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Word calculus in the fundamental group of the Menger curve

by

Hanspeter Fischer (Muncie, IN) and Andreas Zastrow (Gdańsk)

Abstract. The fundamental group of the Menger universal curve is uncountable and
not free, although all of its finitely generated subgroups are free. It contains an isomorphic
copy of the fundamental group of every one-dimensional separable metric space and an
isomorphic copy of the fundamental group of every planar Peano continuum. We give an
explicit and systematic combinatorial description of the fundamental group of the Menger
universal curve and its generalized Cayley graph in terms of word sequences. The word
calculus, which requires only two letters and their inverses, is based on Pasynkov’s partial
topological product representation and can be expressed in terms of a variation on the
classical puzzle known as the Towers of Hanoi.

1. Introduction. The fundamental group π1(M) of the Menger univer-
sal curve M contains an isomorphic copy of the fundamental group of every
one-dimensional separable metric space [9, §5] and an isomorphic copy of
the fundamental group of every planar Peano continuum [5, §6]. All of these
groups have recently come under renewed scrutiny (see, e.g., [1, 4, 6, 10, 11]),
while eluding concrete description by classical means.

The uncountable group π1(M) is not free [8, Thm 2.2], but all of its
finitely generated subgroups are free [9], suggesting that any object resem-
bling a Cayley graph should be tree-like. Indeed, in [13] we have shown that,
given any one-dimensional path-connected compact metrizable space, there
is, in principle, an R-tree that can be regarded as a generalized Cayley graph
for its fundamental group.

In this article, we present a concrete and systematic construction of a
generalized Cayley graph for the fundamental group of the Menger uni-
versal curve by way of sequences of finite words in two letters and their
inverses. Our word calculus is based on a representation of M as the limit
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of an inverse sequence of certain finite 4-valent graphs Xn (see §2 and §4
below), constituting a special case of Pasynkov’s classical construction [19].
We choose these graphs so that each Xn can be reinterpreted as the directed
state graph of a variation on the classical Towers of Hanoi puzzle with n+ 1
disks (see §5). In this way, we obtain a “mechanical” description of π1(M).

The material is organized in such a way that the sections on the word
calculus for π1(M) and its generalized Cayley graph (see §6–8) can be read
independently of the game interpretation. In fact, most aspects are presented
both in terms of word sequences and in terms of disk movements. dReferences
to the game are enclosed in corner brackets.c However, we hope that the
reader who chooses to engage in the puzzle correspondence will gain better
visual insight into the overall combinatorics, which are ultimately driven by
the injection π1(M) ↪→ π̌1(M) into the first Čech homotopy group (see §3).
We close with a brief discussion of a concrete embedding of the much-studied
Hawaiian Earring into our model (see §9).

1.1. About the word calculus. As we shall see, each graph Xn natu-
rally covers a bouquet of two directed circles x and y, allowing us to describe
the set Ωn of based edge-loops in Xn in terms of finite words over the alpha-
bet {x+1, x−1, y+1, y−1}. The topological bonding maps fn : Xn+1 → Xn

then induce combinatorial bonding functions φn : Ωn+1 → Ωn. The reduced
edge-loops (reduced as words in the free group on {x, y}) are canonical
representatives for the elements of π1(Xn) and form a reduced inverse se-
quence (Ω′n, φ

′
n)n∈N whose limit is isomorphic to π̌1(M). The combinatorial

description of π1(M) then follows along the lines of [13]: From the set of
reduced-coherent word sequences in (Ω′n, φ

′
n)n∈N, we select only those which

have eventually stable unreduced projections at every fixed lower level. The
stabilizations of this selection of sequences form a group under the natu-
ral binary operation of termwise concatenation, followed by reduction and
restabilization, and this group is isomorphic to π1(M). The fact that all
functions φn can be calculated by one and the same explicit formula (see
Definition 5 and Example 8) allows us to present a systematic algorithm
which, when randomized, outputs a generic element of π1(M) (see §7.2).

The generalized Cayley graph of π1(M) comprises an analogous (stabi-
lized) selection of sequences of words describing edge-paths in Xn that start
at the base vertex, but do not necessarily end there, and it is turned into
an R-tree using a recursive word length calculation (see §8). The group,
which is a distinguished subset of this R-tree, acts freely on the R-tree by
homeomorphisms in the same natural way, with quotient homeomorphic
to M. Furthermore, arcs in the R-tree which connect points correspond-
ing to group elements naturally spell out word sequences that represent
the group-theoretic difference of their endpoints. Considering the underly-
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ing limitations discussed in [13, §1], these features represent a best possible
generalization of the concept of a classical Cayley graph for π1(M).

d1.2. About the board game. In our version of the Towers of Hanoi,
the placement of the disks is restricted to within the well-known unique
shortest solution of the classical puzzle, while we allow for backtracking
within this solution and for the turning over of any disk that is in transition.
We color the disks white on one side and black on the other. Then the state
graph of this new “puzzle” is isomorphic to Xn, with edges corresponding to
situations where all disks are on the board and vertices marking the moments
when disks are in transition. The exponents of the edge labels (x±1 or y±1)
indicate progress (“+1”) or regress (“−1”) in solving the classical puzzle (we
add a game reset move when the classical puzzle is solved) and their base
letters indicate whether the two disks to be lifted at the respective vertices
of this edge are of matching (“x”) or mismatching (“y”) color. Hence, each
edge-path through Xn corresponds to a specific evolution of this game, as
recorded by an observer of the movements of the n+ 1 disks.

Our word calculus can be modeled by aligning an entire sequence of such
puzzles with incrementally more disks into an inverse system, whose bonding
functions between individual games simply consist of ignoring the smallest
disk. Subsequently, every combinatorial notion featured in the description
of the generalized Cayley graph has a mechanical interpretation in terms of
this sequence of puzzles (see §8).

In particular, the elements of π1(M) are given by those coherent se-
quences of plays which return all disks to the base state, while all along
making sure that any seemingly cancelling interaction among finitely many
disks turns out not to cancel when the movements of sufficiently many ad-
ditional disks are revealed (see §7.3).c

2. A parametrization of Pasynkov’s representation of M. The
Menger universal curve is usually constructed as the intersection

⋂∞
n=0Mn

of a nested sequence of cubical complexes M0 ⊇ M1 ⊇ M2 ⊇ · · · in R3,
where M0 = [0, 1]3 and Mn+1 equals the union of all subcubes of Mn of the
form

∏3
i=1[ci/3

n, (ci + 1)/3n] with ci ∈ Z and ci ≡ 1 (mod 3) for at most
one i. (The universal curve derives its name from the fact that it contains
a homeomorphic copy of every one-dimensional separable metric space [17,
Theorem 6.1].)

Following Pasynkov [19], we instead represent the Menger universal curve
as an inverse limit of partial topological products over the circle S1 with di-
adic fibers. Specifically, we first parametrize the circle S1 = R/Z by way
of the additive group [0, 1) modulo 1, using binary expansion. We then let
{A,B} be a discrete two-point space and define the space X0 as the quo-
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tient of S1×{A,B} obtained from identifying (0, A) ∼ (0, B) and (1/2, A) ∼
(1/2, B), that is, from identifying (.0, A) ∼ (.0, B) and (.1, A) ∼ (.1, B). For
t ∈ {.0, .1}, we denote the point {(t, A), (t, B)} of X0 by (t,�). Recur-
sively, for every positive integer n, we define the space Xn as the quotient of
Xn−1 × {A,B} obtained from identifying ((t, w), A) ∼ ((t, w), B) whenever
t = b/2n+1 for some odd integer b, that is, for every t = .t1 · · · tn1 with
ti ∈ {0, 1}; again, the point {((t, w), A), ((t, w), B)} of Xn will be denoted
by ((t, w),�). For convenience, we will write, for example, (.0110, AB�B)
instead of ((((.0110, A), B),�), B).

.0

.01

.1
.011

(.0,    )

(.1,    )

(.01, B)

(.01, A)

(.001, A)

(.001, B)

Fig. 1. S1 (left), X0 (middle) and its barycentric subdivision X∗0 (right)

(.0,    A)

(.01, A   )

(.0,    B)

(.1,    A)

(.11, A   )

(.1,    B)

(.11, B   ) (.01, B   )

(.001, AA)

(.001, AB)
(.001, AA   )

(.011, AB   )

(.0101, ABA)

(.0,    AA)

(.01, A   A)

Fig. 2. The graphs X1 (left) and X2 (right). In this rendering, the vertices are arranged
clockwise in the first coordinate and alphabetically in the second coordinate (from outside
to inside).

We record the following observations for later reference (see Figures 1
and 2):

(2.1) Valence. Each Xn is a 4-valent graph (and a simplicial complex for
n ≥ 1) with 22n+1 vertices and 22n+2 edges.

(2.2) Basic building block. The space X0 can be regarded as the basic
building block for the construction. It is a graph with two vertices,
labeled (.0,�) and (.1,�), which are connected by four edges.

(2.3) Doubling. The graph Xn+1 can be obtained from Xn by first forming
the barycentric subdivision X∗n of Xn and then, for every vertex v
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of Xn, replacing the vertex star Star(v,X∗n) of v in X∗n by its double
along the boundary, i.e., replacing it by a copy of X∗0 , where the four
edge-midpoints of X0 assume the role of the four boundary points of
Star(v,X∗n).

(2.4) Vertices. Every vertex of the graph Xn is of the form (t, w) where
t = .t1 · · · tn+1 with ti ∈ {0, 1} and w is a word of length n+ 1 in the
letters A and B, except that w contains the symbol � in position d(t)
instead of a letter, where d(t) is the bit length of t:

(i) if t = 0, then d(t) = 1;
(ii) if t 6= 0, then d(t) is the position of the last 1 in the (terminating)

binary expansion of t (i.e. t = b/2d(t) for some odd integer b).

(2.5) Edges. Two vertices (t, w) and (s, v) of Xn (n ≥ 1) span an edge
of Xn if and only if |t − s| = 1/2n+1 and w ∩ v 6= ∅, in which case
w∩v is a word in the letters A and B of length n+ 1. (Here, we abuse
the intersection notation by interpreting the word AB�B as the set
{ABAB,ABBB}: AB�B ∩ A�AB = ABAB and AB�B ∩ A�AA
= ∅.) The points on an edge between the vertices (t, w) and (s, v) are
of the form (r, w ∩ v) with r (on the short arc of S1) between t and s.
In particular, the barycentric subdivision point of an edge between the
vertices (t, w) and (s, v) is given by ((t+ s)/2, w ∩ v).

(2.6) Bonding maps. There are natural maps fn : Xn+1 → X∗n, given by
the formula fn(t, w) = (t, σ(w)) where σ(w) is the right-shift of the
word w which “forgets” the last symbol.

(2.7) Linearity. Each fn maps every edge of Xn+1 linearly onto an edge
of X∗n.

(2.8) Preimages. The preimage f−1n (e) in Xn+1 of an edge e of Xn is a
figure-X whose four boundary vertices map to the endpoints of e in
pairs under fn and whose interior vertex maps to the midpoint of e.

(2.9) Lifts. By composing the map (t, w) 7→ ((t, w), A), which appends the
letter A to the word w, with the quotient map Xn × {A,B} → Xn+1,
we obtain a lift gn : X∗n ↪→ Xn+1 with fn ◦ gn = idXn . (See Figure 2,
black edges.)

Theorem 1 (Pasynkov [19]). The limit

M = lim←−
(
X1

f1←− X2
f2←− X3

f3←− · · ·
)

is homeomorphic to the Menger universal curve.

Sketch of proof. Since each Xn is one-dimensional, compact, connected
and metrizable, so is M (see [20, Corollary 8.1.7] and [18, Theorem 2.4],
for example). Moreover, it follows from (2.8) that for every n, the preimage
p−1n (C) in M of every closed vertex star C of Xn under the inverse limit
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projection pn : M→ Xn is connected. Hence, M has Property S (every open
cover can be refined by a finite cover of connected sets) and is therefore
locally connected [22, Theorem IV.3.7]. Also, it is not difficult to see that
M does not have any local cut points, using the simple fact that every edge-
path in Xn can avoid any point of Xn by a detour of at most six edges and
considering the embedding of the approximating graphs Xn into M induced
by (2.9). Finally, every nonempty open subset of M contains an embedded
edge e of some Xn, and hence it contains the embedded preimage of e in
Xn+3 under the map fn+2 ◦ fn+1 ◦ fn, which in turn contains a subdivision
of the (nonplanar) complete bipartite graph K3,3 by (2.8). In summary, M
satisfies Anderson’s characterization of the Menger universal curve [2, 3] (see
also [17, Theorem 4.11]).

3. The Čech homotopy group of M. It is straightforward to describe
the first Čech homotopy group π̌1(M) using the inverse system of the pre-
vious section. The fundamental group of X0 is free on any three of the four
oriented edges from (.0,�) to (.1,�), i.e., π1(X0, (.0,�)) = F3. The graph
Xn+1 contains natural copies of X∗n by (2.9). Indeed, by (2.3), Xn+1 is easily
seen to be homotopy equivalent to a graph obtained from Xn by gluing one
copy of (X0, (.0,�)) with its base point to each of the vertices of Xn. Hence,
we have π1(Xn+1) = π1(Xn) ∗ F3 ∗ · · · ∗ F3, with one free factor of F3 for
each vertex of Xn. Moreover, the homomorphism fn# : π1(Xn+1)→ π1(Xn)
trivializes the additional F3 factors by (2.6). If all we wanted to do was
compute the first Čech homotopy group, this would be all we need to know:

π̌1(M) = lim←−
(
F3 ∗ (F3 ∗ F3)← F3 ∗ F3 ∗ F3 ∗ (F3 ∗ · · · ∗ F3)← · · ·

)
.

However, since we are interested in describing π1(M), which consists of
homotopy classes of continuous loops, and since the free factors are at-
tached along a countable dense subset, we need to use the approach taken
in [13] of combinatorially examining the natural injective homomorphism
π1(M) ↪→ π̌1(M) from [9].

The machinery of [13] applies to the set-up here, because of Theorem 1
and (2.7) (cf. [13, Lemma 3.1]). As we shall see, it turns out to produce
a very systematic and concrete description of π1(M) and its generalized
Cayley graph, which can be mechanically illustrated using a variation on
the classical Towers of Hanoi puzzle.

4. Edge labels. The endpoints of a given edge e of the graph Xn are
of the form (t, w) and (t + 1/2n+1, v), where w ∩ v is a word in the letters
A and B of length n + 1, by (2.5). By (2.4), the words w and v have the
symbol “�” in position d(t) and d(t + 1/2n+1), respectively. We label the
edge e according to the following rule:
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label(e) =

{
x if letter(d(t), w ∩ v) = letter(d(t+ 1/2n+1), w ∩ v),

y if letter(d(t), w ∩ v) 6= letter(d(t+ 1/2n+1), w ∩ v),

where letter(d,w ∩ v) denotes the dth letter of the word w ∩ v.

4.1. Directed edges. If the edge e above is labeled “x”, respectively
“y”, we label the directed edge from (t, w) to (t + 1/2n+1, v) by “x+1”,
respectively “y+1”; and we label the directed edge from (t + 1/2n+1, v) to
(t, w) by “x−1”, respectively “y−1”.

4.2. Vertex neighbors. The four vertex neighbors (s, v) of a vertex
(t, w) in Xn are readily found, given a letter a ∈ {x+1, x−1, y+1, y−1}: com-
pute s = t ± 1/2n+1 according to the exponent of a and form v from w by
first swapping the symbol “�” with the letter in position d(s), where d(s)
is the bit length of s, and then changing that letter to its opposite (A↔ B)
in case a = y±1. (See Figure 3.)

(.101000, AB�ABA) (.101010, ABAA�A)

(.101001, ABAAB�)

x−1

ii

y−1

uu

y+1
55

x+1

))

(.101000, AB�ABB) (.101010, ABAA�B)

Fig. 3. The vertex star of (.101001, ABAAB�) in X5

4.3. Edge-paths. Labeled as above, Xn is a covering space of a bouquet
of two directed circles x and y. We fix xn = (.0,�AA · · ·A) as the base vertex
of Xn. We can then record edge-paths starting at xn as finite words over the
alphabet {x+1, x−1, y+1, y−1}. Since the covering is not regular if n ≥ 2, the
choice of basepoint matters when calculating whether an edge-path is a loop.
(See Section 6.3.) For example, the word x+1y−1y−1x+1 forms an edge-loop
in X2 based at x2 = (.0,�AA), but the same word represents an edge-path
that ends at vertex (.001, BB�) when we start at vertex (.001, AA�). (See
Figure 6.)

4.4. Reduced paths and cancellation. We denote by W the set of
all finite words over the alphabet {x+1, x−1, y+1, y−1}, including the empty
word, and define

Ωn = {ω ∈ W | ω forms an edge-loop in Xn based at xn}.
For every word ω ∈ W, there is a unique reduced word ω′, which results from
cancelling any subwords of the form x+1x−1, x−1x+1, y+1y−1, and y−1y+1
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(in any order) until this is no longer possible. For S ⊆ W, we define

S′ = {ω′ | ω ∈ S}.
Since ω′ is a canonical representative for the edge-path homotopy class of ω,
we have

π1(Xn, xn) ∼= Ω′n ≤ W ′ = F2,

where F2 denotes the free group on {x, y}.
Remark 2. The reader be advised that in [13] all edge-paths are ex-

pressed in terms of visited vertices, rather than traversed edges.

d5. A variation on the “Towers of Hanoi” puzzle. The classi-
cal puzzle known as the Towers of Hanoi consists of n + 1 holed disks
{1, . . . , n + 1}, staggered in diameter, and a board with three pegs. The
sole player stacks all disks, largest (Disk 1) to smallest (Disk n+ 1), on the
leftmost peg (Peg 0) and tries to recreate this tower on the rightmost peg
(Peg 2) by moving one disk at a time from peg to peg, using the middle peg
(Peg 1) for temporary storage. What makes the game a puzzle is the rule
that one is not allowed to ever place a larger disk on top of a smaller one.

5.1. Shortest solution. There is a well-known unique shortest solution
to this puzzle through 2n+1 assemblies of the board with 2n+1 − 1 disk
transitions [21, 7]. Enumerating the assembly stages by binary fractions, we
summarize it as follows:

I. At the assembly stage t = .t1 · · · tn+1, with ti ∈ {0, 1}, Disk i is
on Peg Pi(t), where P1(t) ≡ −t1 (mod 3) and Pi(t) ≡ Pi−1(t) +
(−1)i(ti − ti−1) (mod 3).

II. Between the assembly stages t− 1/2n+1 and t, Disk d(t) moves from
Peg (Pd(t)(t) − (−1)d(t)) (mod 3) to Peg Pd(t)(t) (mod 3), with d(t)
as in (2.4).

Remark 3 (Local solution rule, disk running directions, and leading
disks). While one popular (but not very practical) method of solution is by
recursion, the above formulas dictate a simple local solution rule. Each disk
has a fixed (cyclic) “running direction” toward completion of the puzzle: the
largest disk moves left and the directions of the smaller disks alternate from
there. At any moment when all disks are on the board, except during the
initial and the final assembly stages, there are exactly two movable disks:
the smallest disk (movable in both directions) and one other disk (movable
in only one direction). The local solution rule consists of always moving
the largest possible disk in its natural running direction, thus moving the
smallest disk every other time. To play in reverse, one would always move
the largest possible disk against its natural running direction. In this way,
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3 12
4

5
6

Peg 0 Peg 1 Peg 2

Fig. 4. Assembly stage t = .t1t2t3t4t5t6 = .101000 with disk positions
(P1, P2, P3, P4, P5, P6) = (2, 1, 0, 2, 2, 2). Arrows indicate the natural running direction for
each disk. Moving Disk 6 (leading disk) in its natural direction will advance the solution.
Moving Disk 3 against its natural direction will undo the previous move.

given any intermediate assembly stage along the shortest solution, one of
the two movable disks is designated to advance the solution (the “leading
disk”) and the other one to undo the previous move. (See Figure 4.) For
further reading, see [15].

General assumption: We will restrict the placement of the disks on the
board to within this solution.

Remark 4. The allowable 2n+1 placements of the n + 1 disks among
all possible 3n+1 placements are readily recognized by the above formula.
Indeed, given the peg position Pi of each Disk i, we can solve for t1 ≡ −P1

(mod 3) and ti ≡ ti−1 + (−1)i(Pi−Pi−1) (mod 3). Then the constellation is
allowable (i.e. within the shortest solution) if and only if ti ∈ {0, 1} for all i,
in which case it corresponds to assembly stage t = .t1 · · · tn+1.

5.2. Our variation of the game. Assuming that we restrict the place-
ment of the disks on the board to within the above solution, we make the
game itself cyclic by adding a “reset” move, in which the final tower on Peg 2
can be lifted by the largest disk and transported back to Peg 0. The player
may backtrack within the solution and may turn over any disk while hold-
ing it (but only the bottom disk during a reset move). In order to allow an
observer to distinguish the two sides of each disk, we color them white (A)
and black (B).

5.3. State graphs. Comparing the formulas of Section 5.1 with those
of Sections 2 and 4, we see that the graph Xn can be reinterpreted as the
directed state graph of the game described in Section 5.2: the vertices cor-
respond to moments when the player holds one disk in hand and the edges
correspond to times when all disks are on the board. Specifically, for any
point (t, w) in the interior of an edge of Xn, say t = .t1 · · · tn+1 · · · , the
n + 1 disks are in assembly stage .t1 · · · tn+1. At a vertex (t, w) of Xn, the
bit length d(t) of t, as defined in (2.4), indicates which disk is in the player’s
hand. The letters of the word w for any point (t, w) of Xn indicate the cur-
rent upward-facing color of each disk, when numbered from left (largest)
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(.101001, ABAAB    )

y
(.101000, AB    ABB) ( t , ABAABB)

3

6

Fig. 5. The assembly of Figure 4 with upward-facing colors ABAABB and corresponding
edge in X5. (See §5.3.) At the initial vertex, Disk 3 is in the hand of the player, whereas
at the terminal vertex it is Disk 6 (leading disk). The edge is labeled “y”, because the
colors of Disk 3 (white) and Disk 6 (black) disagree.

to right (smallest), where the symbol “�” indicates that the corresponding
disk is currently being handled. (Note that at the base vertex xn, all disks
are off the board, while only the largest disk is being handled.) A given
edge e of Xn, with endpoints (t, w) and (t+ 1/2n+1, v), is labeled “x” if the
colors of the two movable disks on the board corresponding to this edge,
namely Disk d(t) and Disk d(t+ 1/2n+1), agree; otherwise e is labeled “y”.
The edges of Xn are oriented in the direction of the shortest solution to the
classical puzzle. (See Figure 5.)

(.011, AB   )(.100,    BA) x

(.0,    AA)

(.001, AA   )

Fig. 6. The graph X2 as the directed state graph of a game with three disks. Labels:
x = solid edge, y = dotted edge, A = white, B = black. Depicted play (edge-path):
x+1y+1x+1x+1x+1y−1x+1x+1y+1y+1.
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An edge-path in Xn, based at xn, can be regarded as a record of the
movements of the n + 1 disks during a particular evolution of the game
described in Section 5.2. With each letter, we place a disk on the board and
pick up another. (See Figure 6.)c

6. Combinatorial bonding functions φn : Ωn+1 → Ωn. There are
natural projections φn : Ωn+1 → Ωn, inducing commutative diagrams

Ωn+1
reduce //

φn

��

Ω′n+1
oo //

φ′n
��

π1(Xn+1, xn+1)

fn#

��

Ωn
reduce // Ω′n oo // π1(Xn, xn)

with φ′n : Ω′n+1 → Ω′n given by φ′n(ω′n+1) := φn(ω′n+1)
′ = φn(ωn+1)

′. Using
(2.6), (2.7) and Section 4.4, we can describe the functions φn : Ωn+1 → Ωn
in two ways, via an explicit formula or using a game description:

6.1. An explicit formula. Let ωn+1 ∈ Ωn+1. Then ωn+1 = a1 · · · ap is
a finite word over the alphabet {x+1, x−1, y+1, y−1}, representing an edge-
path which alternates between vertices of Xn+1 that project under fn to
vertices of Xn and vertices of Xn+1 that project to barycentric subdivision
points of Xn. The word φn(ωn+1) ∈ Ωn represents the edge-path of Xn

that traverses the vertices of Xn which are visited by the projection. In
order to determine the letters of the word φn(ωn+1) = b1b2 · · · , we need
to know when and how the edge-path ωn+1 transitions from one preimage
f−1n (Star(v,X∗n)) for a vertex v of Xn to another. (See Figures 7 and 8.)

To this end, we pair up the letters in the word, ωn+1 = (a1a2)(a3a4)
(a5a6) · · · . So long as the signs in the exponents of the letter pairs are
opposite, we are still within the preimage of the same Star(v,X∗n), swapping

(t, ...    ... A)

(t-1/2   , ...A...   )n+1

(t, ...    ... B)

x

(t+1/2  , ...A...   )
n+1

y
x

y

y
y

x x

(t-1/2   , ...B...   )n+1

(t+1/2  , ...B...   )
n+1

Fig. 7. The transition rules inside the preimage of Star(v,X∗n) under fn : Xn+1 → X∗n
for a vertex v of Xn
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x

ABB   A

.10100 .10101

ABB   B

A   BBA      

.10110 .10111 .11000

A   BBB      

AB   AA

AB   AB

ABBA ABBB

y x

y

y

y

xx

y

AB   A ABB   A   BB      

y x

ABBB

x

Fig. 8. An edge-path (dotted) in X4 and its projection φ3(· · ·x+1 | y+1(x−1y+1)y+1 |
y+1 · · · ) = · · · y+1x+1 · · · in X3. The symbol “|” marks the positions where the edge-path
enters and leaves f−1

3 (Star((.1011, ABB�), X∗3 )).

the symbol “�” between the same two positions of the second coordinate,
namely position n+2 (which is to be forgotten) and some fixed position d ∈
{1, . . . , n+ 1}. A letter pair of matching signs signifies a transition from one
vertex of Xn to another, under the function fn. The corresponding edge label
can be computed from ωn+1 using a combination of two homomorphisms,
χ : F2 → Z and ψ : F2 → Z2, determined by χ(x) = χ(y) = 1, ψ(x) = 0
and ψ(y) = 1. While χ keeps track of the exponents, the homomorphism ψ,
when applied to the subwords of ωn+1 which correspond to edge-paths that
stay within f−1n (Star(v,X∗n)), keeps track of how often the letter in position
d changes between A and B. Specifically:

Definition 5 (φn : Ωn+1 → Ωn). Given a word ωn+1 = a1 · · · ap ∈
Ωn+1, cut ωn+1 into subwords ω1

n+1, . . . , ω
k
n+1 by cutting between the two

letters of every pair (a2j−1a2j) for which χ(a2j−1a2j) 6= 0 and calculate
the word φn(ωn+1) = b1 · · · bk−1 ∈ Ωn using the following formulas (cf.
Remarks 6 and 7, and Example 8):

εi = exponent of the last letter of ωin+1,

di = bit length of (ε1 + · · ·+ εi−1)/2
n+1 and d1 = 1,

color i(ds) =
i∑

j=1

δ(ds, dj)ψ(ωjn+1),

bi =

{
xεi if color i(di) = color i(di+1),

yεi if color i(di) 6= color i(di+1).

Here, δ is the Kronecker delta: δ(u, v) =

{
1 if u = v,

0 if u 6= v.
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Remark 6. The bit length in Definition 5 is calculated as in (2.4) for
values in [0, 1), upon reducing (ε1 + · · ·+ εi−1)/2

n+1 modulo 1.

dRemark 7. For i ∈ {1, . . . , k − 1} and d ∈ {1, . . . , n + 1}, color i(d)
indicates the color of Disk d at the end of ω1

n+1 · · ·ωin+1 ∈ Ωn+1, with 0 = A
and 1 = B.c

Example 8. The word ω6 = x+1y−1y−1x+1x+1x−1y+1x+1y+1x−1y−1

y+1x−1y+1 y+1y+1x−1y+1x−1y−1x+1y−1y+1x+1x−1y−1y−1y−1x−1x+1 of Ω6

maps to the word φ5(ω6) = y+1y+1y−1x+1x−1y−1 of Ω5. The relevant val-
ues for ωi6, di, ψ(ωi6), color i(di), and εi are listed below, where the boxed
values signify the calculation of b5. (Note that color i(ds) = 0 if ds 6= dj
for all j ∈ {1, . . . , i}; otherwise, we have color i(ds) = colorm(dm) with
m = max{j ∈ {1, . . . , i} | ds = dj}. Moreover, the value of ψ(ωkn+1) = ψ(ω7

6)

is not relevant for Definition 5. dAs for the game, ω6 ends with the player
holding Disk 1. Therefore, column “Color” is left blank for i = 7. The correct
interpretation of the value color7(1) is given in Section 6.3 below.c)

dDiskc dFlipc dColorc dAdvancec Edge

i Subword ωi
6 di ψ(ωi

6) color i(di) εi bi

1 (x+1y−1)(y−1x+1)(x+1x−1)y+1 1 1 B +1 y+1

2 x+1(y+1x−1)(y−1y+1)(x−1y+1)y+1 6 1 B +1 y+1

3 y+1(x−1y+1)x−1 5 0 A −1 y−1

4 y−1(x+1y−1)y+1 6 1 A +1 x+1

5 x+1x−1 5 0 A −1 x−1

6 y−1y−1 6 0 A −1 y−1

7 y−1(x−1x+1) 1 dholdc

Remark 9. Note that the homomorphism φ′n : Ω′n+1 → Ω′n does not
extend to a homomorphism h : F2 → F2. (Otherwise h(x2) = h(y2), be-
cause φ′n(x+1y−1y−1x+1) equals the empty word. This would imply that
h(x2y−1x−2y−1x2) = h(y2y−1y−2y−1y2) is trivial. However, observe that
φ′n(x+1x+1y−1x−1x−1y−1x+1x+1) = x+1y−1y−1x+1 does not equal the
empty word. See also Example 27 below.)

d6.2. A game description. The function φn : Ωn+1 → Ωn is more
easily described in terms of the game discussed in Section 5. It simply models
an observer of a game, played like ωn+1 ∈ Ωn+1, who ignores the smallest
disk, Disk n+ 2, recording only the movements of the remaining n+ 1 disks
in form of the word φn(ωn+1) ∈ Ωn.

Remark 10. It might be worthwhile examining exactly how this ob-
server processes the disk information during those stretches ωin+1 of ωn+1 ∈
Ωn+1 when the configurations remain within the preimage of one fixed
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Fig. 9. Disk movements corresponding to edge-paths within a subgraph of X3 as de-
picted in Figure 7, where the indicated configuration corresponds to the top vertex
(.0110, BA�A). Disk 3 moves freely among Peg 1 and Peg 2 (possibly turning), while
the smallest disk, Disk 4 (depicted in gray), intermittently moves off and on Peg 0 (pos-
sibly turning).

Star(v,X∗n) of a vertex v of Xn, as depicted in Figure 7. Set d = d(t) ∈
{1, . . . , n + 1}. Then the left-hand side of Figure 7 has Disk d on one peg
and the right-hand side on another. The smallest disk, Disk n + 2, con-
sistently occupies the remaining peg (or, if d = 1, is atop the entire disk
stack), white-side-up for the upper half of Figure 7 and black-side-up for
the lower half. The observer, who ignores Disk n+ 2, will not (indeed can-
not) document any off-and-on or back-and-forth by Disk d between its two
pegs, while Disk n + 2 intermittently moves off and on its otherwise fixed
position. Only after Disk d settles down, will the observer add a letter to
the word in progress, φn(ωn+1), unless the game has ended. This does not
happen until Disk n+ 2 moves to a new peg and some other disk, say Disk
d′ with d 6= d′ ∈ {1, . . . , n + 1}, is picked up. At that moment, the added
letter is determined by comparing the colors of d and d′, and by whether d
or d′ is the leading disk among the n + 1 largest disks. (See Figure 9, with
n+ 2 = 4 and d = 3.)c

6.3. Edge-loops. A finite word ω1 over the alphabet {x+1, x−1,
y+1, y−1} is an element of Ω1 if and only if χ(ω1) ≡ 0 (mod 4) and ψ(ω1) = 0.
A finite word ωn+1 over the alphabet {x+1, x−1, y+1, y−1} is an element of
Ωn+1 if and only if χ(ωn+1) ≡ 0 (mod 2n+2) and colork(d) = 0 for all
d ∈ {1, . . . , n+ 1}, where k is as in Definition 5. dNote that, if χ(ωn+1) ≡ 0
(mod 2n+2), colork(1) actually indicates the color of Disk n+ 2 at the very
end of ωn+1. To see why, simply append the two-letter word x+1x+1 to ωn+1

and form the word ξn+1 = ωn+1x
+1x+1. Then, by Remark 7, colork(1) in-

dicates the color of Disk 1 at the end of ξ1n+1 · · · ξkn+1 = ωn+1x
+1, which is

the same as the color of Disk n+2 at the end of ωn+1. Therefore, the stated
formula actually checks whether the n + 1 smallest disks are returned to
“white”, rather than the n+ 1 largest disks.c

Coincidentally, the formula for Ωn+1 with n = 0 agrees with that for Ω1.

7. The fundamental group of M. As indicated in Section 3, we may
now begin applying the results from [13] to obtain an explicit and systematic
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description of π1(M) in terms of the combinatorial bonding functions φn :
Ωn+1 → Ωn from Sections 6.1 and 6.2 and thereby in terms of the Towers
of Hanoi puzzle from Section 5.

7.1. Locally eventually constant sequences. As in [13], we consider

Ω = lim←−
(
Ω1

φ1←− Ω2
φ2←− Ω3

φ3←− · · ·
)
,

G = lim←−
(
Ω′1

φ′1←− Ω′2
φ′2←− Ω′3

φ′3←− · · ·
) ∼= π̌1(M).

We call a sequence (gn)n ∈ G locally eventually constant if for every n, the
sequence (φn ◦ φn+1 ◦ · · · ◦ φk−1(gk))k>n of unreduced words is eventually
constant. We set

G = {(gn)n ∈ G | (gn)n is locally eventually constant}.

For a sequence (gn)n ∈ G we define the stabilization
←−−−
(gn)n = (ωn)n ∈ Ω by

ωn = φn ◦ φn+1 ◦ · · · ◦ φk−1(gk), for sufficiently large k, and

←−
G = {

←−−−
(gn)n | (gn)n ∈ G}.

The reduction of a sequence (ωn)n ∈ Ω is defined by (ωn)′n = (ω′n)n ∈ G.

Each (ωn)n ∈
←−
G corresponds to a unique (gn)n ∈ G by way of (gn)n = (ωn)′n

and (ωn)n =
←−−−
(gn)n (cf. [13, Remark 4.7]):

Ω ⊇
←−
G ↔ G ⊆ G.

Remark 11. See Example 27 for a sequence which is not locally even-
tually constant.

The combinatorial structure of π1(M) is captured by the following the-
orem:

Theorem 12 ([13, Theorem A]). The word sequences of
←−
G form a

group under the binary operation ∗, given by termwise concatenation, fol-

lowed by reduction and restabilization: (ωn)n ∗ (ξn)n =
←−−−−−
(ωnξn)′n. Moreover,

←−
G ∼= π1(M).

7.2. A systematic description of the elements of the fundamen-
tal group. Theorem 12 describes the elements of the group π1(M) in terms
of stabilizing coherent sequences of an inverse system. In order to facili-
tate a better combinatorial understanding of this result, we now present

an algorithm which systematically describes the elements of
←−
G ∼= π1(M)

via a finite set of rules, along with a corresponding game interpretation in
Section 7.3 below. By randomly varying the parameters of this algorithm,
every element of the fundamental group can be produced. The random-
ized algorithm recursively creates a generic sequence g1, ω1, g2, ω2, . . . with
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(ωn)n ∈ Ω and (gn)n = (ωn)′n. In order to ensure that (ωn)n =
←−−−
(gn)n,

it also arranges that for every n ∈ N there is a K(n) ∈ N such that
ωn = φn ◦ φn+1 ◦ · · · ◦ φK(n)−1(ω

′
K(n)). (See Remark 13 below.)

Step 1 (Initialization). The term g1 can be any element of Ω′1
∼= π1(X1).

Considering the free product decomposition π1(X1) = π1(X0) ∗ π1(X0) ∗
π1(X0) from Section 3, we fix the following set of free generators for Ω′1:

A1 = x−1A where A = y+1y+1x−1

B1 = y−1B where B = x+1y+1x−1

C1 = y+1C where C = x−1y+1x−1

A2 = Xy+1A where X = x+1y+1

B2 = Xx+1B

C2 = Xx−1C

A3 = Y x+1A where Y = x+1x+1

B3 = Y y+1B

C3 = Y y−1

(.0,    A)

(.0,    B)

(.01, A   )

(.1,    A)

(.1,    B)

(.01, B   )
(.11, B   )

(.11, A   )

B1
C1

A1

A2 B2 C2

A3 B3 C3

Here, the words A,B,C,X and Y connect the nine generating edges
through the maximal subtree (drawn with solid lines) to the base point.

In order to get a generic g1, we randomly write down an element in the
free group on the above nine generators A1, B1, C1, A2, B2, C2, A3, B3, C3

and their inverses, and reduce the resulting word in F2, the free group on
{x, y}. Say, g1 = c1 · · · cr with ci ∈ {x+1, x−1, y+1, y−1}. We then create
an enveloping word ω1 ∈ Ω1 with ω′1 = g1, whose role is to force sta-
bilization at level 1. To this end, we perform a finite number of reverse
cancellations (unrelated to any previous cancellations) by randomly choos-
ing an insertion sequence for g1 in the form (p1, z1, p2, z2, . . . , ps, zs) with
1 ≤ pi ≤ r + 1 + 2(i − 1) and zi ∈ {x+1, x−1, y+1, y−1}, meaning that at
position p1 of the word g1 we insert z1z

−1
1 (we prepend it if p1 = 1; we

append it if p1 = r + 1), at position p2 of the resulting word we insert
z2z
−1
2 , etc. (Here, we use the usual law of exponents: e.g., (x−1)−1 = x.)

The end result is ω1. Finally, we randomly choose K(1) ∈ N with K(1) > 1
in order to mark the index by which we intend to force stabilization at
level 1.

Step 2 (Recursion). Suppose ωn = b1 · · · bk−1 ∈ Ωn and positive inte-
gers K(1), . . . ,K(n) with K(m) > m for all 1 ≤ m ≤ n are given. In order to
obtain a generic gn+1 from ωn, we return to the decomposition π1(Xn+1) =
π1(Xn)∗F3∗· · ·∗F3 from Section 3, with one free factor of F3 for each vertex
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of Xn. First, calculate the word u1v1u2v2 · · ·uk−1vk−1 ∈ Ωn+1 representing
the edge-loop of Xn+1 corresponding to the gn-lift, as defined in (2.9), of
the projection into X∗n of the edge-loop ωn of Xn starting at xn. (To do
this, note that χ(ui) = χ(vi) = χ(bi); substitute ω1

n+1 = u1, ω
i
n+1 = vi−1ui,

ωkn+1 = vk−1 into the formulas of Definition 5 and recursively calculate the
values for εi, di, color i(di) and ψ(ωin+1), based on b1 · · · bk−1, noting that
δ(di, di+1) = 0; also note that ψ(vi) = color i(di+1).) Next, randomly choose
elements W1, . . . ,Wk in the free group F3 on {A1, B1, C1}, regarded as a
subgroup of F2 with the above substitutions A1 = (x−1y+1)(y+1x−1), B1 =
(y−1x+1)(y+1x−1), and C1 = (y+1x−1)(y+1x−1). (We choose each Wi re-
duced as a word over the alphabet {A±11 , B±11 , C±11 }. After the indicated
substitutions, it need not be reduced over the alphabet {x±1, y±1}.) Now
define

ω1
n+1 := W1u1,

ω2
n+1 := v1W2u2,

ω3
n+1 := v2W3u3,

...

ωk−1n+1 := vk−2Wk−1uk−1,

ωkn+1 := vk−1Wk.

Observe that the letters of each of the concatenated words ω1
n+1u

−1
1 ,

v−1i ωi+1
n+1u

−1
i+1, and v−1k−1ω

k
n+1 come in consecutive pairs of opposite expo-

nents. Next, form words ω̂in+1 by subjecting each reduced word (ωin+1)
′ to

a random insertion sequence of the form (pi,1, zi,1, pi,2, zi,2, . . . , pi,si , zi,si) as
above, such that si > 0 if (ωin+1)

′ is the empty word, and such that the let-

ters of each of the concatenated words ω̂1
n+1u

−1
1 , v−1i ω̂i+1

n+1u
−1
i+1, and v−1k−1ω̂

k
n+1

still come in consecutive pairs of opposite exponents. Set

ωn+1 := ω̂1
n+1 · · · ω̂kn+1.

Then ωn = φn(ωn+1).

If there is an m with K(m) = n+1 and ωm 6= φm ◦φm+1 ◦ · · ·◦φn(ω′n+1),
then we have failed to stabilize the sequence as planned and need to choose
different words W1, . . . ,Wk. In this event, we simply restrict the choice of
Wi by requiring it to be nonempty if vi−1 = u−1i , which will guarantee that
ωn = φn(ω′n+1), so that ωm = φm ◦ φm+1 ◦ · · · ◦ φn(ω′n+1) for all m with
K(m) = n+ 1. Finally, set gn+1 = ω′n+1 and randomly choose K(n+ 1) ∈ N
with K(n+ 1) > n+ 1.

Remark 13. Let (ωn)n ∈ Ω. Consider ωn = φn ◦ φn+1(ωn+2), νn =
φn ◦φn+1(ω

′
n+2), and ξn = φn(ω′n+1) = φn(φn+1(ωn+2)

′) = φn ◦φ′n+1(ω
′
n+2).

Then the word νn can be obtained from ωn by performing some letter can-
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cellations, and ξn in turn can be obtained from νn by performing some
letter cancellations. (Recall that φn : Ωn+1 → Ωn represents the edge-path
projection induced by the continuous function fn : Xn+1 → Xn, and can-
cellations generate the edge-path homotopies in graphs.) Hence, if ωn = ξn,
then ωn = νn. Therefore, if ωn = φn(ω′n+1), then ωn = φn ◦ φn+1(ω

′
n+2).

Similarly, if ωn = φn ◦ φn+1 ◦ · · · ◦ φk−1(ω′k) then ωn = φn ◦ φn+1 ◦ · · · ◦
φk(ω

′
k+1).

d7.3. The game interpretation. The word ωn instructs the player on
how to move n + 1 disks. If we interfere with these movements by adding
one more disk, Disk n + 2 (now the smallest disk), the player will have to
move it out of the way every other turn (and each time there is only one
peg for it to go). If, in the process, Disk n+ 2 is always placed on the board
white-side-up, then the resulting movements of all n + 2 disks combined
generate the word u1v1u2v2 · · ·uk−1vk−1 of Section 7.2.

Before moving Disk n + 2 to a new peg, the player may choose to stall
the game using the tactics described in Remark 10, thus generating the
words ω̂in+1.

A letter cancellation in the word ωn means the elimination from the
record of two consecutive actions that undo each other. So, if a sequence
(ωn)n ∈ Ω has the property that for every n there is a k with ωn = φn ◦
φn+1 ◦ · · · ◦φk−1(ω′k), then it is in a state of “maximal consistent reduction”:

While an observer of the movements of the largest n + 1 disks might
seemingly detect some cancelling disk interactions, none of these will be
stricken from the record if we reveal the movements of the largest k + 1 (or
more) disks to this observer and allow him or her to eliminate all observed
cancelling disk interactions among the largest k + 1 (or more) disks before
recording the movements of the largest n+ 1 disks.

The set
←−
G then consists precisely of those game sequences (ωn)n ∈ Ω

which, while consistently moving an increasing number of disks, are in this
state of maximal consistent reduction.c

8. The generalized Cayley graph. In [13] we have shown that, given
any one-dimensional path-connected compact metric space, there is (in prin-
ciple) an R-tree which (to the extent possible) functions like a Cayley graph
for the fundamental group. (Recall that an R-tree is a metric space in which
any two points are connected by a unique arc, and this arc is isometric to
an interval of the real line.) We now give an explicit and systematic de-
scription of this generalized Cayley graph for π1(M) in terms of a two-letter
word calculus, as well as in terms of our Towers of Hanoi game from Sec-
tion 5. First, we adapt the necessary terminology from [13] to the given
set-up.
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8.1. Word sequences. We now need to consider edge-paths in Xn

which start at xn, but end at any vertex of Xn. For each n ∈ N, these
edge-paths are described by the words ofW, as defined in Section 4.4. How-
ever, setting up a consistent projection/reduction scheme for these words
necessitates new notation, because half of the vertices of Xn+1 are not pro-
jected to vertices of Xn. For this purpose, we use the notation a1 · · · ap−1/ap
to represent any edge-path in Xn, which starts at xn, follows the edge-path
a1 · · · ap−1, and ends somewhere in the interior of the edge spanned by the
endpoints of the two edge-paths a1 · · · ap−1 and a1 · · · ap, without visiting
any further vertices of Xn. Symbolically, we define the set

W+ =W ∪ {a1 · · · ap−1/ap | a1 · · · ap ∈ W, p ≥ 1}.

Reduction of words in W+ is carried out exactly as before, where cancel-
lations of subwords of the form z+1z−1 across the symbol “/” take on the
following form:

a1 · · · apz+1/z−1 7→ a1 · · · ap/z+1.

The functions φn : Ωn+1 → Ωn and φ′n : Ω′n+1 → Ω′n naturally extend to
functions φn : W+ → W+ and φ′n : W ′+ → W ′+, respectively, with commut-
ing diagrams:

W+
reduce //

φn

��

W ′+
φ′n
��

W+
reduce //W ′+

Definition 14. For ωn+1 ∈ W+, we define φn(ωn+1) as follows:

(i) If ωn+1 = a1 · · · ap with p even, φn(ωn+1) is defined as in Section 6.
(ii) If ωn+1 = a1 · · · ap with p odd, φn(ωn+1) := b1 · · · bk−2/bk−1, where

φn(a1 · · · apap) = b1 · · · bk−1.
(iii) If ωn+1 = a1 · · · ap−1/ap with p even, φn(ωn+1) := φn(a1 · · · ap−1).
(iv) If ωn+1 = a1 · · · ap−1/ap with p odd, φn(ωn+1) := φn(a1 · · · ap).

As before, φ′n(ω′n+1) := φn(ω′n+1)
′ = φn(ωn+1)

′.

dRemark 15. From the perspective of our game, what prompts an ob-
server of n + 1 disks to put down the last letter of ωn = a1 · · · ap is the
fact that the last disk was picked up. (See also Remark 10.) If the game
ends, instead, with the last disk (and hence all disks) still on the board, one
would write ωn = a1 · · · ap−1/ap. So, our interpretation of φn : W+ → W+

as modeling an observer of n + 2 disks who only records the movements of
the largest n+ 1 disks, remains the same.c
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Analogously to Section 7.1, we define the following sets:

WS = lim←−
(
W+

φ1←−W+
φ2←−W+

φ3←− · · ·
)
,

R = lim←−
(
W ′+

φ′1←−W ′+
φ′2←−W ′+

φ′3←− · · ·
)
,

R = {(rn)n ∈ R | (rn)n is locally eventually constant},
←−
R = {

←−−−
(rn)n | (rn)n ∈ R}.

8.2. Equivalence. We say that a word sequence (ωn)n ∈ WS is of
terminating type if there is an N ∈ N such that ωn ∈ W for all n ≥ N . There
is a natural word sequence analog of the equivalence “0.999 . . .

.
= 1.000 . . . ”

in the decimal expansions of real numbers, which we now describe.

dRemark 16. If (ωn)n ∈ WS is of terminating type, there is a d ∈
{1, . . . , N + 1} such that for every n ≥ d − 1, at the end of the play ωn,
Disk d is in the hands of the player and Disks d+ 1, d+ 2, . . . , n+ 1 are all
stacked up on the same peg (or, if d = 1, are possibly all off the board).
Unless (ωn)n is the sequence of empty words, there is exactly one word
sequence, which records the exact same disk movements as (ωn)n, except
that Disk d is not being picked up at the end of every word, and there are
always exactly four distinct word sequences, which record the exact same
disk movements as (ωn)n, except that Disk d is set down at the end of every
word. (Since our disk configurations are restricted to within the shortest
solution, we can set down Disk d on two different pegs with one consistent
choice of color facing up.) We call these word sequences equivalent.c

Formally, we have the following definition [13, Definition 3.10].

Definition 17 (Equivalence). Given (ωn)n, (ξn)n ∈ WS, we write (ωn)
.
= (ξn)n if there is an N ∈ N such that ωn = an,1 · · · an,mn for all n ≥ N ,
i.e., (ωn)n is of terminating type, and either ξn = an,1 · · · an,mn−1/an,mn for
all n ≥ N or ξn = an,1 · · · an,mn/an,mn+1 for all n ≥ N and some an,mn+1.
This induces an equivalence relation on WS which we denote by the same
symbol, “

.
=”. Given a subset S ⊆ WS, we denote by Ṡ the set resulting from

replacing every element of S by an equivalent one from WS of terminating
type, whenever possible.

Remark 18. An equivalence class contains at most one word sequence
of terminating type. If it contains an element of terminating type, then it
contains six elements in total, unless it contains the sequence of empty words,
in which case it contains five. All other equivalence classes are singletons.

8.3. Completion. Before we can begin measuring distances between
word sequences, we need to address their limiting behavior. Specifically,
consider a word sequence (ωn)n ∈ WS as depicted in Figure 10 (left), where
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Xn

Xn+3

(t,v) d(t)

n+3

Xn

Xn+2

(t,v) d(t)

n+2

Fig. 10. Left: The dotted edge-paths ωn+2, ωn+3, . . . come to within one edge of a vertex
projecting to (t, v), but the projection ωn does not visit (t, v). Right: dThe corresponding
disk movements. As ωn+2, ωn+3, . . . pass the gray vertex, the smallest disk (gray) gets
picked up and immediately returned to the same peg (possibly turned), while Disk d(t)
remains on the board (exposed).c

there is a vertex (t, v) of Xn such that every edge-path ωk (k > n+1) comes
to within one edge of a vertex of Xk that maps to (t, v), although ωn does not
proceed to visit vertex (t, v) at that time. In such a situation, we insert the
corresponding detour to vertex (t, v) into the edge-path ωn by way of Defi-
nition 20 below. A game interpretation is provided in the following remark.

dRemark 19. Similar to Remark 16, for a given (ωn)n ∈ WS and fixed
1 ≤ d ≤ n+1, the player might be stacking up Disks d+1, d+2, . . . , k during
corresponding moments of ωk with k > n+1, seemingly preparing to pick up
Disk d, but without actually doing so. (See Figure 10, right, with d(t) = d.)
Indeed, Disk k might be added to this stack during ωk at a time when Disk
k + 1 is perceived as being handled by the player, only to be added to the
stack itself during ωk+1 while Disk k + 2 is being handled, etc. From the
word ωn, one cannot discern that, as more and more disks are being moved,
the player is coming infinitesimally close to picking up Disk d. We remedy
this situation by temporarily setting Disk k + 1 on Disk k during ωk, while
picking up Disk d in the process—a move which is noted by the observer
recording ωn—and checking if the trend persists. If it does, Definition 20
below inserts the appropriate detour to vertex (t, v) into the edge-path ωn.c

The following definition is adapted from [13, Definition 4.9]:

Definition 20 (Completion). The completion (ωn)n = (τn)n of a word
sequence (ωn)n ∈ WS can be calculated as follows. Fix n ∈ N. For each
k > n + 1, consider the word ωk, which is either of the form ωk = a1 · · · ap
or ωk = a1 · · · ap/ap+1. Form a new word ηk from a1 · · · ap by inserting the
word aia

−1
i after every position i for which χ(a1 · · · ai) ≡ ±1 (mod 2k−n),

χ(a1 · · · ai−1) 6≡ 0 (mod 2k−n) and χ(a1 · · · ai+1) 6≡ 0 (mod 2k−n). We then
define τn = φn ◦ φn+1 ◦ · · · ◦ φk−1(ηk) for sufficiently large k.
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Remark 21. If (ωn)n is of terminating type, then
(
(ωn)n

)′
= (ωn)′n [13,

Lemma 6.4]. In particular, we have the following commutative diagram of
bijections:

←−
G

′

bijections

��

←−
G“ ”oo

G
“←−”

??

8.4. Stable initial match. Some care must be taken in pinpointing the
exact moment where two word sequences diverge, because seeing more detail
allows for noticing more differences. We recall from [13, Definition 4.15]:

Definition 22 (Stable initial match). For ωn, ξn ∈ W+, we define ωn ∩
ξn ∈ W+ as the maximal consecutive initial substring of the letters of the two
words, including any letters that might come after the symbol “/”, where
we separate the last letter of ωn ∩ ξn by the symbol “/” if it is so separated
in the shorter of the two words. For (ωn)n, (ξn)n ∈ WS, the projections
τn = φn ◦ φn+1 ◦ · · · ◦ φk−1(ωk ∩ ξk) are constant for sufficiently large k > n,
and we define (ωn)n e (ξn)n = (τn)n.

8.5. Dynamic word length. Since edge-paths in [13] are recorded as
words of visited vertices, rather than traversed edges, the recursive word
length function from [13, Definition 4.14] (which is based on [16]) needs to
be adjusted slightly (a game interpretation is given in Remark 25 below):

Definition 23. Let (ωn)n ∈ WS.

(a) Given the word ω1 = a1 · · · ap/∗, i.e., either ω1 = a1 · · · ap or ω1 =
a1 · · · ap/ap+1, we insert geometrically decreasing weights:(

1

2

)
a1

(
1

4

)
a2

(
1

8

)
· · ·
(

1

2p

)
ap

(
1

2p+1

)
.

(b) Given the word ωn = b1 · · · bk−1/∗ with weights

(ρ1)b1(ρ2)b2(ρ3) · · · (ρk−1)bk−1(ρk),
and the word ωn+1 = a1 · · · ap/∗, we define ωin+1 = ci,1 · · · ci,mi (1 ≤
i ≤ k) as in Definition 5 for φn(a1 · · · ap) = b1 · · · bk−1, and insert
the weights(

ρ1
2

)
c1,1

(
ρ1
4

)
c1,2

(
ρ1
8

)
· · ·
(
ρ1

2m1

)
c1,m1

(
ρ1

2m1+1

)
,

c2,1

(
ρ1

2m1+1
+
ρ2
2

)
c2,2

(
ρ2
4

)
c2,3

(
ρ2
8

)
· · ·
(

ρ2
2m2−1

)
c2,m2

(
ρ2

2m2

)
, and

ci,1

(
ρi−1

2mi−1
+
ρi
2

)
ci,2

(
ρi
4

)
ci,3

(
ρi
8

)
· · ·
(

ρi
2mi−1

)
ci,mi

(
ρi

2mi

)
for i > 2.
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We let |ωn| denote the sum of the weights so inserted into the word ωn.
Then |ω1| > |ω2| > · · · . We define ‖(ωn)n‖ = limn→∞ |ωn|.

Remark 24. Let (ωn)n ∈ WS. Suppose the word ωn = a1 · · · ap/∗ has
weights (ρ1)a1(ρ2)a2(ρ3) · · · (ρp)ap(ρp+1). Then, for every 2 ≤ i ≤ p+ 1, we
have ρ1 = 1/2n, 0 < ρi−1/2

n ≤ ρi ≤ (3/4)n−1/2 and |ωn| − ρp − ρp+1 <
‖(wm)m‖ < |ωn| [13, Lemmas 6.34 and 6.35]. In particular, the empty word
ωn = ∅ ∈ W+ has length |∅| = 1/2n, so that the sequence (∅)n ∈ WS has
length ‖(∅)n‖ = 0.

dRemark 25. We think of the weights in Definition 23 as time limits
(in fractions of some unit of time) that we give to the player for moving the
disks. (We assume that our idealized player is capable of moving any disk
at any speed.) For ω1, two disks need to be moved alternately, Disk 1 and
Disk 2. Every time one of these two disks is handled by the player, we allow
less time to do so: 1/2, 1/4, 1/8, . . . . The total allowed time for completing
the movements of ω1 is given by |ω1|. For example, during ω1 = x+1x+1y−1,
we handle disks on four occasions, adding up to a total time limit of |ω1| =
1/2 + 1/4 + 1/8 + 1/16 = 1− 1/16.

Playing the game according to ωn+1, there are n+ 2 disks. Recursively,
time limits for the disk movements according to ωn have already been es-
tablished. As discussed in Remark 10 and Section 7.3, every handling of a
Disk d with d ∈ {1, . . . , n+ 1} is intermittently interrupted by the handling
of Disk n + 2, as recorded by ωin+1 in Section 6.1. If ρ denotes the allotted
time for the corresponding handling of Disk d as part of the word ωn, we
allow the following lengths of time to handle either Disk d or Disk n + 2
during ωin+1: ρ/2, ρ/4, ρ/8, . . . . The remaining fractional time is being added
to the allowed time for handling the very next disk, Disk d′ of Remark 10.
The total allowed time to finish ωn+1 equals |ωn+1|.

For example, consider the word ω7 = x+1y−1y+1 | x+1y−1x+1y+1x−1y+1

| y+1x−1y+1y−1 | y−1x−1x+1 · · · , subdivided as ω1
7, ω

2
7, ω

3
7, . . . . Then

ω7 maps to ω6 = φ6(ω7) = x+1y+1x−1 · · · . If the allotted time lim-
its for the disk movements for ω6 are ρ1, ρ2, . . . , then the time lim-
its for ω7 are ρ1/2, ρ1/4, ρ1/8, ρ1/16, (ρ1/16 + ρ2/2), ρ2/4, ρ2/8, ρ2/16,
ρ2/32, ρ2/64, (ρ2/64+ρ3/2), ρ3/4, ρ3/8, ρ3/16, (ρ3/16+ρ4/2), ρ4/4, ρ4/8, . . . ,
which need to be added to obtain |ω7|.

At the very end of every word ωn, we loose a little bit of time, since there
is no next disk which could make use of the fractional carryover. The effect
of this is that the more disks are on the board, the faster the player has to
finish the game.c

8.6. The R-tree. In summary, the two-letter word calculus described
herein, as illustrated by the corresponding movements of disks in our version
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of the Towers of Hanoi, gives an explicit description of the generalized Cayley
graph for π1(M):

Theorem 26 ([13, Theorems B–E]).

(a) For word sequences (ωn)n, (ξn)n ∈
←−
R, define

ρ((ωn)n, (ξn)n) =
∥∥(ωn)n

∥∥+
∥∥(ξn)n

∥∥− 2
∥∥(ωn)n e (ξn)n

∥∥.
Then ρ is a pseudo-metric on

←−
R with ρ((ωn)n, (ξn)n) = 0⇔ (ωn)n

.
=

(ξn)n. Moreover, the resulting metric space (
←̇−
R, ρ) is an R-tree.

(b) The group
←−
G ∼= π1(M) acts freely and by homeomorphisms on the

R-tree
←̇−
R via its natural action (ωn)n.(ξn)n =

←−−−−−
(ωnξn)′n with quotient

←̇−
R/
←−
G ≈ M. (Note that the action cannot possibly be by isometries;

see Example 29 below.)

(c) For word sequences (ωn)n, (ξn)n ∈
←−
G ∼= π1(M), the arc of the

R-tree
←̇−
R from (ωn)n to (ξn)n naturally spells out the word se-

quence (ωn)−1n ∗ (ξn)n, when projecting the arc to its edge-paths:
←̇−
R →M→ Xn.

9. An embedding of the Hawaiian Earring

Example 27. Here is a sequence which is not locally eventually con-
stant. Consider the word

`(k) = x2
k−1

y−1x2−2
k
y−1x2

k−1 ∈ Ωn (1 ≤ k ≤ n).

(For fixed k, the same word `(k) corresponds to an edge-path in Xn for each
n ≥ k.) Then φn−1(`(k)) = `(k−1) for 2 ≤ k ≤ n and φn−1(`(1)) = empty
word. (See Remark 28.) Following [14, p. 185], consider

[n, k] = `(n)`(k)`
−1
(n)`
−1
(k),

set ω1 = ∅ ∈ Ω1 and

ωn = [n, n− 1][n, n− 2] · · · [n, 1] ∈ Ωn for n > 1.

(Here, we define (a1 · · · am)−1 = a−1m a−1m−1 · · · a
−1
1 .) Then (gn)n := (ω′n)n ∈ G,

because φ′n−1(ω
′
n) = φn−1(ωn)′ = (ωn−1`(n−1)`

−1
(n−1))

′ = ω′n−1.

In order to see why (gn)n is not locally eventually constant, observe that
(by Definition 5) if φn−1 is applied to any word of Ωn containing a subword
of length 2n−1 with equal exponents, it produces a word of Ωn−1 containing
a corresponding subword of length at least 2n−1 − 1 with equal exponents.
Consequently, since the central 2n letters of each of the 2n−2 subwords `±1(n)

of ωn remain after we carry out all possible cancellations in ωn, the word
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φ1 ◦ · · · ◦ φn−1(gn) contains at least 2n− 2 letters. (In fact, a more detailed
analysis would show that φ1 ◦ · · · ◦ φn−1(gn) = (`(1)`

−1
(1))

n−1.)

dRemark 28. The word `(k) ∈ Ωn (1 ≤ k ≤ n) in Example 27 describes
the following movements of the n+ 1 disks: Place the entire stack on Peg 0,
play the top stack consisting of the smallest k − 1 disks to Peg P , where
P ∈ {1, 2} and P ≡ n − k (mod 2), turn over the kth smallest disk, play
the top stack back to Peg 0, move the entire stack to Peg 2, play the top
stack consisting of the smallest k − 1 disks to Peg P , where P ∈ {0, 1} and
P ≡ n − k (mod 2), turn over the kth smallest disk, play the top stack
back to Peg 2, and finally pick up the entire stack. (Note that the first
(resp. second) time around, the top stack reassembles at the unique Peg P
that would allow the kth smallest disk to move in (resp. against) its natural
running direction.)c

Example 29 (cf. [12, Example 4.15]). There is no R-tree metric on
←̇−
R

which renders the action of
←−
G as isometries. Suppose, to the contrary, that

there is a metric κ :
←̇−
R×
←̇−
R → [0,∞) such that (

←̇−
R, κ) is an R-tree and such

that the action of
←−
G on (

←̇−
R, κ) is by isometries. Using the words `(k) from

Example 27, define

L1 = (`(1), `(2), `(3), `(4), `(5), . . . ) ∈
←−
G ,

L2 = ( ∅ , `(1), `(2), `(3), `(4), . . . ) ∈
←−
G ,

L3 = ( ∅ , ∅ , `(1), `(2), `(3), . . . ) ∈
←−
G ,

L4 = ( ∅ , ∅ , ∅ , `(1), `(2), . . . ) ∈
←−
G ,

...

Choose ni ∈ N with ni > 1/κ((∅)n, Li). Then L = Ln1
1 L

n2
2 · · · ∈

←−
G ⊆

←̇−
R.

By Theorem 26(c) and Remark 21, the arc in
←̇−
R from (∅)n to L contains

the points Ln1
1 L

n2
2 · · ·L

ni−1

i−1 L
j
i ∈
←−
G for all i ∈ N and 1 ≤ j ≤ ni. Therefore,

assuming the action of
←−
G on (

←̇−
R, κ) is by isometries, the length of this arc

equals
∑∞

i=1 niκ((∅)n, Li) = ∞. However, the length of an arc in an R-tree
equals the distance between its endpoints.

Remark 30. We mention in passing that ρ((∅)n, Li) = (11/12)(1/2)i−1.
To verify this, it suffices to show that ‖L1‖ = 11/12. This, in turn, fol-
lows from three observations: (i) by Definition 23(a), |`(1)| = 1 − 1/32;

(ii) if the subwords ω1
n+1, ω

2
n+1, . . . , ω

k
n+1 are as in Definitions 5 & 23(b) for

φn(`(n+1)) = `(n), then k = 2n+1 + 1, the word ωk−1n+1 = ck−1,1ck−1,2 has



224 H. Fischer and A. Zastrow

two letters and the word ωkn+1 = ck,1 has one letter; (iii) consequently, by
Definition 23(b), the weight which follows ck,1, call it %n+1 = λn+1/2

2n+5,
satisfies the recursion λ1 = 1 and λn+1 = 2λn + 2, so that λn+1 = 3 · 2n− 2.
Hence, ‖L1‖ = 1− 1/32− (1/2)%1 − (1/2)%2 − · · · = 11/12.

Example 31 (A Hawaiian Earring). Let Li be as in Example 29. Let

Ci ⊆
←̇−
R/
←−
G ∼= M be the image of the arc in

←̇−
R from (∅)n to Li. Then each

Ci is a simple closed curve and Ci+1 shares an arc with Ci that contains the
base point of M. The subspace

⋃
i∈NCi of M is clearly homotopy equivalent

to the Hawaiian Earring

H = {(x, y) ∈ R2 | x2 + (y − 1/i)2 = (1/i)2 for some i ∈ N}.
Let Yn be the image of

⋃n
i=1Ci in Xn. Set αn,i = `(n+1−i). Then φn−1(αn,i) =

αn−1,i for 1 ≤ i ≤ n− 1 and φn−1(αn,n) = empty word. Let Ln be the set of
all finite words over the alphabet {α±1n,1, α

±1
n,2, . . . , α

±1
n,n} and let ε : Ln → Ωn

be the natural letter substitution. Considering

H = {(gn)n ∈ G | for every n, there is an ωn ∈ ε(Ln) with gn = ω′n}
and applying [13, Theorem A] to⋃

i∈N
Ci = lim←−

(
Y1

f1|Y2←−−− Y2
f2|Y3←−−− Y3

f3|Y4←−−− · · ·
)
,

we see that the subgroup
←−
H of

←−
G is isomorphic to π1(H).

This is seen to be equivalent to the known word sequence description
of π1(H) as detailed, for example, in [23], upon formally identifying all αn,i
(n ∈ N) to αi, interpreting φn−1 as the function Ln → Ln−1 which deletes all
occurrences of αn, and considering the stabilizations of the locally eventually
constant sequences in the limit of the reduced inverse sequence of free groups

F (α1)
φ′1←− F (α1, α2)

φ′2←− F (α1, α2, α3)
φ′3←− · · · ,

under the group operation of termwise concatenation, followed by reduction
and restabilization.

Remark 32. With a small modification of the definition for Li in Ex-
ample 29 (leaving the distance ρ((∅)n, Li) unchanged) the corresponding
simple closed curves Ci of Example 31, pairwise, only share the base point
of M, so that

⋃
i∈NCi is homeomorphic to H. dSpecifically, where previously

each Li was defined as a game sequence in which only the (i + 1)st disk is
turned (twice), one would instead define Li as a game sequence in which
every k · (i + 1)st disk (for k = 1, 2, . . . ) is turned exactly twice, once from
white to black as soon as possible, and once from black to white at the last
opportunity.c We leave it to the reader to formulate this in terms of a word
sequence.
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