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ON AN INTRINSIC CHARACTERIZATION OF
SELF-ADJOINT C∗-SEGAL ALGEBRAS

BY

SUBHASH J. BHATT and PRAKASH A. DABHI (Vallabh Vidyanagar)

Abstract. An intrinsic characterization of self-adjoint C∗-Segal algebras among
Banach ∗-algebras is obtained in terms of Pták’s spectral function. A connection between
order structure in C∗-Segal algebras and Grothendieck’s well known dual characterization
of C∗-algebras is revealed.

Recently there has been considerable interest in Banach algebras that
are dense ideals in Banach algebras (respectively C∗-algebras), called Segal
algebras (respectively C∗-Segal algebras). A commutative C∗-Segal algebra
incorporates Nachbin’s weighted function algebras in its Gelfand–Naimark
framework [1]; and at the non-commutative level, this leads to weighted
C∗-algebras (a non-commutative analogue of Nachbin algebras) [7]. The
present note is aimed at discussing an intrinsic characterization of self-
adjoint C∗-Segal algebras. A relation to Grothendieck’s dual characteriza-
tion of a C∗-algebra [6] is also discussed.

Following [7], a faithful Banach algebra A is a C∗-Segal algebra if A con-
tinuously sits in a C∗-algebra B as a dense ideal under an injective homo-
morphism i. Also, A is self-adjoint if i(A) is closed under the involution of B.
In this case, A becomes a Banach ∗-algebra. We address the issue of intrinsi-
cally characterizing self-adjoint C∗-Segal algebras. Let sA(x) = r(x∗x)1/2 be
the celebrated Pták function of Banach ∗-algebra theory [4, p. 224], where
r(·) denotes the spectral radius. We show that (A, ‖ · ‖A) is a self-adjoint
C∗-Segal algebra if and only if A is hermitian, ∗- semisimple, and for some
l > 0, the inequalities ‖ab‖A ≤ lsA(a)‖b‖A, ‖ab‖A ≤ l‖a‖AsA(b) hold for all
a, b ∈ A. This is used to show that if A is a self-adjoint C∗-Segal algebra in a
C∗-algebra B, then B is necessarily unique and is the enveloping C∗-algebra
C∗(A) of A. This leaves open the question of describing intrinsically faithful
Banach algebras that are not necessarily self-adjoint C∗-Segal algebras.
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The multiplier algebra M(A) of a Banach algebra (A, ‖ · ‖A) consists
of pairs m = (ml,mr) of bounded linear maps from A to A such that
ml(ab) = ml(a)b, mr(ab) = amr(b), aml(b) = mr(a)b for all a, b ∈ A. The
Banach algebra norm on M(A) is ‖m‖M = max{‖mr‖op, ‖ml‖op}, where
‖ · ‖op denotes the operator norm ‖T‖op = sup{‖Ta‖A : ‖a‖A ≤ 1}. If A
is a Banach ∗-algebra, then M(A) is a Banach ∗-algebra with involution
m→ m∗ = (m∗r ,m

∗
l ), m

∗
l (x) = ml(x

∗)∗, m∗r(x) = mr(x
∗)∗ for all x ∈ A.

Theorem 1. Let (A, ‖ · ‖A) be a faithful Banach ∗-algebra. Then the
following are equivalent:

(1) A is a self-adjoint C∗-Segal algebra.
(2) The Banach ∗-algebra M(A) contains a ∗-subalgebra which is

a C∗-algebra containing A, and there is l > 0 such that ‖ab‖A ≤
lsA(a)‖b‖A and ‖ab‖A ≤ l‖a‖AsA(b) for all a, b ∈ A.

(3) A is hermitian, ∗-semisimple and there is l > 0 such that ‖ab‖A ≤
l‖a‖AsA(b) and ‖ab‖A ≤ lsA(a)‖b‖A for all a, b ∈ A.

Proof. (1)⇒(2), (1)⇒(3). Let A be a self-adjoint C∗-Segal algebra. Let
(C, ‖ · ‖0) be a C∗-algebra such that A is a Segal ∗-algebra in C. Therefore
A is a dense ∗-ideal in C, and there is l > 0 such that ‖a‖0 ≤ l‖a‖A (a ∈ A).
Since A is an ideal in C, it is spectrally invariant in C. Hence sA(a) =
sC(a) = ‖a‖0 (a ∈ A). It follows from [2, Theorem 2.3] that ‖ab‖A ≤
l‖a‖AsA(b) and ‖ab‖A ≤ lsA(a)‖b‖A for every a, b ∈ A. It follows that
(1)⇒(3). Further, for c ∈ C, consider Tc = (lc, rc) : A → A. Then Tc is a
continuous multiplier on A. The map c 7→ (lc, rc) is an embedding of C into
M(A). Thus (1)⇒(2).

(2)⇒(1). Let (C, ‖ · ‖0) be a C∗-algebra such that A ⊂ C ⊂ M(A) as
∗-subalgebras, and let l > 0 be such that ‖ab‖A ≤ l‖a‖AsA(b) and ‖ab‖A ≤
lsA(a)‖b‖A for all a, b ∈ A. Since A is a ∗-ideal in M(A), A is a ∗-ideal in C.
This implies that A is spectrally invariant in C. Therefore sA(a) = sC(a) =
‖a‖0 (a ∈ A). Thus the closure of A in C is a C∗-algebra in which A is a
dense ∗-ideal.

(3)⇒(1). Let A be hermitian and ∗-semisimple, and let l > 0 be such
that ‖ab‖A ≤ l‖a‖AsA(b) and ‖ab‖A ≤ lsA(a)‖b‖A. Since A is hermitian
and ∗-semisimple, sA(·) is a C∗-norm on A. Let C = (A, sA(·))∼. Then C
is a C∗-algebra. Since A is a Banach ∗-algebra and C is a C∗-algebra, the
inclusion map from A to C is continuous. Therefore there is k > 0 such that
sA(a) ≤ k‖a‖A (a ∈ A). Now it follows that A is ideal in C. Indeed, for
a, bn ∈ A with bn → b ∈ C in sA(·), we have abn → ab in sA(·); and since
(abn) is Cauchy in ‖ · ‖A, it converges to d in A, and hence also in sA(·).
Thus ab = d ∈ A. Similarly ba ∈ A, and A is an ideal in C.
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Corollary 2. Let A be a self-adjoint C∗-Segal algebra in a C∗-algebra B.
Then B is unique; B is the enveloping C∗-algebra C∗(A) of A; and A is a
dense ideal in C∗(A).

Proof. Let A be a self-adjoint C∗-Segal algebra in a C∗-algebra B. Then
A is spectrally invariant in B; and for all a ∈ A, we have ‖a‖2B = ‖a∗a‖B =
rB(a∗a) = rA(a∗a) = sA(a)2. Since A is hermitian, sA(·) is the greatest
C∗-seminorm [4, Cor. 8, p. 227]. Thus B = (A, sA(·))∼ = C∗(A).

We end the present note with a couple of remarks on regularity properties
and order structure of a C∗-Segal algebra.

(1) A weighted C∗-algebra [1, 7] is a pair (A, π) where A is a self-adjoint
C∗-Segal algebra in a C∗-algebra B and π : A →M(B) is a positive isometric
B-module homomorphism. Notice that π is never a ∗-homomorphism. For
otherwise,A becomes a C∗-algebra, hence norm regular, and so never a Segal
algebra by [7, Cor. 2.7], since a faithful Banach algebra is a Segal algebra if
and only if it is norm irregular. Thus (ironically) a weighted C∗-algebra is
never a C∗-algebra. It also follows that A is a weighted C∗-algebra if and
only if A is a self-adjoint C∗-Segal algebra that admits a positive isometric
C∗(A)-module homomorphism π : A → M(C∗(A)). A typical example is
Nachbin’s weighted function algebra [7]. Let ν : X → R, ν(t) ≥ 1, be a
continuous function on a locally compact space X. Let A = Cν0 (X) = {f ∈
C(X) : νf ∈ C0(X)} with the norm ‖f‖A = sup{|f(t)ν(t)| : t ∈ X}. Then
C∗(A) = C0(X), M(C∗(A)) = Cb(X), the collection of bounded continuous
functions on X, and π(f) = νf . On the other hand, the Segal algebra
A = Cp(H), 1 ≤ p <∞, the Schatten–von Neumann class of operators on a
Hilbert space H, with C∗(A) = K(H), the C∗-algebra of compact operators,
fails to be a weighted C∗-algebra.

(2) A self-adjoint C∗-Segal algebra A satisfies ‖ab‖A ≤ l(‖a‖AsA(b) +
‖b‖AsA(a)). Thus by [8, Theorem 14], A is a Banach D∗1-subalgebra of a
C∗-algebra; in fact, of the C∗-algebra C∗(A) by Corollary 2 above. Since
spA(a) = spC∗(A)(a), (A, ‖ · ‖C∗(A)) is a Q-normed algebra [5, §6], in the

sense that the quasi-invertible elements of A form a ‖ · ‖C∗(A)-open set. By

[3, 8], A is a smooth subalgebra of C∗(A) whose norm ‖ · ‖A is a differential
norm of order 1.

(3) LetAh be the real vector space of all self-adjoint elements of a Banach
∗-algebra A. Let K consist of all finite sums of elements of the form a∗a,
a ∈ A. Then the relation a ≤ b if b−a ∈ K (a, b ∈ Ah) makes Ah a partially
ordered vector space. An element u ∈ K is an order unit [10, p. 205] of Ah
if each x ∈ Ah satisfies x ≤ lu for some scalar l > 0. By [7], an order unit
C∗-Segal algebra is a pair (A, u) where A is a self-adjoint C∗-Segal algebra
and u is an order unit of Ah satisfying ‖a‖A = inf{l > 0 : −lu ≤ a ≤ lu}.
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Thus ‖ · ‖A is the Minkowski functional [10, p. 39] of the order interval
[−u, u] in Ah.

LetA+ := A∩C+, where C+ is the positive cone of non-negative elements
of the C∗-algebra C∗(A). Let a, b ∈ A+. Since {l > 0 : −lu ≤ a+ b ≤ lu} ⊂
{l > 0 : −lu ≤ a ≤ lu}, it follows that ‖a+ b‖A ≥ ‖a‖A. Hence by [10,
Chapter V, Theorem 3.5, p. 215], the positive cone A+ in Ah is normal;
hence, the ‖ · ‖A-topology on A is the order topology [10, p. 232]. Since
Ah = A+−A+ by [7, Lemma 3.8], we deduce from [10, Theorem 5.5, p. 228]
that every positive linear functional on Ah is continuous.

By [10, Corollary 3, p. 220], the normality of A+ implies that every con-
tinuous linear functional on Ah is a difference of two positive linear func-
tionals. Notice that not every continuous linear functional on a C∗-Segal
algebra is a difference of two representable [4, §37] positive linear function-
als: otherwise, A being hermitian, A would be equivalent to a C∗-algebra,
by a well known result of Grothendieck [6], stating that a hermitian Banach
∗-algebra B is a C∗-algebra if and only if every continuous linear functional
on B is a difference of two representable positive linear functionals. Thus the
representability condition in Grothendieck’s result cannot be omitted. This
also demonstrates the crucial role of the non-existence of a bounded approx-
imate identity (bai) in a C∗-Segal algebra A to survive, for the presence of
a bai in A implies that every positive linear functional on A is representable
[9, Theorem 4.5.14, p. 214], [11, Theorem 3.2], forcing A to be a C∗-algebra.
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