m}\right.} \frac{\mu(n)}{n^{r}} \tag{8}\\
& =\sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \frac{1}{(p-1)^{r}} J_{r}\left(\frac{p-1}{m}\right),
\end{align*}
$$

we have the following lemma.
Lemma 2. If $m \leq(\log x)^{D}$ with D an arbitrary positive constant, then for every constant $M>1$,

$$
S_{m}(x)=C_{r, m} \operatorname{Li}(x)+O\left(\frac{x}{m^{r}(\log x)^{M}}\right)
$$

where $C_{r, m}=\sum_{n \geq 1} \frac{\mu(n)}{(n m)^{r} \varphi(n m)}$.
Proof. We choose an arbitrary positive constant B, and for every coprime integers a and b, we denote $\pi(x ; a, b)=\#\{p \leq x: p \equiv a(\bmod b)\}$, then

$$
\begin{aligned}
S_{m}(x) & =\sum_{n \leq x} \frac{\mu(n)}{(n m)^{r}} \pi(x ; 1, n m) \\
& =\sum_{n \leq(\log x)^{B}} \frac{\mu(n)}{(n m)^{r}} \pi(x ; 1, n m)+O\left(\sum_{(\log x)^{B}<n \leq x} \frac{1}{(n m)^{r}} \pi(x ; 1, n m)\right)
\end{aligned}
$$

The sum in the error term is

$$
\begin{aligned}
\sum_{(\log x)^{B}<n \leq x} \frac{1}{(n m)^{r}} \pi(x ; 1, n m) & \leq \frac{1}{m^{r}} \sum_{n>(\log x)^{B}} \frac{1}{n^{r}} \sum_{\substack{2 \leq a \leq x \\
a \equiv 1(\bmod m n)}} 1 \\
& \leq \frac{1}{m^{r+1}} \sum_{n>(\log x)^{B}} \frac{x}{n^{r+1}} \\
& \ll \frac{x}{m^{r+1}(\log x)^{r B}}
\end{aligned}
$$

For the main term we apply the Siegel-Walfisz Theorem [17], which states that for any positive constants B and C, if $a \leq(\log x)^{B}$, then

$$
\pi(x ; 1, a)=\frac{\operatorname{Li}(x)}{\varphi(a)}+O\left(\frac{x}{(\log x)^{C}}\right)
$$

So, if we restrict $m \leq(\log x)^{D}$ for any positive constant D, then

$$
\begin{aligned}
S_{m}(x)= & \sum_{n \leq(\log x)^{B}} \frac{\mu(n)}{(n m)^{r} \varphi(m n)} \operatorname{Li}(x)+O\left(\frac{x}{(\log x)^{C}} \sum_{n \leq(\log x)^{B}} \frac{1}{(n m)^{r}}\right) \\
& +O\left(\frac{x}{m^{r+1}(\log x)^{r B}}\right) \\
= & C_{r, m} \operatorname{Li}(x)+O\left(\sum_{n>(\log x)^{B}} \frac{\operatorname{Li}(x)}{(n m)^{r} \varphi(n m)}\right)+O\left(\frac{x \log \log x}{m^{r}(\log x)^{C}}\right) \\
& +O\left(\frac{x}{m^{r+1}(\log x)^{r B}}\right) \\
= & C_{r, m} \operatorname{Li}(x)+O\left(\frac{1}{m^{r} \varphi(m)} \sum_{n>(\log x)^{B}} \frac{\operatorname{Li}(x)}{n^{r} \varphi(n)}\right) \\
& +O\left(\frac{x \log \log x}{m^{r}(\log x)^{C}}\right)+O\left(\frac{x}{m^{r+1}(\log x)^{r B}}\right),
\end{aligned}
$$

where we have used the elementary inequality $\varphi(m n) \geq \varphi(m) \varphi(n)$. Since, for every $n \geq 3$, we have (see [1, Theorem 8.8.7])

$$
\begin{equation*}
\frac{n}{\varphi(n)}<e^{\gamma} \log \log n+\frac{3}{\log \log n} \ll \log \log n \tag{9}
\end{equation*}
$$

it follows that

$$
\sum_{n>(\log x)^{B}} \frac{1}{n^{r} \varphi(n)} \ll \sum_{n>(\log x)^{B}} \frac{\log \log n}{n^{r+1}} \ll \frac{\log \log \log x}{(\log x)^{r B}}
$$

Thus

$$
\frac{1}{m^{r} \varphi(m)} \sum_{n>(\log x)^{B}} \frac{1}{n^{r} \varphi(n)} \operatorname{Li}(x) \ll \frac{x}{m^{r} \varphi(m)(\log x)^{r B}}
$$

proving the lemma.
The following lemma concerns the Titchmarsh Divisor Problem [16] in the case of primes $p \equiv 1(\bmod m)$. Asymptotic results on this topic can be found in [3] and [4].

Lemma 3. Let τ be the divisor function and $m \in \mathbb{N}$. If $m \leq(\log x)^{D}$ for an arbitrary positive constant D, then

$$
\sum_{\substack{p \leq x \\ \equiv 1(\bmod m)}} \tau\left(\frac{p-1}{m}\right) \leq \frac{8 x}{m} .
$$

Proof. Write $p-1=m j k$ so that $j k \leq(x-1) / m$ and set $Q=$ $\sqrt{(x-1) / m}$. We distinguish three cases:

- $j \leq Q, k>Q$,
- $j>Q, k \leq Q$,
- $j \leq Q, k \leq Q$.

So we have the identity

$$
\begin{aligned}
\sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \tau\left(\frac{p-1}{m}\right)= & \sum_{j \leq Q} \sum_{\substack{Q<k \leq Q^{2} / j \\
m j k+1}} 1+\sum_{k \leq Q} \sum_{\substack{Q<j \leq Q^{2} / k \\
m j k+1 \\
\text { prime }}} 1 \\
& +\sum_{j \leq Q} \sum_{\substack{k \leq Q}} 1 \\
= & 2 \sum_{k \leq Q} \sum_{\substack{k \leq Q \\
m k+1 \\
p \equiv 1+1<p \leq x}} 1+\sum_{k \leq Q} \sum_{\substack{p \leq m k Q+1 \\
p \equiv 1(\bmod k m)}} 1 \\
= & 2 \sum_{k \leq Q}(\pi(x ; 1, k m)-\pi(m k Q+1 ; 1, k m)) \\
& +\sum_{k \leq Q} \pi(m k Q+1 ; 1, k m) \\
= & 2 \sum_{k \leq Q} \pi(x ; 1, k m)-\sum_{k \leq Q} \pi(m k Q+1 ; 1, k m) .
\end{aligned}
$$

Using the Montgomery-Vaughan version of the Brun-Titchmarsh Theorem,

$$
\pi(x ; a, q) \leq \frac{2 x}{\varphi(q) \log (x / q)},
$$

for $m \leq(\log x)^{D}$ with D an arbitrary positive constant we obtain

$$
\begin{aligned}
\sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \tau\left(\frac{p-1}{m}\right) & \leq 2 \sum_{k \leq Q} \frac{2 x}{\varphi(k m) \log (x / k m)} \\
& \leq \frac{4 x}{\log (x / m Q)} \sum_{k \leq Q} \frac{1}{\varphi(k m)} \leq \frac{8 x}{\log (x / m)} \sum_{k \leq Q} \frac{1}{\varphi(k m)} .
\end{aligned}
$$

Now, substitute the elementary inequality $\varphi(k m) \geq m \varphi(k)$ and use a result
of Montgomery [9],

$$
\sum_{k \leq Q} \frac{1}{\varphi(k)}=A \log Q+B+O\left(\frac{\log Q}{Q}\right)
$$

where

$$
A=\frac{\zeta(2) \zeta(3)}{\zeta(6)}=1.9436 \ldots \quad \text { and } \quad B=A \gamma-\sum_{n=1}^{\infty} \frac{\mu^{2}(n) \log n}{n \varphi(n)}=-0.0606 \ldots
$$

which in particular implies that, for Q large enough,

$$
A \log Q-1 \leq \sum_{k \leq Q} \frac{1}{\varphi(k)} \leq A \log Q \leq \log (x / m)
$$

This yields the desired conclusion.
LEMMA 4. Let p be an odd prime number and let $\chi \neq \chi_{0}$ be a nonprincipal Dirichlet character modulo p. Define

$$
d_{m, i}(\chi):=\sum_{\substack{\chi \in\left(\widehat{\mathbb{F}_{p}^{*}}\right)^{r} \\ \chi_{i}=\chi}}\left|c_{m}(\underline{\chi})\right|
$$

Then

$$
d_{m, i}(\chi) \leq \frac{1}{m} \prod_{\ell \backslash \frac{p-1}{m}}\left(1+\frac{1}{\ell}\right)
$$

Proof. From (6) and Lemma 1, we have

$$
\begin{aligned}
& d_{m, i}(\chi) \\
& =\frac{1}{(p-1)^{r}} \sum_{\substack{\underline{n} \in(\mathbb{Z} /(p-1) \mathbb{Z})^{r} \\
n_{i}=n}} \mu^{2}\left(\frac{(p-1) / m}{((p-1) / m, \underline{n})}\right) \frac{J_{r}((p-1) / m)}{J_{r}((p-1) / m /((p-1) / m, \underline{n}))},
\end{aligned}
$$

where $\chi=e^{2 \pi i n /(p-1)}$ with $n \in \mathbb{Z} /(p-1) \mathbb{Z} \backslash\{0\}$; naming $t=(p-1) / m$ and $u=\operatorname{gcd}\left(t, n_{i}\right)$ we get

$$
d_{m, i}(\chi)=\frac{1}{(p-1)^{r}} \sum_{d \mid t} \mu^{2}\left(\frac{t}{d}\right) \frac{J_{r}(t)}{J_{r}(t / d)} H(d)
$$

where

$$
H(d):=\#\left\{\underline{x} \in(\mathbb{Z} /(p-1) \mathbb{Z})^{r-1}:(u, \underline{x})=d\right\}=\left(\frac{p-1}{d}\right)^{r-1} \sum_{k \backslash \frac{u}{d}} \frac{\mu(k)}{k^{r-1}}
$$

Then

$$
\begin{aligned}
d_{m, i}(\chi) & =\frac{1}{p-1} \sum_{d \mid t} \mu^{2}\left(\frac{t}{d}\right) \frac{J_{r}(t)}{d^{r-1} J_{r}(t / d)} \sum_{k \left\lvert\, \frac{u}{d}\right.} \frac{\mu(k)}{k^{r-1}} \\
& \leq \frac{1}{p-1} \sum_{d \mid t} \mu^{2}\left(\frac{t}{d}\right) d=\frac{t}{p-1} \sum_{k \mid t} \frac{\mu^{2}(k)}{k}=\frac{1}{m} \prod_{\ell \left\lvert\, \frac{p-1}{m}\right.}\left(1+\frac{1}{\ell}\right)
\end{aligned}
$$

4. Proof of Theorem 1. We follow the method of Stephens [14]. By exchanging the order of summation we obtain

$$
\sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\ \underline{0}<\underline{a} \leq \underline{T}}} N_{\langle\underline{a}\rangle, m}(x)=\sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} M_{p}^{m}(\underline{T}),
$$

where $M_{p}^{m}(\underline{T})$ is the number of r-tuples $\underline{a} \in \mathbb{Z}^{r}$ with $0<a_{i} \leq T_{i}$ and $v_{p}\left(a_{i}\right)=0$ for $i=1, \ldots, r$ whose reduction modulo p satisfies $\left[\mathbb{F}_{p}^{*}:\langle\underline{a}\rangle_{p}\right]=m$. We can write

$$
M_{p}^{m}(\underline{T})=\sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\ \underline{0}<\underline{a} \leq \underline{T}}} t_{p, m}(\underline{a})
$$

with

$$
t_{p, m}(\underline{a})= \begin{cases}1 & \text { if }\left[\mathbb{F}_{p}^{*}:\langle\underline{a}\rangle_{p}\right]=m \\ 0 & \text { otherwise }\end{cases}
$$

Given an r-tuple $\underline{\chi}$ of Dirichlet characters $\bmod p$, by orthogonality relations it is easy to verify that

$$
\begin{equation*}
t_{p, m}(\underline{a})=\sum_{\underline{\chi} \in\left(\widehat{\mathbb{F}_{p}^{*}}\right)^{r}} c_{m}(\underline{\chi}) \underline{\chi}(\underline{a}), \tag{10}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\ \underline{0}<\underline{a} \leq \underline{T}}} N_{\langle\underline{a}\rangle, m}(x)=\sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} \sum_{\substack{\underline{a} \in \underline{\mathbb{Z}^{r}} \\ \underline{a} \leq \underline{T}}} \sum_{\substack{\chi \in\left(\widehat{\mathbb{F}_{p}^{*}}\right)^{r}}} c_{m}(\underline{\chi}) \underline{\chi}(\underline{a}) . \tag{11}
\end{equation*}
$$

Let $\underline{\chi}_{0}:=\left(\chi_{0}, \ldots, \chi_{0}\right)$ be the r-tuple of principal characters. Then

$$
\begin{aligned}
c_{m}\left(\underline{\chi}_{0}\right) & =\frac{1}{(p-1)^{r}} \sum_{\substack{\underline{a} \in\left(\mathbb{F}_{p}^{*}\right)^{r} \\
\left[\mathbb{F}_{p}^{*}:\langle\underline{a}\rangle_{p}\right]=m}} \underline{\chi}_{0}(\underline{a}) \\
& =\frac{1}{(p-1)^{r}} \#\left\{\underline{a} \in(\mathbb{Z} /(p-1) \mathbb{Z})^{r}:(\underline{a}, p-1)=m\right\}=\frac{1}{(p-1)^{r}} R_{p}(m)
\end{aligned}
$$

Denoting $|\underline{T}|:=\prod_{i=1}^{r} T_{i}$ and $T^{*}:=\min \left\{T_{i}: i=1, \ldots, r\right\}$, through (8) and (7), we can write the main term in (11) as

$$
\begin{aligned}
& \frac{1}{|\underline{T}|} \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\
\underline{a} \leq \underline{T} \leq \underline{T}}} c_{m}\left(\underline{\chi}_{0}\right) \underline{\chi}_{0}(\underline{a}) \\
&= \frac{1}{|\underline{T}|} \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} c_{m}\left(\underline{\chi}_{0}\right) \prod_{i=1}^{r}\left\{\left\lfloor T_{i}\right\rfloor-\left\lfloor T_{i} / p\right\rfloor\right\} \\
&= \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} c_{m}\left(\underline{\chi}_{0}\right)\left(\left(1-\frac{1}{p}\right)^{r}+\sum_{i=1}^{r} O\left(\frac{1}{T_{i}}\right)\right) \\
&= \sum_{p \leq x} c_{m}\left(\underline{\chi}_{0}\right)+O\left(\sum_{p \equiv 1(\bmod m)} \frac{1}{p}\right)+O\left(\frac{x}{T^{*} \log x}\right) \\
&= S_{m}(x)+O(\log \log x)+O\left(\frac{x}{T^{*} \log x}\right) .
\end{aligned}
$$

By hypothesis $m \leq(\log x)^{D}, D>0$, and $T^{*}>\exp \left(4(\log x \log \log x)^{1 / 2}\right)$, so we can apply Lemma 2 to obtain

$$
\frac{1}{|\underline{T}|} \sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\ \underline{\underline{a}<\underline{a} \leq \underline{T}}}} c_{m}\left(\underline{\chi}_{0}\right) \underline{\chi}_{0}(\underline{a})=C_{r, m} \operatorname{Li}(x)+O\left(\frac{x}{m^{r}(\log x)^{M}}\right)
$$

for any $M>1$. For the error term we need to estimate the sum

$$
\begin{align*}
E_{r, m}(x) & : \left.=\frac{1}{|\underline{T}|} \sum_{\substack{p \leq x \\
p \equiv 1}} \sum_{(\bmod m)} \right\rvert\, c_{m}(\underline{\chi}) \sum_{\substack{\left.\underline{\mathbb{F}_{p}^{*}}\right)^{r} \backslash\left\{\underline{\chi}_{0}\right\}}} \underline{\underline{\chi} \in \mathbb{Z}^{r}} \underline{\underline{a}} \underline{\underline{0}<\underline{a} \leq \underline{T}} \tag{12}\\
& \ll \sum_{i=1}^{r} \frac{1}{T_{i}} \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \sum_{\substack{\chi \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}\right\}}} d_{m, i}(\chi)\left|\sum_{\substack{a \in \mathbb{Z} \\
0<a \leq T_{i}}} \chi(a)\right|,
\end{align*}
$$

since the r main contributions to 12 come from the cases in which just one Dirichlet character in $\underline{\chi}$ is non-principal, say $\chi_{i}=\chi \neq \chi_{0}$, while for every $j \neq i$ we choose $\chi_{j}=\overline{\chi_{0}}$, giving

$$
\left|\sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\ \underline{0}<\underline{a} \leq \underline{T}}} \underline{\chi}(\underline{a})\right|=\left|\sum_{\substack{a \in \mathbb{Z} \\ 0<a \leq T_{i}}} \chi(a) \sum_{\substack{0 \leq j \leq r \\ j \neq i}} \sum_{\substack{a_{j} \in \mathbb{Z} \\ 0<a_{j} \leq T_{j} \\ p \nmid a_{j}}} 1\right| \leq \frac{|\underline{T}|}{T_{i}}\left|\sum_{\substack{a \in \mathbb{Z} \\ 0<a \leq T_{i}}} \chi(a)\right| .
$$

Define

$$
\begin{equation*}
E_{r, m}^{i}(x):=\sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} \sum_{\widehat{\mathbb{F}_{p}^{*} \backslash\left\{\chi_{0}\right\}}} d_{m, i}(\chi)\left|\sum_{\substack{a \in \mathbb{Z} \\ 0<a \leq T_{i}}} \chi(a)\right| \tag{13}
\end{equation*}
$$

Then by Hölder's inequality

$$
\begin{align*}
\left\{E_{r, m}^{i}(x)\right\}^{2 s_{i}} \leq & \left\{\sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \sum_{\chi \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}\right\}}\left\{d_{m, i}(\chi)\right\}^{\frac{2 s_{i}}{2 s_{i}-1}}\right\}^{2 s_{i}-1} \tag{14}\\
& \times \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \sum_{\chi \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}\right\}}\left|\sum_{\substack{a \in \mathbb{Z} \\
0<a \leq T_{i}}} \chi(a)\right|^{2 s_{i}}
\end{align*}
$$

As before, given a primitive root g modulo p, write $\chi_{j}(g)=e^{2 \pi i n_{j} /(p-1)}$ for every $j=1, \ldots, r$ with $n_{j} \in \mathbb{Z} /(p-1) \mathbb{Z}$, so that by (6),

$$
\sum_{\underline{\chi} \in\left(\widehat{\mathbb{F}_{p}^{*}}\right)^{r} \backslash\left\{\underline{\chi}_{0}\right\}} c_{m}(\underline{\chi})=\frac{1}{(p-1)^{r}} \sum_{\underline{n} \in(\mathbb{Z} /(p-1) \mathbb{Z})^{r} \backslash\{\underline{0}\}} c_{(p-1) / m}(\underline{n}) .
$$

Denoting again $t=(p-1) / m$, from Lemma 1 we derive

$$
\begin{aligned}
\sum_{\chi \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}\right\}} d_{m, i}(\chi) \leq & \sum_{\underline{\chi} \in\left(\widehat{\mathbb{F}_{p}^{*}}\right) r}\left|c_{m}(\underline{\chi})\right| \\
\leq & \sum_{d \mid t} \mu^{2}\left(\frac{t}{d}\right)\left[\frac{J_{r}(t)}{(p-1)^{r} J_{r}(t / d)}\right] \\
& \times \#\left\{\underline{n} \in(\mathbb{Z} /(p-1) \mathbb{Z})^{r}:(t, \underline{n})=d\right\} \\
= & \sum_{d \mid t} \mu^{2}\left(\frac{t}{d}\right) \frac{J_{r}(t)}{d^{r} J_{r}(t / d)} \sum_{k \left\lvert\, \frac{t}{d}\right.} \frac{\mu(k)}{k^{r}}=\frac{J_{r}(t)}{t^{r}} \sum_{d \mid t} \mu^{2}\left(\frac{t}{d}\right) \\
= & \prod_{\ell \mid t}\left(1-1 / \ell^{r}\right) 2^{\omega(t)} \leq 2^{\omega(t)} .
\end{aligned}
$$

Set $D_{m, i}(p):=\max \left\{d_{m, i}(\chi): \chi \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}\right\}\right\}$. Then for every $s_{i} \geq 1$,

$$
\begin{aligned}
& \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \sum_{\chi \in \widehat{\mathbb{F}_{p}^{*} \backslash\left\{\chi_{0}\right\}}}\left\{d_{m, i}(\chi)\right\}^{\frac{2 s_{i}}{2 s_{i}-1}} \\
& \leq \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \sum_{\chi \in \widehat{\mathbb{F}_{p}^{*} \backslash\left\{\chi_{0}\right\}}} d_{m, i}(\chi)\left\{d_{m, i}(\chi)\right\}^{\frac{1}{2 s_{i}-1}} \\
& \leq \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}}\left\{D_{m, i}(p)\right\}^{\frac{1}{2 s_{i}-1}} \sum_{\chi \in \widehat{\mathbb{F}_{p}^{*} \backslash\left\{\chi_{0}\right\}}} d_{m, i}(\chi) \\
& \leq \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}}\left\{D_{m, i}(p)\right\}^{\frac{1}{2 s_{i}-1}} 2^{\omega\left(\frac{p-1}{m}\right)} \\
& \leq m^{-\frac{1}{2 s_{i}-1}} \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \prod_{\ell \left\lvert\, \frac{p-1}{m}\right.}\left(1+\frac{1}{\ell}\right) 2^{\omega\left(\frac{p-1}{m}\right)} \\
& \ll m^{-\frac{1}{2 s_{i}-1}} \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \prod_{\ell \left\lvert\, \frac{p-1}{m}\right.}\left(1-\frac{1}{\ell}\right)^{-1} 2^{\omega\left(\frac{p-1}{m}\right)} \\
& \ll m^{-\frac{1}{2 s_{i}-1}} \log \log x \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \tau\left(\frac{p-1}{m}\right) \ll m^{-\frac{2 s_{i}}{2 s_{i}-1}} x \log \log x,
\end{aligned}
$$

where we have used Lemmata 3 and 4 together with the simple observation

$$
\left\{m D_{m, i}(p)\right\}^{\frac{1}{2 s_{i}-1}} \leq \prod_{\ell \left\lvert\, \frac{p-1}{m}\right.}\left(1+\frac{1}{\ell}\right)^{\frac{1}{2 s_{i}-1}} \leq \prod_{\ell \left\lvert\, \frac{p-1}{m}\right.}\left(1+\frac{1}{\ell}\right)
$$

To estimate the other factor in 14 we use [14, Lemma 5]:

$$
\sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} \sum_{\chi \in \widehat{\mathbb{F}_{p}^{*} \backslash\left\{\chi_{0}\right\}}}\left|\sum_{\substack{a \in \mathbb{Z} \\ 0<a \leq T_{i}}} \chi(a)\right|^{2 s_{i}} \ll\left(x^{2}+T_{i}^{s_{i}}\right) T_{i}^{s_{i}}\left(\log \left(e T_{i}^{s_{i}-1}\right)\right)^{s_{i}^{2}-1}
$$

So, for every constant $M>1$, we find

$$
\begin{aligned}
\frac{1}{|\underline{T}|} \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\
\underline{0}<\underline{a} \leq \underline{T}}} N_{\langle\underline{a}\rangle, m}(x)= & C_{r, m} \operatorname{Li}(x)+O\left(\frac{x}{m^{r}(\log x)^{M}}\right) \\
& +O\left(\sum_{i=1}^{r} \frac{x}{T_{i} \log x}\right)+E_{r, m}(x)
\end{aligned}
$$

with

$$
E_{r, m}(x) \ll \sum_{i=1}^{r} \frac{1}{T_{i}}\left[\left(\frac{x \log \log x}{m^{\frac{2 s_{i}}{2 s_{i}-1}}}\right)^{2 s_{i}-1}\left(x^{2}+T_{i}^{s_{i}}\right) T_{i}^{s_{i}}\left(\log \left(e T_{i}^{s_{i}-1}\right)\right)^{s_{i}^{2}-1}\right]^{\frac{1}{2 s_{i}}}
$$

If we choose $s_{i}=\left\lfloor\frac{2 \log x}{\log T_{i}}\right\rfloor+1$ for $i=1, \ldots, r$, then $T_{i}^{s_{i}-1} \leq x^{2}<T_{i}^{s_{i}}$ and

$$
E_{r, m}(x) \ll \frac{1}{m} \sum_{i=1}^{r}(x \log \log x)^{1-\frac{1}{2 s_{i}}}\left(\log \left(e x^{2}\right)\right)^{\frac{s_{i}^{2}-1}{2 s_{i}}}
$$

Now, if $T_{i}>x^{2}$ for all $i=1, \ldots, r$, then $s_{1}=\cdots=s_{r}=1$ and

$$
E_{r, m}(x) \ll \frac{1}{m}(x \log \log x)^{1 / 2}
$$

in particular, $E_{r, m}(x) \ll x /(\log x)^{M}$ for every constant $M>1$. Otherwise, if $T_{j} \leq x^{2}$ for some $j \in\{1, \ldots, r\}$, then $s_{j} \geq 2$ and the corresponding contribution to $E_{r, m}(x)$ will be

$$
E_{r, m}^{j}(x) \ll \frac{1}{m}(x \log \log x)^{1-\frac{1}{2 s_{j}}}\left(\log \left(e x^{2}\right)\right)^{\frac{3 \log x}{2 \log T_{j}}}
$$

By hypothesis

$$
\begin{equation*}
T^{*}>\exp \left(4(\log x \log \log x)^{1 / 2}\right) \tag{15}
\end{equation*}
$$

and, through computations similar to those in [14, p. 184], we can derive

$$
E_{r, m}(x) \ll \frac{1}{m} x \log \log x \cdot\left(T^{*}\right)^{-1 / 16}
$$

Also in this case, using 15 , we have $E_{r, m}(x) \ll x /(\log x)^{M}$ for every $M>1$. This ends the proof of Theorem 1.
5. Proof of Theorem 2. We now consider

$$
H:=\frac{1}{|\underline{T}|} \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\ \underline{0}<\underline{a} \leq \underline{T}}}\left\{N_{\langle\underline{a}\rangle, m}(x)-C_{r, m} \operatorname{Li}(x)\right\}^{2}
$$

We start bounding H as follows:

$$
\begin{aligned}
& \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\
\underline{0}<\underline{a} \leq \underline{T}}}\left\{N_{\langle\underline{a}\rangle, m}(x)-C_{r, m} \operatorname{Li}(x)\right\}^{2} \\
\leq & \sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m)}} M_{p, q}^{m}(\underline{T})-2 C_{r, m} \operatorname{Li}(x) \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} M_{p}^{m}(\underline{T})+|\underline{T}|\left(C_{r, m}\right)^{2} \operatorname{Li}^{2}(x),
\end{aligned}
$$

where $M_{p, q}^{m}(\underline{T})$ denotes the number of r-tuples $\underline{a} \in \mathbb{Z}^{r}$ with $a_{i} \leq T_{i}$ and $v_{p}\left(a_{i}\right)=v_{q}\left(a_{i}\right)=0$ for each $i=1, \ldots, r$ whose reductions modulo prime numbers p and q satisfy $\left[\mathbb{F}_{p}^{*}:\langle\underline{a}\rangle_{p}\right]=\left[\mathbb{F}_{q}^{*}:\langle\underline{a}\rangle_{q}\right]=m$.

From Theorem 1 we obtain

$$
H \leq \frac{1}{|\underline{T}|} \sum_{\substack{p, q \leq x \\ p, q \equiv 1(\bmod m)}} M_{p, q}^{m}(\underline{T})-C_{r, m}^{2} \mathrm{Li}^{2}(x)+O\left(\frac{x^{2}}{(\log x)^{M^{\prime}}}\right)
$$

for every constant $M^{\prime}>2$. If we write

$$
\sum_{\substack{p, q \leq x \\ p, q \equiv 1(\bmod m)}} M_{p, q}^{m}(\underline{T})=\sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} M_{p}^{m}(\underline{T})+\sum_{\substack{p, q \leq x \\ p, q \equiv 1(\bmod m) \\ p \neq q}} M_{p, q}^{m}(\underline{T}),
$$

Theorem 1 gives, for arbitrary $M>1$,

$$
\sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}} M_{p}^{m}(\underline{T})=C_{r, m}|\underline{T}| \operatorname{Li}(x)+O\left(\frac{|\underline{T}| x}{(\log x)^{M}}\right) .
$$

In the same spirit as in the proof of Theorem 1, we use (10) to deal with the sum

$$
\begin{align*}
& \sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \\
p \neq q}} M_{p, q}^{m}(\underline{T})=\sum_{\substack{p, q \leq x \\
p, q=1 \\
1 \bmod m) \\
p \neq q}} \sum_{\substack{a \in \mathbb{Z}^{r} \\
\underline{0}<\underline{T} \leq \underline{T}}} t_{p, m}(\underline{a}) t_{q, m}(\underline{a}) \tag{16}\\
& \quad=\sum_{\substack{p, q \leq x \\
p, q \equiv 1 \bmod m)^{\prime} \\
p \neq q}} \sum_{\substack{\underline{\chi}_{1} \in\left(\widehat{\mathbb{F}_{p}}\right)^{r}}} \sum_{\chi_{2} \in\left(\widehat{\mathbb{F}_{q}}\right)^{r}} c_{m}\left(\underline{\chi}_{1}\right) c_{m}\left(\underline{\chi}_{2}\right) \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\
\underline{0}<\underline{\underline{Z}} \leq \underline{T}}} \underline{\chi}_{1}(\underline{a}) \underline{\chi}_{2}(\underline{a}),
\end{align*}
$$

where $\underline{\chi}_{1}$ and $\underline{\chi}_{2}$ denote r-tuples of Dirichlet characters modulo p, q respectively. Therefore

$$
\sum_{\substack{p, q \leq x \\ p, q \equiv 1(\bmod m)}} M_{p, q}^{m}(\underline{T})=H_{1}+2 H_{2}+H_{3}+O(|\underline{T}| \operatorname{Li}(x)),
$$

where H_{1}, H_{2}, H_{3} are the contributions to the sum (16) when, respectively: $\underline{\chi}_{1}=\underline{\chi}_{2}=\underline{\chi}_{0}$; only one of $\underline{\chi}_{1}$ and $\underline{\chi}_{2}$ is equal to $\underline{\chi}_{0} ;$ neither $\underline{\chi}_{1}$ nor $\underline{\chi}_{2}$ is $\underline{\chi}_{0}$. First we deal with the inner sum in H_{1}. To avoid confusion, we write $\underline{\chi}_{0}^{(p)}$ and $\underline{\chi}_{0}^{(q)}$ for the r-tuples all of whose entries are the principal characters modulo \bar{p} and modulo q respectively, so that

$$
\sum_{\substack{a \in \mathbb{Z}^{r} \\ \underline{0}<\underline{\underline{c}} \leq \underline{\chi_{0}}}} \underline{\chi}_{0}^{(p)}(\underline{a}) \underline{\chi}_{0}^{(q)}(\underline{a})=\prod_{i=1}^{r}\left\{\left\lfloor T_{i}\right\rfloor-\left\lfloor\frac{T_{i}}{p}\right\rfloor-\left\lfloor\frac{T_{i}}{q}\right\rfloor+\left\lfloor\frac{T_{i}}{p q}\right\rfloor\right\} .
$$

Using Lemma 2, with $M^{\prime}>2$ arbitrary we have

$$
\begin{aligned}
H_{1}= & \sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \\
p \neq q}} c_{m}\left(\underline{\chi}_{0}^{(p)}\right) c_{m}\left(\underline{\chi}_{0}^{(q)}\right) \sum_{\substack{\text { a } \\
\underline{\underline{a} \in \mathbb{Z}^{r}} \mathfrak{\underline { a } \leq \underline { T }}}} \underline{\chi}_{0}^{(p)}(\underline{a}) \underline{\chi}_{0}^{(q)}(\underline{a}) \\
= & |\underline{T}| \sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m)}} c_{m}\left(\underline{\chi}_{0}^{(p)}\right) c_{m}\left(\underline{\chi}_{0}^{(q)}\right)\left(\left(1-\frac{1}{p}-\frac{1}{q}+\frac{1}{p q}\right)^{r}+\sum_{i=1}^{r} O\left(\frac{1}{T_{i}}\right)\right) \\
= & \left.|\underline{T}|\left(\sum_{\substack{p \equiv 1(\bmod m)}} c_{m}\left(\underline{\chi}_{0}^{(p)}\right)\right)^{2}-\sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}}\left(c_{m}\left(\underline{\chi}_{0}^{(p)}\right)\right)^{2}\right)\left(1+O\left(\frac{1}{T^{*}}\right)\right) \\
& +|\underline{T}| O\left(\frac{x \log \log x}{\log x}\right) \\
= & |\underline{T}|\left(S_{m}^{2}(x)+O\left(\frac{x^{2}}{T^{*}(\log x)^{2}}\right)+O\left(\frac{x \log \log x}{\log x}\right)\right) \\
= & |\underline{T}|\left(C_{r, m}^{2} \operatorname{Li}^{2}(x)+O\left(\frac{x^{2}}{m^{r}(\log x)^{M^{\prime}}}\right)\right) .
\end{aligned}
$$

Focus now on H_{2} and assume without loss of generality that $\underline{\chi}_{1}=\underline{\chi}_{0} \neq \underline{\chi}_{2}$:

$$
\begin{aligned}
& H_{2}=\sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \underline{\chi}_{2} \in\left(\widehat{\mathbb{F}_{q}^{*}}\right)^{r} \backslash\left\{\underline{\chi}_{0}^{(q)}\right\}}} c_{m}\left(\underline{\chi}_{0}^{(p)}\right) c_{m}\left(\underline{\chi}_{2}\right) \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\
\underline{0}<\underline{a} \leq \underline{T}}} \underline{\chi}_{0}^{(p)}(\underline{a}) \underline{\chi}_{2}(\underline{a}) \\
& =\sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} c_{m}\left(\underline{\chi}_{0}^{(p)}\right) \sum_{\substack{q \leq x \\
q \equiv 1(\bmod m)}} \sum_{\substack{(\not) \\
q \neq p}} c_{m}\left(\widehat{\mathbb{F}_{q}^{*}}\right)^{r} \backslash\left\{\underline{\chi}_{2}\right) \sum_{\substack{q)}} \sum_{\substack{a \in \mathbb{Z}^{r} \\
0<\underline{a} \leq \underline{\chi}_{2} \\
p \nmid \prod_{i=1}^{r} \leq \underline{T}_{i}}} \underline{\chi}_{2}(\underline{a}) .
\end{aligned}
$$

Just as in the proof of Theorem 1, the quantity

$$
U_{2}:=\sum_{\substack{q \leq x \\ q \equiv 1(\bmod m)}} \sum_{\substack{\underline{\chi}_{2} \in\left(\widehat{\mathbb{F}_{q}^{*}}\right)^{r} \backslash\left\{\underline{\chi}_{0}^{q}\right\}}}\left|c_{m}\left(\underline{\chi}_{2}\right) \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\ \underline{0}<\underline{a} \leq \underline{T}}} \underline{\chi}_{2}(\underline{a})\right|
$$

can be estimated through Hölder's inequality combined with the large sieve inequality, to get $U_{2} \ll x /(\log x)^{M}$ for any constant $M>1$. Moreover,

Lemma 3 gives

$$
\begin{aligned}
V_{2} & :=\sum_{\substack{q \leq x \\
q \equiv 1(\bmod m)}} \sum_{\underline{\chi}_{2} \in\left(\widehat{\mathbb{F}_{q}^{*}}\right)^{r} \backslash\left\{\underline{\chi}_{0}^{(q)}\right\}}\left|c_{m}\left(\underline{\chi}_{2}\right) \sum_{\substack{a \in \mathbb{Z}^{r} \\
0 \\
p \mid \prod_{i=1}^{\underline{a} \leq \underline{T}}}} \underline{\chi}_{2}(\underline{a})\right| \\
& \ll \frac{|\underline{T}|}{p^{r}} \sum_{\substack{q \leq x \\
q \equiv 1(\bmod m)}}\left|c_{m}\left(\underline{\chi}_{2}\right)\right| \\
& \ll \frac{\left.\mid \underline{\mathcal{F}_{q}^{*}}\right)^{r} \backslash\left\{\underline{\chi}_{0}^{(q)}\right\}}{p^{r}} \sum_{\substack{q \leq x \\
q \equiv 1}} \tau\left(\frac{q-1}{m}\right) \\
& \ll \frac{|\underline{T}| x}{p^{r} m} .
\end{aligned}
$$

Thus, for every constant $M^{\prime}>2$,

$$
H_{2} \ll \sum_{\substack{p \leq x \\ p \equiv 1(\bmod m)}}\left(U_{2}+V_{2}\right) \ll \frac{|\underline{T}| x^{2}}{(\log x)^{M^{\prime}}}
$$

Finally, assume $\chi_{1} \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}^{(p)}\right\}$ and $\chi_{2} \in \widehat{\mathbb{F}_{q}^{*}} \backslash\left\{\chi_{0}^{(q)}\right\}$ with $p \neq q$; then $\chi_{1} \chi_{2}$ is a primitive character modulo $p q$. To obtain an upper bound on

$$
\begin{aligned}
H_{3}= & \sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \\
p \neq q}} \sum_{\substack{\underline{\chi}_{1} \in\left(\widehat{\mathbb{F}_{p}^{*}}\right)^{r} \backslash\left\{\underline{\chi}_{0}^{(p)}\right\} \underline{\chi}_{2} \in\left(\widetilde{\left.\mathbb{F}_{q}^{*}\right)^{r} \backslash\left\{\underline{\chi}_{0}^{(q)}\right\}}\right.}} c_{m}\left(\underline{\chi}_{1}\right) c_{m}\left(\underline{\chi}_{2}\right) \\
& \times \sum_{\substack{\underline{a} \in \mathbb{Z}^{r} \\
\underline{0}<\underline{a} \leq \underline{T}}} \underline{\chi}_{1}(\underline{a}) \underline{\chi}_{2}(\underline{a}),
\end{aligned}
$$

we will apply again Hölder's inequality and the large sieve [14, Lemma 5]). To do so, since the r-tuples $\underline{\chi}_{1}$ and $\underline{\chi}_{2}$ in H_{3} are both non-principal, we denote by $\chi_{1, i}$ the i th component of the r-tuple $\underline{\chi}_{1}$ (and similarly for $\chi_{2, i}$). Then the contributions to H_{3} have two possible sources: a "diagonal" term H_{3}^{d} (in which for a certain $i \in\{1, \ldots, r\}$ both $\chi_{1, i}$ and $\chi_{2, i}$ are non-principal) and a "non-diagonal" term $H_{3}^{n d}$ (in which for no $i \in\{1, \ldots, r\}$ is it possible to have $\chi_{1, i}$ and $\chi_{2, i}$ both non-principal). Analogously to what was done for the error term 12 in the proof of Theorem 1 , the main contributions to H_{3}^{d} and $H_{3}^{\text {nd }}$ come from the cases in which, for a certain r-tuple of characters modulo p or q, just one character is non-principal and the other $r-1$ are
all principal. Explicitly, $H_{3}^{d}=\sum_{i=1}^{r} H_{3, i}$, where

$$
\begin{aligned}
& \ll \frac{|\underline{T}|}{T_{i}} \sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \\
p \neq q}} \sum_{\substack{\chi_{1} \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}^{(p)}\right\}}} \sum_{\chi_{2} \in \widehat{\mathbb{F}_{q}^{*} \backslash\left\{\chi_{0}^{(q)}\right\}}} d_{m . i}\left(\chi_{1}\right) d_{m, i}\left(\chi_{2}\right) \\
& \times\left|\sum_{\substack{a_{i} \in \mathbb{Z} \\
0<a_{i} \leq T_{i}}} \chi_{1}\left(a_{i}\right) \chi_{2}\left(a_{i}\right)\right| \\
& \text { and } H_{3}^{n d}=\sum_{\substack{i, j=1 \\
i \neq j}}^{r} H_{3, i j} \text {, with } \\
& H_{3, i j}:=\sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \\
p \neq q}} \sum_{\substack{\chi_{1} \in\left(\widehat{\mathbb{F}_{p}^{*}}\right)^{r}}} \sum_{\substack{\underline{\chi}_{2} \in\left(\widehat{\mathbb{F}_{q}^{*}}\right)^{r} \\
\chi_{1} \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}^{(p)}\right\}}} c_{m}\left(\underline{\chi}_{1}\right) c_{m}\left(\underline{\chi}_{2}\right) \sum_{\substack{a \in \mathbb{Z}^{r} \\
\chi_{2} \in\left\{\chi_{0}^{*} \\
\underline{0}<\underline{a} \leq \underline{T}\right.}} \underline{\chi}_{1}(\underline{a}) \underline{\chi}_{2}(\underline{a}) \\
& \ll \frac{|\underline{T}|}{T_{i} T_{j}} \sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \\
p \neq q}} \sum_{\substack{\chi_{1} \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}^{(p)}\right\}}} \sum_{\chi_{2} \in \widehat{\mathbb{F}_{q}^{*} \backslash\left\{\chi_{0}^{(q)}\right\}}} d_{m, i}\left(\chi_{1}\right) d_{m, j}\left(\chi_{2}\right) \\
& \times\left|\sum_{\substack{a_{i}, a_{j} \in \mathbb{Z} \\
0<a_{i} \leq T_{i} \\
0<a_{j} \leq T_{j}}} \chi_{1}\left(a_{i}\right) \chi_{2}\left(a_{j}\right)\right| .
\end{aligned}
$$

Dealing first with $H_{3, i}$, we use again Hölder's inequality together with the large sieve to get

$$
\begin{aligned}
\frac{H_{3, i}}{|\underline{T}|} \ll & \frac{1}{T_{i}}\left\{\sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \\
p \neq q}} \sum_{\substack{\chi_{1} \in \widehat{\mathbb{F}_{p}^{*}} \backslash\left\{\chi_{0}^{(p)}\right\} \\
\chi_{2} \in \mathbb{F}_{q}^{*} \backslash\left\{\chi_{0}^{(q)}\right\}}}\left[d_{m, i}\left(\chi_{1}\right) d_{m, i}\left(\chi_{2}\right)\right]^{\frac{2 s_{i}}{2 s_{i}-1}}\right\}^{\frac{2 s_{i}-1}{2 s_{i}}} \\
& \times\left\{\left.\sum_{\substack{p, q \leq x \\
p, q \equiv 1(\bmod m) \\
p \neq q}}\left|\sum_{\eta(\bmod p q)}\right| \sum_{\substack{a_{i} \in \mathbb{Z} \\
0<a_{i} \leq T_{i}}} \eta\left(a_{i}\right)\right|^{2 s_{i}}\right\}^{1 / 2 s_{i}} \\
\ll & \frac{1}{T_{i}}\left\{\left(\frac{x \log \log x}{m^{2}}\right)^{4 s_{i}-2}\left(x^{4}+T_{i}^{s_{i}}\right) T_{i}^{s_{i}}\left(\log \left(e T_{i}^{s_{i}-1}\right)\right)^{s_{i}^{2}-1}\right\}^{1 / 2 s_{i}} .
\end{aligned}
$$

We now choose $s_{i}=\left\lfloor\frac{4 \log x}{\log T_{i}}\right\rfloor+1$, so that $T_{i}^{s_{i}-1} \leq x^{4} \leq T_{i}^{s_{i}}$ and

$$
\frac{H_{3, i}}{|\underline{T}|} \ll \frac{1}{m^{2}} x^{2-1 / s_{i}}(\log \log x)^{2}\left(\log \left(e x^{4}\right)\right)^{\frac{s_{i}^{2}-1}{2 s_{i}}}
$$

If $T_{i}>x^{4}$ then $s_{i}=1$ and $H_{3, i} /|\underline{T}| \ll x(\log \log x)^{2}$. Otherwise, if $T_{i} \leq x^{4}$ then $s_{i} \geq 2$ and assuming $T_{i}>\exp \left(6(\log x \log \log x)^{1 / 2}\right)$, similarly to what was done to prove Theorem 1 we get

$$
\frac{H_{3, i}}{|\underline{T}|} \ll x^{2-1 / s_{i}}(\log \log x)^{2}\left(\log \left(e x^{4}\right)\right)^{\frac{3 \log x}{\log T_{i}}} \ll \frac{x^{2}}{(\log x)^{D}}
$$

for any positive constant $D>2$.
It remains to estimate $H_{3, i j}$ where $i \neq j$. In this case $H_{3, i j}$ can be factorized into two products, and by the same methods used for (13) we get

$$
\begin{aligned}
\frac{H_{3, i j}}{|\underline{T}|} \ll & \frac{1}{T_{i} T_{j}} \sum_{\substack{p \leq x \\
p \equiv 1(\bmod m)}} \sum_{\chi_{1} \in \widehat{\mathbb{F}_{p}^{*} \backslash\left\{\chi_{0}^{(p)}\right\}}} d_{m, i}\left(\chi_{1}\right)\left|\sum_{\substack{a_{i} \in \mathbb{Z} \\
0<a_{i} \leq T_{i}}} \chi_{1}\left(a_{i}\right)\right| \\
& \times \sum_{\substack{q \leq x \\
q \equiv 1(\bmod m)}} d_{m, j}\left(\chi_{2}\right)\left|\sum_{\substack{a_{j} \in \mathbb{Z} \\
0<a_{j} \leq T_{j}}} \chi_{2}\left(a_{j}\right)\right| \\
\ll & \frac{1}{T_{i}}\left\{\left(\frac{x \log \log x}{m^{2}}\right)^{2 s_{i}-1}\left(x_{0}^{(q)}\right\}\right. \\
& \times \frac{1}{T_{j}}\left\{\left(\frac{x \log \log x}{m^{2}}\right)^{2 s_{j}-1}\left(x^{s_{i}}+T_{i}^{s_{i}}\left(\log \left(e T_{i}^{s_{i}-1}\right)\right)^{s_{i}^{2}-1}\right\}^{1 / 2 s_{i}}\right. \\
& \left.T_{j}^{s_{j}}\left(\log \left(e T_{j}^{s_{j}-1}\right)\right)^{s_{j}^{2}-1}\right\}^{1 / 2 s_{j}}
\end{aligned}
$$

We choose $s_{i}=\left\lfloor\frac{2 \log x}{\log T_{i}}\right\rfloor+1$ and $s_{j}=\left\lfloor\frac{2 \log x}{\log T_{j}}\right\rfloor+1$, so that

$$
\frac{H_{3, i j}}{|\underline{T}|} \ll \frac{x^{2}}{(\log x)^{E}}
$$

for every constant $E>2$.
Eventually, since $H_{3} \ll H_{3}^{d}+H_{3}^{n d}$, summing the upper bounds for H_{1}, H_{2} and H_{3} we get the proof of Theorem 2,

Acknowledgements. The results in this manuscript are part of the doctoral dissertation of the two authors at Università Roma Tre. The authors would like to thank Prof. Francesco Pappalardi for inspiring this work and for his precious suggestions concerning technical difficulties in the proofs. C. P. acknowledges the financial support provided by Università Roma Tre during his Ph.D. studies. Furthermore, during the final steps of the revision process, C. P. has been partially supported by TUBITAK within the project 113F059 entitled "The conjecture of Mazur-Tate-Teitelbaum,

CM elliptic curves and applications" as a postdoctoral researcher at Koc University.

References

[1] L. Bach and F. Shallit, Algorithmic Number Theory (Vol. I: Efficient Algorithms), MIT Press, Cambridge, 1996.
[2] L. Cangelmi and F. Pappalardi, On the r-rank Artin conjecture II, J. Number Theory 75 (1999), 120-132.
[3] A. T. Felix, Generalizing the Titchmarsh divisor problem, Int. J. Number Theory 8 (2012), 613-629.
[4] A. Fiorilli, On a theorem of Bombieri, Friedlander and Iwaniec, Canad. J. Math. 64 (2012), 1019-1035.
[5] R. Gupta and M. Ram Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127-130.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, London, 1975.
[7] D. R. Heath-Brown, Artin's conjecture for primitive roots, Quart. J. Math. Oxford (2) 37 (1986), 27-38.
[8] C. Hooley, On Artin's conjecture, J. Reine Angew. Math. 225 (1967), 209-220.
[9] H. Montgomery, Primes in arithmetic progressions, Michigan Math. J. 17 (1970), 33-39.
[10] P. Moree, Artin's primitive root conjecture-a survey, Integers 12A (2012), A13, 100 pp .
[11] P. Moree, Asymptotically exact heuristics for (near) primitive roots, J. Number Theory 83 (2000), 155-181.
[12] F. Pappalardi, The r-rank Artin conjecture, Math. Comp. 66 (1997), 853-868.
[13] F. Pappalardi and A. Susa, An analogue to Artin's conjecture for multiplicative subgroups of the rationals, Arch. Math. (Basel) 101 (2013), 319-330.
[14] P. J. Stephens, An average result for Artin's conjecture, Mathematika 16 (1969), 178-188.
[15] P. J. Stephens, Prime divisors of second order linear recurrences. II, J. Number Theory 8 (1976), 333-345.
[16] E. C. Titchmarsh, A divisor problem, Rend. Circ. Mat. Palermo 54 (1930), 414-429.
[17] A. Walfisz, Zur additiven Zahlentheorie II, Math. Z. 40 (1936), 592-607.

Lorenzo Menici
Dipartimento di Matematica
Università Roma Tre
Largo S. L. Murialdo, 1
I-00146 Roma, Italy
E-mail: menici@mat.uniroma3.it

Cihan Pehlivan
Department of Mathematics
Koc University
Rumelifeneri Yolu
34450 Sarıyer-İstanbul, Turkey
E-mail: cpehlivan@ku.edu.tr

[^0]: 2010 Mathematics Subject Classification: Primary 11R45; Secondary 11N69, 11A07, 11L40.
 Key words and phrases: Artin's conjecture, primitive roots, multiple Ramanujan sum. Received 11 August 2015; revised 13 January 2016.
 Published online 22 June 2016.

